# **Amerigear® Gear Couplings Standard and Modified Designs**







| Table of Contents                                                             | <b>Page</b>   |
|-------------------------------------------------------------------------------|---------------|
| Amerigear Design Advantages                                                   |               |
| Amerigear Flanged Sleeve Series F Couplings                                   |               |
| Series F, FS - Standard                                                       | 8-11          |
| Series FM, FMS - Mill Motor (Taper Shaft)                                     |               |
| Series FA, FAS - Axial Travel                                                 |               |
| Series FE - Extended (Spacer)                                                 |               |
| Series FV, FVS - Vertical                                                     | 20-21         |
| Amerigear Modifications and Variations – Series F                             |               |
| Reverse Mounted Hubs  Tandems, FSM - Mill Motor Rigid, Universal Hubs         |               |
| Limited End Float, FD & FDC Disconnect Couplings                              |               |
| FB - Brake Drum, FI - Insulated, Adjustable Axial Position (Jordan) Couplings |               |
| FR - Rigid & Differential Tooth Couplings, Adaptors                           | 27            |
| FL - Continuous Lubricated & Double Flex Couplings                            | 28            |
| Amerigear Continuous Sleeve Series C Couplings Series C, CS - Standard        | 29-30         |
| Amerigear Modifications and Variations – Series C                             |               |
| CB - Brake Drum, Limited End Float, CL - Continuous Lubricated Couplings      |               |
| Blind Assembly, CM & CMS Mill Motor Couplings                                 |               |
| CA & CAS - Axial Travel, CV & CVS - Vertical Shaft Couplings                  | 33            |
| Amerigear Engineering Data Speeds, Classes and Balance                        | 04.05         |
| Maximum Speeds - Series FE and FEL                                            |               |
| Maximum Speeds - Series FS Tandems                                            |               |
| Weights, WR <sup>2</sup> , Torsional Stiffness and Engineering Calculations   | 38-39         |
| Maximum Bore, Keyway and Puller Hole Data                                     |               |
| Dimensional Data Flange Details Series F                                      |               |
| Additional Dimensional Data - F and C                                         |               |
| Amerigear Metal Seal                                                          |               |
| Flexible Couplings                                                            | 47            |
| Full-Flex Couplings - Series F Size 1 ½ - 7                                   | 48            |
| Flex-Rigid Couplings - Series FS Size 1 ½ - 7                                 | 49            |
| Modifications & Variations                                                    |               |
| Application Data Form                                                         | 51            |
| IDENTIFICATION OF COUPLING TYPES                                              | I OI          |
| F                                                                             | anged Sleeve  |
| FS and CS Single                                                              |               |
| FM and CMMill Motor                                                           | (Taper Shaft) |
| FMS and CMSMill Motor Single                                                  | Engagement    |
| FV and CV                                                                     |               |
| FVS and CVS                                                                   |               |
| FAS and CAS                                                                   |               |
| FEExter                                                                       |               |
| FL and CLContinuous                                                           | ly Lubricated |
| FELExtended, Continuous                                                       |               |
| FR                                                                            |               |
| FD and FDC Disconr FB and CB                                                  |               |
| FI                                                                            |               |
| FPH                                                                           | Shear Pin     |
| FSPH Shear Pin Single                                                         | Engagement    |

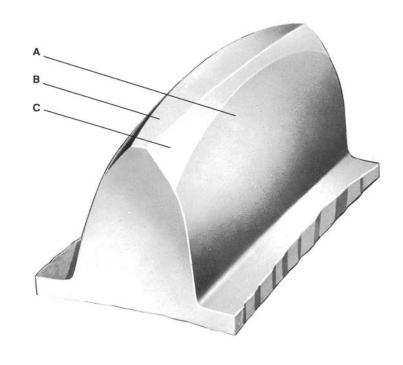


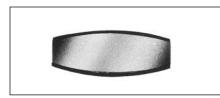






# **Amerigear Flexible Couplings**

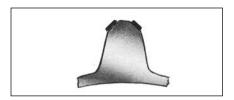

# Fully-Crowned Teeth The Basis For Gear Tooth Design


### **Advantages and Features**

Amerigear . . . the first, the finest . . . flexible coupling with Fully-Crowned Gear Teeth.

In contrast with ordinary gear tooth forms, the Amerigear Fully-Crowned Tooth represents the ultimate achievement in the art of gear tooth design, wherein all three working portions of the tooth are crowned. As a result, the teeth act much like a rocking chair, capable of sliding freely in the axial direction without digging or gouging the internal mating teeth. Because of this design advantage, Amerigear Flexible Couplings with Fully-Crowned Gear Teeth offer operational benefits of maximum load-carrying capacity with minimum size, maximum reliability and long life.

Amerigear . . . often copied, but never equaled.






**Crowned Flanks** Flanks of the teeth are crowned so that tooth thickness is greatest at the center of the tooth. This assures larger contact area per tooth for higher torque requirements and puts more teeth in contact for a given angle. Actual tooth loading takes place near the center of the tooth face where tooth thickness is greatest. Crowned flanks also eliminate end-oftooth loading, provide optimum load distribution, and accommodate all types of misalignment with minimum backlash, while transmitting constant velocity. This design provides good oil film characteristics for efficient lubrication.



Crowned Tips Tips of teeth are crowned with a radius equal to the outside of the gear element. The crowned tip contacts the root of internal gear teeth in the external sleeve, accurately piloting the sleeve with true concentric ball-and-socket action. This permits minimum diametral sleeve clearance and centers the sleeve physically to assure good dynamic balance characteristics under various loading and misalignment conditions.



Crowned Chamfers Faces of the teeth adjacent to the tips are chamfered to eliminate interference with the sleeve tooth fillets. This allows the true involute flanks of the gear teeth to be in contact with the sleeve teeth and assures freedom to misalign.

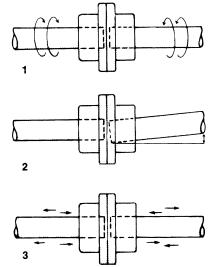
In accordance with our established policy to constantly improve our products, the specifications contained herein are subject to change without notice.

P-1819-AC 6/15 Ameridrives Couplings 814-480-5000

## **Design Advantages**

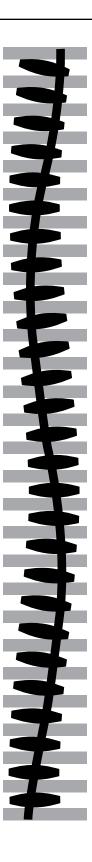
The Flexible Coupling method of connecting rotating shafts is a vital and necessary technique. Large massive shafting, loosely mounted in sleeve bearings and merely joined together by rigidly bolted flanges, cannot provide efficient mechanical power transmission. Especially today, as machine designers and builders demand higher speeds, higher torques, and higher misalignment capacities, the need for "flexibly connecting" this equipment becomes apparent.

A flexible coupling is necessary since it is practically impossible to achieve and maintain perfect alignment of coupled rotating shafts. During initial assembly and installation, precise alignment of the shaft axes is not only difficult to achieve but in many cases it is economically unfeasible. During operation, alignment is even more difficult to maintain. Shaft misalignment caused by uneven bearing wear, flexure of structural members, settling of foundations, thermal expansion, shaft deflection and other factors - is an operating certainty. Because these factors are extremely difficult to control, a flexible coupling serves as an ideal answer to compensate or minimize the effects of unavoidable misalignment and end movement of coupled shafts.


A flexible coupling must provide three basic functions:

- Physically couple together two rotating shafts for efficient transmission of mechanical power, transferring the torque of one shaft to the other, directly and with constant velocity.
- Compensate for all types of misalignment between rotating, connected shafts without inducing abnormal stresses and loads on connected equipment, and without tangible loss of power.
- Compensate for end or axial movement of the coupled shafts, preventing either shaft from exerting excessive thrust on the other and allowing each to rotate in its normal position.

Three types of misalignment must be effectively accommodated by a flexible coupling.


- Parallel Offset axes of connected shafts are parallel, but not in the same straight line.
- Angular axes of shafts intersect at center point of coupling, but not in the same straight line.
- Combined Angular-Offset axes of shafts do not intersect at point of coupling and are not parallel.

### **Functions**



### Mișalignment





### **Amerigear®**

#### Amerigear Fully-Crowned Teeth (Fig. 1)

Crowned Flanks, Crowned Tips, Crowned Chamfers — recognized as the ultimate in gear tooth design and the secret of superior mechanical power transmission! Increased tooth contact area improves the load-carrying capacity of the teeth regardless of operating conditions and provides "ball-and-socket" piloting action at all misalignments. As a result, connected equipment is able to operate at higher torques, speeds, and misalignments with resultant longer life.

#### Rigid, strong, "floating" sleeve (Fig. 2)

A floating sleeve, containing internally-cut gear teeth at opposite ends, is made from medium carbon steel. In effect, it provides a "bridge" between driving and driven gear meshes. It can be furnished as a continuous, one-piece sleeve ... or made in two halves and bolted together.

Precision-machined identical hubs (Fig. 3) Two identical hubs, machined to close tolerances, contain external Fully-Crowned Gear Teeth which totally engage internal teeth of the sleeve. Fully-Crowned Teeth enable coupling to operate longer, with minimum backlash while assuring free axial movement of connected shafts.

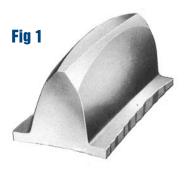
#### Positive dust-tight seals (Fig. 4)

Buna-N O-ring seals keep contamination out... vital lubricant in. They are designed to accommodate temperatures up to 250°F. For temperatures of 400°F continuous and 550°F for short periods, Viton O-ring seals are available. These are easily installed without removing coupling hub and sleeve from shafting.

### **American®**

**Operating advantages** The American Flexible Coupling is a simplified and efficient unit. It performs all of the required functions of a flexible coupling and compensates for angular misalignment up to  $\pm 1^\circ$  in standard applications. But it will compensate for many times this amount without strain to the connected equipment or loss of power for short periods, should an unforeseen alignment condition arise. It is ideal for blind assembly or vertical applications.

The Coupling functions basically on the well-known "Oldham" principle, modified and improved to accommodate maximum shaft misalignment with greater efficiency, easy installation, inspection and servicing. It transmits torque through an intermediate square floating member, and compensates for all three types of misalignments by the combined sliding actions between the closely fitting center member and the adjacent driving and driven jaw flanges.



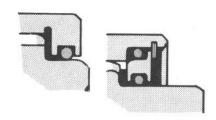


Fig 2



Fig 3



Fig 4





American Flexible Coupling with Self Lubricating Center Member. Contact Ameridrives Couplings for details.

5

## **Ordering Information**

 Obtain Shaft Sizes Compare shaft sizes of driving and driven equipment with listed maximum bores of desired Series or Type coupling to determine "tentative" coupling size.

NOTE: Maximum bores are listed on pages 8 and 9 for F Type couplings and on page 29 for C Type couplings.

2. Compute effective HP/100 RPM or torque to be transmitted Select a service factor from adjacent table. Determine HP/100 RPM as follows:

$$\frac{\text{HP/100 RPM}}{\text{(effective)}} = \frac{\text{HP transmitted x 100 x S.F.}}{\text{RPM}}$$

or determine Torque (in.-lbs.) as follows:

Torque (effective) = 
$$\frac{HP/100 \times 630}{\text{(effective)}}$$
or
Torque (effective) = 
$$\frac{HP \text{ transmitted } \times 63,000 \times S.F.}{RPM}$$

Confirm "Tentative" Coupling size or increase to a size which has a HP/100 RPM or torque rating equal to or greater than value computed above.

- 3. Check Maximum Speed of Application
  Refer to page 34 for maximum speed
  ratings. These speeds are given only
  as a guide, since the maximum speed
  depends on the system characteristics.
- 4. Check Space Limitations Dimensions of the selected coupling should be compared with space provided in the application to assure proper clearances. Shaft extensions, separation, and clearances to align coupling should be checked.

**Example** A 250-HP electric motor is to drive a centrifugal pump at 1750 RPM. Motor shaft size is 21/2". Pump shaft size is 2". Bore size for Series F and Series C, Size 202 will accommodate the 21/2" shaft.

$$HP/100 RPM = \frac{250 \times 100 \times 1.5}{1750} = 21.4$$

Both Series F and Series C, Size 202 have capacities of 50 HP/100 RPM.

Note: Series F and Series C, Size 202 will accommodate a 2<sup>3</sup>/<sub>4</sub>" shaft with standard square key. In this example, the rating of 50 HP/100 RPM provides a large margin of safety.

### **Recommended Service Factors (S.F.)**

In order to provide for the dynamic torque which must be transmitted, it may be necessary to increase the horsepower to be transmitted by a factor which will allow for momentary increases in torque due to the characteristics of the

equipment. The service factors shown in the table below provide a basis for estimating this allowance for specific combination of connected equipment.

These factors are derived from lengthy service experience with average applications — and they are to be considered as a general guide. For conditions not covered by the table, good judgment must be exercised and a factor selected by referring to the type of equipment most closely approximating the type of application being considered, or by detailed analysis of the dynamics of the equipment.

|                  |                                                                                                                                                                                      |                     | TYPE DRIVE         | R                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------------------------|
| LOAD             | DRIVEN EQUIPMENT                                                                                                                                                                     | Motor or<br>Turbine | Hydraulic<br>Drive | Reciprocating<br>Engine |
| UNIFORM          | Centrifugal Pumps • Conveyors — Even Loaded • Exciters • Fans and Blowers — Light Duty • Generators — Even Loaded • Mixers — Liquid                                                  | 1.0                 | 1.25               | 1.50                    |
| LIGHT<br>SHOCK   | Centrifugal Pumps • Generators — Pulsating Load • Grinders • Hydraulic Pumps • Kilns • Line Shafting • Machine Tools • Oscillating Pumps • Textile Machinery • Woodworking Machinery | 1.5                 | 1.75               | 2.0                     |
| MEDIUM<br>SHOCK  | Air Compressors — Multi-Cylinder • Ball and Rod Mills • Cranes • Elevators • Hoists • Punch Presses • Reciprocating Pumps • Shears • Ship Drives • Welding Generators                | 2.0                 | 2.25               | 2.5                     |
| HEAVY<br>SHOCK   | Air Compressors — Single Cylinder • Dredges • Drilling Rigs • Mine Machinery • Rolling Mill Drives • Rubber Mixers                                                                   | 2.5                 | 2.75               | 3.0                     |
| EXTREME<br>SHOCK | Ore Crushers • Barstock Shears • Vibrating Conveyors                                                                                                                                 | 3.0                 | 3.5                | 4.0                     |

For operating speeds less than 100 RPM, service factors may be reduced depending upon application. Refer to Ameridrives Couplings for appropriate recommendations.

# **Ordering Information**

#### When Ordering, Specify Following Information

- 1. Quantity and delivery requirements.
- 2. Shaft or bore sizes and keyway dimensions. Give exact dimensions with tolerances.
- Load horsepower and/or torque at a specific RPM. State normal and maximum conditions.
- **4.** Speed minimum, normal and maximum.
- **5.** Application type of driver and driven equipment.
- 6. Coupling Series, Type and Size.
- Space limitations envelope dimensions, shaft extensions and shaft spacing.
- 8. Unusual misalignment conditions.
- Modifications setscrews, tapered bores, special keys, hub cut-off, counterbores or others.
- Unusual operating conditions ambient temperatures and atmospheres.

# Specify Following Information for Specific Couplings

#### Series FM and CM — Mill-motor Type:

Motor frame number plus drawing detail of shaft if possible.

**Series FE** — **Spacer Type:** Shaft separation: Specify shrouded or exposed bolt.

### Series FS and CS — Tandem Type:

State if floating shaft to be supplied. Specify mounting arrangement and shaft spacing.

### Series FA and CA — Axial Travel Type:

Amount of travel. Shaft extension and separation.

#### Series FD, FDC — Disconnect Type:

Specify which bore is to be in the disengaging hub. Describe shifting mechanism.

**Series FPH, FSPH — Shear Pin:** State shear torque and quantity of spare shear pins.

**Limited End Float Variation:** Specify allowable end float.

#### **Recommended Bore Tolerances**

- Recommended standard bore tolerances for interference and clearance fits are shown in Tables A and B respectively.
- Bore tolerances conform to AGMA 9002-A86 standards.

**Interference Fits** Unless specified, bores will be furnished with an interference fit.

When **shaft sizes only** are stated on order and they consist of fractional or decimal dimensions without tolerance, the bore will be sized for an interference fit in accordance with Table A. If exact **shaft size** and tolerance do not agree with tables, the largest shaft dimension will be considered "basic" and the standard negative bore tolerance will be applied.

INTERFERENCE FIT (INCHES)

### **Table A**

| Nominal<br>Bore Size<br>Over Thru | Shaft<br>Tolerance | Bore<br>Tolerance | Interference<br>Range |  |  |
|-----------------------------------|--------------------|-------------------|-----------------------|--|--|
| 0.0000 / 1.5000                   | +.0000<br>0005     | 0005/0010         | 0000/0010             |  |  |
| 1.5000 / 3,0000                   |                    | 0010/0020         | 0000/0020             |  |  |
| 3.0000 / 4.0000                   |                    | 0015/0030         | 0005/0030             |  |  |
| 4.0000 / 5,0000                   |                    | 0020/0035         | 0010/0035             |  |  |
| 5.0000 / 7.0000                   |                    | 0025/0040         | 0015/0040             |  |  |
| 7.0000 / 8.0000                   |                    | 0030/0050         | 0020/0050             |  |  |
| 8.0000 / 9.0000                   |                    | 0035/0055         | 0025/005              |  |  |
| 9.0000 / 10,0000                  | +.0000             | 0040/0060         | 0030/006              |  |  |
| 10.0000 / 11.0000                 | 0010               | 0045/0065         | 0035/006              |  |  |
| 11.0000 / 12.0000                 |                    | 0050/0070         | 0040/0070             |  |  |
| 12.0000 / 13.0000                 |                    | 0055/0075         | 0045/007              |  |  |
| 13.0000 / 14.0000                 |                    | 0060/0080         | 0050/0080             |  |  |
| 14.0000 / 15.0000                 |                    | 0065/0085         | 0055/008              |  |  |
| 15.0000 / 16.0000                 |                    | 0065/0090         | 0055/009              |  |  |
| 16.0000 / 17.0000                 |                    | 0070/0095         | 0060/009              |  |  |
| 17.0000 / 18.0000                 |                    | 0075/0100         | 0065/010              |  |  |
| 18.0000 / 19.0000                 |                    | 0080/0105         | 0070/010              |  |  |
| 19.0000 / 20.0000                 |                    | 0085/0110         | 0075/0110             |  |  |
| 20.0000 / 22.0000                 | +.0000             | 0100/0130         | 0080/0130             |  |  |
| 22.0000 / 24.0000                 | 0020               | 0110/0140         | 0090/0140             |  |  |
| 24.0000 / 26.0000                 | 0020               | 0120/0150         | 0100/015              |  |  |

Clearance Fits If shaft sizes are listed as fractional or decimal dimensions without tolerance, the bore will be sized in accordance with Table B. If exact shaft size and tolerance are given, but tolerance does not agree with Table B, the largest shaft dimension will be considered as "basic" and the standard bore tolerance will be applied.

Table B conforms to AGMA 9002-A86 Class I.

### **Table B**

| CLEARANCE FIT — INCHES |           |           |           |  |  |  |  |  |  |  |  |  |
|------------------------|-----------|-----------|-----------|--|--|--|--|--|--|--|--|--|
| Nominal                | Shaft     | Bore      | Clearance |  |  |  |  |  |  |  |  |  |
| Bore Range             | Tolerance | Tolerance | Range     |  |  |  |  |  |  |  |  |  |
| Thru 1.5000            | +.0000    | +.0010    | +.0015    |  |  |  |  |  |  |  |  |  |
|                        | 0005      | 0000      | 0000      |  |  |  |  |  |  |  |  |  |
| Over 1.5000            | +.0000    | +.0010    | +.0020    |  |  |  |  |  |  |  |  |  |
| Thru 2.0000            |           | 0000      | 0000      |  |  |  |  |  |  |  |  |  |
| Over 2 0000            | 0010      | +.0015    | +.0025    |  |  |  |  |  |  |  |  |  |
| Thru 6.5000            |           | 0000      | 0000      |  |  |  |  |  |  |  |  |  |

**Example** 

**Shaft Size** — 2.000 (Basic Size)

1.999 (With Tolerance)

Interference Fit

Coupling Bore 1.999

1.998

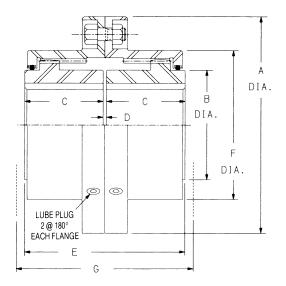
**Clearance Fit** 

Coupling Bore 2.001

2.000

| STANDARD RECOMMENDED KEYWAYS |      |        |       |                 |                   |  |  |  |  |  |  |  |
|------------------------------|------|--------|-------|-----------------|-------------------|--|--|--|--|--|--|--|
| Nominal                      | Bore | Range  |       | Keyway (Inche   | s)                |  |  |  |  |  |  |  |
| Over                         |      | Thru   | Width | Depth<br>Sq.Key | Depth<br>Red. Key |  |  |  |  |  |  |  |
| .312                         | /    | .438   | .094  | .047            | -                 |  |  |  |  |  |  |  |
| .438                         | /    | .562   | .125  | .063            | .047              |  |  |  |  |  |  |  |
| .562                         | /    | .875   | .188  | .094            | .062              |  |  |  |  |  |  |  |
| .875                         | /    | 1.250  | .250  | .125            | .094              |  |  |  |  |  |  |  |
| 1.250                        | /    | 1.375  | .312  | .156            | .125              |  |  |  |  |  |  |  |
| 1.375                        | /    | 1.750  | .375  | .188            | .125              |  |  |  |  |  |  |  |
| 1.750                        | /    | 2.250  | .500  | .250            | .188              |  |  |  |  |  |  |  |
| 2.250                        | / 2  | 2.750  | .625  | .313            | .219              |  |  |  |  |  |  |  |
| 2.750                        | /    | 3.250  | .750  | .375            | .250              |  |  |  |  |  |  |  |
| 3.250                        | /    | 3.750  | .875  | .438            | .313              |  |  |  |  |  |  |  |
| 3.750                        | /    | 4.500  | 1.000 | .500            | .375              |  |  |  |  |  |  |  |
| 4.500                        | /    | 5.500  | 1.250 | .625            | .438              |  |  |  |  |  |  |  |
| 5.500                        | /    | 6.500  | 1.500 | .750            | .500              |  |  |  |  |  |  |  |
| 6.500                        | /    | 7.500  | 1.750 | .875            | .750              |  |  |  |  |  |  |  |
| 7.500                        | /    | 9.000  | 2.000 | 1.000           | .750              |  |  |  |  |  |  |  |
| 9.000                        | /    | 11.000 | 2.500 | 1.250           | .875              |  |  |  |  |  |  |  |
| 11.000                       | /    | 13.000 | 3.000 | 1.500           | 1.000             |  |  |  |  |  |  |  |
| 13.000                       | /    | 15.000 | 3.500 | 1.750           | 1.250             |  |  |  |  |  |  |  |
| 15.000                       | /    | 18.000 | 4.000 |                 | 1.500             |  |  |  |  |  |  |  |
| 18.000                       | /    | 22.000 | 5.000 | 1               | 1.750             |  |  |  |  |  |  |  |
| 22.000                       | /    | 26.000 | 6.000 | -               | 2.000             |  |  |  |  |  |  |  |

# **Series F** | Flexible Couplings


### **Sizes 200-207**

### ${\bf Flanged\ Sleeve\ -\!\!\!\!\!\!-}$

### **Double-Engagement Type**

**Application:** Meets requirements of all standard applications for shaft sizes up to 10.25 diameter. Compensates for all three types of misalignment.

Description: Amerigear 200 Series F Flexible Coupling is designed with bolted center flanges to facilitate installation and alignment. Optimum separation of gear meshes permits high parallel offset capacity. Flanged-sleeve design makes possible minimum distances between bearing housings to facilitate shaft alignment. In addition, 200 Series hubs are designed with a greater bore capacity.



**SIZE 200 THRU 207** 

|           | Maxim         | um Bore        |                                | Load (                  | Capacity                 |       | DIMENSIONS |      |     |       |       |       |
|-----------|---------------|----------------|--------------------------------|-------------------------|--------------------------|-------|------------|------|-----|-------|-------|-------|
| F<br>Size | Square<br>Key | Reduced<br>Key | Parallel<br>Offset<br>Capacity | HP Per<br>100<br>R.P.M. | Torque<br>inLbs<br>x 10³ | A     | В          | С    | D   | E     | F     | G**   |
| * 200     | .81           | .88            | .023                           | 3                       | 1.9                      | 2.94  | 1.25       | 1.06 | .12 | 2.25  | 1.94  | 2.88  |
| * 201     | 1.25          | 1.31           | .042                           | 5                       | 3.2                      | 3.56  | 1.75       | 1.38 | .12 | 2.88  | 2.56  | 3.50  |
| * 2011/4  | 1.63          | 1.75           | .057                           | 12                      | 7.6                      | 4.00  | 2.25       | 1.69 | .12 | 3.50  | 3.00  | 4.12  |
| 2011/2    | 2.25          | 2.38           | .058                           | 27                      | 17.0                     | 6.00  | 3.12       | 1.94 | .12 | 4.00  | 3.92  | 4.75  |
| 202       | 2.75          | 2.88           | .079                           | 50                      | 31.5                     | 7.00  | 4.00       | 2.44 | .12 | 5.00  | 4.86  | 6.00  |
| 2021/2    | 3.50          | 3.75           | .102                           | 85                      | 53.6                     | 8.38  | 4.88       | 3.03 | .19 | 6.25  | 5.86  | 7.25  |
| 203       | 4.00          | 4.25           | .119                           | 150                     | 94.5                     | 9.44  | 5.75       | 3.59 | .19 | 7.38  | 6.86  | 8.50  |
| 2031/2    | 4.50          | 4.75           | .142                           | 225                     | 142.0                    | 11.00 | 6.50       | 4.19 | .25 | 8.62  | 7.88  | 10.00 |
| 204       | 5.50          | 5.88           | .164                           | 340                     | 214.0                    | 12.50 | 7.75       | 4.75 | .25 | 9.75  | 9.22  | 11.00 |
| 2041/2    | 6.25          | 6.75           | .187                           | 515                     | 324.0                    | 13.62 | 9.00       | 5.31 | .31 | 10.94 | 10.35 | 12.25 |
| 205       | 6.62          | 6.75           | .218                           | 660                     | 416.0                    | 15.31 | 9.50       | 6.03 | .31 | 12.38 | 11.44 | 13.75 |
| 2051/2    | 7.50          | 7.62           | .245                           | 875                     | 551.0                    | 16.56 | 10.50      | 6.62 | .31 | 13.56 | 12.69 | 15.25 |
| 206       | 8.25          | 8.62           | .275                           | 1,190                   | 750.0                    | 18.00 | 11.75      | 7.41 | .31 | 15.12 | 13.75 | 16.50 |
| 207       | 9.62          | 10.25          | .314                           | 1,640                   | 1,033.0                  | 20.75 | 13.50      | 8.69 | .38 | 17.75 | 16.00 | 19.25 |

<sup>\*</sup> Sizes 200, 201 and 2011/4 flange fasteners are self-locking socket head cap screws - one flange tapped.

Sizes 2011/2-2051/2 have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

Sizes 206 AND 207 have exposed bolts (EB) with self-locking nuts.

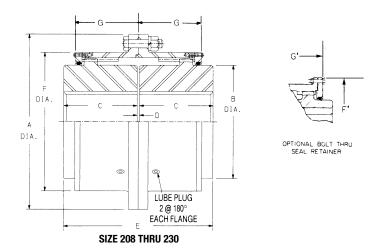
Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41. Additional details, page 42.

Weights and WR<sup>2</sup>, page 38. Modifications and variations, pages 23-28. Maximum speeds, page 34.

Combined angular and parallel offset should not exceed  $\pm\ 1^{1}/{2^{\circ}}$  per gear mesh.

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series F Couplings incorporate the following engineered features:

- ±11/2° angular misalignment capacity per gear mesh.
- Torque ratings at full misalignment in excess of normal requirements for average applications.
- Accurately machined medium carbon steel hubs and sleeves.
- Positive-type 0-ring seals keep lubricant in ... contaminants out. Seals enshrouded to prevent damage.


<sup>\*\*</sup>Clearance for aligning coupling.

