TIMKEN®

Timken[®] Spherical and | **Product and** Cylindrical Roller Bearings | Technical Handbook

THE TIMKEN COMPANY

Timken Product and Technical Handbook

Timken realized long ago that there is more to producing a bearing than simply putting a design on paper and manufacturing it. We approach bearing manufacturing as a dynamic process where customer-focused needs and in-depth knowledge of mechanical properties and engineering unite. For years, Timken has employed this philosophy throughout its product and service offerings, including our line of large-bore Timken[®] spherical and cylindrical roller bearings. Timken spherical and cylindrical bearings provide competitive solutions by delivering the performance required to meet the rigors of today's demanding applications.

Timken Performance

Like our well-known tapered roller bearings, Timken spherical and cylindrical bearings provide exceptional performance in three essential ways:

• Performance that starts with having one of the highest standard published ratings in the industry, resulting in longer life for applications like power plants, oilfield and mining.

 Performance that provides the capability to manage high radial loads while withstanding marginal lubrication, contamination, extreme speeds and critical application stress factors, many of which are inherent in industrial processes. Performance that is engineered into the bearing design through tight critical dimensions, such as roller and raceway diameters and contact geometry.

Regardless of your application demands, Timken spherical and cylindrical bearings are manufactured to be durable, precise and dependable – attributes that ensure value along the entire supply chain.

Spherical and Cylindrical Applications

Oilfield

Mud Pumps Draw Works Power Generation Coal Pulverizers

Mining

Conveyor Drives Draglines Shovels Power Transmission Gear Drives Wind Energy Turbines

Metal Recycling

Metal Shredders Briquetting Machines Rotary Dryers Rubber Mixing Banburys

Metal Processing

Shears Rolling Mills Cement Conveyor Drives Vertical Mills Stacker Reclaimer Aggregate Crushing Hammer Mills Jaw Crushers Gyratory Cone

Pulp and Paper Wet End Applications

Competitive Solutions

Whether it's Timken customer engineering teams working with you on original equipment designs or our sales and service engineers providing on-site support at your facility, Timken consistently creates competitive solutions to keep your equipment running smoothly. Timken technological resources augment our products and provide ways to enhance performance and life:

■ Timken[®] Spexx[™] bearings –

These industrial bearings feature surface finishes and tribological coatings that improve wear, lengthen fatigue life and boost frictional performance. Product lines include DuraSpexx™ power rating series, debris solutions, AquaSpexx™, Timken engineered surfaces and P900™ bearings.

• Lubrication options – Our solid lube is made from advanced polymers that retain viscosity. Timken G-Power and M-Power single-point lubricators consistently grease bearings while in operation. Similarly, our premium mill grease is created to enhance rolling mill performance. Analytical tools – State-of-the-art computer modeling and diagnostics identify design issues and provide proactive maintenance strategies. In addition to products and services that help identify up-front solutions, Timken offers follow-up services that trim maintenance budgets and reduce downtime.

Bearing training – Our industrial training programs equip your employees to better install and handle bearings. During sessions at our facilities or yours, Timken engineers share valuable insights into bearing design, metallurgy and effective maintenance procedures, and then audit your team members' proficiency.

Timken Industrial Services –

Timken Industrial Services offers an array of repair and refurbishment options for customers, including:

- **Bearing repair** offering bearing repair of all sizes, types and brands, often for a fraction of the price of replacement bearings.
- Roll repair and overlays enhancing the life of rolls and reducing yearly roll costs.
- Chock rebuilds and manufacturing – covering mini-rebuilds, full rebuilds and new chocks/ housings within hot and cold mills.

• Z-Mill backing assembly options – returning backing assemblies to their original specification for a fraction of the cost.

Timken also offers **four-row cylindrical bearings** for rolling mill applications. Page 31 lists four-row design information and fitting practices, and page 48 provides four-row part numbers. For more information on this design, contact your Timken sales representative or distributor.

For more than 100 years, delivering reliable Timken performance and competitive solutions to industrial customers has been the cornerstone of our business. It is the only way we know how to do business, and our line of Timken spherical and cylindrical bearings clearly supports that commitment.

For more information on our spherical and cylindrical product lines and accompanying services, contact your local Timken representative or visit timken.com.

Table of Contents

Spherical Part Numbering	6									
Spherical Part Numbering										
Cylindrical Part Numbering Spherical and Cylindrical Cage Designs										
Spherical and Cylindrical Cage Designs										
Bearing Load Ratings and Life Calculations Static Bearing Loads										
Static Bearing Loads	10									
Bearing Life	10									
Rating Life	10									
Bearing Life Equations	11									
Reliability Life Factor	11									
Material Life Factor	11									
Debris Life Factor	11									
Load Zone Life Factor	12									
Lubrication Life Factor	12									
Misalignment Life Factor	13									
Low Load Life Factor	14									
Equivalent Bearing Loads	14									
Radial Internal Clearance										
Bearing Precision										
Recommended Fitting Practice										
Fitting Practice										
Tapered Bore Axial Drive-Up	19									
Measuring Radial Clearance	19									
Mounting Guidelines	26									
Speed Ratings	27									
Temperature Limitations	27									
Lubrication	28									
Misalignment	29									
Required Minimum Load	29									
Axial Internal Clearance	29									
Allowable Axial Float from Center	29									
Product Enhancements	30									
Four-Row Cylindrical Bearings	31									
Design	31									
Part Numbers										
Spherical	34									
Cylindrical	40									
Four-row Cylindrical	48									

Preface

This product and technical handbook for Timken spherical and cylindrical roller bearings is a reference guide to the fundamentals of selecting and applying Timken spherical and cylindrical roller bearings. It provides an understanding of the bearing design and performance features. Major emphasis is placed on the bearing selection process to fill various application requirements. Bearing tolerances and suggested fitting practice are also included.

In addition to the traditional approach to bearing selection, this publication introduces a more in-depth analysis. This expanded version of the traditional approach is termed bearing system analysis (BSA) and in addition to load and speed, it includes the effects of lubrication, reliability, material properties, misalignment, load zones and useful life on bearing life. Using knowledge of all operational and environmental requirements of the application, together with past experience, BSA can help assure the proper bearing selection to achieve the desired bearing field performance.

WARNING

Failure to observe the following warnings could lead to a risk of serious bodily harm:

- Never spin a bearing with compressed air. The rollers may be forcefully expelled.
- If a hammer and bar are used for bearing removal, fragments from the hammer, bar or the bearing can be released with high velocity. *Note: A mild steel bar is preferred since it is less susceptible to fragmenting.*
- When installing or removing bearings, always wear safety glasses or goggles.
- Cleaning solvents may be toxic or flammable. Ensure adequate ventilation and wear protective clothing.
- Remove oil or rust inhibitor from parts before heating to avoid fire or fumes.

Roller Bearing Selection Process

Bearing selection is a process for evaluating the suitability of bearings for specific industrial applications. The quality of the information available to make these selections will play a major role in determining the success of the bearing selection.

The first step in bearing selection is identifying the proper bearing type, whether it is a cylindrical, spherical or tapered roller bearing. (See Timken's Tapered Roller Bearing Guide [Order No. 5667], for selections.) Each roller bearing type has advantages and disadvantages that are specific to each design and will affect such things as the loads and speeds that the bearing can sustain in the application.

We will begin with the assumption that a spherical or cylindrical roller bearing has been determined to be best suited for your application.

Next, assess the size constraints of the bearing envelope, or available space. This is done by considering the minimum shaft diameter, maximum housing bore, and available width within the application for the bearing. After the bearing envelope is defined, search the catalog for bearings with bores, outer diameters and widths that will fit within the bearing envelope. There may be several bearings with different load-carrying capacities available that fit within the envelope.

Determine which of these bearings will give the desired life in the application by performing a bearing life analysis for each bearing. The Bearing Load Ratings and Life Calculations section (page 10) in this handbook give a detailed explanation of how to perform bearing life analysis.

Once you have chosen the right bearing to handle the load requirements of the application, the bearing selection is completed with the selection of design options. These options include such features as cage type, cylindrical roller bearing flange arrangements, radial internal clearance, precision and lubrication. These options are selected based on the application's speed, temperature, mounting, and loading conditions, and will enable you to achieve optimal bearing performance and life.

For a closer look, your Timken sales representative can provide you with expert computer analysis to give you the most detailed information for your bearing application.

Characteristic	TRB Radial Double Row	TRB Thrust	CRB Caged Single Row	CRB Full Complement Single Row	CRB Thrust	SRB Radial Double Row	SRB Thrust
Pure Radial Load	Excellent	Unsuitable	Excellent	Excellent	Unsuitable	Excellent	Unsuitable
Pure Axial Load	Good	Excellent	Unsuitable	Unsuitable	Good	Fair	Excellent
Combined Load	Excellent	Fair	Fair	Poor	Unsuitable	Excellent	Fair
Moment Load	Fair	Poor	Unsuitable	Unsuitable	Unsuitable	Unsuitable	Unsuitable
High Stiffness	Excellent	Excellent	Good	Excellent	Excellent	Good	Good
Quiet Running	Fair	Fair	Good	Poor	oor Poor Fai		Poor
Low Friction	Fair	Fair	Good	Poor	Poor	Fair	Fair
Misalignment	Poor	Poor	Poor	Poor	Unsuitable	Excellent	Excellent
Locating Position (Fixed)	Excellent	Good	*Fair	Fair	Fair	Good	Good
Non-Locating Position (Floating)	Good	Unsuitable	**Excellent	Fair	Unsuitable	Fair	Unsuitable

*Fair with flanges on inner and outer ring/unsuitable without

**Excellent without flanges on inner or outer ring/unsuitable with

Spherical Roller Bearing Part Numbering

Timken uses a part numbering system based on the established world numbering system for spherical roller bearings. The system consists of a five-digit number, to which a variety of prefixes and suffixes are attached, indicating application-specific design customizations.