### **Sizes 208-230**

# Flanged Sleeve — Double-Engagement Type

**Application:** Meets requirements of severe service conditions and larger shaft sizes up to 46" diameter. Compensates for all three types of misalignment.

**Description:** Heavy-duty Amerigear Series F Flexible Coupling (Sizes 208-230) contains the same basic design features as Series F (Sizes 200-207), described on page  $8\ldots$  however, misalignment capacity is  $\pm$   $^3$ /4°. Major components are fully-machined from medium carbon steel.



|      | LOAD CAI | PACITY*          | Parallel |       | DIMENSIONS |       |      |       |       |       |           |              |          |  |
|------|----------|------------------|----------|-------|------------|-------|------|-------|-------|-------|-----------|--------------|----------|--|
|      | HP Per   | Torque           | Offset   |       |            |       |      |       |       |       | Opt. Bolt | Through Seal | Retainer |  |
| F    | 100      | InLbs.           | Capacity |       |            |       |      |       |       |       | Parallel  |              |          |  |
| Size | RPM      | x10 <sup>6</sup> | ln.      | A     | В          | C     | D    | E     | F     | G     | Offset    | F'           | G'       |  |
| 208  | 2,380    | 1.50             | .164     | 23.25 | 15.62      | 9.75  | .38  | 19.88 | 18.38 | 8.38  | .164      | 20.62        | 8.38     |  |
| 209  | 2,700    | 1.70             | .181     | 26.00 | 17.50      | 10.75 | .50  | 22.00 | 20.50 | 9.19  | .181      | 22.75        | 9.19     |  |
| 210  | 3,300    | 2.08             | .200     | 28.00 | 19.00      | 12.00 | .50  | 24.50 | 22.38 | 10.00 | .200      | 25.12        | 10.00    |  |
| 211  | 5,800    | 3.65             | .216     | 30.50 | 21.00      | 13.00 | .50  | 26.50 | 24.75 | 10.91 | .216      | 26.75        | 10.91    |  |
| 212  | 7,700    | 4.86             | .228     | 33.00 | 23.00      | 14.00 | .50  | 28.50 | 26.75 | 11.59 | .228      | 28.75        | 11.59    |  |
| 213  | 10,000   | 6.31             | .249     | 35.75 | 25.00      | 15.00 | .75  | 30.75 | 28.75 | 12.47 | .249      | 30.75        | 12.47    |  |
| 214  | 12,700   | 8.02             | .262     | 38.00 | 27.00      | 16.00 | .75  | 32.75 | 30.75 | 13.09 | .262      | 32.75        | 13.09    |  |
| 215  | 15,300   | 9.65             | .275     | 40.50 | 29.00      | 17.00 | .75  | 34.75 | 32.75 | 13.72 | .275      | 35.50        | 13.72    |  |
| 216  | 17,400   | 10.96            | .203     | 44.50 | 30.50      | 18.00 | 1.00 | 37.00 | 35.50 | 11.34 | .294      | 39.50        | 14.84    |  |
| 218  | 23,200   | 14.62            | .203     | 48.50 | 34.50      | 20.00 | 1.00 | 41.00 | 39.50 | 11.47 | .347      | 43.50        | 16.97    |  |
| 220  | 30,000   | 18.95            | .203     | 52.50 | 38.50      | 22.00 | 1.00 | 45.00 | 43.50 | 11.59 | .399      | 48.00        | 19.09    |  |
| 222  | 38,000   | 23.98            | .203     | 58.00 | 42.50      | 24.00 | 1.00 | 49.00 | 48.00 | 11.75 | .451      | 52.00        | 21.50    |  |
| 224  | 48,800   | 30.72            | .203     | 62.88 | 46.50      | 26.00 | 1.00 | 53.00 | 52.00 | 11.91 | .504      | 56.00        | 23.41    |  |
| 226  | 63,000   | 39.70            | .203     | 69.00 | 50.00      | 28.00 | 1.00 | 57.00 | 57.00 | 12.22 | .556      | 61.00        | 25.72    |  |
| 228  | 81,900   | 51.61            | .203     | 73.00 | 54.00      | 30.00 | 1.00 | 61.00 | 61.00 | 12.69 | .609      | 65.00        | 28.13    |  |
| 230  | 94,800   | 59.70            | .203     | 77.00 | 58.00      | 32.00 | 1.00 | 65.00 | 65.00 | 12.69 | .609      | 69.00        | 28.13    |  |

<sup>\*</sup>If higher torque capacity is required and size is restricted, consult Ameridrives Couplings.

Center flange details, page 41. Additional details, page 43. Weights and WR<sup>2</sup>, page 39. Modifications and variations, pages 23-28. Larger sizes available. Maximum speeds, page 34.

Sizes 208-230 have exposed bolts (EB).

### SINGLE AND DOUBLE KEY BORE CAPACITY — FLEXIBLE HUBS

|      | 1      | SQUARE KE | 1      |        | 1 REDUC | ED KEY |        | 2 8    | QUARE KEYS | 3      | 2 REDUCED KEYS |        |        |        |
|------|--------|-----------|--------|--------|---------|--------|--------|--------|------------|--------|----------------|--------|--------|--------|
|      | Max.   | Key       | way    | Max.   | Key     | way    |        | Max.   | Key        | ways   | Max.           | Key    | ways   |        |
| F    | Bore   | W         | Н      | Bore   | W       | Н      | K*     | Bore   | W          | Н      | Bore           | W      | H      | K*     |
| Size | Inches | Inches    | Inches | Inches | Inches  | Inches | Inches | Inches | Inches     | Inches | Inches         | Inches | Inches | Inches |
| 208  | 11.250 | 2.500     | 1.250  | 12.250 | 2.500   | .812   | 6.823  | 12.000 | 1.750      | .875   | 12.750         | 1.750  | .625   | 6.953  |
| 209  | 12.250 | 3.000     | 1.500  | 13.375 | 3.000   | 1.000  | 7.531  | 13.500 | 2.000      | 1.000  | 14.500         | 2.000  | .688   | 7.875  |
| 210  | 13.750 | 3.000     | 1.500  | 15.000 | 3.000   | 1.000  | 8.360  | 14.875 | 2.000      | 1.000  | 15.750         | 2.000  | .688   | 8.500  |
| 211  | 14.250 | 3.500     | 1.750  | 15.250 | 3.500   | 1.250  | 8.703  | 15.500 | 2.750      | 1.375  | 16.500         | 2.750  | .875   | 9.000  |
| 212  | 15.250 | 3.750     | 1.875  | 16.250 | 3.750   | 1.375  | 9.281  | 17.000 | 3.000      | 1.500  | 18.000         | 3.000  | 1.000  | 9.937  |
| 213  | 16.250 | 4.000     | 2.000  | 17.250 | 4.000   | 1.500  | 9.875  | 18.500 | 3.250      | 1.625  | 19.500         | 3.250  | 1.125  | 10.750 |
| 214  |        |           |        |        |         |        |        | 20.000 | 3.500      | 1.750  | 21.000         | 3.500  | 1.250  | 11.625 |
| 215  |        |           |        |        |         |        |        | 21.500 | 3.500      | 1.750  | 22.500         | 3.500  | 1.250  | 12.375 |
| 216  |        |           |        |        |         |        |        | 23.000 | 3.750      | 1.875  | 24.000         | 3.750  | 1.375  | 13.250 |
| 218  |        |           |        |        |         |        |        | 26.000 | 4.000      | 2.000  | 27.000         | 4.000  | 1.500  | 14.875 |
| 220  |        |           |        |        |         |        |        | 29.000 | 4.500      | 2.250  | 30.000         | 4.500  | 1.750  | 16.562 |
| 222  |        |           |        |        |         |        |        | 31.750 | 5.000      | 2.500  | 33.000         | 5.000  | 1.875  | 18.187 |
| 224  |        |           |        |        |         |        |        | 34.500 | 6.000      | 3.000  | 36.000         | 6.000  | 2.250  | 20.000 |
| 226  |        |           |        |        |         |        |        | 37.000 | 6.000      | 3.000  | 39.000         | 6.000  | 2.250  | 21.562 |
| 228  |        |           |        |        |         |        |        | 40.000 | 6.000      | 3.000  | 42.000         | 6.000  | 2.250  | 23.062 |
| 230  |        |           |        |        |         |        |        | 44.000 | 6.000      | 3.000  | 46.000         | 6.000  | 2.250  | 25.062 |

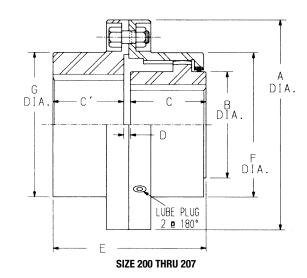
Note: Single keys not recommended for sizes 214 and larger. Consult Ameridrives Couplings if double keys not practical.

Maximum bores and puller hole data, page 40.

<sup>\*</sup>Maximum distance from bottom of keyway to bore axis.

# **Series FS** | Flexible Couplings

### **Sizes 200-207**


#### Flanged Sleeve —

### Single-Engagement Type

**Application:** Used primarily in tandem pairs, connected by intermediate floating shaft or as individual unit in conjunction with a driver or driven shaft having a self-aligning support bearing. When used singly, compensates for angular misalignment only.

**Description:** Amerigear Series FS Flexible Coupling consists of one standard flexible half coupling and one rigid half. The bolted center flanges facilitate installation and alignment.

If used in tandem assemblies, see page 24 for shaft sizes and page 37 for speed limits.



|           | Max. Bore     | Flex Half      | Max. Bore     | Rigid Half     | Load Ca                 | apacity                  |       |       |      | DIMEN | SIONS |       |       |       |
|-----------|---------------|----------------|---------------|----------------|-------------------------|--------------------------|-------|-------|------|-------|-------|-------|-------|-------|
| F<br>Size | Square<br>Key | Reduced<br>Key | Square<br>Key | Reduced<br>Key | HP Per<br>100<br>R.P.M. | Torque<br>InLbs<br>x 10³ | A     | В     | С    | C.    | D     | E     | F     | G*    |
| * 200     | .81           | .88            | 1.31          | 1.38           | 3                       | 1.9                      | 2.94  | 1.25  | 1.06 | 1.05  | .08   | 2.19  | 1.94  | 1.94  |
| * 201     | 1.25          | 1.31           | 1.75          | 1.88           | 5                       | 3.2                      | 3.56  | 1.75  | 1.38 | 1.23  | .08   | 2.69  | 2.56  | 2.56  |
| * 2011/4  | 1.63          | 1.75           | 2.00          | 2.13           | 12                      | 7.6                      | 4.00  | 2.25  | 1.69 | 1.48  | .08   | 3.25  | 3.00  | 3.00  |
| 2011/2    | 2.25          | 2.38           | 2.69          | 2.88           | 27                      | 17.0                     | 6.00  | 3.12  | 1.94 | 1.78  | .16   | 3.88  | 3.92  | 3.92  |
| 202       | 2.75          | 2.88           | 3.25          | 3.50           | 50                      | 31.5                     | 7.00  | 4.00  | 2.44 | 2.28  | .16   | 4.88  | 4.86  | 4.86  |
| 2021/2    | 3.50          | 3.75           | 4.00          | 4.25           | 85                      | 53.6                     | 8.38  | 4.88  | 3.03 | 2.91  | .19   | 6.12  | 5.86  | 5.86  |
| 203       | 4.00          | 4.25           | 4.62          | 5.00           | 150                     | 94.5                     | 9.44  | 5.75  | 3.59 | 3.41  | .19   | 7.19  | 6.86  | 6.86  |
| 2031/2    | 4.50          | 4.75           | 5.38          | 5.75           | 225                     | 142.0                    | 11.00 | 6.50  | 4.19 | 3.97  | .22   | 8.38  | 7.88  | 7.88  |
| 204       | 5.50          | 5.88           | 6.25          | 6.75           | 340                     | 214.0                    | 12.50 | 7.75  | 4.75 | 4.44  | .31   | 9.50  | 9.22  | 9.22  |
| 2041/2    | 6.25          | 6.75           | 6.88          | 7.38           | 515                     | 324.0                    | 13.62 | 9.00  | 5.31 | 5.00  | .34   | 10.66 | 10.35 | 10.18 |
| 205       | 6.62          | 6.75           | 7.88          | 8.38           | 660                     | 416.0                    | 15.31 | 9.50  | 6.03 | 5.75  | .34   | 12.12 | 11.44 | 11.44 |
| 2051/2    | 7.50          | 7.62           | 8.75          | 9.25           | 875                     | 551.0                    | 16.56 | 10.50 | 6.62 | 6.12  | .34   | 13.09 | 12.69 | 12.69 |
| 206       | 8.25          | 8.62           | 9.38          | 9.88           | 1,190                   | 750.0                    | 18.00 | 11.75 | 7.41 | 7.16  | .41   | 14.97 | 13.75 | 13.75 |
| 207       | 9.62          | 10.25          | 10.75         | 11.50          | 1,640                   | 1,033.0                  | 20.75 | 13.50 | 8.69 | 8.44  | .50   | 17.62 | 16.00 | 15.75 |

<sup>\*</sup> Sizes 200, 201 and 2011/4 flange fasteners are self-locking socket head cap screws - rigid flange tapped.

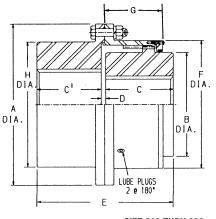
Sizes 2011/2-2051/2 have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost. Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.

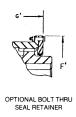
Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41. Additional details, page 42. Weights and WR<sup>2</sup>, page 38. Modifications and variations, pages 23-28. Maximum speeds, page 34.

Combined angular and parallel offset should not exceed  $\pm\ 1^{1/2}^{\circ}$  per gear mesh.

Pilot rings available see page 41 for dimensions of pilot rings.

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series FS Couplings incorporate the following engineered features:


- $\pm 1^{1/2}$ ° angular misalignment capacity per gear mesh. Used singly, can only accommodate angular misalignment.
- Torque ratings at full misalignment in excess of normal requirements for average applications.
- · Accurately machined medium carbon steel hubs and sleeves.
- Positive-type O-ring seals keep lubricant in ... contaminants out. Seals enshrouded to prevent damage.


### **Sizes 208-230**

### Flanged Sleeve — Single-Engagement Type

Application: Meets requirements of severe service conditions and larger shaft sizes up to 49" diameter. Used primarily in tandem pairs, connected by intermediate floating shaft... or as individual unit in conjunction with a driver or driven shaft having a self-aligning bearing. When used singly, compensates for angular misalignment only.

**Description:** Amerigear Series FS Flexible Coupling (Sizes 208-230) contains the same basic design features as Series FS (Sizes 200-207), described on page 10 ... however, angular misalignment capacity is  $\pm$   $^{3}$ / $^{4}$ °. Major components are fullymachined from medium carbon steel.





| CI   | 76 | 200        | THRU | 221 |
|------|----|------------|------|-----|
| - OI | 46 | <b>ZUO</b> | Innu | 201 |

|            | LOAD CAI             | PACITY*                              |       |       |       |       | DIMENSIONS |       |       |       | Optional Bolt Through<br>Seal Retainer |       |       |
|------------|----------------------|--------------------------------------|-------|-------|-------|-------|------------|-------|-------|-------|----------------------------------------|-------|-------|
| FS<br>Size | HP Per<br>100<br>RPM | Torque<br>InLbs.<br>x10 <sup>6</sup> | A     | В     | С     | C´    | D          | E     | F     | G     | н                                      | F´    | G´    |
| 208        | 2,380                | 1.50                                 | 23.25 | 15.62 | 9.75  | 9.62  | .50        | 19.88 | 18.38 | 8.38  | 18.00                                  | 20.62 | 8.38  |
| 209        | 2,700                | 1.70                                 | 26.00 | 17.50 | 10.75 | 10.69 | .56        | 22.00 | 20.50 | 9.19  | 20.00                                  | 22.75 | 9.19  |
| 210        | 3,300                | 2.08                                 | 28.00 | 19.00 | 12.00 | 11.88 | .62        | 24.50 | 22.38 | 10.00 | 22.00                                  | 25.12 | 10.00 |
| 211        | 5,800                | 3.65                                 | 30.50 | 21.00 | 13.00 | 12.88 | .62        | 26.50 | 24.75 | 10.91 | 24.75                                  | 26.75 | 10.91 |
| 212        | 7,700                | 4.86                                 | 33.00 | 23.00 | 14.00 | 13.88 | .62        | 28.50 | 26.75 | 11.59 | 26.75                                  | 28.75 | 11.59 |
| 213        | 10,000               | 6.31                                 | 35.75 | 25.00 | 15.00 | 15.00 | .75        | 30.75 | 28.75 | 12.47 | 28.75                                  | 30.75 | 12.47 |
| 214        | 12,700               | 8.02                                 | 38.00 | 27.00 | 16.00 | 16.00 | .75        | 32.75 | 30.75 | 13.09 | 30.75                                  | 32.75 | 13.09 |
| 215        | 15,300               | 9.65                                 | 40.50 | 29.00 | 17.00 | 17.00 | .75        | 34.75 | 32.75 | 13.72 | 32.75                                  | 35.50 | 13.72 |
| 216        | 17,400               | 10.96                                | 44.50 | 30.50 | 18.00 | 18.00 | 1.00       | 37.00 | 35.50 | 11.34 | 35.50                                  | 39.50 | 14.84 |
| 218        | 23,200               | 14.62                                | 48.50 | 34.50 | 20.00 | 20.00 | 1.00       | 41.00 | 39.50 | 11.47 | 39.50                                  | 43.50 | 16.97 |
| 220        | 30,000               | 18.95                                | 52.50 | 38.50 | 22.00 | 22.00 | 1.00       | 45.00 | 43.50 | 11.59 | 43.50                                  | 48.00 | 19.09 |
| 222        | 38,000               | 23.98                                | 58.00 | 42.50 | 24.00 | 23.88 | 1.12       | 49.00 | 48.00 | 11.75 | 48.00                                  | 52.00 | 21.50 |
| 224        | 48,800               | 30.72                                | 62.88 | 46.50 | 26.00 | 25.88 | 1.12       | 53.00 | 52.00 | 11.91 | 52.00                                  | 56.00 | 23.41 |
| 226        | 63,000               | 39.70                                | 69.00 | 50.00 | 28.00 | 27.88 | 1.12       | 57.00 | 57.00 | 12.22 | 57.00                                  | 61.00 | 25.72 |
| 228        | 81,900               | 51.61                                | 73.00 | 54.00 | 30.00 | 29.88 | 1.12       | 61.00 | 61.00 | 12.69 | 61.00                                  | 65.00 | 28.13 |
| 230        | 94,800               | 59.70                                | 77.00 | 58.00 | 32.00 | 31.88 | 1.12       | 65.00 | 65.00 | 12.69 | 65.00                                  | 69.00 | 28.13 |

\*If higher torque capacity is required and size is restricted, consult Ameridrives Couplings. Larger sizes available.

Sizes 208-230 have exposed bolts (EB). Center flange details, page 41. Additional details, page 43. Maximum speeds, page 34. Weights and WR<sup>2</sup>, page 39. Modifications and variations, pages 23-28.

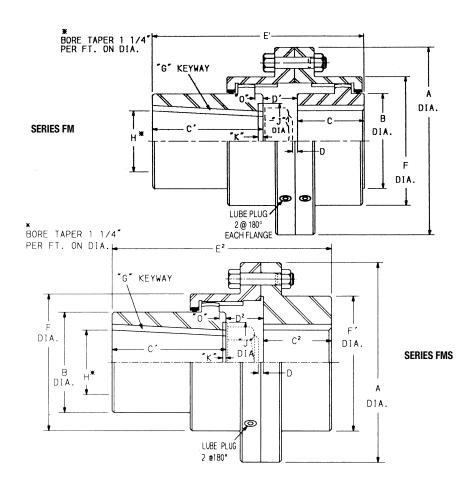
#### **MAXIMUM BORE FOR RIGID HALF**

|           | 1              | SQUARE KEY  | Y           |                | 1 REDUC     | ED KEY      |              | 2.5            | QUARE KEYS  | 3           |                | 2 REDUCED KEYS |             |              |  |
|-----------|----------------|-------------|-------------|----------------|-------------|-------------|--------------|----------------|-------------|-------------|----------------|----------------|-------------|--------------|--|
|           | Max.           | Key         | way         | Max.           | Key         | way         |              | Max.           | Key         | ways        | Max.           | Key            | ways        |              |  |
| F<br>Size | Bore<br>Inches | W<br>Inches | H<br>Inches | Bore<br>Inches | W<br>Inches | H<br>Inches | K*<br>Inches | Bore<br>Inches | W<br>Inches | H<br>Inches | Bore<br>Inches | W<br>Inches    | H<br>Inches | K*<br>Inches |  |
| 208       | 11.500         | 3.000       | 1.500       | 12.500         | 3.000       | 1.000       | 7.062        | 12.375         | 2.000       | 1.000       | 13.000         | 2.000          | .688        | 7.109        |  |
| 209       | 12.750         | 3.250       | 1.625       | 13.750         | 3.250       | 1.125       | 7.812        | 14.000         | 2.250       | 1.125       | 14.750         | 2.250          | .750        | 8.031        |  |
| 210       | 14.500         | 3.500       | 1.750       | 15.250         | 3.500       | 1.250       | 8.796        | 15.500         | 2.750       | 1.375       | 16.250         | 2.750          | .875        | 8.984        |  |
| 211       | 15.250         | 3.750       | 1.875       | 16.250         | 3.750       | 1.375       | 9.281        | 16.750         | 3.000       | 1.500       | 17.750         | 3.000          | 1.000       | 9.750        |  |
| 212       | 16.250         | 4.000       | 2.000       | 17.250         | 4.000       | 1.500       | 9.828        | 18.250         | 3.250       | 1.625       | 19.250         | 3.250          | 1.125       | 10.609       |  |
| 213       |                |             |             |                |             |             |              | 19.750         | 3.500       | 1.750       | 20.750         | 3.500          | 1.250       | 11.468       |  |
| 214       |                |             |             |                |             |             |              | 21.500         | 3.750       | 1.875       | 22.500         | 3.750          | .375        | 12.468       |  |
| 215       |                |             |             |                |             |             |              | 23.000         | 3.750       | 1.875       | 24.000         | 3.750          | .375        | 13.234       |  |
| 216       |                |             |             |                |             |             |              | 24.500         | 4.000       | 2.000       | 25.500         | 4.000          | .500        | 14.093       |  |
| 218       |                |             |             |                |             |             |              | 27.750         | 4.500       | 2.250       | 28.750         | 4.500          | .750        | 15.953       |  |
| 220       |                |             |             |                |             |             |              | 30.500         | 5.000       | 2.500       | 31.750         | 5.000          | .875        | 17.546       |  |
| 222       |                |             |             |                |             |             |              | 34.000         | 5.500       | 2.750       | 35.000         | 5.500          | 2.250       | 19.531       |  |
| 224       |                |             |             |                |             |             |              | 37.000         | 6.000       | 3.000       | 38.000         | 6.000          | 2.500       | 21.265       |  |
| 226       |                |             |             |                |             |             |              | 40.000         | 6.500       | 3.250       | 41.000         | 6.500          | 2.750       | 23.000       |  |
| 228       |                |             |             |                |             |             |              | 44.000         | 6.500       | 3.250       | 45.000         | 6.500          | 2.750       | 25.062       |  |
| 230       |                |             |             |                |             |             |              | 48.000         | 7.000       | 3.500       | 49.000         | 7.000          | 3.000       | 27.250       |  |

For flexible hub bore capacity (page 9) and puller hole data (page 40) use information for series F.

If used in tandem assemblies, consult Ameridrives for shaft size and speed limits

\*Maximum distance from bottom of keyway to bore axis. Reference drawing on page 40.


# **Series FM, FS | Flexible Couplings**

### Sizes 201 1/2 - 206

Flanged Sleeve — Double- and Single-Engagement Mill Motor Type

**Application:** Designed for modern mill motor applications and standards demanding quick change-out of equipment for continuous and uninterrupted operation.

Description: Amerigear Series FM and FMS Flexible Couplings are designed with bolted center flanges to facilitate installation and alignment. Optimum separation of gear meshes permits relatively high parallel offset capacity. Flanged-sleeve design makes possible minimum distances between bearing housings to facilitate shaft alignment.



|            | Load C        | apacity           | Parellel           | DIMENSIONS |       |       |       |      |     |                |           |  |  |
|------------|---------------|-------------------|--------------------|------------|-------|-------|-------|------|-----|----------------|-----------|--|--|
| FM,<br>FMS | HP Per<br>100 | Torque<br>InLbs   | Offset<br>Capacity |            |       |       |       | Fi   | М   | FN             | <b>NS</b> |  |  |
| Size       | R.P.M.        | x 10 <sup>3</sup> | In.                | A          | В     | F     | F′    | С    | D   | C <sup>2</sup> | D         |  |  |
| 2011/2     | 27            | 17.0              | .058               | 6.00       | 3.12  | 3.92  | 3.92  | 1.94 | .12 | 1.78           | .16       |  |  |
| 202        | 50            | 31.5              | .079               | 7.00       | 4.00  | 4.86  | 4.86  | 2.44 | .12 | 2.28           | .16       |  |  |
| 2021/2     | 85            | 53.6              | .102               | 8.38       | 4.88  | 5.86  | 5.86  | 3.03 | .19 | 2.91           | .19       |  |  |
| 203        | 150           | 94.5              | .119               | 9.44       | 5.75  | 6.86  | 6.86  | 3.59 | .19 | 3.41           | .19       |  |  |
| 2031/2     | 225           | 142.0             | .142               | 11.00      | 6.50  | 7.88  | 7.88  | 4.19 | .25 | 3.97           | .22       |  |  |
| 204        | 340           | 214.0             | .164               | 12.50      | 7.75  | 9.22  | 9.22  | 4.75 | .25 | 4.44           | .31       |  |  |
| 2041/2     | 515           | 324.0             | .187               | 13.62      | 9.00  | 10.35 | 10.18 | 5.31 | .31 | 5.00           | .34       |  |  |
| 205        | 660           | 416.0             | .218               | 15.31      | 9.50  | 11.44 | 11.44 | 6.03 | .31 | 5.75           | .34       |  |  |
| 2051/2     | 875           | 551.0             | .245               | 16.56      | 10.50 | 12.69 | 12.69 | 6.62 | .31 | 6.12           | .34       |  |  |
| 206        | 1,190         | 750.0             | .275               | 18.00      | 11.75 | 13.75 | 13.75 | 7.41 | .31 | 7.16           | .41       |  |  |

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series FM-FMS Couplings incorporate the following engineered features:

- Series FM compensates for all three types of misalignment.
   Series FMS compensates for angular misalignment.
- ±11/2° angular misalignment capacity per gear mesh.
- Torque ratings at full 11/2° misalignment.

- Accurately machined medium carbon steel hubs and sleeves.
- Positive-type O-ring seals keep lubricant in ... contaminants out. Seals enshrouded to prevent damage.

# **Series FM, FS** | Flexible Couplings

### Sizes 201 1/2 - 206

|                 |             |              | DIMENSIONS   |              |      |      |                              |                                | VARIABL      | E DIMENSIONS   |                |                |
|-----------------|-------------|--------------|--------------|--------------|------|------|------------------------------|--------------------------------|--------------|----------------|----------------|----------------|
|                 |             | _            |              |              |      |      | G                            |                                | F            | M              | Fi             | MS             |
| FM, FMS<br>Size | AIS<br>Fram | SE<br>ie No. | C´           | 0            | К    | J    | Keyway                       | - H Bore<br>@Large End         | D´           | E´             | D <sup>2</sup> | E <sup>2</sup> |
| 2011/2          | 602         | 802          | 3.16         | _            | .16  | 2.81 | .500 x .250                  | 1.7485/1.7495                  | .91          | 6.00           | .94            | 5.88           |
|                 | 603,604     | 803,804      | 3.72         | _            | .22  | 2.81 | .500 x .250                  | 1.998/1.999                    | .91          | 6.56           | .94            | 6.44           |
|                 | 602         | 802          | 3.00         | .19          |      |      | .500 x .250                  | 1.7485/1.7495                  | 1.06         | 6.50           | 1.09           | 6.38           |
| 202             | 603,604     | 803,804      | 3.50         | .12          |      |      | .500 x .250                  | 1.998/1.999                    | 1.12         | 7.06           | 1.16           | 6.94           |
|                 | 606         | 806          | 4.00         | _            |      |      | .500 x .250                  | 2.498/2.499                    | 1.25         | 7.69           | 1.28           | 7.56           |
|                 | 602         | 802          | 3.00         | .55          |      |      | .500 x .250                  | 1.7485/1.7495                  | 1.12         | 7.16           | 1.12           | 7.03           |
|                 | 603,604     | 803,804      | 3.50         | .48          |      |      | .500 x .250                  | 1.998/1.999                    | 1.19         | 7.72           | 1.19           | 7.59           |
| 2021/2          | 606         | 806          | 4.00         | .36          |      |      | .500 x .250                  | 2.498/2.499                    | 1.31         | 8.34           | 1.31           | 8.22           |
|                 | 608         | 808          | 4.50         | .23          |      |      | .750 x .250                  | 2.998/2.999                    | 1.44         | 8.97           | 1.44           | 8.84           |
|                 | 610         | 810          | 4.50         | .11          |      |      | .750 x .250                  | 3.248/3.249                    | 1.56         | 9.09           | 1.56           | 8.97           |
|                 | 612         | 812          | 5.02         | _            | .015 | 4.25 | .750 x .250                  | 3.623/3.624                    | 1.67         | 9.72           | 1.67           | 9.59           |
|                 | 604         | 804          | 3.50         | .75          |      |      | .500 x .250                  | 1.998/1.999                    | 1.19         | 8.28           | 1.19           | 8.09           |
|                 | 606         | 806          | 4.00         | .62          |      |      | .500 x .250                  | 2.498/2.499                    | 1.31         | 8.91           | 1.31           | 8.72           |
| 203             | 608         | 808          | 4.50         | .50          |      |      | .750 x .250                  | 2.998/2.999                    | 1.44         | 9.53           | 1.44           | 9.34           |
|                 | 610         | 810          | 4.50         | .38          |      |      | .750 x .250                  | 3.248/3.249                    | 1.56         | 9.66           | 1.56           | 9.47           |
|                 | 612         | 812          | 5.00         | .25          |      |      | .750 x .250                  | 3.623/3.624                    | 1.69         | 10.28          | 1.69           | 10.09          |
|                 | 614         | 814          | 5.00         | .12          |      |      | 1.000 x .375                 | 4.2470/4.2485                  | 1.81         | 10.41          | 1.81           | 10.22          |
|                 | 606         | 806          | 4,00         | .97          |      |      | .500 x .250                  | 2.498/2.499                    | 1.38         | 9.50           | 1.34           | 9.31           |
|                 | 608         | 808          | 4.50         | .84          |      |      | .750 x .250                  | 2.998/2.999                    | 1.50         | 10.19          | 1.47           | 9.94           |
| 2031/2          | 610         | 810          | 4.50         | .72          |      |      | .750 x .250                  | 3.248/3.249                    | 1.62         | 10.31          | 1.59           | 10.06          |
|                 | 612         | 812          | 5.00         | .59          |      |      | .750 x .250                  | 3.623/3.624                    | 1.75         | 10.94          | 1.72           | 10.69          |
|                 | 614         | 814          | 5.00         | .47          |      |      | 1.000 x .375                 | 4.2470/4.2485                  | 1.88         | 11.06          | 1.84           | 10.81          |
|                 | 616         | 816          | 5.50         | .34          |      |      | 1.250 x .375                 | 4.6220/4.6235                  | 2.00         | 11.69          | 1.97           | 11.44          |
|                 | 610         | 810          | 4.50         | 1.06         |      |      | .750 x .250                  | 3.248/3.249                    | 1:62         | 10.88          | 1.69           | 10.62          |
|                 | 612         | 812          | 5.00         | .94          |      |      | .750 x .250                  | 3.623/3.624                    | 1.75         | 11.50          | 1.81           | 11.25          |
| 204             | 614         | 814          | 5.00         | .81          |      |      | 1.000 x .375                 | 4.2470/4.2485                  | 1.88         | 11.62          | 1.94           | 11.38          |
|                 | 616         | 816          | 5.50         | .69          |      |      | 1.250 x .375                 | 4.6220/4.6235                  | 2.00         | 12.25          | 2.06           | 12.00          |
|                 | 618         | 818          | 6.00         | 1.12         |      |      | 1.250 x .500                 | 4.9970/4.9985                  | 1.56         | 12.31          | 1.62           | 12.06          |
|                 | 612         | 812          | 5.00         | 1.30         |      |      | .750 x .250                  | 3.623/3.624                    | 1.81         | 12.12          | 1.84           | 11.84          |
|                 | 614         | 814          | 5.00         | 1.17         |      |      | 1.000 x. 375                 | 4.2470/4.2485                  | 1.94         | 12.25          | 1.97           | 11.97          |
| 2041/2          | 616         | 816          | 5.50         | 1.05         |      |      | 1.250 x. 375                 | 4.6220/4.6235                  | 2.06         | 12.88          | 2.09           | 12.59          |
|                 | 618         | 818          | 6.00         | 1.48         |      |      | 1.250 x. 500                 | 4.9970/4.9985                  | 1.62         | 12.94          | 1.66           | 12.66          |
|                 | 620         | -            | 6.75         | 1.05         |      |      | 1.500 x .750                 | 5.8720/5.8735                  | 2.06         | 14.12          | 2.09           | 13.84          |
|                 | 614         | 814          | 5.00         | 1.70         |      |      | 1.000 x .375                 | 4.2470/4.2485                  | 1.94         | 12.97          | 1.97           | 12.72          |
| 005             | 616         | 816          | 5.50         | 1.58         |      |      | 1.250 x .375                 | 4.6220/4.6235                  | 2.06         | 13.59          | 2.09           | 13.34          |
| 205             | 618         | 818          | 6.00         | 2.02         |      |      | 1.250 x .500                 | 4.9970/4.9985                  | 1.62         | 13.66          | 1.66           | 13.41          |
|                 | 620         | _            | 6.75         | 1.58         |      |      | 1.500 x .750                 | 5.8720/5.8735                  | 2.06         | 14.84          | 2.09           | 14.59          |
|                 | 622         | - 016        | 7.25         | .95          |      |      | 1.500 x .750                 | 6.2470/6.2485                  | 2.69         | 15.97          | 2.72           | 15.72          |
|                 | 616         | 816          | 5.50         | 2.03         |      |      | 1.250 x .375                 | 4.6220/4.6235                  | 2.06         | 14.19          | 2.09           | 13.72          |
| 2051/-          | 618         | 818          | 6.00         | 2.47         |      |      | 1.250 x .500                 | 4.9970/4.9985                  | 1.62         | 14.25          | 1.66           | 13.78          |
| 2051/2          | 620<br>622  | _            | 6.75<br>7.25 | 2.03<br>1.41 |      |      | 1.500 x .750<br>1.500 x .750 | 5.8720/5.8735<br>6.2470/6.2485 | 2.06<br>2.69 | 15.44<br>16.56 | 2.09<br>2.72   | 14.97<br>16.09 |
|                 | 624         | _            | 9.25         | 1.41         |      |      | 1.500 x .750<br>1.500 x .750 | 6.9970/6.9985                  | 2.69         | 18.56          | 2.72           | 18.09          |
|                 | 616         | 816          | 5.50         | 2.53         |      |      | 1.250 x .750                 | 4.6220/4.6235                  | 2.06         | 14.97          | 2.12           | 14.81          |
|                 | 618         | 818          | 6.00         | 2.53         |      |      | 1.250 x .575                 | 4.9970/4.9985                  | 1.62         | 15.03          | 1.72           | 14.88          |
| 206             | 620         | -            | 6.75         | 2.53         |      |      | 1.500 x .750                 | 5.8720/5.8735                  | 2.06         | 16.22          | 2.16           | 16.06          |
| 200             | 622         | _            | 7.25         | 1.91         |      |      | 1.500 x .750<br>1.500 x .750 | 6.2470/6.2485                  | 2.69         | 17.34          | 2.78           | 17.19          |
|                 | 624         |              | 9.25         | 1.91         |      |      | 1.500 x .750<br>1.500 x .750 | 6.9970/6.9985                  | 2.69         | 19.34          | 2.78           | 17.19          |
|                 | 024         | _            | 9.25         | 1.91         |      |      | 1.500 X ./50                 | 0.9970/0.9985                  | ∠.69         | 19.34          | ∠./ၓ           | 19.19          |

All mill motor flanges have exposed bolts (EB). Maximum bore, keyway and puller hole data, page 40.

For frame sizes not shown in AISE column and for other taper bore applications, size coupling using load capacities on page 12 and service factors on page 6.

Modifications and variations, pages 23-28.

Maximum speeds, page 34.

# **Series FA, FAS** | Flexible Couplings

A multitude of applications exist for axial travel or "slide" couplings. All gear-type couplings permit a minimal amount of travel to accommodate for bearing wear, shaft or rotor float, or thermal expansions. But many drive systems require a greater amount of travel. To fill these requirements Ameridrives has developed a series of axial travel couplings to accommodate most travel requirements. The FA Series includes three coupling styles. The FAS Series includes two styles. The chart below shows the make up of each. If further assistance is required in selecting or designing a coupling with axial travel capacity other than what is shown, consult Ameridrives Couplings or your local sales office.







**FAS STYLE I ILLUSTRATED** 

| Axial            | Chilo        | EN                     | D A               | END B                  |                   |  |  |  |
|------------------|--------------|------------------------|-------------------|------------------------|-------------------|--|--|--|
| Coupling<br>Type | Style<br>No. | Hub Type               | Sleeve Type       | Hub Type               | Sleeve Type       |  |  |  |
| FA               | 1            | Standard Hub Modified  | Modified Standard | Universal Hub Modified | Modified Standard |  |  |  |
| FA               | III          | Universal Hub Modified | Modified Standard | Universal Hub Modified | Modified Standard |  |  |  |
| FA               | Х            | Standard               | Modified Standard | Special                | Long -w/Lip Seal  |  |  |  |
| FAS              | I            | Rigid                  | -                 | Universal Hub Modified | Standard          |  |  |  |
| FAS              | V            | Rigid                  | -                 | Special                | Long -w/Lip Seal  |  |  |  |

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series FA and FAS Couplings incorporate the following engineered features:

- Fully-Crowned Gear Teeth-assures smooth action when adjusting for axial displacement with minimum resistance to slide.
- ± ½° angular misalignment capacity per gear mesh. If greater capacity is required, consult Ameridrives.
- Accurately machined medium carbon steel hubs and sleeves.
- Positive-type O-ring seals keep lubricant in... contaminants out. Seals enshrouded to prevent damage.
- Many Series FA hubs are modified standard stock components.
- Many designs available to accommodate most travel requirements.

# Series FA, Style I, III | Flexible Couplings

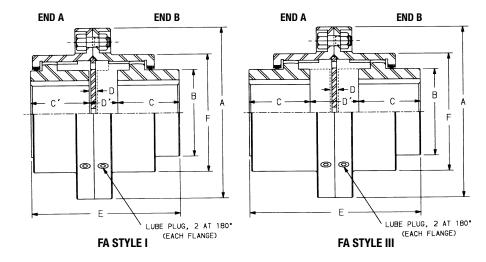
### Sizes 201 1/2 - 207

Style I End A

> Standard Hub Modified Standard Sleeve Modified

End B

Universal Hub Modified Standard Sleeve Modified


Style III

End A

Universal Hub Modified Standard Sleeve Modified

End B

Universal Hub Modified Standard Sleeve Modified



|                       | ***                            |       |       |      |      | DIMENSIONS |      |       |       |                |
|-----------------------|--------------------------------|-------|-------|------|------|------------|------|-------|-------|----------------|
| FA<br>Style I<br>Size | Parallel<br>Offset<br>Capacity | A     | В     | С    | C.   | D          | D'   | E     | F     | Max.<br>Travel |
| 201½                  | .016                           | 6.00  | 3.12  | 1.94 | 1.84 | .31        | .64  | 4.42  | 3.92  | .33            |
| 202                   | .020                           | 7.00  | 4.00  | 2.44 | 2.34 | .31        | .98  | 5.76  | 4.86  | .67            |
| 202½                  | .026                           | 8.38  | 4.88  | 3.03 | 2.94 | .38        | 1.30 | 7.26  | 5.86  | .92            |
| 203                   | .029                           | 9.44  | 5.75  | 3.59 | 3.50 | .38        | 1.61 | 8.70  | 6.86  | 1.23           |
| 203½                  | .035                           | 11.00 | 6.50  | 4.19 | 4.09 | .44        | 1.91 | 10.19 | 7.88  | 1.47           |
| 204                   | .039                           | 12.50 | 7.75  | 4.75 | 4.56 | .62        | 2.42 | 11.73 | 9.22  | 1.80           |
| 204½                  | .046                           | 13.62 | 9.00  | 5.31 | 5.12 | .69        | 2.52 | 12.95 | 10.35 | 1.83           |
| 205                   | .053                           | 15.31 | 9.50  | 6.03 | 5.84 | .69        | 2.98 | 14.86 | 11.44 | 2.30           |
| 205½                  | .058                           | 16.56 | 10.50 | 6.62 | 6.44 | .69        | 3.47 | 16.53 | 12.69 | 2.78           |
| 206                   | .069                           | 18.00 | 11.75 | 7.41 | 7.16 | .81        | 3.34 | 17.91 | 13.75 | 2.53           |
| 207                   | .084                           | 20.75 | 13.50 | 8.69 | 8.38 | 1.00       | 3.62 | 20.69 | 16.00 | 2.62           |

| FA                | ***<br>Parallel    |       |       | DIMENSIONS |      |      |       |       |               |  |  |  |  |  |  |
|-------------------|--------------------|-------|-------|------------|------|------|-------|-------|---------------|--|--|--|--|--|--|
| Style III<br>Size | Offset<br>Capacity | A     | В     | C          | D    | D'   | E     | F     | Max<br>Travel |  |  |  |  |  |  |
| 201½              | .013               | 6.00  | 3.12  | 1.94       | .31  | .97  | 4.84  | 3.93  | .66           |  |  |  |  |  |  |
| 202               | .014               | 7.00  | 4.00  | 2.44       | .31  | 1.66 | 6.53  | 4.86  | 1.34          |  |  |  |  |  |  |
| 202½              | .018               | 8.38  | 4.88  | 3.03       | .38  | 2.22 | 8.28  | 5.88  | 1.84          |  |  |  |  |  |  |
| 203               | .018               | 9.44  | 5.75  | 3.59       | .38  | 2.84 | 10.03 | 6.88  | 2.46          |  |  |  |  |  |  |
| 203½              | .022               | 11.00 | 6.50  | 4.19       | .44  | 3.38 | 11.75 | 7.91  | 2.94          |  |  |  |  |  |  |
| 204               | .023               | 12.50 | 7.75  | 4.75       | .62  | 4.22 | 13.72 | 9.24  | 3.60          |  |  |  |  |  |  |
| 204½              | .030               | 13.62 | 9.00  | 5.31       | .69  | 4.34 | 14.97 | 10.37 | 3.66          |  |  |  |  |  |  |
| 205               | .032               | 15.31 | 9.50  | 6.03       | .69  | 5.28 | 17.34 | 11.44 | 4.60          |  |  |  |  |  |  |
| 205½              | .033               | 16.56 | 10.50 | 6.62       | .69  | 6.25 | 19.50 | 12.69 | 5.56          |  |  |  |  |  |  |
| 206               | .047               | 18.00 | 11.75 | 7.41       | .81  | 5.88 | 20.69 | 13.75 | 5.06          |  |  |  |  |  |  |
| 207               | .061               | 20.75 | 13.50 | 8.69       | 1.00 | 6.25 | 23.62 | 16.00 | 5.25          |  |  |  |  |  |  |

<sup>\*\*\*</sup>Combined angular and parallel offset should not exceed  $\pm \frac{1}{2}$ ° per gear mesh.

Sizes 201½ - 205½ have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) available upon request - no additional cost.

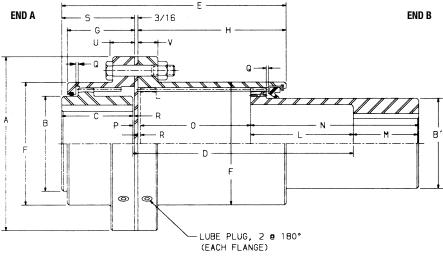
Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts; shrouded bolts (SB) available upon request - no additional cost. For maximum bores and load capacity, use Series F information, page 8.

Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41.

Travel and dimension "E" may be decreased by varying D and D' (consult Ameridrives). Max speeds, page 34.

# **Series FA, Style X** | **Flexible Couplings**

### Sizes 204 - 207


Style X End A

> Standard Hub Standard Sleeve

End B

Special Hub

Long Sleeve with Lip Seal



**SERIES FA** 

| FA                          | Max. Bore                          | DIMENSIONS |       |      |       |      |       |       |      |       |      |  |  |  |
|-----------------------------|------------------------------------|------------|-------|------|-------|------|-------|-------|------|-------|------|--|--|--|
| Coupling<br>Size<br>Style X | Flex Half<br>End "B"<br>Square Key | A          | E     | G    | F     | s    | В     | B'    | C, M | н     | L    |  |  |  |
| 204                         | 4.50                               | 12.50      | 17.89 | 4.46 | 9.22  | 4.87 | 7.75  | 7.00  | 4.75 | 12.83 | 8.75 |  |  |  |
| 204½                        | 5.50                               | 13.62      | 19.28 | 4.98 | 10.35 | 5.47 | 9.00  | 8.38  | 5.31 | 13.62 | 8.44 |  |  |  |
| 205                         | 6.31                               | 15.31      | 20.41 | 5.67 | 11.44 | 6.19 | 9.50  | 9.00  | 6.03 | 14.03 | 8.22 |  |  |  |
| 205½                        | 6.88                               | 16.56      | 21.06 | 6.25 | 12.69 | 6.78 | 10.50 | 10.00 | 6.62 | 14.09 | 7.69 |  |  |  |
| 206                         | 7.50                               | 18.00      | 21.62 | 6.89 | 13.75 | 7.56 | 11.75 | 11.00 | 7.41 | 14.01 | 6.91 |  |  |  |
| 207                         | 9.00                               | 20.75      | 23.37 | 7.81 | 16.00 | 8.87 | 13.50 | 13.00 | 8.69 | 14.31 | 6.06 |  |  |  |

| FA<br>Coupling  |       |      |      | P<br>Hub-To-Hub   |      | •     |     |     |      | ' I   |  |  | D<br>Shaft-To |  |
|-----------------|-------|------|------|-------------------|------|-------|-----|-----|------|-------|--|--|---------------|--|
| Size<br>Style X | N     | U    | v    | Maximum<br>Travel | Min. | Max.  | Q   | R   | Min. | Max.  |  |  |               |  |
| 204             | 13.50 | 1.06 | .87  | 10.62             | .44  | 11.06 | .14 | .12 | 8.81 | 19.44 |  |  |               |  |
| 204½            | 13.75 | 1.06 | .87  | 11.00             | .50  | 11.50 | .16 | .16 | 8.94 | 19.94 |  |  |               |  |
| 205             | 14.25 | 1.50 | 1.31 | 11.00             | .50  | 11.50 | .19 | .16 | 8.72 | 19.72 |  |  |               |  |
| 205½            | 14.31 | 1.50 | 1.31 | 11.00             | .50  | 11.50 | .19 | .16 | 8.19 | 19.19 |  |  |               |  |
| 206             | 14.31 | 1.00 | .81  | 10.50             | .50  | 11.00 | .22 | .16 | 7.41 | 17.91 |  |  |               |  |
| 207             | 14.75 | 1.12 | .94  | 10.50             | .56  | 11.06 | .31 | .19 | 6.56 | 17.12 |  |  |               |  |

For dimensions "B" and "C", see page 8.

Furnished with exposed bolts (EB) with self-locking nuts; shrouded bolts (SB) upon request - at additional cost.

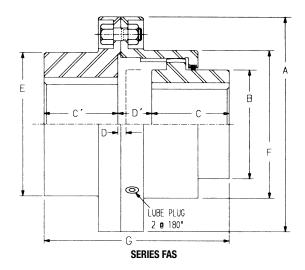
For load capacity, use series "F" information, page 8.

Parallel offest capacity should be calculated with hub spacing at "P" (min), see page 39. Combined angular and parallel offset should not exceed  $\pm 1/2^{\circ}$  per gear mesh.

For "A" end hub, maximum bore, keyway and puller hole data, page 40.

Travel (dimension "O") may be decreased by varying "P" (consult Ameridrives Couplings).

Maximum speeds, page 34.


# **Series FA Style I** Flexible Couplings

### Sizes 201 1/2 - 207

Flanged Sleeve — Single-Engagement Axial Type

Style I End A Rigid Half End B

Universal Hub Modified Standard Sleeve



| FAS             |       | DIMENSIONS |      |      |     |      |       |       |       |              |  |  |  |  |
|-----------------|-------|------------|------|------|-----|------|-------|-------|-------|--------------|--|--|--|--|
| STYLE I<br>Size | А     | В          | С    | C'   | D   | D´   | E     | F     | G     | Axial Travel |  |  |  |  |
| 201½            | 6.00  | 3.12       | 1.94 | 1.78 | .16 | .48  | 3.92  | 3.92  | 4.20  | .33          |  |  |  |  |
| 202             | 7.00  | 4.00       | 2.44 | 2.28 | .16 | .83  | 4.86  | 4.86  | 5.55  | .67          |  |  |  |  |
| 202½            | 8.38  | 4.88       | 3.03 | 2.91 | .19 | 1.11 | 5.86  | 5.86  | 7.05  | .92          |  |  |  |  |
| 203             | 9.44  | 5.75       | 3.59 | 3.41 | .19 | 1.42 | 6.86  | 6.86  | 8.42  | 1.23         |  |  |  |  |
| 203½            | 11.00 | 6.50       | 4.19 | 3.97 | .22 | 1.69 | 7.88  | 7.88  | 9.84  | 1.47         |  |  |  |  |
| 204             | 12.50 | 7.75       | 4.75 | 4.44 | .31 | 2.11 | 9.22  | 9.22  | 11.30 | 1.80         |  |  |  |  |
| 204½            | 13.62 | 9.00       | 5.31 | 5.00 | .34 | 2.17 | 10.18 | 10.35 | 12.48 | 1.83         |  |  |  |  |
| 205             | 15.31 | 9.50       | 6.03 | 5.75 | .34 | 2.64 | 11.44 | 11.44 | 14.42 | 2.30         |  |  |  |  |
| 205½            | 16.56 | 10.50      | 6.62 | 6.12 | .34 | 3.12 | 12.69 | 12.69 | 15.88 | 2.78         |  |  |  |  |
| 206             | 18.00 | 11.75      | 7.41 | 7.16 | .41 | 3.19 | 13.75 | 13.75 | 17.75 | 2.78         |  |  |  |  |
| 207             | 20.75 | 13.50      | 8.69 | 8.44 | .50 | 3.44 | 15.75 | 16.00 | 20.56 | 2.94         |  |  |  |  |

Sizes 201½-205½ have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.

Angularity should not exceed ± 1/2° per gear mesh at shaft spacing of "D".

Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41

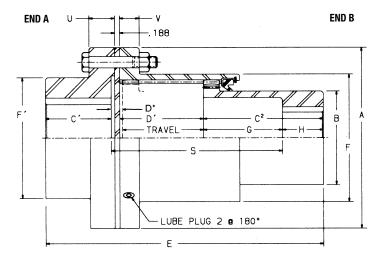
For maximum bores and load capacity, use series FS information, page 10. Maximum speeds, page 34.

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series FAS Couplings incorporate the following engineered features:

- Fully-Crowned Gear Teeth assures smooth action when adjusting for axial displacement with minimum resistance to slide.
- ± ½° angular misalignment capacity per gear mesh at minimum separation of hub and rigid half. When used in tandem pairs and connected by an intermediate floating shaft, amount of offset misalignment capacity is determined by the distance between gear meshes. By mounting flexible halves on floating shaft, advantage may be taken of larger bore capacity of rigid half. By mounting rigid halves on floating shaft, more parallel offset is available. See page 39 for calculations.
- Accurately machined medium carbon steel hubs and sleeves.
- Positive-type O-ring seals keep lubricant in ... contaminants out. Seals enshrouded to prevent damage.
- Many designs available to accommodate most travel requirements.

# **Series FAS, Style V** | **Flexible Couplings**

### Sizes 204 - 207


Style V End A

Rigid Half

End B

Special Hub

Long Sleeve with Lip Seal



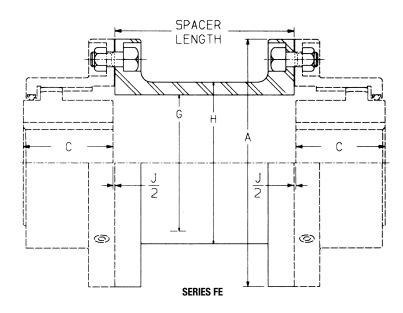
**FAS STYLE V** 

<sup>\*</sup> See page 10 for "D" dimension and add .188 for plate thickness.

| FAS             | FLEX HALF               | Square Key              |       |       | DIMEN | ISIONS         |       |       |
|-----------------|-------------------------|-------------------------|-------|-------|-------|----------------|-------|-------|
| Style V<br>Size | Max. Bore<br>Square Key | Max. Bore<br>Square Key | А     | В     | C´    | C <sup>2</sup> | D,    | E     |
| 204             | 4.50                    | 6.25                    | 12.50 | 7.00  | 4.44  | 13.50          | 10.75 | 29.06 |
| 204½            | 5.50                    | 6.88                    | 13.62 | 8.38  | 5.00  | 13.75          | 11.16 | 30.28 |
| 205             | 6.31                    | 6.88                    | 15.31 | 9.00  | 5.75  | 14.25          | 11.16 | 31.53 |
| 205½            | 6.88                    | 8.75                    | 16.56 | 10.00 | 6.12  | 14.31          | 11.16 | 31.97 |
| 206             | 7.50                    | 9.38                    | 18.00 | 11.00 | 7.16  | 14.31          | 10.66 | 32.56 |
| 207             | 9.00                    | 10.75                   | 20.75 | 13.00 | 8.44  | 14.75          | 10.69 | 34.38 |

| FAS<br>Style V |       |       |      |      |       |      |      |              |
|----------------|-------|-------|------|------|-------|------|------|--------------|
| Size           | F     | F´    | G    | н    | S     | U    | V    | Axial Travel |
| 204            | 9.22  | 9.22  | 8.75 | 4.75 | 19.88 | 1.06 | .88  | 10.62        |
| 204½           | 10.35 | 10.18 | 8.44 | 5.31 | 19.97 | 1.06 | .88  | 11.00        |
| 205            | 11.44 | 11.44 | 8.22 | 6.03 | 19.75 | 1.50 | 1.31 | 11.00        |
| 205½           | 12.69 | 12.69 | 7.69 | 6.62 | 19.22 | 1.50 | 1.31 | 11.00        |
| 206            | 13.75 | 13.75 | 6.91 | 7.41 | 18.00 | 1.00 | .81  | 10.50        |
| 207            | 16.00 | 15.75 | 6.06 | 8.69 | 17.25 | 1.12 | .94  | 10.50        |

Sizes 204 - 2051/2 have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.


Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.

Angularity should not exceed  $\pm~\%^{\circ}$  per gear mesh at shaft spacing of "D".

For load capacity, use series FS information, page 10.

Maximum speeds, page 34.

# Flanged Sleeve — Spacer Type Application:Description:



|            |       | DIMEN | SIONS* |       | Minimum**<br>Spacer Length |      |                          |  |  |
|------------|-------|-------|--------|-------|----------------------------|------|--------------------------|--|--|
| FE<br>Size | А     | С     | G      | Н     | SB                         | ЕВ   | Removal<br>Clearance "J" |  |  |
| 200        | 2.94  | 1.06  | 1.50   | 1.75  | 1.00                       | _    | .125                     |  |  |
| 201        | 3.56  | 1.38  | 2.12   | 2.38  | 1.00                       | _    | .125                     |  |  |
| 2011/4     | 4.00  | 1.69  | 2.38   | 2.75  | 1.00                       | _    | .125                     |  |  |
| 201½       | 6.00  | 1.94  | 3.23   | 3.75  | 2.75                       | 2.75 | .125                     |  |  |
| 202        | 7.00  | 2.44  | 4.19   | 4.81  | 2.75                       | 3.25 | .125                     |  |  |
| 202½       | 8.38  | 3.03  | 5.06   | 5.66  | 3.25                       | 4.00 | .188                     |  |  |
| 203        | 9.44  | 3.59  | 5.97   | 6.64  | 3.25                       | 4.00 | .188                     |  |  |
| 203½       | 11.00 | 4.19  | 6.78   | 7.38  | 4.12                       | 4.66 | .250                     |  |  |
| 204        | 12.50 | 4.75  | 8.06   | 8.62  | 4.12                       | 4.66 | .250                     |  |  |
| 204½       | 13.62 | 5.31  | 9.36   | 9.94  | 4.12                       | 4.66 | .313                     |  |  |
| 205        | 15.31 | 6.03  | 9.92   | 10.75 | 5.62                       | 5.25 | .313                     |  |  |
| 205½       | 16.56 | 6.62  | 10.98  | 11.75 | 5.62                       | 5.25 | .313                     |  |  |
| 206        | 18.00 | 7.41  | 11.31  | 12.19 | _                          | 4.88 | .313                     |  |  |
| 207        | 20.75 | 8.69  | 13.00  | 13.88 | _                          | 5.12 | .375                     |  |  |

<sup>\*</sup> Refer to series "F" coupling for additional dimensions, page 8.

Sizes 200, 201, and 2011/4 flange fasteners are self-locking socket head cap screws - spacer flange tapped.

Sizes 201½ - 205½ have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts. See price guide for stock spacers.

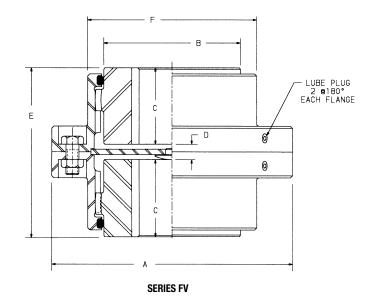
See modifications section for variations including limited end float, pages 23-28.

Maximum speeds, page 34.

Pilot rings available at extra cost. See page 41 for pilot ring dimensions.

<sup>\*\*</sup> Minimum flanged spacer lengths determined by required bolt removal clearance.

# **Series FV** | Flexible Couplings


### Sizes 200 - 207

#### Flanged Sleeve —

### **Double-Engagement Vertical Type**

**Application:** Meets requirements of vertical shaft applications for shaft sizes up to 10.25" diameter. Compensates for all three types of misalignment.

Description: Amerigear Series FV
Flexible Coupling is designed with
bolted center flanges to facilitate
installation and alignment. The floating
sleeve assembly is supported by a plate
and thrust button inserted between the
coupling sleeves. Optimum separation
of gear meshes permits relatively high
parallel offset capacity. Flanged sleeve
design makes possible minimum
distances between bearing housings
to facilitate shaft alignment.



Maximum Bore - Inches **Load Capacity** DIMENSIONS Flexible Shaft Parallel HP Per F۷ Square Reduced 100 In.-Lbs. Offset В D E F R.P.M x10<sup>3</sup> Α C Size Key Key Capacity \* 200 2.94 1.25 1.06 31 2.44 1.94 .81 .88 3 1.9 .023\* 201 1.25 1.31 5 3.2 .042 3.56 1.75 1.38 .31 3.06 2.56 \* 2011/4 1.75 12 7.6 4.00 2.25 1.69 .31 3.69 3.00 1.63 .057 2011/2 2.25 2.38 27 17.0 .058 6.00 3.12 1.94 .44 4.31 3.93 202 2.75 2.88 50 31.5 .079 7.00 4.00 2.28 .44 5.00 4.86 2021/2 3.50 3.75 85 53.6 .102 8.38 4.88 2.84 .56 6.25 5.88 4.00 4.25 150 .119 9.44 5.75 7.38 203 94.5 3.41 .56 6.88 4.75 225 6.50 2031/2 4.50 142.0 142 11.00 3.97 69 8.62 7.90 204 5.50 5.88 340 214.0 .164 12.50 7.75 4.44 .88 9.75 9.24 2041/2 6.25 6.75 515 324.0 .187 13.62 9.00 4.97 1.00 10.94 10.37 205 6.62 6.75 660 416.0 .218 15.31 9.50 5.69 1.00 12.38 11.44 .245 2051/ 7.50 7.62 875 551.0 16.56 10.50 6.28 1.00 13.56 12.69 206 8.25 1.190 750.0 275 11.75 7.00 1.12 15.12 13.75 8.62 18.00 9.62 10.25 1,640 1,033.0 .314 20.75 13.50 1.50 17.75 16.00 8.12

Sizes 201½ - 205½ have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

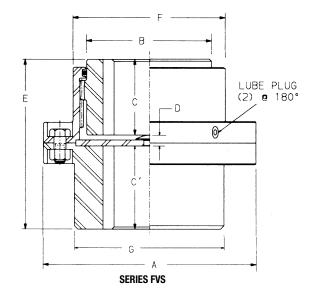
Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series FV and FVS Couplings incorporate the following engineered features:

- ± 1½° angular misalignment capacity per gear mesh.
- Torque ratings at full 11/2° misalignment.
- Accurately machined medium carbon steel hubs and sleeves.
- Positive-type O-ring seals keep lubricant in ... contaminants out. Seals enshrouded to prevent damage.
- Advanced seal design (Series FV) configuration affords large bore capacity ... permits use of relatively small coupling.

Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41. Weights and WR<sup>2</sup>, page 38.

Additional details, page 42. Modifications and variations, pages 23-28. Maximum speeds, page 34


Thrust button bearing plate not normally required in lower hub. For shaft with large lathe centers, specify bearing plate when ordering.

<sup>\*</sup> Sizes 200, 201 and 2011/4 flange fasteners are self-locking socket head cap screws - one flange tapped.

### Flanged Sleeve — Single-Engagement Vertical Type

**Application:** Used primarily in tandem pairs for vertical installation, connected by intermediate floating shaft... or as individual unit in conjunction with a driver or driven shaft having a selfaligning support bearing. When used singly, compensates for angular misalignment only.

**Description:** Amerigear Series FVS Flexible Coupling consists of one standard rigid half and one standard flexible half coupling modified to accept the thrust button plate. The bolted center flanges facilitate installation and alignment.



|             | Inc           | um Bore<br>ches<br>ole Half | Inc           | ım Bore<br>hes<br>I Half | Lo<br>Capa              | ad<br>acity              | DIMENSIONS |       |      |      |      |       |       |       |
|-------------|---------------|-----------------------------|---------------|--------------------------|-------------------------|--------------------------|------------|-------|------|------|------|-------|-------|-------|
| FVS<br>Size | Square<br>Key | Reduced<br>Key              | Square<br>Key | Reduced<br>Key           | HP Per<br>100<br>R.P.M. | Torque<br>InLbs.<br>x10³ | A          | В     | С    | C´   | D    | E     | F     | G     |
| * 200       | .81           | .88                         | 1.31          | 1.38                     | 3                       | 1.9                      | 2.94       | 1.25  | 1.06 | 1.05 | .25  | 2.36  | 1.94  | 1.94  |
| * 201       | 1.25          | 1.31                        | 1.75          | 1.88                     | 5                       | 3.2                      | 3.56       | 1.75  | 1.38 | 1.23 | .25  | 2.86  | 2.56  | 2.56  |
| * 2011/4    | 1.63          | 1.75                        | 2.00          | 2.13                     | 12                      | 7.6                      | 4.00       | 2.25  | 1.69 | 1.48 | .25  | 3.42  | 3.00  | 3.00  |
| 201½        | 2.25          | 2.38                        | 2.69          | 2.88                     | 27                      | 17.0                     | 6.00       | 3.12  | 1.94 | 1.78 | .31  | 4.03  | 3.92  | 3.92  |
| 202         | 2.75          | 2.88                        | 3.25          | 3.50                     | 50                      | 31.5                     | 7.00       | 4.00  | 2.28 | 2.28 | .31  | 4.88  | 4.86  | 4.86  |
| 202½        | 3.50          | 3.75                        | 4.00          | 4.25                     | 85                      | 53.6                     | 8.38       | 4.88  | 2.84 | 2.91 | .38  | 6.12  | 5.86  | 5.86  |
| 203         | 4.00          | 4.25                        | 4.62          | 5.00                     | 150                     | 94.5                     | 9.44       | 5.75  | 3.41 | 3.41 | .38  | 7.19  | 6.86  | 6.86  |
| 203½        | 4.50          | 4.75                        | 5.38          | 5.75                     | 225                     | 142.0                    | 11.00      | 6.50  | 3.97 | 3.97 | .44  | 8.38  | 7.88  | 7.88  |
| 204         | 5.50          | 5.88                        | 6.25          | 6.75                     | 340                     | 214.0                    | 12.50      | 7.75  | 4.44 | 4.44 | .62  | 9.50  | 9.22  | 9.22  |
| 204½        | 6.25          | 6.75                        | 6.88          | 7.38                     | 515                     | 324.0                    | 13.62      | 9.00  | 4.97 | 5.00 | .68  | 10.66 | 10.35 | 10.18 |
| 205         | 6.62          | 6.75                        | 7.88          | 8.38                     | 660                     | 416.0                    | 15.31      | 9.50  | 5.69 | 5.75 | .68  | 12.12 | 11.44 | 11.44 |
| 205½        | 7.50          | 7.62                        | 8.75          | 9.25                     | 875                     | 551.0                    | 16.56      | 10.50 | 6.28 | 6.12 | .68  | 13.09 | 12.69 | 12.69 |
| 206         | 8.25          | 8.62                        | 9.38          | 9.88                     | 1,190                   | 750.0                    | 18.00      | 11.75 | 7.00 | 7.16 | .84  | 15.00 | 13.75 | 13.75 |
| 207         | 9.62          | 10.25                       | 10.75         | 11.50                    | 1,640                   | 1,033.0                  | 20.75      | 13.50 | 8.12 | 8.44 | 1.06 | 17.62 | 16.00 | 15.75 |

<sup>\*</sup> Sizes 200, 201 and 2011/4 flange fasteners are self-locking socket head cap screws - rigid flange tapped.

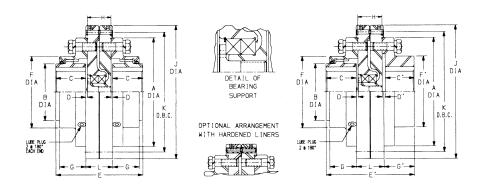
Sizes 201½ - 205½ have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.

Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41. Weights and WR<sup>2</sup>, page 38.

Thrust button bearing plate not normally required in flexible hub. For shaft with large lathe centers, specify bearing plate when ordering.

Additional details, page 42. Modifications and variations, pages 23-28. Maximum speeds, page 34.


# **Series FPH, FSPH | Flexible Couplings**

### Sizes 200 1/2 - 207

Flanged Sleeve — Double- and Single-Engagement Shear Pin Type

Application: Used for applications where peak torque or high shock load conditions exist and are greater than normal maximum starting torques. Coupling halves are assembled to both or either side of a shear element assembly to accommodate all types of angular misalignment and axial float. Shear pins are designed to fail at a pre-determined value to protect connected equipment from damage.

**Description:** Amerigear Series FPH and FSPH Shear Pin Couplings have a shear element bolted between the flanges. The shear element consists of two fully machined plates, two lubricated sealed radial thrust ball bearings, retaining ring, retaining bolt and pin, shear pins and setscrews.



SERIES FPH SERIES FSPH

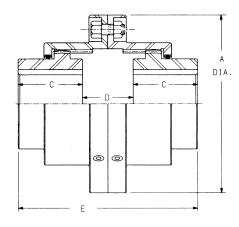
|                      | Maximu        | um Bore        | Maximu        | ım Bore        |                                | Load Capacity     |                                     | Shear S        | Section       |
|----------------------|---------------|----------------|---------------|----------------|--------------------------------|-------------------|-------------------------------------|----------------|---------------|
| FPH,<br>FSPH<br>Size | Square<br>Key | Reduced<br>Key | Square<br>Key | Reduced<br>Key | Parallel<br>Offset<br>Capacity | HP Per<br>100 RPM | Torque<br>In.Lbs. x 10 <sup>3</sup> | Weight<br>Lbs. | WR²<br>Lbln.² |
| 201½                 | 2.25          | 2.38           | 2.69          | 2.88           | .097                           | 27                | 17.0                                | 18             | 119           |
| 202                  | 2.75          | 2.88           | 3.25          | 3.50           | .118                           | 50                | 31.5                                | 20             | 192           |
| 202½                 | 3.50          | 3.75           | 4.00          | 4.25           | .142                           | 85                | 53.6                                | 27             | 354           |
| 203                  | 4.00          | 4.25           | 4.62          | 5.00           | .182                           | 150               | 94.5                                | 68             | 1,302         |
| 203½                 | 4.50          | 4.75           | 5.38          | 5.75           | .205                           | 225               | 142.0                               | 88             | 2,113         |
| 204                  | 5.50          | 5.88           | 6.25          | 6.75           | .226                           | 340               | 214.0                               | 109            | 3,220         |
| 204½                 | 6.25          | 6.75           | 6.88          | 7.38           | .250                           | 515               | 324.0                               | 116            | 3,904         |
| 205                  | 6.62          | 6.75           | 7.88          | 8.38           | .298                           | 660               | 416.0                               | 205            | 9,402         |
| 205½                 | 7.50          | 7.62           | 8.75          | 9.25           | .326                           | 875               | 551.0                               | 232            | 12,190        |
| 206                  | 8.25          | 8.62           | 9.38          | 9.88           | .355                           | 1,190             | 750.0                               | 271            | 16,126        |
| 207                  | 9.62          | 10.25          | 10.75         | 11.50          | .394                           | 1,640             | 1,033.0                             | -              | _             |

| FPH,         |       |       |      |      |     |     |       | DIMEN | SIONS |       |      |      |      |       |        |      |
|--------------|-------|-------|------|------|-----|-----|-------|-------|-------|-------|------|------|------|-------|--------|------|
| FSPH<br>Size | А     | В     | C    | C'   | D   | D′  | Е     | E     | F     | F     | G    | G´   | Н    | J     | К      | L    |
| 201½         | 6.00  | 3.12  | 1.94 | 1.78 | .06 | .09 | 5.50  | 5.38  | 3.92  | 3.92  | 1.77 | 1.88 | 1.50 | 7.38  | 6.625  | 1.59 |
| 202          | 7.00  | 4.00  | 2.44 | 2.28 | .06 | .09 | 6.50  | 6.38  | 4.86  | 4.86  | 2.27 | 2.38 | 1.50 | 8.38  | 7.625  | 1.59 |
| 202½         | 8.38  | 4.88  | 3.03 | 2.91 | .09 | .09 | 7.75  | 7.62  | 5.86  | 5.86  | 2.81 | 3.00 | 1.50 | 9.75  | 9.000  | 1.59 |
| 203          | 9.44  | 5.75  | 3.59 | 3.41 | .09 | .09 | 9.75  | 9.56  | 6.86  | 6.86  | 3.39 | 3.50 | 2.38 | 11.94 | 10.438 | 2.50 |
| 203½         | 11.00 | 6.50  | 4.19 | 3.97 | .12 | .09 | 11.00 | 10.75 | 7.88  | 7.88  | 3.91 | 4.06 | 2.38 | 13.50 | 12.000 | 2.50 |
| 204          | 12.50 | 7.75  | 4.75 | 4.44 | .12 | .19 | 12.12 | 11.88 | 9.22  | 9.22  | 4.46 | 4.62 | 2.38 | 15.00 | 13.500 | 2.50 |
| 204½         | 13.62 | 9.00  | 5.31 | 5.00 | .16 | .19 | 13.31 | 13.03 | 10.35 | 10.18 | 4.98 | 5.19 | 2.38 | 16.12 | 14.625 | 2.50 |
| 205          | 15.31 | 9.50  | 6.03 | 5.75 | .16 | .19 | 15.44 | 15.19 | 11.44 | 11.44 | 5.67 | 5.94 | 3.06 | 18.31 | 16.562 | 3.31 |
| 205½         | 16.56 | 10.50 | 6.62 | 6.12 | .16 | .19 | 16.62 | 16.16 | 12.69 | 12.69 | 6.25 | 6.31 | 3.06 | 19.56 | 17.812 | 3.31 |
| 206          | 18.00 | 11.75 | 7.41 | 7.16 | .16 | .25 | 18.19 | 18.03 | 13.75 | 13.75 | 6.89 | 7.41 | 3.06 | 21.00 | 19.250 | 3.31 |
| 207          | 20.75 | 13.50 | 8.69 | 8.44 | .19 | .31 | 20.81 | 20.69 | 16.00 | 15.75 | 7.81 | 8.75 | 3.06 | 23.75 | 22.000 | 3.66 |

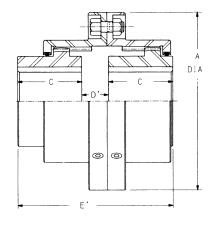
Exposed bolts are furnished as standard.

Maximum bore, keyway and puller hole data, page 40. Center flange details, page 41. Maximum speeds, page 34.

An extensive stock of standard coupling components and inventory of bar and tube, allows for the design and manufacture of couplings to a variety of specific customer requirements. On this and the next few pages is data referring to some of the coupling modifications and/or alterations that are available in the Series F design, and on pages 31-33 for the Series C design.


#### Reverse Mounted Hubs — Series F

Application: Used where greater-thanstandard shaft separation is required to allow insertion of pulleys and similar components through shaft separation without moving connected equipment. Accomplished without spacer or adaptor plate.


**Description:** All standard components used. Hubs (or hub) simply mounted on shafts in reverse position. If hub puller holes desired, specify when ordering.

#### **CAUTION:**

This configuration is not intended for use in applications requiring axial travel. Dimension D in Series F Couplings must be maintained.



SERIES F Both Hubs Reversed



SERIES F ONE HUB REVERSED

### **SERIES F, REVERSE MOUNTED HUBS**

|                                 |               | kimum<br>- Inches | Load (                  | Capacity                             |       | DIMENSIONS |      |      |       |       |  |  |  |  |
|---------------------------------|---------------|-------------------|-------------------------|--------------------------------------|-------|------------|------|------|-------|-------|--|--|--|--|
| Size                            | Square<br>Key | Reduced<br>Key    | HP Per<br>100<br>R.P.M. | Torque<br>InLbs.<br>x10 <sup>3</sup> | A     | C          | D    | D'   | E     | E'    |  |  |  |  |
| 200                             | .81           | .88               | 3                       | 1.9                                  | 2.94  | 1.06       | _    | _    | _     | _     |  |  |  |  |
| 201                             | 1.25          | 1.31              | 5                       | 3.2                                  | 3.56  | 1.38       | .31  | .22  | 3.06  | 2.98  |  |  |  |  |
| 2011/4                          | 1.62          | 1.75              | 12                      | 7.6                                  | 4.00  | 1.69       | .88  | .50  | 4.25  | 3.88  |  |  |  |  |
| 201½                            | 2.25          | 2.38              | 27                      | 17.0                                 | 6.00  | 1.94       | .44  | .28  | 4.31  | 4.16  |  |  |  |  |
| 202                             | 2.75          | 2.88              | 50                      | 31.5                                 | 7.00  | 2.44       | 1.00 | .56  | 5.88  | 5.44  |  |  |  |  |
| 2021/2                          | 3.50          | 3.75              | 85                      | 53.6                                 | 8.38  | 3.03       | 1.56 | .88  | 7.62  | 6.94  |  |  |  |  |
| 203                             | 4.00          | 4.25              | 150                     | 94.5                                 | 9.44  | 3.59       | 1.75 | .97  | 8.94  | 8.16  |  |  |  |  |
| 2031/2                          | 4.50          | 4.75              | 225                     | 142.0                                | 11.00 | 4.19       | 2.25 | 1.25 | 10.62 | 9.62  |  |  |  |  |
| 204                             | 5.50          | 5.88              | 340                     | 214.0                                | 12.50 | 4.75       | 2.75 | 1.50 | 12.25 | 11.00 |  |  |  |  |
| 204½                            | 6.25          | 6.75              | 515                     | 324.0                                | 13.62 | 5.31       | 3.38 | 1.84 | 14.00 | 12.47 |  |  |  |  |
| 205                             | 6.62          | 6.75              | 660                     | 416.0                                | 15.31 | 6.03       | 4.31 | 2.31 | 16.38 | 14.38 |  |  |  |  |
| 205 <sup>1</sup> / <sub>2</sub> | 7.50          | 7.62              | 875                     | 551.0                                | 16.56 | 6.62       | 5.19 | 2.75 | 18.44 | 16.00 |  |  |  |  |
| 206                             | 8.25          | 8.62              | 1,190                   | 750.0                                | 18.00 | 7.41       | 5.88 | 3.09 | 20.69 | 17.91 |  |  |  |  |
| 207                             | 9.62          | 10.25             | 1,640                   | 1,033.0                              | 20.75 | 8.69       | 6.25 | 3.31 | 23.62 | 20.69 |  |  |  |  |

Refer to series F coupling, pages 8 and 42 for additional dimensions. Flange details, page 41. Maximum bore, keyway and puller hole data, page 40.

Tandem Assemblies Two FS Series Couplings connected by an intermediate floating shaft comprise a tandem assembly. The amount of offset capacity is determined by the distance between gear meshes. By mounting flexible halves on floating shaft, advantage may be taken of larger bore capacity of rigid half (Fig. A). By mounting rigid halves on floating shaft, more parallel offset capacity is available (Fig. B). Tandems may also be used in vertical applications (Fig. C) with additional modifications.

See Page 37 for maximum operating speeds of tandem couplings.

| Size   | Shaft<br>Dia. | Size | Shaft<br>Dia. |
|--------|---------------|------|---------------|
| 200    | .88           | 203½ | 4.00          |
| 201    | 1.25          | 204  | 5.00          |
| 2011/4 | 1.62          | 204½ | 6.00          |
| 201½   | 2.00          | 205  | 6.00          |
| 202    | 2.50          | 205½ | 6.50          |
| 202½   | 3.00          | 206  | 8.00          |
| 203    | 3.50          | 207  | 8.00          |

# Single Engagement Mill Motor Type With Taper Bore In Rigid Half

Specially-designed Series FSM with Taper Bore in rigid half are used to accommodate larger shaft sizes with a minimum-sized flexible coupling.

Stock Universal Hubs Ameridrives
Couplings, provides a wide variety of
Universal Hubs to minimize lead time
and reduce order and delivery costs on
nonstandard specifications requiring
longer-than-standard hub lengths.

| Universal<br>Hub<br>Size | A    | В     | С     | D    | Rough<br>Stock<br>Bore<br>E |
|--------------------------|------|-------|-------|------|-----------------------------|
| 201½                     | 3.31 | 3.12  | 4.34  | .50  | .750                        |
| 202                      | 4.00 | 4.00  | 5.38  | .75  | 1.000                       |
| 202½                     | 4.38 | 488   | 6.38  | 1.25 | 1.000                       |
| 203                      | 4.50 | 5.75  | 6.88  | 1.50 | 1.500                       |
| 203½                     | 5.00 | 6.50  | 7.50  | 1.50 | 1.500                       |
| 204                      | 5.81 | 7.75  | 8.31  | 1.38 | 2.375                       |
| 204½                     | 5.50 | 9.00  | 8.75  | 2.00 | 2.375                       |
| 205                      | 5.50 | 9.50  | 9.25  | 2.38 | 3.375                       |
| 205½                     | 6.50 | 10.50 | 10.88 | 2.88 | 3.375                       |
| 206                      | 8.50 | 11.75 | 13.12 | 3.00 | 3.375                       |

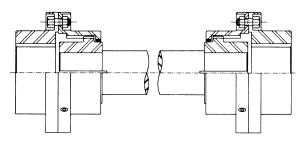



FIG. A TANDEM - FLEXIBLE HALVES ON FLOATING SHAFT

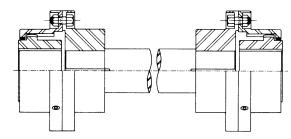
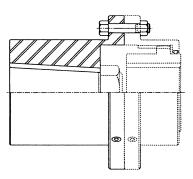





FIG. B TANDEM - RIGID HALVES ON FLOATING SHAFT



**SERIES FSM OPTION** 



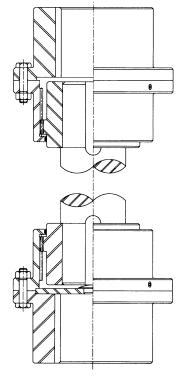



FIG. C TANDEM - VERTICAL

#### **Limited End-Float Variation**

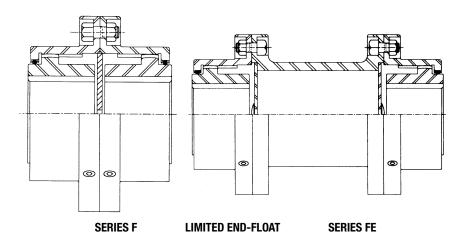
**Application:** Recommended for installations where axial travel must be limited to a lesser degree than inherent in standard flexible couplings, such as in a sleeve bearing motor to prevent the rotor from "wiping" the bearing shoulders.

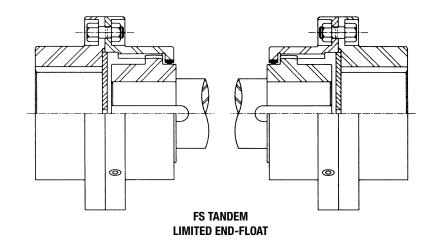
**Description:** A standard coupling is designed with clearances to accommodate misalignment and manufacturing tolerances. When an application requires that the end float be restrained, a plastic disc is positioned between the faces of coupling hubs.

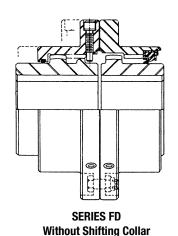
In the case of spacer arrangements, steel plates with steel thrust buttons are fitted to the spacer.

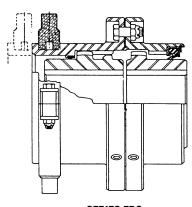
As shown, the tandem design can be modified for limited end float.

It should be noted that as the coupling is extended or compressed for LEF, the misalignment capacity of the coupling is reduced accordingly.


#### Flanged Sleeve -


### **Double Engagement Disconnect Type**


**Application:** Meets requirements for quick connection or disconnection of shafts up to 9" diameter, as in stand-by or emergency mechanical power transmission service. Compensates for all three types of misalignment.

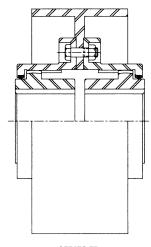

**Description:** Amerigear Series FD and FDC Flexible Couplings are designed with bolted center flanges to facilitate installation and alignment. Flanged-sleeve design makes possible minimum distances between bearing housings to facilitate shaft alignment.

Note: The right-hand hub or disengaging hub is to be mounted on the driving shaft. Chamfered entry teeth provided on disengaging hub and sleeve only when specified – at additional cost.

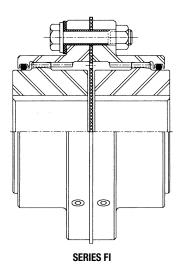









SERIES FDC With Shifting Collar

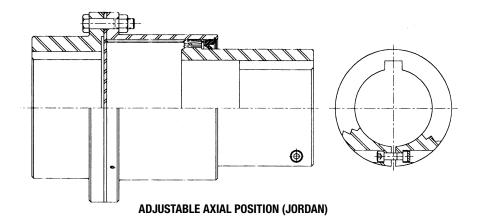

#### **Brake Drum Series FB Coupling**

**Application:** The FB coupling is designed for use in applications that require a brake drum but have insufficient space between the driver and the driven components for a separate brake drum mounting.

**Description:** The FB coupling consists of standard Amerigear Series F sleeves and hubs with a flange type brake drum bolted securely between the sleeve flanges. Depending on the diameter of the drum, the drum may be machined as one piece or fabricated. When ordering, specify drum diameter and face width.



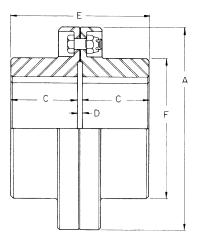





### **Insulated Type Series FI Coupling**

**Application:** The FI coupling is designed for use when driver and driven equipment must be electrically insulated from each other to prevent the flow of stray electrical currents. The FI protects against the pitting of precision bearings and shafts that may occur in equipment such as generator excitor drives.

**Description:** The Amerigear Series FI coupling incorporates an insulator washer, insulated bolts and an insulator disc to isolate the two halves of the coupling.


Compared to the Amerigear Series F coupling, the FI coupling shaft-to-shaft is increased and misalignment capacity is limited to  $\pm \, 3\!\!\!/^{\circ}$  per gear mesh.



#### **Adjustable Axial Position Coupling**

Application: In certain types of equipment drives, shaft-to-shaft distance varies during equipment operation requiring an axial travel type of coupling. In addition, adjustment to maintain the maximum axial travel for various initial shaft-to-shaft conditions is also required. The design of the adjustable axial positioning coupling suits this purpose.

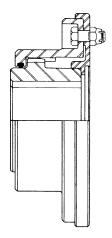
Description: The coupling design is similar to that of the axial travel FA or FAS Series. The exception is that the hub of the travel half of the coupling is fitted with a clamp bolt design. The clamp bolt holds the coupling hub in position. When adjustment is necessary, after the drive has stopped rotating, the clamp bolt is loosened and the hub is slid along the equipment shaft to the new position. The clamp bolt is then retightened. This is performed without having to move either the driver or the driven components of the equipment.



**FULL RIGID TYPE COUPLING** 



**Application:** For mechanical power transmission applications where no misalignment or axial displacement exists between connected shafts.

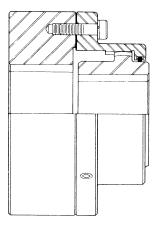

**Description:** Accurately-machined medium carbon steel.

| Full<br>Rigid<br>Size | A     | С    | D   | E     | F     |
|-----------------------|-------|------|-----|-------|-------|
| 200                   | 2.94  | 1.05 | _   | 2.09  | 1.94  |
| 201                   | 3.56  | 1.23 | -   | 2.47  | 2.56  |
| 2011/4                | 4.00  | 1.48 | -   | 2.97  | 3.00  |
| 201½                  | 6.00  | 1.78 | .19 | 3.75  | 3.88  |
| 202                   | 7.00  | 2.28 | .19 | 4.75  | 4.88  |
| 202½                  | 8.38  | 2.91 | .19 | 6.00  | 5.75  |
| 203                   | 9.44  | 3.41 | .19 | 7.00  | 6.81  |
| 203½                  | 11.00 | 3.97 | .19 | 8.12  | 7.75  |
| 204                   | 12.50 | 4.44 | .38 | 9.25  | 9.06  |
| 204½                  | 13.62 | 5.00 | .38 | 10.38 | 10.19 |
| 205                   | 15.31 | 5.75 | .38 | 11.88 | 11.38 |
| 205½                  | 16.56 | 6.12 | .38 | 12.62 | 12.50 |
| 206                   | 18.00 | 7.16 | .50 | 14.81 | 13.50 |
| 207                   | 20.75 | 8.44 | .62 | 17.50 | 15.75 |

Sizes 200, 201 and  $201\frac{1}{4}$  flange fasteners are self-locking socket head cap screws - one flange tapped.

Sizes  $201\frac{1}{2}$ - $205\frac{1}{2}$  have shrouded bolts (SB) with self-locking nuts; exposed bolts (EB) upon request - no additional cost.

Sizes 206 and 207 have exposed bolts (EB) with self-locking nuts.



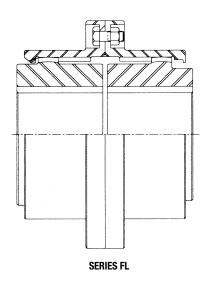

HALF COUPLING ADAPTOR

**Half Coupling Adaptors** Adaptors are used where one of the connected machines is disconnected, leaving the other machine in service; or where individual equipment testing is required.

Adaptor ring is secured to sleeve and pilots the hub, holding sleeve concentric and rigid with the hub.

On close-coupled installations, adaptors are usually segmented or split for ease of installation. On spacer couplings, the adaptor is a solid, one-piece construction.

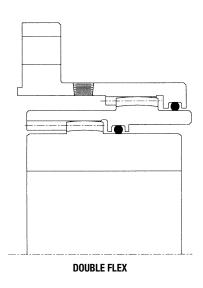



**RIGID HALF SLUG ADAPTOR** 

Rigid Half Slug Adaptor For tandem arrangements where one shaft is considerably larger than the other. Utilizes standard Series F – flexible half mounted to a special slug adaptor. Bore length and O.D. same as dimensions C and A listed to the left for full rigid type couplings.

# Differential Tooth Coupling (Modification) Series F Only

**Application:** For accurate adjustment and control of angular shaft relationships as required on press drives, feed mechanisms, timing devices and similar applications.


**Description:** One half of Amerigear Series F (Modified) Flexible Coupling is a standard half Series F Coupling. Other half contains a special hub and sleeve designed with one tooth more or less than standard mating half. This permits vernier adjustment of shaft-to-shaft or sleeve-to-sleeve relationship for desired shaft synchronization.



#### **Continuously-Lubricated Type Coupling**

**Application:** Continuous oil lubrication is desirable under certain conditions of high ambient operating temperatures. Since this design does not utilize the contaminant-proof features of standard couplings, the installation should be enclosed to prevent the entrance of excessive dust or moisture, and should be provided with an adequate flow of clear oil. Lubricating oil should be filtered to at least 5 microns and the location of the oil nozzles should be positioned as close as possible to the coupling in order to minimize oil jet deflection due to windage. Type of lubricant should be chosen carefully, with consideration given to load carrying characteristics. Quantity of flow depends on horsepower transmitted, and this flow requirement will be specified by Ameridrives Couplings.

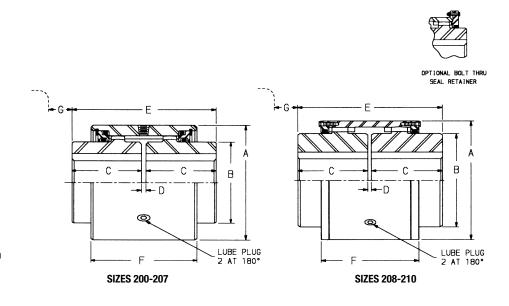
Description: Amerigear Series FL
Flexible Couplings utilize standard
components with sleeves modified for oil
inlet and discharge. Differential level of
location of inlet and discharge openings
assure positive lubricant flow. Design
provides for retention of oil in event of
pump failure, or for intermittent type
lubrication. Angled discharge holes
assure scavenging action to minimize
sludge accumulation.



### **Double Flex Coupling**

**Application:** The double flex coupling is designed for applications that are limited in space between driver and driven equipment. The double flex design accommodates both angular and offset misalignment in a compact design.

**Description:** Similar to the Amerigear standard coupling, the double flex coupling has a sleeve and a hub. The main difference is that a gear ring is positioned between the hub and sleeve. The gear ring has an external gear to mate with the sleeve internal gear and an internal gear to fit the hub external gear.


6/15

### Sizes 200 - 210

# Continuous Sleeve — Double-Engagement Type

**Application:** Amerigear Series C offers the advantages of lower initial cost, higher speeds, greater safety, more compactness and extremely low weight and WR<sup>2</sup>. Compensates for all three types of misalignment. Meets requirements of all standard applications for shaft sizes up to 15" diameter.

Description: Amerigear Series C Flexible Coupling is designed with a smooth, cylindrical one-piece sleeve for smoother, faster, quieter and safer operation. Positive-engagement steel snap rings keep coupling constrained during operation under the most adverse conditions of axial end loading ... permits quicker assembly and disassembly. Lower cost over comparably rated flange-and-boltypes.



|           |               | timum<br>- Inches | Loa<br>Capad            |                           | Parallel                  | DIMENSIONS |       |       |     |       |       |      |
|-----------|---------------|-------------------|-------------------------|---------------------------|---------------------------|------------|-------|-------|-----|-------|-------|------|
| C<br>Size | Square<br>Key | Reduced<br>Key    | HP<br>Per 100<br>R.P.M. | Torque<br>InLbs.<br>x 10³ | Offset<br>Capacity<br>In. | A          | В     | С     | D   | E     | F     | G**  |
| *200      | .81           | .88               | 3                       | 1.9                       | .023                      | 2.12       | 1.25  | 1.06  | .12 | 2.25  | 2.25  | 1.31 |
| *201      | 1.25          | 1.31              | 5                       | 3.2                       | .037                      | 2.69       | 1.75  | 1.38  | .12 | 2.88  | 2.88  | 1.62 |
| 2011/4    | 1.63          | 1.75              | 12                      | 7.6                       | .038                      | 3.19       | 2.25  | 1.69  | .12 | 3.50  | 2.94  | 1.38 |
| 201½      | 2.25          | 2.38              | 27                      | 17.0                      | .050                      | 4.38       | 3.12  | 1.94  | .12 | 4.00  | 3.56  | 1.90 |
| 202       | 2.75          | 2.88              | 50                      | 31.5                      | .056                      | 5.38       | 4.00  | 2.44  | .12 | 5.00  | 4.06  | 1.90 |
| 202½      | 3.50          | 3.75              | 85                      | 53.6                      | .056                      | 6.50       | 4.88  | 3.03  | .19 | 6.25  | 4.63  | 1.90 |
| 203       | 4.00          | 4.25              | 150                     | 94.5                      | .078                      | 7.44       | 5.75  | 3.59  | .19 | 7.37  | 5.59  | 2.30 |
| 203½      | 4.50          | 4.75              | 225                     | 142.0                     | .090                      | 8.32       | 6.50  | 4.19  | .25 | 8.63  | 6.43  | 2.50 |
| 204       | 5.50          | 5.88              | 340                     | 214.0                     | .098                      | 9.86       | 7.75  | 4.75  | .25 | 9.75  | 7.06  | 2.67 |
| 204½      | 6.25          | 6.75              | 515                     | 324.0                     | .107                      | 10.88      | 9.00  | 5.31  | .31 | 10.93 | 7.58  | 2.63 |
| 205       | 6.62          | 6.75              | 660                     | 416.0                     | .114                      | 11.75      | 9.50  | 6.03  | .31 | 12.37 | 8.01  | 2.34 |
| 205½      | 7.50          | 7.62              | 875                     | 551.0                     | .117                      | 12.75      | 10.50 | 6.62  | .31 | 13.55 | 8.28  | 2.01 |
| 206       | 8.25          | 8.62              | 1,190                   | 750.0                     | .129                      | 14.00      | 11.75 | 7.41  | .31 | 15.13 | 8.91  | 1.86 |
| 207       | 9.62          | 10.25             | 1,640                   | 1,033.0                   | .160                      | 16.38      | 13.50 | 8.69  | .38 | 17.76 | 10.44 | 2.11 |
| 208       | 11.25         | 12.25             | 2,380                   | 1,500.0                   | .101                      | 18.38      | 15.62 | 9.75  | .38 | 19.88 | 11.88 | 1.77 |
| 209       | 12.25         | 13.38             | 2,700                   | 1,700.0                   | .114                      | 20.50      | 17.50 | 10.75 | .50 | 22.00 | 13.25 | 2.15 |
| 210       | 13.75         | 15.00             | 3,300                   | 2,080.0                   | .127                      | 22.38      | 19.00 | 12.00 | .50 | 24.50 | 14.38 | 2.01 |

For larger sizes, contact Ameridrives Couplings.

\*Sizes 200 and 201 furnished without lube plugs.

\*\*Clearance for aligning coupling.

Maximum bore, keyway and puller hole data, pages 9 and 40. Additional details, page 42-43.

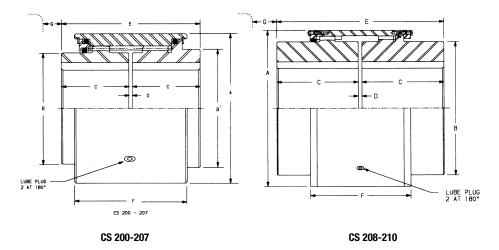
Modifications and variations, pages 31-33.

Maximum speeds, page 34. Weights and WR<sup>2</sup>, pages 38-39.

Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series C Couplings incorporate the following engineered features:

- Sizes 200-207,  $\pm$  1½° angular misalignment capacity per gear mesh.
- Sizes 208-210,  $\pm \, \%^{\circ}$  angular misalignment capacity per gear mesh.
- Torque ratings at full angular misalignment,
- Accurately machined medium carbon steel hubs and sleeves.

 Positive-type O-ring seals keep lubricant in contaminants out. Seals enshrouded to prevent damage.


# **Series CS** | Flexible Couplings

### Sizes 200 - 210

# Continuous Sleeve — Single-Engagement Type

**Application:** Meets the application requirements described for Amerigear Series FS Couplings (page 10), but in addition offers the advantages of greater safety, more compactness and extremely low weight and WR<sup>2</sup>.

Description: Amerigear Series CS
Flexible Coupling is designed with a smooth, cylindrical one-piece sleeve for smoother, faster, quieter and safer operation. Rigid half is splined. Positive-engagement steel snap rings keep the flexible half and rigid half constrained during operation under the most adverse conditions of axial end loadings permits quicker assembly and disassembly.



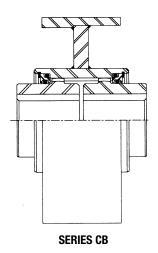
|            | Maximu<br>Inch<br>Flexible | ies            | Inc           | ım Bore<br>hes<br>I Half | Lo<br>Capa              | ad<br>acity               | DIMENSIONS |       |       |       |     |       |       |      |
|------------|----------------------------|----------------|---------------|--------------------------|-------------------------|---------------------------|------------|-------|-------|-------|-----|-------|-------|------|
| CS<br>Size | Square<br>Key              | Reduced<br>Key | Square<br>Key | Reduced<br>Key           | HP Per<br>100<br>R.P.M. | Torque<br>InLbs.<br>x 10³ | A          | В     | B´    | C     | D   | E     | F     | G**  |
| *200       | .81                        | .88            | .88           | 1.00                     | 3                       | 1.9                       | 2.12       | 1.25  | 1.25  | 1.06  | .12 | 2.25  | 2.25  | 1.31 |
| *201       | 1.25                       | 1.31           | 1.31          | 1.38                     | 5                       | 3.2                       | 2.69       | 1.75  | 1.75  | 1.38  | .12 | 2.88  | 2.88  | 1.62 |
| 2011/4     | 1.62                       | 1.75           | 1.62          | 1.75                     | 12                      | 7.6                       | 3.19       | 2.25  | 2.25  | 1.69  | .12 | 3.50  | 2.94  | 1.38 |
| 201½       | 2.25                       | 2.38           | 2.25          | 2.38                     | 27                      | 17.0                      | 4.38       | 3.12  | 3.50  | 1.94  | .12 | 4.00  | 3.56  | 1.90 |
| 202        | 2.75                       | 2.88           | 2.75          | 3.00                     | 50                      | 31.5                      | 5.38       | 4.00  | 4.25  | 2.44  | .12 | 5.00  | 4.06  | 1.90 |
| 202½       | 3.50                       | 3.75           | 3.50          | 3.75                     | 85                      | 53.6                      | 6.50       | 4.88  | 5.25  | 3.03  | .19 | 6.25  | 4.63  | 1.90 |
| 203        | 4.00                       | 4.25           | 4.00          | 4.25                     | 150                     | 94.5                      | 7.44       | 5.75  | 6.12  | 3.59  | .19 | 7.37  | 5.59  | 2.30 |
| 203½       | 4.50                       | 4.75           | 4.50          | 4.88                     | 225                     | 142.0                     | 8.32       | 6.50  | 6.81  | 4.19  | .25 | 8.63  | 6.43  | 2.50 |
| 204        | 5.50                       | 5.88           | 5.50          | 5.88                     | 340                     | 214.0                     | 9.86       | 7.75  | 8.00  | 4.75  | .25 | 9.75  | 7.06  | 2.67 |
| 204½       | 6.25                       | 6.75           | 6.25          | 6.75                     | 515                     | 324.0                     | 10.88      | 9.00  | 9.25  | 5.31  | .31 | 10.93 | 7.58  | 2.63 |
| 205        | 6.62                       | 6.75           | 7.00          | 7.12                     | 660                     | 416.0                     | 11.75      | 9.50  | 10.00 | 6.03  | .31 | 12.37 | 8.28  | 2.34 |
| 205½       | 7.50                       | 7.62           | 7.50          | 8.00                     | 875                     | 551.0                     | 12.75      | 10.50 | 11.00 | 6.62  | .31 | 13.55 | 8.91  | 2.01 |
| 206        | 8.25                       | 8.62           | 8.25          | 8.62                     | 1,190                   | 750.0                     | 14.00      | 11.75 | 12.00 | 7.41  | .31 | 15.13 | 10.44 | 1.86 |
| 207        | 9.62                       | 10.25          | 9.62          | 10.25                    | 1,640                   | 1,033.0                   | 16.38      | 13.50 | 13.75 | 8.69  | .38 | 17.76 | 16.00 | 2.11 |
| 208        | 11.25                      | 12.25          | 11.25         | 12.25                    | 2,380                   | 1,500.0                   | 18.38      | 15.62 | 15.62 | 9.75  | .38 | 19.88 | 11.88 | 1.77 |
| 209        | 12.25                      | 13.38          | 12.25         | 13.38                    | 2,700                   | 1,700.0                   | 20.50      | 17.50 | 17.50 | 10.75 | .50 | 22.00 | 13.25 | 2.15 |
| 210        | 13.75                      | 15.00          | 13.75         | 15.00                    | 3,300                   | 2,080.0                   | 22.38      | 19.00 | 19.00 | 12.00 | .50 | 24.50 | 14.38 | 2.00 |

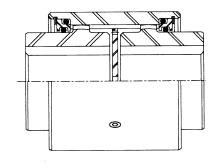
For larger sizes contact Ameridrives Couplings.

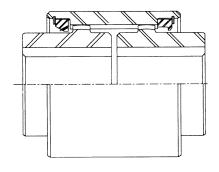
\*Sizes 200 and 201 furnished without lube plugs.

\*\*Clearance for aligning coupling.

Maximum bore, keyway and puller hole data, page 40. Additional dimensions, page 42-43.


Modifications and variations, pages 31-33. Maximum speeds, page 34.


Maximum speeds, page 34. Weights and WR², pages 38-39.


Amerigear Flexible Couplings - Fully-Crowned Teeth For Higher Torque, Higher Speed, Higher Misalignment Capacity All Amerigear Series CS Couplings incorporate the following engineered features:

- Sizes 200-207, ±11/2° angular misalignment capacity.
- Sizes 208-210, ± 3/4° angular misalignment capacity.
- Torque ratings at full misalignment.
- Accurately machined medium carbon steel hubs and sleeves.

 Positive-type O-ring seals keep lubricant in contaminants out. Seals enshrouded to prevent damage.







**SERIES C - LEF** 

**Brake Drum Type Coupling** 

Application: The Series CB Brake Drum Coupling is used where the shaft space prevents a separate drum mounting and the drum diameter prevents a bolted design to be used.

**Description:** The Series CB Brake Drum is integral with the coupling sleeve. It may be fabricated or totally machined. When ordering, specify the drum outer diameter and the face width.

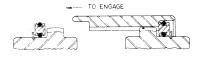
#### **Limited End Float Coupling**

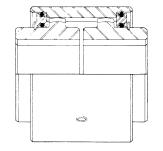
Application: The standard Series C coupling is designed with clearances to accommodate misalignment and manufacturing tolerances. When the application requires that the end float be restrained, a plastic disc is positioned between the faces of the coupling hubs.

It should be noted that as the coupling is extended or compressed for LEF, the misalignment capacity of the coupling is reduced accordingly.

**SERIES CL** 

### **Continuously Lubricated Coupling**


Application: The C Series coupling can be modified for continuous oil lubrication. The same oil supply qualifications listed under the FL Amerigear also apply to the CL Series couplings.

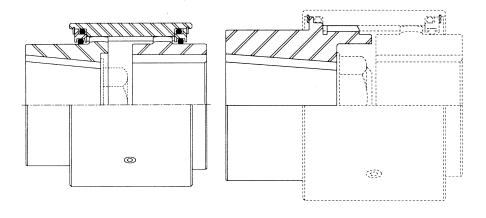

**Description:** Standard stock hubs and sleeves are used in the CL construction. The CL Series has the advantage of reduced weight, compact design and lower WR<sup>2</sup>.

Dam rings are designed with inlet ring and outlet ring openings at different levels to assure positive oil flow, controlled oil level and oil level retention in the event the oil supply is interrupted. The outlet ring has angled discharge holes to minimize sludge accumulation.

# **Series C** | Flexible Couplings

### **Modifications and Variations**






BLIND ASSEMBLY SERIES C MODIFIED

### Blind Assembly Modification — Series C

Application: Recommended for plug-in type installations, as with flange or frame-mounted equipment. Also used where short shaft extensions of bell housings restrict installation of standard Series C Coupling. May be used in horizontal or vertical positions.

**Description:** Amerigear Series C (Modified), Blind Assembly type Flexible Coupling retains all the features and overall dimensions of standard Series C Coupling. Snap-ring groove is machined into hub allowing preassembly of seal assembly to hub before shafts are connected.



**SERIES CM** 

### **Mill Motor CM Coupling**

**Application:** The CM and CSM couplings are designed for applications which utilize shafts having tapered shaft ends, i.e., AISE mill motors. These couplings offer the advantage of lower weight, minimum outer diameter and low WR<sup>2</sup>.

#### SERIES CSM OPTION

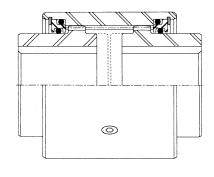
**Description:** The CM and the CSM couplings use standard stock sleeves. The couplings can be made with any combination of hub bores. For example, one or both hubs with tapered bores; one tapered and one straight bore.

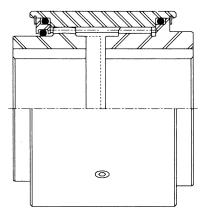
#### **Continuous Sleeve Axial Travel**

Application: The CA and CAS type couplings are designed to provide axial travel between driver and driven shafts such as with certain crane and fan equipment. Compared to the Series F, the CA and CAS advantages are lower weight and WR, higher speeds and a more compact design.

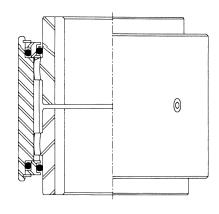
**Description:** The Amerigear CA couplings have a one piece sleeve that engages both shaft hubs. The coupling is sealed with seal retainers and O-rings. The coupling is assembled with spiral type retaining rings.

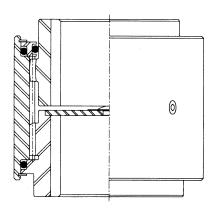
The CAS coupling differs from the CA using a rigid hub in place of one flex hub and has one less seal retainer and O-ring.


Depending on the dimensions required, the coupling usually can be made from stock sleeves and modified stock hubs, or a made-to-order may be possible.


The couplings are limited to  $\pm \frac{1}{2}$ ° angular misalignment per flex half.

#### **Continuous Sleeve Vertical Coupling**


**Application:** The CV and CVS couplings are used to connect driver and driven equipment having vertical shafts. While the CV compensates for all three types of misalignment, the CVS compensates only for angular.


**Description:** The CV coupling is constructed from a stock sleeve, seals, seal retainers and retainer rings and from modified stock hubs. The CVS coupling uses a stock rigid hub in place of one flex hub and one less seal.





SERIES CA SERIES CAS





SERIES CV SERIES CVS

# **Engineering Data** | **Flexible Couplings**

### **Speeds, Classes and Balance**

**Speeds** The speed limits at right are recommendations based on experience and are intended as a guide only. The actual limits are determined by the characteristics of the system in which the coupling is to be installed.

Consult Ameridrives for speed limits of series not listed at right.

**Classes** Four classes of Amerigear couplings are available.

- 1. Standard AMERIGEAR Couplings
- Balanced Standard AMERIGEAR Couplings
- 3. Class III AMERIGEAR Couplings
- 4. Class I AMERIGEAR Couplings

#### I. Standard Couplings.

These couplings offer fully-crowned teeth. Sizes 200 - 207 have  $\pm 1\frac{1}{2}^{\circ}$  angular misalignment capacity per mesh. Sizes 208 - 210 have  $\pm \frac{3}{4}^{\circ}$ . Parts are fully-machined from medium carbon steel. These couplings also feature self-locking nuts and positive type O-ring seals.

#### II. Balanced Standard Couplings.

This class is offered in Series F and FE for sizes  $201\frac{1}{2}$  - 207. These couplings are Standard Couplings which have been dynamically balanced as components. They offer all the features as Standard Couplings but, because of the increased speed rating of the Balanced Standard Class of couplings, the rated angular misalignment is limited to  $\pm$  1°. These couplings will meet an AGMA Balance Classification (see page 35). Series F meet AGMA Class 9. Series FE meet AGMA Class 8.

NOTE: Series FE are supplied with pilot rings and are only available up to a 10" length of spacer.

### III. Class III Couplings.

These couplings offer all the features of our standard line, plus additional modifications which permit higher operating speeds. They are made of medium carbon steel and conform to dimensions of standard couplings, and are available through size 205½.

| Size   | F     | F<br>Balanced | F<br>Class III | F<br>Class I | C      | FPH   | FPH<br>Class III | *<br>FD, FDC |
|--------|-------|---------------|----------------|--------------|--------|-------|------------------|--------------|
| 200    | 8,500 |               |                |              | 11,000 |       |                  |              |
| 201    | 7,700 |               |                | 32,000       | 9,800  |       |                  |              |
| 2011/4 | 7,100 |               |                | 32,000       | 8,900  |       |                  |              |
| 201½   | 5,400 | 9,000         | 12,600         | 25,000       | 7,700  | 4,200 | 8,200            |              |
| 202    | 4,800 | 8,100         | 11,400         | 20,000       | 6,200  | 3,800 | 7,400            | 1,800        |
| 202½   | 4,300 | 6,900         | 9,500          | 18,000       | 6,000  | 3,400 | 6,150            | 1,600        |
| 203    | 4,000 | 6,100         | 8,200          | 15,000       | 5,200  | 3,200 | 5,300            | 1,200        |
| 203½   | 3,600 | 5,400         | 7,200          | 13,000       | 4,400  | 2,800 | 4,700            | 1,000        |
| 204    | 3,200 | 4,750         | 6,300          | 11,500       | 3,550  | 2,500 | 4,100            | 900          |
| 204½   | 3,000 | 4,450         | 5,900          | 10,500       | 3,000  | 2,400 | 3,800            | 850          |
| 205    | 2,600 | 4,000         | 5,400          | 9,600        | 2,600  | 2,000 | 3,500            | 750          |
| 205½   | 2,400 | 3,500         | 4,600          | 9,000        | 2,400  | 1,900 | 3,000            | 650          |
| 206    | 2,200 | 3,250         |                | 8,400        | 2,200  | 2,200 | 2,800            | 600          |
| 207    | 1,800 | 2,750         |                | 6,800        | 1,800  | 1,800 | 2,400            | 550          |
| 208    | 1,500 |               |                |              | 1,800  |       |                  |              |
| 209    | 1,275 |               |                |              | 1,650  |       |                  |              |
| 210    | 1,100 |               |                |              | 1,400  |       |                  |              |

<sup>\*</sup>These are maximum speeds for FD when disengaged and for FDC when engaged or disengaged. For FD when engaged, follow standard F speeds.

The hubs and sleeves of the Class III couplings minimize gear tooth tip clearance, and the sleeves incorporate integral pilots, both providing accurate centering of mating sleeves, spacer or tandem shafts. These couplings are dynamically balanced as components and will meet AGMA classifications as designated below. Sleeves and spacers are serialized for ease of identification.

Because of the increased speed rating of the Class III Coupling, the rated angular misalignment is limited to  $\pm \frac{3}{4}$ °.

The Class III Coupling is available in the following series:

F Page 8, AGMA Class 10
FL Page 28, AGMA Class 10
FE Page 19, AGMA Class 9
FS, ES Page 10 and 24, AGMA
Tandem Class 8 and 9

FPH Page 22, AGMA Class 8 and 9

NOTE: Class depends on length and

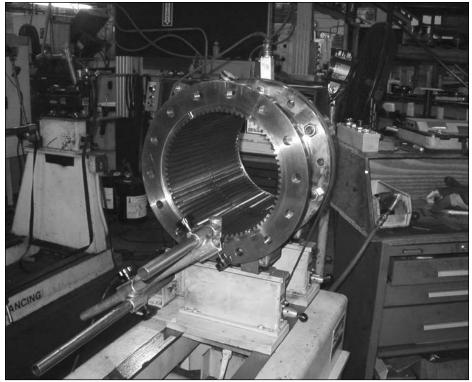
size of coupling.

#### IV. Class I Couplings.

These are high-performance alloy couplings with nitrided gear teeth which are rated at  $\pm~1/4^\circ$  Information on this class of gear coupling is not covered in this catalog. Contact Ameridrives and request Amerigear Class I catalog, P-1824-AC (462-ADV).

6/15

### **Speeds, Classes and Balance**


Balance Procedure All components of Balanced Standards are dynamically balanced within .00015 inches peak-to-peak, which is equivalent to a mass shift of 75 micro-inches. All components of Class III couplings are dynamically balanced within .0001 inches peak-to-peak, which is equivalent to a mass shift of 50 micro-inches.

All hubs, sleeves, rigids and other short parts other than unbalanced standard parts, are single plane balanced on Ameridrives designed vertical balance machines.

Spacers, tandem shaft assemblies and other long parts, other than unbalanced standard parts, are two plane balanced on an IRD horizontal balance machine. All balancing operations are performed using state-of-the-art IRD Analyzers.

Class III coupling components balance records are retained in the Quality Control Department. Copies of balance records are available on customer request.

Contact Ameridrives Couplings for balancing needs.



**Balancing** minimizes damaging vibrations for applications in the higher speed ranges and where supporting structures and housings become lighter.

#### **UNBALANCE DATA FOR AMERIGEAR FLEXIBLE COUPLINGS**

Table 1: Standard AGMA Balance Classification

| AGMA<br>COUPLING<br>Balance<br>Class | MAXIMUM DISPLACEMENT<br>OF PRINCIPAL<br>INERTIA AXIS<br>(RMS Micro-Inches) |
|--------------------------------------|----------------------------------------------------------------------------|
| 6                                    | 16,000                                                                     |
| 7                                    | 8,000                                                                      |
| 8                                    | 4,000                                                                      |
| 9                                    | 2,000                                                                      |
| 10                                   | 1,000                                                                      |
| 11                                   | 500                                                                        |

Ref.: ANSI/AGMA 9000-C90.

Table 2: Amerigear Balance Classification

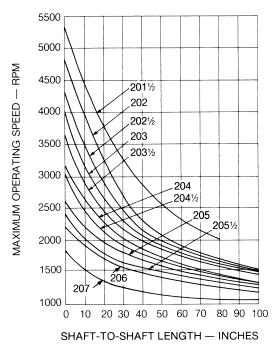
| AMERIDRIVES       | AGMA CLASS    |                |  |  |  |
|-------------------|---------------|----------------|--|--|--|
| CLASSIFICATION    | F<br>Coupling | FE<br>Coupling |  |  |  |
| Standard          | 8             | 7              |  |  |  |
| Balanced Standard | 9             | 8              |  |  |  |
| Class III         | 10            | 9              |  |  |  |
| Class I           | 11            | 10             |  |  |  |

The approximate unbalance "U" of a coupling, per plane, expressed in Oz.-ln., may be found by:

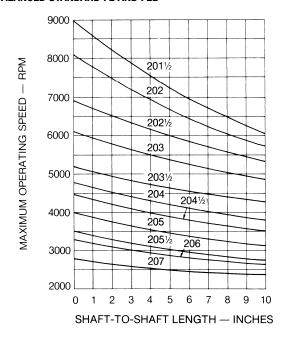
$$U = \frac{16 \times W \times D}{1,000,000}$$

where W= Half coupling weight in Lbs.

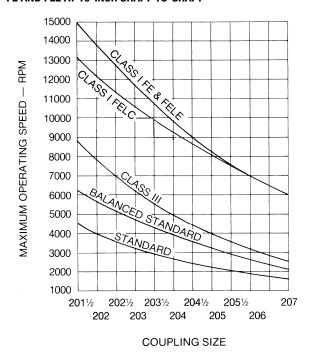
D= RMS displacement in microinches from Table 1.


RMS = Root Mean Squared average.

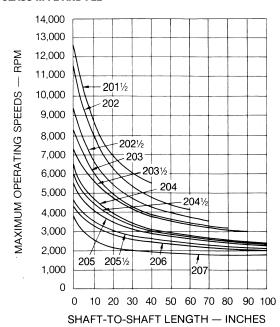
P-1819-AC 6/15 Ameridrives Couplings 814-480-5000


# **Engineering Data** | **Flexible Couplings**

### **Maximum Speeds, Series FE and FEL**


#### STANDARD FE AND FEL



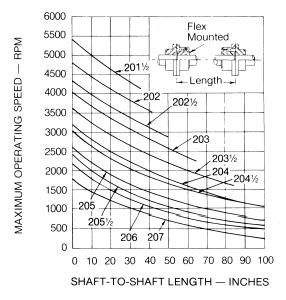

#### **BALANCED STANDARD FE AND FEL**



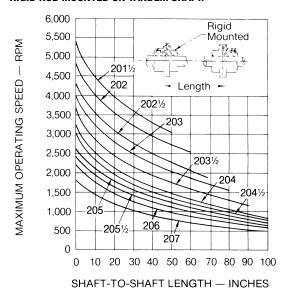
#### FE AND FEL AT 10-INCH SHAFT-TO-SHAFT



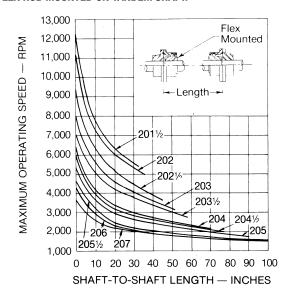
#### **CLASS III FE AND FEL**



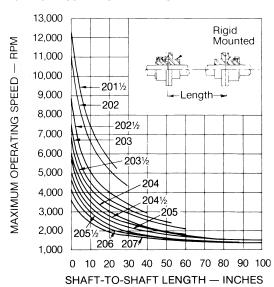

NOTE: The maximum speeds on this page are only a guide. The actual limits are determined by the characteristics of the system in which the coupling is installed.


For lengths greater than shown, contact Ameridrives Couplings.

## **Maximum Speeds, Series FS Tandem**


STANDARD FS FLEX HUB MOUNTED ON TANDEM SHAFT.




STANDARD FS
RIGID HUB MOUNTED ON TANDEM SHAFT.



CLASS III FS FLEX HUB MOUNTED ON TANDEM SHAFT.



CLASS III FS RIGID HUB MOUNTED ON TANDEM SHAFT.



NOTE: The maximum speeds on this page are only a guide. The actual limits are determined by the characteristics of the system in which the coupling is installed. See page 24 for shaft sizes used in these charts. If intermediate shaft is not supplied by Ameridrives, a critical speed check should be made by customer. For lengths greater than shown, contact Ameridrives Couplings.

# **Weights WR<sup>2</sup> | Flexible Couplings**

# **Torsional Stiffness and Engineering Calculations**

### SIZES 200-207 SERIES F AND C — WEIGHT-LBS.

|        |                  |                |        | upling With<br>Hubs | Spacer       |                |                 | Coupling With<br>Solid Hubs |       | FS<br>Coupling       | FE<br>Coupling             |
|--------|------------------|----------------|--------|---------------------|--------------|----------------|-----------------|-----------------------------|-------|----------------------|----------------------------|
| Size   | Solid Hub<br>F&C | Solid<br>Rigid | F      | С                   | Less<br>Tube | Tube<br>Wt/In. | Shaft<br>Wt/In. | F                           | С     | Solid Hub<br>& Rigid | Less Tube w/<br>Solid Hubs |
| 200    | .42              | 1.35           | .74    | .85                 | 1.06         | .18            | .19             | 2.3                         | 1.8   | 2.5                  | 3.36                       |
| 201    | 1.04             | 2.36           | 1.20   | 1.32                | 1.36         | .25            | .28             | 4.5                         | 3.6   | 4.6                  | 5.86                       |
| 2011/4 | 1.88             | 3.46           | 1.63   | 1.96                | 2.62         | .29            | .36             | 7.0                         | 6.0   | 7.0                  | 9.62                       |
| 201½   | 4.50             | 10.00          | 3.90   | 4.60                | 7.32         | .91            | .84             | 17.0                        | 14.0  | 18.6                 | 24.32                      |
| 202    | 9.06             | 17.00          | 5.70   | 7.60                | 11.00        | 1.46           | 1.39            | 30.0                        | 27.0  | 32.2                 | 41.00                      |
| 202½   | 16.80            | 29.50          | 9.00   | 12.00               | 18.30        | 1.58           | 2.00            | 53.0                        | 47.0  | 56.7                 | 71.30                      |
| 203    | 27.50            | 44.00          | 12.80  | 18.00               | 21.80        | 2.04           | 2.73            | 82.0                        | 75.0  | 85.7                 | 103.80                     |
| 203½   | 40.80            | 69.00          | 21.60  | 25.00               | 36.40        | 2.36           | 3.56            | 127.0                       | 109.0 | 134.0                | 163.40                     |
| 204    | 65.40            | 103.00         | 29.70  | 38.80               | 45.40        | 3.16           | 5.56            | 193.0                       | 174.0 | 200.0                | 238.40                     |
| 204½   | 98.20            | 140.00         | 33.60  | 42.00               | 53.50        | 3.50           | 5.56            | 266.0                       | 242.0 | 275.0                | 319.50                     |
| 205    | 126.00           | 206.00         | 55.60  | 51.00               | 95.40        | 3.63           | 8.01            | 368.0                       | 308.0 | 392.0                | 463.40                     |
| 205½   | 168.00           | 260.00         | 73.10  | 57.50               | 108.00       | 4.30           | 8.01            | 488.0                       | 400.0 | 507.0                | 596.00                     |
| 206    | 232.00           | 360.00         | 83.60  | 80.00               | 87.20        | 4.60           | 10.50           | 640.0                       | 550.0 | 685.0                | 727.20                     |
| 207    | 363.00           | 553.00         | 117.20 | 128.00              | 131.00       | 5.23           | 14.20           | 973.0                       | 862.0 | 1,045.0              | 1,104.00                   |

### SIZES 200-207 SERIES F AND SIZES 200-207 SERIES C - WR2 (LB.-IN.2)

|        |                  |                | Sleeve   |         | Spacer       |                 |                  | Couplin<br>Solid |          | FS<br>Coupling       | FE<br>Coupling             |
|--------|------------------|----------------|----------|---------|--------------|-----------------|------------------|------------------|----------|----------------------|----------------------------|
| Size   | Solid Hub<br>F&C | Solid<br>Rigid | F        | С       | Less<br>Tube | Tube<br>WR²/In. | Shaft<br>WR²/In. | F                | С        | Solid Hub<br>& Rigid | Less Tube w/<br>Solid Hubs |
| 200    | .10              | 1.13           | 1.00     | 1.6     | .72          | .12             | .02              | 2.2              | 1.8      | 2.46                 | 2.92                       |
| 201    | .51              | 2.94           | 2.39     | 2.0     | 1.46         | .32             | .07              | 5.8              | 3.0      | 6.84                 | 7.26                       |
| 2011/4 | 1.41             | 5.47           | 4.14     | 3.8     | 2.26         | .50             | .19              | 11.1             | 6.6      | 13.58                | 13.40                      |
| 201½   | 5.90             | 34.00          | 22.00    | 19.0    | 49.80        | 2.72            | .39              | 58.0             | 33.0     | 64.10                | 107.80                     |
| 202    | 19.10            | 75.70          | 43.60    | 46.0    | 89.40        | 7.03            | 1.09             | 129.0            | 89.0     | 142.00               | 218.40                     |
| 202½   | 52.80            | 185.00         | 119.00   | 109.0   | 215.00       | 10.60           | 2.25             | 319.0            | 224.0    | 332.00               | 534.00                     |
| 203    | 118.00           | 350.00         | 180.00   | 212.0   | 335.00       | 19.20           | 4.17             | 617.0            | 471.0    | 669.00               | 952.00                     |
| 203½   | 225.00           | 732.00         | 400.00   | 374.0   | 750.00       | 29.10           | 7.11             | 1,304.0          | 855.0    | 1,411.00             | 2,054.00                   |
| 204    | 508.00           | 1,386.00       | 719.00   | 813.0   | 1,225.00     | 53.20           | 17.40            | 2,536.0          | 1,920.0  | 2,695.00             | 3,761.00                   |
| 204½   | 1,023.00         | 2,250.00       | 1,014.00 | 1,100.0 | 1,720.00     | 70.10           | 17.40            | 4,174.0          | 3,239.0  | 4,387.00             | 5,894.00                   |
| 205    | 1,489.00         | 4,360.00       | 2,090.00 | 1,562.0 | 3,880.00     | 90.50           | 36.00            | 7,373.0          | 4,688.0  | 8,154.00             | 11,253.00                  |
| 205½   | 2,419.00         | 6,400.00       | 3,184.00 | 2,098.0 | 5,230.00     | 130.00          | 36.00            | 11,496.0         | 7,134.0  | 12,293.00            | 16,726.00                  |
| 206    | 4,107.00         | 8,800.00       | 4,217.00 | 3,486.0 | 4,920.00     | 159.00          | 66.70            | 17,130.0         | 11,904.0 | 17,606.00            | 22,050.00                  |
| 207    | 8,552.00         | 18,800.00      | 8,044.00 | 7,638.0 | 9,760.00     | 238.00          | 114.00           | 34,287.0         | 25,188.0 | 36,491.00            | 44,047.00                  |

### TORSIONAL STIFFNESS (Kt) IN.-LB. x 106

RAD.

| Size   | Nominal<br>Bore<br>of Hub<br>& Rigid | KA/Inch<br>Shaft | KN/Inch<br>Tube | KS<br>C Coupling<br>Nom. Bore | KS<br>F Coupling<br>Nom. Bore | KS<br>FS Coupling<br>Nom. Bore | KE<br>FE Coupling<br>Less Tube w/<br>Nom. Bore |
|--------|--------------------------------------|------------------|-----------------|-------------------------------|-------------------------------|--------------------------------|------------------------------------------------|
| 200    | .75                                  | .68              | 4.87            | .34                           | .35                           | .41                            | .35                                            |
| 201    | 1.00                                 | 2.75             | 12.90           | .86                           | .86                           | 1.02                           | .86                                            |
| 2011/4 | 1.25                                 | 7.78             | 28.34           | 1.60                          | 1.58                          | 1.92                           | 1.58                                           |
| 201½   | 1.50                                 | 15.99            | 100.38          | 3.63                          | 3.43                          | 3.88                           | 3.31                                           |
| 202    | 2.00                                 | 44.10            | 256.36          | 8.68                          | 7.84                          | 9.08                           | 7.49                                           |
| 202½   | 2.50                                 | 91.00            | 418.56          | 16.87                         | 14.61                         | 17.02                          | 13.94                                          |
| 203    | 3.00                                 | 169.00           | 760.52          | 28.66                         | 25.16                         | 29.53                          | 23.88                                          |
| 203½   | 3.50                                 | 289.00           | 963.36          | 44.32                         | 40.09                         | 46.93                          | 38.42                                          |
| 204    | 4.00                                 | 705.00           | 1,469.00        | 69.09                         | 61.25                         | 71.87                          | 58.06                                          |
| 204½   | 4.50                                 | 705.00           | 2,356.00        | 99.76                         | 85.79                         | 101.12                         | 80.57                                          |
| 205    | 5.00                                 | 1,460.00         | 4,144.00        | 126.94                        | 111.40                        | 132.36                         | 105.72                                         |
| 205½   | 5.50                                 | 1,460.00         | 5,110.00        | 169.56                        | 152.78                        | 181.63                         | 144.67                                         |
| 206    | 6.00                                 | 2,710.00         | 6,455.00        | 222.07                        | 189.96                        | 220.81                         | 176.71                                         |
| 207    | 7.00                                 | 4,620.00         | 9,660.00        | 335.94                        | 287.14                        | 340.09                         | 268.09                                         |

- I. To find Wt. and WR<sup>2</sup> of a coupling not shown on chart, add Wt. and WR<sup>2</sup> of components and subtract Wt. and WR<sup>2</sup> of required bores. See page 39.
- **II.** To find Torsional Stiffness (Kt) of FS Tandem Coupling:

$$KT = \frac{1}{\frac{2}{Ks} + \frac{N}{Ka}}$$

$$\begin{split} N &= \text{Length of shaft between Mtd. hubs or rigids.} \\ &\text{For rigid Mtd.} - N = \text{Shaft-to-shaft - } 2\text{xD - } 2\text{xC'} \\ &\text{For flex Mtd.} - N = \text{Shaft-to-shaft - } 2\text{xD - } 2\text{xC} \\ &\text{Find D, C, C' on page 10.} \end{split}$$

To find Torsional Stiffness (Kt) of FE Tandem Coupling:

$$\frac{1}{K_E} + \frac{N}{K_N}$$

N = Length of spacer tube between flanges. N = Shaft-to-shaft - D-2Q (Find Q on page 41.)

## **Torsional Stiffness and Engineering Calculations**

### SERIES F AND C — WEIGHTS

|      | Large ( | Large Coupling with Solid |       |  |  |  |  |  |  |  |
|------|---------|---------------------------|-------|--|--|--|--|--|--|--|
| Size | F       | F - Opt.                  | C     |  |  |  |  |  |  |  |
| 208  | 1,440   | 1,496                     | 1,237 |  |  |  |  |  |  |  |
| 209  | 1,989   | 2,051                     | 1,707 |  |  |  |  |  |  |  |
| 210  | 2,543   | 2,543                     | 2,141 |  |  |  |  |  |  |  |
| 211  | 3,370   | 3,441                     | _     |  |  |  |  |  |  |  |
| 212  | 4,240   | 4,320                     | _     |  |  |  |  |  |  |  |
| 213  | 5,350   | 5,440                     | _     |  |  |  |  |  |  |  |
| 214  | 6,550   | 6,640                     | _     |  |  |  |  |  |  |  |
| 215  | 7,880   | 8,020                     | _     |  |  |  |  |  |  |  |
| 216  | 9,490   | 9,960                     | _     |  |  |  |  |  |  |  |
| 218  | 12,900  | 13,600                    | _     |  |  |  |  |  |  |  |
| 220  | 17,100  | 18,100                    | _     |  |  |  |  |  |  |  |
| 222  | 22,700  | 24,100                    | _     |  |  |  |  |  |  |  |
| 224  | 29,100  | 30,800                    | _     |  |  |  |  |  |  |  |
| 226  | 36,900  | 39,500                    | _     |  |  |  |  |  |  |  |
| 228  | 45,000  | 45,300                    | _     |  |  |  |  |  |  |  |
| 230  | 54,500  | 55,100                    | _     |  |  |  |  |  |  |  |

### SERIES F AND C - WR2 - LB./IN.2 x 103

| OLITICO I A | 100 1111 | LD./ III. A         |        |
|-------------|----------|---------------------|--------|
|             | Large (  | Coupling with Solid | d Hubs |
| Size        | F        | F - Opt.            | C      |
| 208         | 65.8     | 71.1                | 45.7   |
| 209         | 114.0    | 121.3               | 107.3  |
| 210         | 166.7    | 178.6               | 124.2  |
| 211         | 267.4    | 279.8               | _      |
| 212         | 390.2    | 405.6               | _      |
| 213         | 581.3    | 600.3               | _      |
| 214         | 806.9    | 829.9               | _      |
| 215         | 1,095.0  | 1,136.0             | _      |
| 216         | 1,550.0  | 1,696.0             | _      |
| 218         | 2,513.0  | 2,784.0             | _      |
| 220         | 4,263.0  | 4,459.0             | _      |
| 222         | 6,394.0  | 7,273.0             | _      |
| 224         | 9,649.0  | 10,824.0            | _      |
| 226         | 14,543.0 | 16,647.0            | _      |
| 228         | 20,126.0 | 20,389.0            | _      |
| 230         | 27,460.0 | 28,271.0            | _      |

# SERIES FS — WEIGHT AND WR<sup>2</sup> -LB./IN.<sup>2</sup>

|      | Larger Coupling<br>With Solid Hub and Rigid |           |                                                          |           |  |  |  |  |  |  |  |  |
|------|---------------------------------------------|-----------|----------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|
|      | Weigh                                       | t (Lbs.)  | WR <sup>2</sup> - Lb./In. <sup>2</sup> x IO <sup>3</sup> |           |  |  |  |  |  |  |  |  |
| Size | FS                                          | FS - Opt. | FS                                                       | FS - Opt. |  |  |  |  |  |  |  |  |
| 208  | 1,482                                       | 1,526     | 68.2                                                     | 72.5      |  |  |  |  |  |  |  |  |
| 209  | 2,044                                       | 2,093     | 117.6                                                    | 123.4     |  |  |  |  |  |  |  |  |
| 210  | 2,659                                       | 2,725     | 177.9                                                    | 187.3     |  |  |  |  |  |  |  |  |
| 211  | 3,630                                       | 3,670     | 298.0                                                    | 304.2     |  |  |  |  |  |  |  |  |
| 212  | 4,550                                       | 4,590     | 444.5                                                    | 452.2     |  |  |  |  |  |  |  |  |
| 213  | 5,730                                       | 5,780     | 641.7                                                    | 651.3     |  |  |  |  |  |  |  |  |
| 214  | 6,980                                       | 7,020     | 877.0                                                    | 898.5     |  |  |  |  |  |  |  |  |
| 215  | 8,380                                       | 8,450     | 1,202.0                                                  | 1,222.0   |  |  |  |  |  |  |  |  |
| 216  | 10,380                                      | 10,530    | 1,771.0                                                  | 1,814.0   |  |  |  |  |  |  |  |  |
| 218  | 14,100                                      | 14,200    | 2,882.0                                                  | 3,522.0   |  |  |  |  |  |  |  |  |
| 220  | 18,600                                      | 18,700    | 4,559.0                                                  | 4,649.0   |  |  |  |  |  |  |  |  |
| 222  | 24,700                                      | 24,900    | 7,328.0                                                  | 7,430.0   |  |  |  |  |  |  |  |  |
| 224  | 31,400                                      | 31,600    | 11,006.0                                                 | 11,135.0  |  |  |  |  |  |  |  |  |
| 226  | 41,400                                      | 41,600    | 16,902.0                                                 | 17,093.0  |  |  |  |  |  |  |  |  |
| 228  | 48,600                                      | 48,800    | 23,093.0                                                 | 23,356.0  |  |  |  |  |  |  |  |  |
| 230  | 57,500                                      | 58,100    | 29,914.0                                                 | 30,725.0  |  |  |  |  |  |  |  |  |

### **ENGINEERING CALCULATIONS**

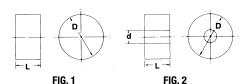
### I. Solid Disc (Fig. 1)

A. Weights-Lbs.  $W = .223 L D^2$ 

B. WR<sup>2</sup> - Lb.-In.<sup>2</sup>

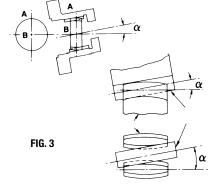
 $WR^2 = \frac{W}{8}D^2$ 

C. Torsional Stiffness - In.-Lb./Radian  $K = 1.13 \times 10^6 (D^4)$ 


### II. Disc With Hole (Fig. 2)

A. Weights-Lbs.

 $W = .223 L (D^2 - d^2)$ 


B. WR<sup>2</sup> - Lb.-In.<sup>2</sup> WR<sup>2</sup> =  $\frac{W}{\Omega}$  (D<sup>2</sup> + d<sup>2</sup>)

C. Torsional Stiffness - In.-Lb./Radian  $K = 1.13 \times 10^6 (D^4 - d^4)$ 



### III. Misalignment

Angular Misalignment
 A gear coupling accommodates for various types of misalignment by angular displacement of its gear teeth (Fig. 3).



A single gear mesh can only accommodate angular misalignment (Fig. 4).

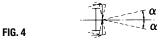
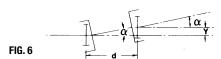




Fig. 5 shows a double engagement coupling made up of two meshes having  $\pm \alpha^{\circ}$  capacity each. Together, they will provide a total angular capacity of  $\pm 2\alpha^{\circ}$ .



Parallel offset misalignment
 A double engagment coupling with
 parallel shaft axis having ±α° angle
 capacity (Fig 6). If the distance between
 meshes is "d" then the maximum parallel
 offset "Y" is equal to:

| $Y = d \tan \alpha^{\circ}$ | $\alpha^{\circ}$ = rated misalignment |
|-----------------------------|---------------------------------------|
| $lpha^{\circ}$              | TAN α°                                |
| 1/4                         | .0044                                 |
| 1/2                         | .0087                                 |
| 3/4                         | .0131                                 |
| 1                           | .0174                                 |
| 11/2                        | .0262                                 |
|                             |                                       |



 The third type of misalignment is when we have a combination of angular and parallel offset.

To find the amount of angular capacity allowed, when we know the amount of offset:

$$^{\alpha}$$
allow =  $^{\alpha}$ rated- Tan-1 ( $^{\frac{Y}{d}}$ )

To find the amount of parallel allowed, if angular misalignment  $(\alpha_i)$  is known:

 $Y = d Tan (\alpha rated - \alpha_1)$ 

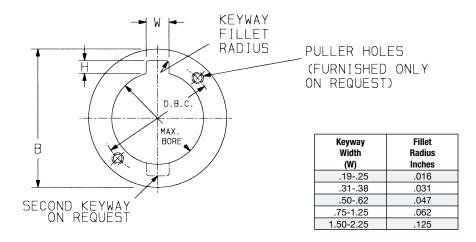
# IV. Axial Thrust Transmitted To Thrust Bearings

 $F = (T \times \mu)/R$ 

 $\mu$  = .03 to .3 (depending on lubrication). Generally, use .15.

R= Pitch Radius
The last two digits of a coupling
size is approximately equal to the
pitch radius.

Ex. 203½ R = 3½ 211 R = 11


T= Operating Torque - In.-Lbs.

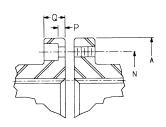
# **Series F, FS, C, CS** | **Flexible Couplings**

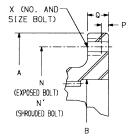
# **Maximum Bore, Keyway and Puller Hole Data**

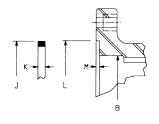
| F,C            | Max. Bore            | Puller | Holes   |
|----------------|----------------------|--------|---------|
| and CS<br>Size | With Puller<br>Holes | DBC    | Size    |
| 200            | _                    | _      | _       |
| 201            | 1.00                 | 1.375  | 1/4-28  |
| 2011/4         | 1.44                 | 1.812  | 1/4-28  |
| 201½           | 2.00                 | 2.625  | 5/16-18 |
| 202            | 2.75                 | 3.375  | 5/16-18 |
| 202½           | 3.25                 | 4.187  | 3/8-16  |
| 203            | 4.00                 | 4.875  | 1/2-13  |
| 203½           | 4.38                 | 5.437  | 5⁄8 -11 |
| 204            | 5.50                 | 6.625  | 5/8-11  |
| 204½           | 6.50                 | 7.875  | 5/8-11  |
| 205            | 6.62                 | 8.250  | 3/4-10  |
| 205½           | 7.00                 | 8.750  | 1-8     |
| 206            | 8.25                 | 10.000 | 1-8     |
| 207            | 9.00                 | 11.375 | 11/4-7  |
| 208            | 11.25                | 13.500 | 11/4-7  |
| 209            | 12.25                | 15.250 | 1%-6    |
| 210            | 13.75                | 16.500 | 1½-6    |
| 211            | 15.00                | 18.000 | 1½-6    |
| 212            | 17.00                | 20.000 | 1½-6    |
| 213            | 19.00                | 22.000 | 1½-6    |
| 214            | 20.00                | 23.500 | 13/4-5  |
| 215            | 22.00                | 25.500 | 13/4-5  |
| 216            | 23.50                | 27.000 | 13/4-5  |
| 218            | 26.50                | 30.500 | 2-41/2  |
| 220            | 30.00                | 34.500 | 2-41/2  |
| 222            | 33.00                | 38.500 | 2-41/2  |
| 224            | 36.00                | 42.500 | 2-41/2  |
| 226            | 39.00                | 46.000 | 2-41/2  |
| 228            | 42.00                | 50.000 | 2-41/2  |
| 230            | 46.00                | 54.000 | 2-4½    |

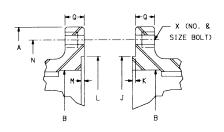
**NOTE:** These tables are exclusive. If both puller holes and keyways are required, then the maximum bore will be the smaller bore size listed in any table.




| F and C | Stock<br>Rough |        | Reduced Key |     |       |      | Hub<br>Dia. |       |
|---------|----------------|--------|-------------|-----|-------|------|-------------|-------|
| Size    | Bore*          | Bore   | W           | Н   | Bore  | W    | Н           | B B   |
| 200     | _              | .875   | .19         | .06 | .812  | .19  | .09         | 1.25  |
| 201     | _              | 1.312  | .25         | .09 | 1.250 | .25  | .12         | 1.75  |
| 2011/4  | _              | 1.750  | .38         | .12 | 1.625 | .38  | .19         | 2.25  |
| 201½    | _              | 2.375  | .50         | .19 | 2.250 | .50  | .25         | 3.12  |
| 202     | _              | 2.875  | .62         | .22 | 2.750 | .62  | .31         | 4.00  |
| 2021/2  | _              | 3.750  | .88         | .31 | 3.500 | .88  | .44         | 4.88  |
| 203     | _              | 4.250  | 1.00        | .38 | 4.000 | 1.00 | .50         | 5.75  |
| 203½    | 1.500          | 4.750  | 1.00        | .38 | 4.500 | 1.00 | .50         | 6.50  |
| 204     | 1.500          | 5.875  | 1.25        | .44 | 5.500 | 1.25 | .62         | 7.75  |
| 204½    | 2.375          | 6.750  | 1.50        | .50 | 6.250 | 1.50 | .75         | 9.00  |
| 205     | 3.375          | 6.750  | 1.75        | .75 | 6.625 | 1.75 | .88         | 9.50  |
| 205½    | 3.375          | 7.625  | 1.75        | .75 | 7.500 | 1.75 | .88         | 10.50 |
| 206     | 4.500          | 8.625  | 2.00        | .75 | 8.250 | 2.00 | 1.00        | 11.75 |
| 207     | 5.000          | 10.250 | 2.50        | .88 | 9.625 | 2.50 | 1.25        | 13.50 |


<sup>\*</sup>Minimum bore is .060 inches greater than rough bore size.


|        |             |      | Rigio | l Half — Serie | es FS |      |                    | Rigid Half — Series CS |             |     |       |                    |      |       |
|--------|-------------|------|-------|----------------|-------|------|--------------------|------------------------|-------------|-----|-------|--------------------|------|-------|
| FS     | Reduced Key |      |       | Square Key     |       |      | Rigid Half<br>Dia. |                        | Reduced Key |     |       | Rigid Half<br>Dia. |      |       |
| Size   | Bore        | W    | Н     | Bore           | W     | Н    | В                  | Bore                   | W           | Н   | Bore  | W                  | Н    | В     |
| 200    | 1.375       | .31  | .12   | 1.312          | .31   | .16  | 1.94               | 1.000                  | .19         | .06 | .875  | .19                | .09  | 1.25  |
| 201    | 1.875       | .38  | .12   | 1.750          | .38   | .19  | 2.56               | 1.375                  | .31         | .12 | 1.312 | .31                | .16  | 1.75  |
| 2011/4 | 2.125       | .50  | .19   | 2.000          | .50   | .25  | 3.00               | 1.750                  | .38         | .12 | 1.625 | .38                | .19  | 2.25  |
| 201½   | 2.875       | .62  | .22   | 2.688          | .62   | .31  | 3.92               | 2.375                  | .62         | .22 | 2.250 | .50                | .25  | 3.50  |
| 202    | 3.500       | .88  | .31   | 3.250          | .88   | .44  | 4.86               | 3.000                  | .75         | .25 | 2.750 | .62                | .31  | 4.25  |
| 202½   | 4.250       | 1.00 | .38   | 4.000          | 1.00  | .50  | 5.86               | 3.750                  | .88         | .31 | 3.500 | .88                | .44  | 5.25  |
| 203    | 5.000       | 1.25 | .44   | 4.625          | 1.25  | .62  | 6.86               | 4.250                  | 1.00        | .38 | 4.000 | 1.00               | .50  | 6.12  |
| 203½   | 5.750       | 1.25 | .44   | 5.375          | 1.25  | .62  | 7.88               | 4.875                  | 1.25        | .44 | 4.500 | 1.00               | .50  | 6.81  |
| 204    | 6.750       | 1.50 | .50   | 6.250          | 1.50  | .75  | 9.22               | 5.875                  | 1.25        | .44 | 5.500 | 1.25               | .62  | 8.00  |
| 204½   | 7.375       | 1.75 | .62   | 6.875          | 1.75  | .88  | 10.18              | 6.750                  | 1.50        | .50 | 6.250 | 1.50               | .75  | 9.25  |
| 205    | 8.375       | 1.75 | .62   | 7.87           | 1.75  | .88  | 11.44              | 7.000                  | 1.75        | .62 | 6.625 | 1.75               | .88  | 10.00 |
| 205½   | 9.250       | 2.00 | .75   | 8.750          | 2.00  | 1.00 | 12.69              | 8.000                  | 2.00        | .75 | 7.500 | 1.75               | .88  | 11.00 |
| 206    | 9.875       | 2.00 | .75   | 9.375          | 2.00  | 1.00 | 13.75              | 8.625                  | 2.00        | .75 | 8.250 | 2.00               | 1.00 | 12.00 |
| 207    | 11.500      | 2.50 | .88   | 10.750         | 2.50  | 1.25 | 15.75              | 10.250                 | 2.50        | .88 | 9.625 | 2.50               | 1.25 | 13.75 |


Contact Ameridrives Couplings regarding bores for hubs or rigid halves where counterbores, reduced lengths, overbores or special keyways are involved.

# Dimensional Data, Flange Details









SIZES 200-2011/4

**Note:** Fasteners are self-locking socket head capscrews.

SIZES 2011/2-207

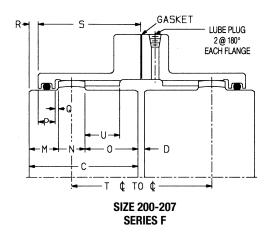
SIZES 201½-207
Female sleeves furnished as shown above when pilot rings are supplied.

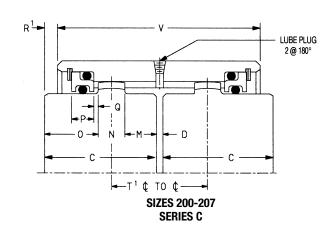
**SIZES 208 AND LARGER** 

| Size   | Α     | N D.B.C. | P   | Q   | Bolt No. | Bolt Size |
|--------|-------|----------|-----|-----|----------|-----------|
| 200    | 2.937 | 2.38     | .12 | .44 | 4        | 1/4-28    |
| 201    | 3.562 | 3.00     | .12 | .44 | 4        | 1/4-28    |
| 2011/4 | 4.000 | 3.44     | .12 | .44 | 4        | 1/4-28    |

|      |       |       | COMMON        | DIMENSION | IS            |     |      | E      | POSED BOL | T      |        | SHROUDED BOLT |     |        |  |
|------|-------|-------|---------------|-----------|---------------|-----|------|--------|-----------|--------|--------|---------------|-----|--------|--|
|      |       |       |               |           |               |     |      | N      | Х (       | Bolts) | N'     |               | Х ( | Bolts) |  |
| Size | Α     | В     | J             | K         | L             | M   | Q    | D.B.C. | No.       | Size   | D.B.C. | P             | No. | Size   |  |
| 201½ | 6.00  | 3.69  | 3.844/3.842   | .16       | 3.844/3.846   | .09 | .75  | 4.81   | 8         | 3/8    | 4.81   | .22           | 8   | 3/8    |  |
| 202  | 7.00  | 4.56  | 4.750/4.748   | .16       | 4.750/4.752   | .09 | .75  | 5.88   | 6         | 1/2    | 5.81   | .22           | 10  | 3/8    |  |
| 202½ | 8.38  | 5.56  | 5.750/5.748   | .16       | 5.750/5.752   | .09 | .88  | 7.12   | 6         | 5/8    | 7.00   | .28           | 10  | 1/2    |  |
| 203  | 9.44  | 6.47  | 6.750/6.748   | .16       | 6.750/6.752   | .09 | .88  | 8.12   | 8         | 5/8    | 8.00   | .28           | 12  | 1/2    |  |
| 203½ | 11.00 | 7.26  | 7.516/7.514   | .16       | 7.516/7.518   | .09 | 1.06 | 9.50   | 8         | 3/4    | 9.28   | .33           | 12  | 5/8    |  |
| 204  | 12.50 | 8.56  | 9.000/8.998   | .31       | 9.000/9.002   | .19 | 1.06 | 11.00  | 8         | 3/4    | 10.62  | .33           | 14  | 5/8    |  |
| 204½ | 13.62 | 9.81  | 10.125/10.123 | .31       | 10.125/10.127 | .19 | 1.06 | 12.00  | 10        | 3/4    | 11.75  | .33           | 14  | 5/8    |  |
| 205  | 15.31 | 10.73 | 11.125/11.123 | .31       | 11.125/11.127 | .19 | 1.50 | 13.50  | 8         | 7/8    | 13.19  | .52           | 14  | 3/4    |  |
| 205½ | 16.56 | 11.73 | 12.500/12.498 | .31       | 12.500/12.502 | .19 | 1.50 | 14.50  | 14        | 7/8    | 14.44  | .52           | 16  | 3/4    |  |
| 206  | 18.00 | 12.73 | 13.500/13.498 | .44       | 13.500/13.502 | .25 | 1.00 | 15.75  | 14        | 7/8    | -      | -             | -   | _      |  |
| 207  | 20.75 | 15.06 | 15.500/15.498 | .56       | 15.500/15.502 | .31 | 1.12 | 18.25  | 16        | 1      | -      | -             | -   | -      |  |
| 208  | 23.25 | 17.06 | 17.809/17.806 | .25       | 17.812/17.815 | .31 | 1.31 | 20.75  | 16        | 11/8   | -      | -             | -   | -      |  |
| 209  | 26.00 | 19.06 | 19.809/19.806 | .25       | 19.812/19.815 | .31 | 1.50 | 23.25  | 18        | 11/4   | -      | -             | -   | -      |  |
| 210  | 28.00 | 20.56 | 21.557/21.554 | .31       | 21.562/21.565 | .38 | 1.50 | 25.25  | 18        | 1%     | -      | -             | -   | -      |  |
| 211  | 30.50 | 23.00 | 23.997/23.994 | .31       | 24.000/24.003 | .38 | 1.62 | 27.50  | 18        | 1½     | -      | -             | -   | -      |  |
| 212  | 33.00 | 25.00 | 25.997/25.994 | .31       | 26.000/26.003 | .38 | 1.62 | 30.00  | 18        | 1½     | -      | -             | -   | -      |  |
| 213  | 35.75 | 27.00 | 27.997/27.994 | .31       | 28.000/28.003 | .38 | 1.75 | 32.25  | 18        | 15%    | -      | -             | -   | -      |  |
| 214  | 38.00 | 29.00 | 29.997/29.994 | .31       | 30.000/30.003 | .38 | 1.88 | 34.50  | 18        | 13/4   | -      | -             | -   | -      |  |
| 215  | 40.50 | 31.00 | 31.997/31.994 | .31       | 32.000/32.003 | .38 | 1.88 | 36.75  | 20        | 13/4   | -      | -             | -   | -      |  |
| 216  | 44.50 | 33.25 | 34.246/34.242 | .38       | 34.250/34.254 | .50 | 2.25 | 40.50  | 20        | 2      | -      | -             | -   | -      |  |
| 218  | 48.50 | 37.25 | 38.246/38.242 | .38       | 38.250/38.254 | .50 | 2.25 | 44.50  | 22        | 2      | -      | -             | 1   | _      |  |
| 220  | 52.50 | 41.25 | 42.246/42.242 | .38       | 42.250/42.254 | .50 | 2.25 | 48.50  | 24        | 2      | -      | -             | -   | -      |  |
| 222  | 58.00 | 45.25 | 46.496/46.492 | .50       | 46.500/46.504 | .62 | 2.50 | 53.50  | 24        | 21/4   | -      | _             | -   | -      |  |
| 224  | 62.88 | 49.25 | 50.496/50.492 | .50       | 50.500/50.504 | .62 | 2.75 | 58.12  | 24        | 2½     | -      | -             | -   | -      |  |
| 226  | 69.00 | 53.62 | 54.496/54.492 | .50       | 54.500/54.504 | .62 | 3.00 | 63.75  | 24        | 23/4   | -      | -             | -   | 1      |  |
| 228  | 73.00 | 57.62 | 58.496/58.492 | .50       | 58.500/58.504 | .62 | 3.00 | 67.75  | 24        | 23/4   | -      | _             | _   | -      |  |
| 230  | 77.00 | 61.62 | 62.496/62.492 | .50       | 62.500/62.504 | .62 | 3.00 | 71.75  | 24        | 23/4   | -      | -             | -   | -      |  |

Sizes  $201\frac{1}{2}$ - $205\frac{1}{2}$  have shrouded bolts (SB) with self-locking nuts as standard; exposed bolts (EB) upon request.

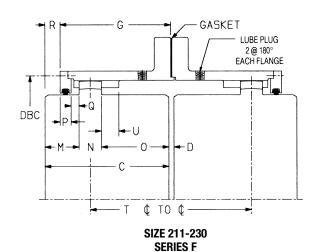

Sizes 206-207 have exposed bolts (EB) with self-locking nuts as standard.

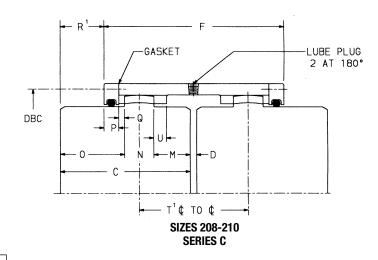

Sizes 208-230 have exposed bolts (EB) with nuts and lockwashers.

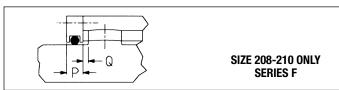
Non-Standard bolt circles can be made.

# **Series F and C | Flexible Couplings**

# **Additional Dimensions**





|        |      |     |      |      |      |     |     | SERIES F |      |       |      |                                      |      |      | SERIES C |                                      |
|--------|------|-----|------|------|------|-----|-----|----------|------|-------|------|--------------------------------------|------|------|----------|--------------------------------------|
| Size   | C    | D   | М    | N    | 0    | P   | Q   | R        | s    | т     | U    | Lube Plug<br>Size and<br>Thread NPTF | R¹   | T¹   | v        | Lube Plug<br>Size and<br>Thread NPTF |
| F200   | 1.06 | .12 | .53  | .31  | .22  | .31 | .03 | .19      | .92  | .88   | .44  | 1/16-27                              | _    | _    | _        | -                                    |
| C200   | 1.06 | .12 | .22  | .31  | .53  | .31 | .03 | _        | _    | _     | _    | _                                    | _    | .88  | 2.25     | _                                    |
| 201    | 1.38 | .12 | .45  | .38  | .55  | .31 | .05 | .09      | 1.36 | 1.59  | .24  | 1/16-27                              | _    | 1.41 | 2.88     | _                                    |
| 2011/4 | 1.69 | .12 | .47  | .38  | .84  | .31 | .06 | .09      | 1.64 | 2.19  | .50  | 1/16-27                              | .28  | 1.44 | 2.94     | 1/16-27                              |
| 2011/2 | 1.94 | .12 | .62  | .53  | .78  | .31 | .08 | .23      | 1.77 | 2.22  | .28  | 1/8-27                               | .22  | 1.89 | 3.56     | 1/8-27                               |
| 202    | 2.44 | .12 | .69  | .62  | 1.12 | .38 | .08 | .23      | 2.27 | 3.00  | .62  | 1/8 -27                              | .47  | 2.12 | 4.06     | 1/8-27                               |
| 2021/2 | 3.03 | .19 | .80  | .75  | 1.48 | .38 | .09 | .31      | 2.81 | 3.91  | .89  | 1/4-18                               | .81  | 2.54 | 4.62     | 1/8-27                               |
| 203    | 3.59 | .19 | .97  | .88  | 1.75 | .56 | .11 | .30      | 3.39 | 4.56  | 1.16 | 1/4-18                               | .89  | 3.01 | 5.59     | 1/8- 27                              |
| 2031/2 | 4.19 | .25 | 1.09 | 1.00 | 2.09 | .56 | .12 | .41      | 3.91 | 5.44  | 1.41 | 1/4-18                               | 1.10 | 3.43 | 6.43     | 1/8-27                               |
| 204    | 4.75 | .25 | 1.19 | 1.12 | 2.44 | .62 | .14 | .41      | 4.46 | 6.25  | 1.75 | 1/4-18                               | 1.35 | 3.75 | 7.06     | 1/8-27                               |
| 2041/2 | 5.31 | .31 | 1.27 | 1.25 | 2.80 | .62 | .16 | .48      | 4.98 | 7.16  | 1.80 | 1/4-18                               | 1.68 | 4.10 | 7.58     | 1/4-18                               |
| 205    | 6.03 | .31 | 1.33 | 1.38 | 3.33 | .62 | .19 | .52      | 5.67 | 8.34  | 2.23 | 1/4-18                               | 2.18 | 4.35 | 8.01     | 1/4-18                               |
| 2051/2 | 6.62 | .31 | 1.34 | 1.50 | 3.78 | .62 | .19 | .53      | 6.25 | 9.38  | 2.72 | 1/4-18                               | 2.64 | 4.49 | 8.28     | 1/4-18                               |
| 206    | 7.41 | .31 | 1.50 | 1.62 | 4.28 | .62 | .22 | .67      | 6.89 | 10.50 | 2.94 | 1/4-18                               | 3.11 | 4.93 | 8.91     | 1/4-18                               |
| 207    | 8.69 | .38 | 2.00 | 1.75 | 4.94 | .62 | .31 | 1.06     | 7.81 | 12.00 | 3.09 | 1/4-18                               | 3.66 | 6.13 | 10.44    | 1/4-18                               |

# **Series F and C | Flexible Couplings**

# **Additional Dimensions**







|      |       |      |       |      |      |      |      |      | SE     | AL RETAIN | ER     |       | SERIES F |       |       | SERIES C |      |
|------|-------|------|-------|------|------|------|------|------|--------|-----------|--------|-------|----------|-------|-------|----------|------|
|      |       |      |       |      |      |      |      |      |        | В         | olt    |       |          |       |       |          |      |
| Size | С     | D    | М     | N    | 0    | P    | Q    | U    | D.B.C. | No.       | Size   | G     | R        | T     | F     | R¹       | Τ¹   |
| 208  | 9.75  | .38  | 2.78  | 1.75 | 5.22 | .88  | .34  | 2.81 | 17.72  | 20        | 3/8-16 | 8.38  | 1.56     | 12.56 | 11.88 | 4.00     | 7.69 |
| 209  | 10.75 | .50  | 3.09  | 2.00 | 5.66 | .88  | .41  | 3.06 | 19.81  | 24        | 3/8-16 | 9.19  | 1.81     | 13.81 | 13.25 | 4.38     | 8.68 |
| 210  | 12.00 | .50  | 3.53  | 2.12 | 6.34 | .88  | .41  | 3.25 | 21.50  | 16        | 1/2-13 | 10.00 | 2.25     | 15.31 | 14.38 | 5.06     | 9.68 |
| 211  | 13.00 | .50  | 3.81  | 2.38 | 6.81 | 1.00 | .44  | .75  | 23.75  | 16        | 1/2-13 | 10.88 | 2.38     | 16.50 | _     | _        | _    |
| 212  | 14.00 | .50  | 4.19  | 2.62 | 7.19 | 1.00 | .50  | .94  | 25.75  | 18        | 1/2-13 | 11.56 | 2.69     | 17.50 | _     | _        | _    |
| 213  | 15.00 | .75  | 4.44  | 2.88 | 7.69 | 1.00 | .50  | 1.19 | 27.75  | 18        | 1/2-13 | 12.44 | 2.94     | 19.00 | _     | _        | _    |
| 214  | 16.00 | .75  | 4.81  | 3.12 | 8.06 | 1.00 | .50  | 1.19 | 29.75  | 18        | 1/2-13 | 13.06 | 3.31     | 20.00 | _     | _        | _    |
| 215  | 17.00 | .75  | 5.25  | 3.25 | 8.50 | 1.00 | .57  | 1.25 | 31.75  | 20        | 1/2-13 | 13.69 | 3.69     | 21.00 | _     | _        | _    |
| 216  | 18.00 | 1.00 | 9.06  | 3.38 | 5.56 | 1.31 | .59  | 1.38 | 34.25  | 20        | 3/4-10 | 11.31 | 7.19     | 15.50 | _     | _        | _    |
| 218  | 20.00 | 1.00 | 11.00 | 3.50 | 5.50 | 1.31 | .66  | 1.50 | 38.25  | 24        | 3/4-10 | 11.44 | 9.06     | 15.50 | _     | _        |      |
| 220  | 22.00 | 1.00 | 12.94 | 3.62 | 5.44 | 1.31 | .72  | 1.50 | 42.25  | 24        | 3/4-10 | 11.56 | 10.94    | 15.50 | _     | _        | _    |
| 222  | 24.00 | 1.00 | 14.88 | 3.75 | 5.38 | 1.38 | .75  | 1.56 | 46.50  | 30        | 3/4-10 | 11.72 | 12.78    | 15.50 | _     | _        |      |
| 224  | 26.00 | 1.00 | 16.75 | 4.00 | 5.25 | 1.38 | .78  | 1.56 | 50.50  | 30        | 3/4-10 | 11.88 | 14.62    | 15.50 | _     | _        | _    |
| 226  | 28.00 | 1.00 | 18.50 | 4.50 | 5.00 | 1.38 | .84  | 1.75 | 55.50  | 36        | 3/4-10 | 12.19 | 16.31    | 15.50 | _     | _        | -    |
| 228  | 30.00 | 1.00 | 20.25 | 5.00 | 4.75 | 1.38 | 1.06 | 2.00 | 59.50  | 36        | 3/4-10 | 12.69 | 17.81    | 15.50 | _     | _        | _    |
| 230  | 32.00 | 1.00 | 22.25 | 5.00 | 4.75 | 1.38 | 1.06 | 2.00 | 63.50  | 36        | 3/4-10 | 12.69 | 19.81    | 15.50 | _     | _        | _    |

# **200 Series** | Flexible Couplings

# **Alignment and Installation Instructions**

**Purpose:** The purpose of aligning equipment is to avoid transmission of unwanted stresses to bearings, shafts, couplings, etc.

**How:** By providing minimum angularity and offset of shaft axis at normal operating conditions (Figs. 1 and 2).

**Why:** To increase life of bearings, couplings, shafts and seals. To get at the root of serious malfunctions involving shutdowns and costly repairs.

#### When:

- 1. During installation, before grouting.
- 2. Immediately after initial operation.
- 3. When final operating conditions and final temperature are attained.
- 4. Seasonally.
- Whenever first symptoms of trouble occur — vibration, undue noise, sudden overheating of bearings.

### **Practical Considerations:**

- 1. Verify shaft separation.
- 2. Locate rotor in running position (for example, on sleeve bearing motors).
- 3. Anticipate thermal changes.
- 4. Read instructions and review drawings.

### Tools:

- 1. Dial indicator with attaching device.
- 2. Feeler gauges.
- 3. Inside micrometer.
- 4. Outside micrometer.
- 5. Snap gauges.
- 6. Straightedge.

### **Angular Misalignment Measurement:**

- 1. Measure at 4 points the space between the shaft ends (Fig. 3).
- 2. Rotate both shafts  $180^{\circ}$  and repeat.
- 3. Perform calculations for angle.

### **Offset Misalignment Measurement:**

- Rotate shaft A (with dial indicator mounted) and note readings of shaft B offset (Fig. 4).
- 2. Or use straightedge and feeler gauge (Fig. 5).

**CAUTION:** Misalignment at installation should not exceed 1/3 of rated catalog misalignment.

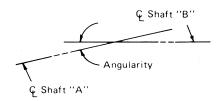
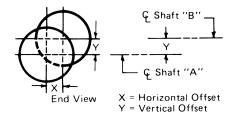




Figure 1 — Angularity is the acute angle formed at the intersection of the axes of the driving and the driven machine shafts. When shafts are exactly parallel, angular misalignment is zero; but vertical or horizontal displacement of axes may be present (See Fig. 2).



**Figure 2** — Concentric alignment (also called offset alignment or parallel offset) is the relationship between the shaft axes in terms of vertical and horizontal displacements of the axis of one shaft from the axis of the other shaft.

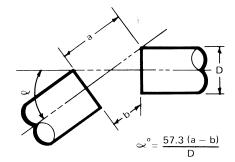
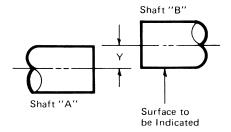
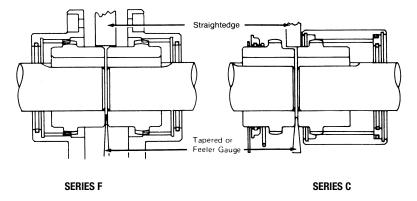
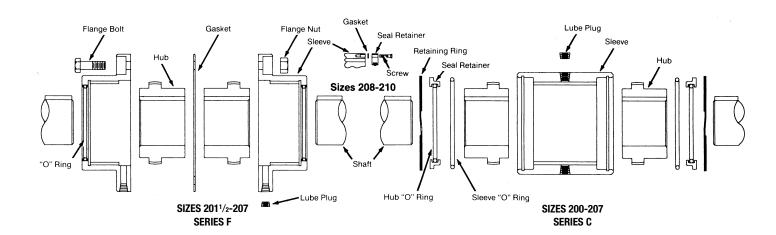





Figure 3 — To determine relative angular shaft-positions of driving and driven machines, measure at four points the space between the shaft ends. Choose the largest (a) and smallest dimension (b).




**Figure 4** — To measure offsets with a dial indicator, attach the indicator to shaft "A," rotate shaft, and indicate to the periphery of shaft "B." To obtain actual displacements of shafts, divide dial indicator readings by 2.



**Figure 5** — Lay straightedge on one hub and measure gap between straightedge and other hub with feeler gauge. Measure at top, bottom, and both sides. Feeler gauge readings indicate actual displacements of shafts.

**CAUTION:** Rotating equipment is potentially dangerous and could cause injury or damage if not properly protected. Follow applicable codes and regulations.

## **Installation and Lubrication Instructions**



### Installation

Disassemble coupling and clean all parts. Follow the appropriate 6 steps below and you are ready to go! Installed and lubricated in accordance with the instructions, your Amerigear 200 Series coupling is prepared for a life of dependable, trouble-free service.

#### **Series F Installation**

**Step 1.** Lightly coat grease on "O" rings and insert "O" rings into grooves of sleeve (into grooves of seal retainer for sizes 208 and larger). Place sleeves for sizes 200-207 over shaft ends. For sizes 208 and larger, place only the seal retainers with "O" rings inserted, on shaft. Care should be taken not to damage seal on shaft key seat.

Step 2. Check key fits and coat keys and keyways with oil resistant sealing compound (Permatex No. 2) to prevent leakage. Install size 201 to 207 hubs on shafts with long ends flush with shaft ends. Install size 200 hub on shaft with short end flush with shaft end. For shrink fits, apply heat to hubs uniformly, preferably submerged in oil not exceeding 350° F. Do not allow "O" ring seals to contact heated hubs.

**CAUTION:** Care must be taken to avoid personal injury in the heating and handling of coupling hubs that are shrink fit shaft mounted.

For sizes 208 and larger, place retainer gaskets and sleeves over hubs and onto shafts.

**Step 3.** Align shafts allowing clearance as per tabulation or in accordance with Dimension "D" from Engineering Data. Check gap with taper or feeler gauge at 90° points and align hubs with straightedge at 90° points.

**Step 4.** After thoroughly coating hub and sleeve teeth with lubricant, slip sleeves onto

hubs, carefully engaging teeth (do not damage seal surface). Place sleeve gasket between sleeves and align bolt holes.

**Step 5.** Secure sleeves, using care to tighten fasteners uniformly. See tabulation "Flange Bolt Tightening Torque." For sizes 208 and larger, bolt seal retainers to sleeves.

**Step 6.** Remove both Dryseal lube plugs and add grease in the amount given in the Lubricant Quantity Table. Install lube plugs using Permatex No. 2 for sealing and seat securely.

## **Series C Installation**

**Step 1.** For sizes 200-207 place retainer ring, seal retainer with "O" ring seated in retainer groove, and sleeve "O" ring on each shaft. For sizes 208 and larger, place seal retainer with "O" ring inserted, and gasket over shaft. For CS Series, place retainer ring on shaft on which CS rigid hub will be mounted.

Step 2. Check key fits and coat keys and keyways with oil resistant compound to prevent leakage. Install hubs on shafts with short ends flush with shaft ends. For shrink fits, apply heat to hubs uniformly, preferably submerged in oil not exceeding 350°F. Do not allow "O" rings to contact heated hubs.

**CAUTION:** Care must be taken to avoid personal injury in the heating and handling of coupling hubs that are shrink fit shaft mounted.

**Step 3.** Slip sleeve over hub mounted on longest shaft.

**Step 4.** Align shafts allowing clearance as per tabulation or from Engineering Data, Dimension "D." Check gap with taper or feeler gauge at 90° intervals. Also align hubs with straightedge at 90° points.

Step 5. Pack hub and sleeve teeth with grease. Force grease into shaft gap. Lightly coat grease on "O" rings. Slide sleeve over hubs to center position. Remove Dryseal lube plugs and add grease in the amount given in the Lubricant Quantity Table.

Step 6. For sizes 200-207, install sleeve "O" rings in sleeve counterbores — then press seal retainer assembly in place. Use fingertips or blunt tool. Seat retaining rings in grooves using a winding motion. Recheck to assure retaining rings are positively seated. For sizes 208 and larger, bolt seal end plates to sleeves.

|        | SE   | HUB<br>Paratio | DN   | FLANGE BOLT TIGHTENING<br>TORQUE<br>FT. LBS.* |               |  |  |  |
|--------|------|----------------|------|-----------------------------------------------|---------------|--|--|--|
| SIZE   | F&C  | FS             | CS   | F<br>Exposed                                  | F<br>Shrouded |  |  |  |
| 200    | .125 | .078           | .125 | 10                                            | 10            |  |  |  |
| 201    | .125 | .078           | .125 | 10                                            | 10            |  |  |  |
| 2011/4 | .125 | .078           | .125 | 10                                            | 10            |  |  |  |
| 201½   | .125 | .156           | .125 | 29                                            | 32            |  |  |  |
| 202    | .125 | .156           | .125 | 63                                            | 32            |  |  |  |
| 202½   | .188 | .188           | .188 | 125                                           | 69            |  |  |  |
| 203    | .188 | .188           | .188 | 125                                           | 69            |  |  |  |
| 203½   | .250 | .219           | .250 | 210                                           | 133           |  |  |  |
| 204    | .250 | .312           | .250 | 210                                           | 133           |  |  |  |
| 204½   | .312 | .344           | .312 | 210                                           | 133           |  |  |  |
| 205    | .312 | .344           | .312 | 313                                           | 232           |  |  |  |
| 205½   | .312 | .344           | .312 | 313                                           | 232           |  |  |  |
| 206    | .312 | .406           | .312 | 313                                           | 340           |  |  |  |
| 207    | .375 | .500           | .375 | 440                                           | 476           |  |  |  |
| 208    | .375 | .500           | _    | 600                                           |               |  |  |  |
| 209    | .500 | .562           | _    | 800                                           |               |  |  |  |
| 210    | .500 | .625           | _    | 1,200                                         |               |  |  |  |

\*Tightening torque based on unlubricated threads; if threads are lubricated derate torque to 75% of above values.

## **Maintenance and Lubrication**

### **LUBRICANTS**

| MANUFACTURER                                                        | GENERAL                                                                                       | MOIST/WET           | HIGH TORQUE                                  | 150-300°F<br>(65-150°C)                      | CLASS III                                                |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| Fuchs Lubricants Co.                                                | bricants Co. "Superplex EP #1 or Renolit Benalene 350" "Superplex EP #1 Renolit Benalene 350" |                     | "Superplex EP #1 or<br>Renolit Benalene 350" | "Superplex EP #1 or<br>Renolit Benalene 350" | -                                                        |
| Chevron Lubricants                                                  | Chevron Lubricants "Coupling Grease or Multifak EP2"                                          |                     | "Coupling Grease or<br>Multifak EP2"         | Black Pearl EP2                              | Coupling Grease<br>or Meropa 460                         |
| Citgo Petroleum Corp.                                               | Premium Lithium EP2                                                                           | Premium Lithium EP2 | Premium Lithium EP2                          | -                                            | EP Compound 460                                          |
| Exxon / Mobil Corp.                                                 | Exxon / Mobil Corp. Mobilux EP 111 Mobilux EP                                                 |                     | Mobilux EP 111                               | "Mobiltemp 78 or<br>Unirex N2"               | Mobilgrease 28<br>or Mobilgrease XTC<br>or Teresstic 460 |
| Lubriplate Lubricants Co.                                           | Lubriplate 630AA                                                                              | Lubriplate 630AA    | Lubriplate 630AA                             | Lubriplate 1200-2                            | Lubriplate #8 (Gear Oil)<br>ISO 460                      |
| Nye Lubricants Inc.                                                 | AND-786                                                                                       | AND-786             | AND-786                                      | AND-786                                      | AND-786                                                  |
| "Maryn International /<br>Power Up Lubricants<br>(Calgary, Canada)" | Thixogrease EP #2                                                                             | Thixogrease EP #2   | Thixogrease EP #2                            | Thixogrease EP #2                            | Thixogrease EP #2                                        |
| Shell Lubricants                                                    | Shell Lubricants Shell Gadus S2 High Speed Coupling Grease                                    |                     | Shell Gadus S2 High<br>Speed Coupling Grease | Shell Gadus S2 High<br>Speed Coupling Grease | -                                                        |
| Syn-Tech Ltd.<br>(Addison, IL)                                      | NS-3913-G1                                                                                    | NS-3913-G1          | NS-3913-G1                                   | NS-3913-G1                                   | NS-3913-G1                                               |

For low temp. (-65°), Aeroshell #22 by Shell Oil Co., AND-793 by Nye Lubricants, Inc. For low speeds, lubricant manufacturer should be consulted.

### **LUBRICANT QUANTITIES**

|          |        | LUBRIC | ATION |       |
|----------|--------|--------|-------|-------|
|          | SERI   | ES F*  | SERI  | ES C  |
| Coupling | Wt.    | Vol.   | Wt.   | Vol.  |
| Size     | Lbs.   | Qts.   | Lbs.  | Qts.  |
| 200      | .020   | .010   | .015  | .008  |
| 201      | .045   | .025   | .036  | .020  |
| 2011/4   | .069   | .033   | .045  | .025  |
| 2011/2   | .140   | .070   | .080  | .040  |
| 202      | .200   | .110   | .080  | .040  |
| 202½     | .380   | .200   | .160  | .090  |
| 203      | .540   | .290   | .240  | .120  |
| 2031/2   | .820   | .430   | .240  | .120  |
| 204      | 1.080  | .580   | .440  | .240  |
| 2041/2   | 1.540  | .820   | .540  | .290  |
| 205      | 2.580  | 1.380  | 1.000 | .530  |
| 205½     | 3.120  | 1.660  | 1.120 | .590  |
| 206      | 3.480  | 1.860  | 1.020 | .540  |
| 207      | 7.040  | 3.760  | 2.700 | 1.440 |
| 208      | 9.160  | 4.840  | 5.580 | 2.970 |
| 209      | 11.700 | 6.240  | 7.620 | 4.060 |
| 210      | 14.140 | 7.540  | 9.500 | 5.050 |

**Maintenance** – The Amerigear Coupling requires a minimum of maintenance.

Nevertheless, to ensure a trouble-free life a few checks and proper lubrication should be performed at regular intervals.

Ameridrives suggests that the maximum interval between checks and relube be one year. This is only a guide, and the actual interval should be in accordance with good operating practices for application.

To disassemble Series F, remove flange fasteners, separate sleeves, slide sleeves over hubs, clean out old lubricant, and inspect seals and gear teeth. Reassemble, starting with Step 3 under Series F installation instructions on the previous page.

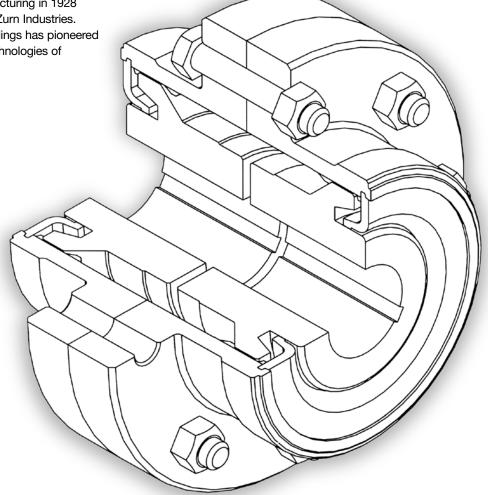
To disassemble Series C, remove one snap ring, slide sleeves off hubs, clean out old lubricant and inspect seals and gear teeth. Reassemble, starting at Step No. 4 under Series C installation instructions on the previous page.

If proper alignment of shafts is assured and it is not practical to disassemble coupling, remove both lube plugs and add grease in sufficient amount to overflow with lubricant holes in horizontal position. Recommended lubricants and quantities are listed on this page.

**NOTE:** Sizes 200 and 201 Series C are supplied without lube plugs – lubricate per Series C, Step No. 5.

The lubricants listed above are recommended by the lubricant manufacturers for the indicated conditions. Those shaded are reported by lubricant manufacturers to comply with the intent of AGMA 9001. This list is solely for our customers' convenience and does not constitute an endorsement. The listing is not intended to be complete nor necessarily current due to continuous research and improvement by the various manufacturers.

Series F, FM, FA, FE use quantities recommended. For FE, apply one-half in one end and one-half in other end.


Series FS, FMS, FAS use one-half the quantities recommended.

Series C, CM, CA use quantities as shown. Series CS, CMS, CAS use one-half the quantities recommended.

\*Series F, Class III use quantities as recommended for Series F but limited to the greases shown in Class III column above or the following oils:

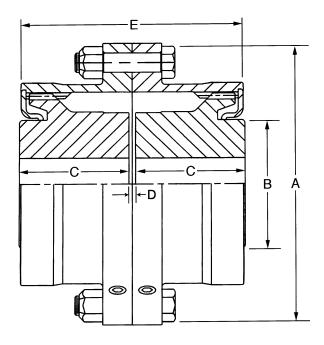
Citgo EP Compound 460 by Citgo Corp.; Teresstic 460 by Exxon; Lubriplate No. 8 by Fiske Bros. Ameridrives Couplings began manufacturing in 1928 as the Mechanical Drives Division of Zurn Industries. Through the years, Ameridrives Couplings has pioneered many improvements for changing technologies of power transmission equipment:

- Ameridarives patented
   Amerigear® fully-crowned gear tooth
- Amerigear® mill spindles and advanced gear technology
- Americardan® high capacity universal joints
- Ameriflex® non-lubricated diaphragm couplings



As a leader in power transmission equipment for over 70 years, Ameridrives Couplings is the single source for all drive applications. Let us solve your Driveline Connections. A flexible coupling must provide three basic functions:

- 1. Physically couple together two rotating shafts.
- 2. Compensate for all types of misalignment.
- 3. Compensate for end or axial movement.


The FAST® Coupling was the standard in the metals industry for decades. Ameridrives now offers the labyrinth/steel ring seal option for your coupling.

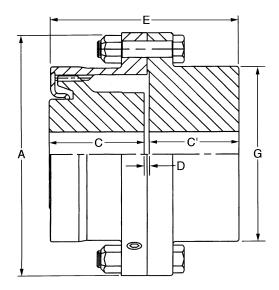
| "Dr   | "Drop-In" Replacement for FAST® Coupling                                          |       |       |  |  |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|-------|-------|--|--|--|--|--|--|--|--|--|
| FAST® | FAST <sup>®</sup> Amerigear <sup>®</sup> FAST <sup>®</sup> Amerigear <sup>®</sup> |       |       |  |  |  |  |  |  |  |  |  |
| 1 ½   | 1 ½                                                                               | 4 1/2 | 4 1/2 |  |  |  |  |  |  |  |  |  |
| 2     | 2                                                                                 | 5     | 5     |  |  |  |  |  |  |  |  |  |
| 2 ½   | 2 ½                                                                               | 5 ½   | 5 ½   |  |  |  |  |  |  |  |  |  |
| 3     | 3                                                                                 | 6     | 6     |  |  |  |  |  |  |  |  |  |
| 3 ½   | 3 ½                                                                               | 7     | 7     |  |  |  |  |  |  |  |  |  |
| 4     | 4                                                                                 |       |       |  |  |  |  |  |  |  |  |  |

# **Series F** | Metal Seal Full-Flex Couplings

# Size 1 1/2 - 7

Series F Full-Flex gear coupling with Steel Labyrinth Seal is applicable for harsh environments.




|           |                                    | Load          | Capacity                     |                                   |                                |       |       | Dimensior | ıs  |       |
|-----------|------------------------------------|---------------|------------------------------|-----------------------------------|--------------------------------|-------|-------|-----------|-----|-------|
| F<br>Size | Max Bore ①<br>with Standard<br>Key | HP/100<br>RPM | Torque<br>In-Lbs. ②<br>x 10³ | Maximum<br>Speed ③<br>RPM<br>Ibs. | Weight<br>with Solid<br>Hubs ④ | А     | В     | С         | D   | Е     |
| 1 ½       | 1.63                               | 27            | 17.0                         | 12,000                            | 16.5                           | 6.00  | 2.19  | 1.94      | .13 | 4.00  |
| 2         | 2.13                               | 50            | 31.5                         | 9,300                             | 27.4                           | 7.00  | 2.88  | 2.44      | .13 | 4.94  |
| 2 ½       | 2.75                               | 90            | 56.7                         | 7,900                             | 48.0                           | 8.38  | 3.63  | 3.03      | .19 | 6.19  |
| 3         | 3.13                               | 160           | 101.0                        | 6,800                             | 70.8                           | 9.44  | 4.25  | 3.59      | .19 | 7.31  |
| 3 ½       | 3.75                               | 235           | 148.0                        | 6,000                             | 113.0                          | 11.00 | 5.00  | 4.19      | .25 | 8.50  |
| 4         | 4.25                               | 375           | 236.0                        | 5,260                             | 177.0                          | 12.50 | 5.75  | 4.75      | .25 | 9.75  |
| 4 1/2     | 4.75                               | 505           | 318.0                        | 4,770                             | 231.0                          | 13.63 | 6.50  | 5.31      | .31 | 10.94 |
| 5         | 5.50                               | 700           | 441.0                        | 4,300                             | 351.0                          | 15.31 | 7.31  | 6.03      | .31 | 12.06 |
| 5 ½       | 5.88                               | 920           | 580.0                        | 3,880                             | 435.0                          | 16.75 | 8.00  | 6.91      | .31 | 13.81 |
| 6         | 6.50                               | 1,205         | 759.0                        | 3,600                             | 538.0                          | 18.00 | 8.81  | 7.41      | .31 | 14.81 |
| 7         | 8.00                               | 1,840         | 1,160.0                      | 3,000                             | 860.0                          | 20.75 | 10.31 | 8.69      | .38 | 17.31 |

- ① Bore sizes above maximum, contact Ameridrives.
- ② Occasional peak torques should not exceed 2X the torque capacity shown.
- 3 Maximum speed without balancing 60% of values shown. Consult Ameridrives for higher speeds.
- Weights are approximate.
- Outer end of hub extends beyond sleeve in sizes 5 1/2, 6 and 7.
- All dimensions in inches
- ± 1/2° Static misalignment per coupling half.

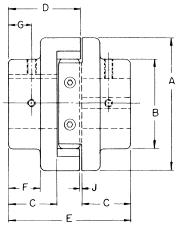
# **Series FS** | Metal Seal Flex-Rigid Couplings

# Size 1 1/2 - 7

Series FS Flex-Rigid coupling with Steel Labyrinth Seal is applicable for harsh environments.



|            | Max Bore with<br>Standard Keyway |                 | Load (        | Capacity                     |                           |                                           | Dimensions |      |      |     |       |       |  |  |
|------------|----------------------------------|-----------------|---------------|------------------------------|---------------------------|-------------------------------------------|------------|------|------|-----|-------|-------|--|--|
| FS<br>Size | ①<br>Flex Half                   | ①<br>Rigid Half | HP/100<br>RPM | Torque<br>In-Lbs. ②<br>x 10³ | Maximum<br>Speed ③<br>RPM | Weight<br>with<br>Solid<br>Hubs ④<br>Ibs. | A          | С    | C.   | D   | E     | G     |  |  |
| 1 1/2      | 1.63                             | 2.69            | 27            | 17.0                         | 12,000                    | 17.7                                      | 6.00       | 1.94 | 1.84 | .16 | 3.94  | 3.81  |  |  |
| 2          | 2.13                             | 3.38            | 50            | 31.5                         | 9,300                     | 30.0                                      | 7.00       | 2.44 | 2.28 | .16 | 4.84  | 4.81  |  |  |
| 2 1/2      | 2.75                             | 4.00            | 90            | 56.7                         | 7,900                     | 52.6                                      | 8.38       | 3.03 | 2.91 | .19 | 6.28  | 5.75  |  |  |
| 3          | 3.13                             | 4.75            | 160           | 101.0                        | 6,800                     | 78.8                                      | 9.44       | 3.59 | 3.46 | .19 | 7.22  | 6.75  |  |  |
| 3 ½        | 3.75                             | 5.50            | 235           | 148.0                        | 6,000                     | 124.0                                     | 11.00      | 4.19 | 4.03 | .22 | 8.38  | 7.75  |  |  |
| 4          | 4.25                             | 6.38            | 375           | 236.0                        | 5,260                     | 187.0                                     | 12.50      | 4.75 | 4.44 | .31 | 9.50  | 9.00  |  |  |
| 4 1/2      | 4.75                             | 7.25            | 505           | 318.0                        | 4,770                     | 250.0                                     | 13.63      | 5.31 | 5.06 | .34 | 10.72 | 10.12 |  |  |
| 5          | 5.50                             | 8.50            | 700           | 441.0                        | 4,300                     | 377.0                                     | 15.31      | 6.03 | 5.69 | .34 | 11.91 | 11.38 |  |  |
| 5 ½        | 5.88                             | 8.00            | 920           | 580.0                        | 3,800                     | 470.0                                     | 16.75      | 6.91 | 6.97 | .34 | 14.06 | 10.75 |  |  |
| 6          | 6.50                             | 8.75            | 1,205         | 759.0                        | 3,600                     | 606.0                                     | 18.00      | 7.41 | 7.46 | .34 | 15.06 | 11.50 |  |  |
| 7          | 8.00                             | 10.00           | 1,840         | 1,160.0                      | 3,000                     | 957.0                                     | 20.75      | 8.69 | 8.75 | .44 | 17.66 | 13.38 |  |  |


- ① Bore sizes above maximum, contact Ameridrives.
- ② Occasional peak torques should not exceed 2X the torque capacity shown.
- ③ Maximum speed without balancing 60% of values shown. Consult Ameridrives for maximum speeds of floating shaft couplings and lateral critical speed considerations. Users must verify that the design of the shaft to coupling hub connection is acceptable for the duty intended.
- Weights are approximate.
- ⑤ Floating shaft length is equal to the shaft separation minus 2 times the "D" dimension.
- Outer end of hub extends beyond sleeve in sizes 5 1/2, 6 and 7.
- All dimensions in inches
- ± ½° Static misalignment per coupling half.

# **Jaw Flange** | American Flexible Couplings

## **Size 3 - 13**

**Application:** Meets requirements of standard medium duty applications for shaft sizes up to 3%". Compensates for all three types of misalignments and is particularly suitable for vertical or blind assembly installation.

Description: The American coupling consists of three basic parts - two identical jaw flanges and a floating center member. The jaw flanges are positioned at right angles to each other and engage opposite parallel surfaces of the center member as shown by the cutaway view on page 5. American flexible couplings are normally furnished bored for a clearance or push fit on the shafts as specified, and with a standard keyway (when specified) in each bore and two setscrews for each hub. (Sizes 3, 4, and 6 have one setscrew.)



JAW FLANGE COUPLING

|               | Nominal             | Absolute             | Max.<br>Distance<br>Bottom of  |                      | Load                          | Parallel                 | DIMENSIONS |      |      |      |      |      |      |          | Weights |                          |
|---------------|---------------------|----------------------|--------------------------------|----------------------|-------------------------------|--------------------------|------------|------|------|------|------|------|------|----------|---------|--------------------------|
| Cplg.<br>Size | Max.<br>Bore<br>In. | Max.<br>Bore*<br>In. | Keyway to<br>Bore Axis*<br>In. | Max.<br>Speed<br>RPM | Capacity<br>HP Per<br>100 RPM | Onset<br>Capacity<br>In. | A          | В    | C    | D    | E    | F    | G    | H**      | J       | (Lbs.)<br>Solid<br>Cplg. |
| 3             | .50                 | .50                  | .34                            | 3,600                | .05                           | .031                     | 1.62       | 1.00 | .75  | 1.25 | 2.03 | .56  | .37  | <u> </u> | .03     | .48                      |
| 4             | .75                 | .75                  | .50                            | 3,600                | .09                           | .062                     | 1.87       | 1.37 | .75  | 1.25 | 2.03 | .53  | .37  | _        | .03     | .70                      |
| 6             | 1.00                | 1.00                 | .62                            | 3,600                | .16                           | .062                     | 2.62       | 1.87 | 1.12 | 1.75 | 2.91 | .78  | .50  | _        | .03     | 1.80                     |
| 8             | 1.25                | 1.37                 | .87                            | 6,300                | 2.20                          | .094                     | 3.00       | 2.37 | 1.37 | 2.12 | 3.56 | .87  | .50  | 1.25     | .06     | 6.00                     |
| 81/2          | 1.37                | 1.62                 | 1.00                           | 5,300                | 4.20                          | .094                     | 3.75       | 2.62 | 1.50 | 2.37 | 3.94 | .87  | .50  | 1.50     | .06     | 9.80                     |
| 9             | 1.75                | 2.00                 | 1.25                           | 5,000                | 6.00                          | .094                     | 4.12       | 3.12 | 1.75 | 2.75 | 4.56 | 1.00 | .62  | 1.56     | .06     | 14.20                    |
| 10            | 2.00                | 2.25                 | 1.37                           | 4,160                | 10.80                         | .156                     | 5.25       | 3.62 | 2.25 | 3.37 | 5.69 | 1.37 | 1.00 | 2.12     | .06     | 15.50                    |
| 11            | 2.25                | 2.50                 | 1.56                           | 3,670                | 14.00                         | .156                     | 6.00       | 4.12 | 2.50 | 3.75 | 6.31 | 1.50 | 1.00 | 1.94     | .06     | 37.00                    |
| 12            | 2.62                | 3.00                 | 1.75                           | 2,770                | 21.00                         | .281                     | 7.50       | 4.87 | 2.75 | 4.25 | 7.06 | 1.62 | 1.00 | 2.75     | .06     | 64.00                    |
| 13            | 3.12                | 3.62                 | 2.12                           | 2,250                | 30.00                         | .281                     | 9.00       | 5.75 | 3.00 | 4.75 | 7.81 | 1.75 | 1.25 | 3.50     | .06     | 115.00                   |

<sup>\*</sup> Absolute maximum bore may be used providing the maximum distance, bottom of keyway to bore axis, is not exceeded.

<sup>\*\*</sup> Diameter of shaft clearance hole in floating center member.

# **Application Data Form**

# **General Machinery Application Data for Selection and Design**

| Cu     | ustomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inquiry No |                                                     |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------|--|--|--|--|--|--|--|
| Со     | ontact Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | No. of Units                                        |  |  |  |  |  |  |  |
| Тур    | pe of Mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Phone                                               |  |  |  |  |  |  |  |
| No     | o. of Stands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Fax                                                 |  |  |  |  |  |  |  |
| Da     | ateNo. of Pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -                                                   |  |  |  |  |  |  |  |
|        | Complete the following informa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion fo    | for your application                                |  |  |  |  |  |  |  |
| 1.     | Motor Horsepower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.        | No Load Angle                                       |  |  |  |  |  |  |  |
| 2.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 3.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 4.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 5.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 6.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 7.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 8.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 9.     | Operating Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
| 9a.    | a. Operating Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                     |  |  |  |  |  |  |  |
| <br>No | omments or special conditions such as: Ambient temperature of the context of the | cify fla   | lange diameter, pilot diameter, bolt circle, number |  |  |  |  |  |  |  |
| Sp     | pace provided below for sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | <del></del>                                         |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                     |  |  |  |  |  |  |  |

**CAUTION:** This product will be selected based on the information supplied to Ameridrives Couplings by the Purchaser. Complete and accurate information will help to minimize errors and misapplications. Further, it is the responsibility of the Purchaser to assure the interface connection between couplings and connected equipment (flanges, bolting, keys, hydraulic fits, etc.), are capable of handling anticipated loads. Ameridrives Couplings will not be responsible for errors due to inaccurate or incomplete information supplied to Ameridrives Couplings.

## Altra Industrial Motion

All Customer Service phone numbers shown in bold

### **Belted Drives and Sheaves**

### TB Wood's

Belted Drives

Chambersburg, PA - USA 1-888-829-6637 - Press #5

For application assistance: 1-888-829-6637 — Press #7

### Couplings

### **Ameridrives Couplings**

Mill Spindles, Ameriflex, Ameridisc

Erie, PA - USA 1-814-480-5000

Gear Couplings

San Marcos, TX - USA 1-800-458-0887

#### Ameridrives Power Transmission

Universal Joints, Drive Shafts, Mill Gear Couplings

Green Bay, WI - USA 1-920-593-2444

### **Bibby Turboflex**

Disc, Gear, Grid Couplings, Overload Clutches

Dewsbury, England +44 (0) 1924 460801

Boksburg, South Africa +27(0) 11 918 4270

### **Guardian Couplings**

Engineered Flywheel Couplings, Engine Housings and Pump Mounts, Flexible Shaft Couplings

Michigan City, IN - USA 1-219-874-5248

### **Huco Dynatork**

Precision Couplings and Air Motors

Hertford, England +44 (0) 1992 501900

Chambersburg, PA - USA 1-888-829-6637

### **Couplings Cont.**

#### **Lamiflex Couplings**

Flexible Couplings, Bearing Isolators, and Coupling Guards Cotia, SP - Brasil +55 (11) 4615-6300

#### TB Wood's

Elastomeric Couplings Chambersburg, PA - USA 1-888-829-6637- Press #5

For application assistance: 1-888-829-6637 — Press #7

General Purpose Disc Couplings

San Marcos, TX - USA 1-888-449-9439

### Electromagnetic Clutches and Brakes

#### **Inertia Dynamics**

Spring Set Brakes; Power On and Wrap Spring Clutch/Brakes

New Hartford, CT - USA 1-800-800-6445

### **Matrix International**

Electromagnetic Clutches and Brakes, Pressure Operated Clutches and Brakes

Brechin, Scotland +44 (0) 1356 602000 New Hartford, CT - USA 1-800-825-6544

### Warner Electric

Electromagnetic Clutches and Brakes

New Hartford, CT - USA 1-800-825-6544

For application assistance: 1-800-825-9050

Saint Barthélémy d'Anjou, France +33 (0)2 41 21 24 24

Precision Electric Coils and Electromagnetic Clutches and Prokes

Columbia City, IN - USA 1-260-244-6183

#### Engineered Bearing Assemblie

### **Kilian Manufacturing**

Engineered Bearing Assemblies

Syracuse, NY - USA 1-315-432-0700

#### Gearin

#### **Bauer Gear Motor**

Geared Motors
Esslingen, Germany
+49 (711) 3518-0

Somerset, NJ - USA 1-732-469-8770

#### **Boston Gear**

Enclosed and Open Gearing, Electrical and Mechanical P.T. Components

Charlotte, NC - USA 1-800-825-6544

For application assistance.

#### Nuttall Gear and Delroyd Worm Gear

Worm Gear and Helical Speed Reducers Niagara Falls, NY - USA 1-716-298-4100

#### Heavy Duty Clutches and Brakes

### **Industrial Clutch**

Pneumatic and Oil Immersed Clutches and Brakes

Waukesha, WI - USA 1-262-547-3357

## **Svendborg Brakes**

Industrial Brakes and Brake Systems

Vejstrup, Denmark +45 63 255 255

## Twiflex Limited

Caliper Brakes and Thrusters Wichita Falls, TX - USA 1-844-723-3483

Twickenham, England +44 (0) 20 8894 1161

## Heavy Duty

#### Wichita Clutch

Pneumatic Clutches and Brakes

Wichita Falls, TX - USA 1-800-964-3262

Bedford, England +44 (0) 1234 350311

### **Linear Products**

#### **Warner Linear**

Linear Actuators
Belvidere, IL - USA
1-800-825-6544

For application assistance: 1-800-825-9050

Saint Barthélémy d'Anjou, France +33 (0)2 41 21 24 24

### **Overrunning Clutches**

### **Formsprag Clutch**

Overrunning Clutches and Holdbacks

Warren, MI - USA 1-800-348-0881 – Press #1

For application assistance: 1-800-348-0881 — Press #2

### **Marland Clutch**

Roller Ramp and Sprag Type Overrunning Clutches and Backstops

South Beloit, IL - USA 1-800-216-3515

### Stieber Clutch

Overrunning Clutches and Holdbacks

Heidelberg, Germany +49 (0) 6221-30470

For information concerning our sales offices in Asia Pacific check our website www.altramotion.com.cn



### www.ameridrives.com

1802 Pittsburgh Avenue Erie, PA 16502 - USA 814-480-5000 Fax: 814-453-5891