For example, consider part number T3-23040CAW33. The prefix (T3) designates carburized steel for rollers. The number (2) designates a spherical roller bearing. The next two digits (30) are referred to as the dimension series. They define the width and outer diameter of the bearing envelope. (See the shaded area in the figure at the top of the next column.) The first digit, which is the width series, ranges from 8,0,1,2,3,4,5,6 with 6 being the widest. The second digit is the outside diameter series, and ranges from 7,8,9,0,1,2,3,4 with 4 being the largest. The fourth and fifth

Series Designation

digits of the part number (40) represents the bore size in mm. Multiply this number by 5 to get the actual bore size. If there is a slash (/) between the third and fourth digits, the actual bore size would follow. This (/) rule only applies to bearings with a bore of 500 mm or larger. (Example: Spherical roller bearing 230/500CAW33 has a 500 mm bore.)

The following tables list the common Timken prefixes for spherical roller bearings.

Comr beari	non Timken spherical roller ng prefixes*:
т	Case carburized rings and rollers
ТО	Case carburized rings
T1	Case carburized outer ring
T2	Case carburized inner ring
Т3	Case carburized rollers
T 4	Case carburized outer ring and rollers
T5	Case carburized inner ring and rollers

*Standard product without prefix is through hardened.

The following tables list the common Timken suffixes for spherical roller bearings.

Common Timken spherical roller bearing suffixes:

CA	One-piece, machined brass, inner ring guided cage
W33	Annular groove and three lubrication holes in outer ring
W77	W33 with holes plugged
W20	Three lubrication holes in outer ring
W26	Six lubrication holes in inner ring
W513	W33 and W26
W61	Lifting holes in outer ring
W517	W33 and W61
K (K30)	1:12 (1:30) tapered bore
C1 thru C5 RIC	(see section on radial internal clearance)
designatior	IS
R123456	Special, non-standard RIC
C08	Special running accuracy (see page 17)
S1**	Normal dimensional stability to 200°C
S2	Normal dimensional stability to 250°C
S3	Normal dimensional stability to 300°C

**This suffix is standard, so it is not included in the part number.

Typical Spherical Size Range

Cylindrical Roller Bearing Part Numbering

Timken uses a part numbering system based on the established world numbering system for cylindrical roller bearings. The system consists of cylindrical bearing design type prefixes, dimension series, bore size, and variety of suffixes that identify design and application specific customizations.

For example, consider part number T3-NU2280MA. The first prefix (T3) designates case carburized rollers. The next prefix (NU) designates the cylindrical bearing design having two machined flanges on the outer ring and no flanges on the inner ring. The cylindrical bearing types are described in the following section titled Cylindrical Roller Bearing Types, page 9. The next two digits (22) are the dimension series. (See the Spherical Roller Bearing Part Numbering section, page 6, for details.) The next two digits (80) represent the bore size in mm. Multiply this number by 5 to get the actual bore size. If there is a slash (/) between the third and fourth digits, the actual bore size would follow. This (/) rule only applies to bearings with a bore of 500 mm or larger. (Example: SRB 239/500CAW33 has a 500 mm bore.)

The following tables list the common Timken prefixes for cylindrical roller bearings.

Comn beari	non Timken cylindrical roller ng prefixes*:
т	Case carburized rings and rollers
TO	Case carburized rings
T1	Case carburized outer ring
T2	Case carburized inner ring
T3	Case carburized rollers
T4	Case carburized outer ring and rollers
T5	Case carburized inner ring and rollers

*Standard product without prefix is through hardened. See the Cylindrical Roller Bearing Designs section for additional prefixes. The following tables list the common Timken suffixes for cylindrical roller bearings.

Common Timken cylindrical roller bearing suffixes:

Μ	Roller guided brass machined cage
MA	Outer ring guided brass machined cage
MB	Inner ring guided brass machined cage
E	Optimized internal design
F	Massive steel cage
V	No cage (used with NCF)
W33	Annular groove and three lubrication holes in outer ring
W20	Three lubrication holes in outer ring
W26	Six lubrication holes in inner ring
W513	W33 and W26
K (K30)	1:12 (1:30) tapered bore
C1 thru C5	RIC designations (see section on radial internal clearance)
R123456	Special, non-standard RIC
S1**	Normal dimensional stability to 200°C
S2	Normal dimensional stability to 250°C
S3	Normal dimensional stability to 300°C
*****	a second s

**This suffix is standard, so it is not included in the part number.

Spherical and Cylindrical Roller Bearing Cage Designs

Spherical Design

There are two basic variations of cage designs available:

- C Stamped steel
- CA Inner ring guided, brass

Contact your Timken sales representative for availability of different cage designs.

C Style

The C-style cage is a stamped steel, window or pockettype cage. This design allows for a significantly reduced cage section because the bridge is supported on both sides. Also, the cage eliminates the need for the outboard retaining flanges and allows for longer rollers. The cage is made from two pieces, allowing the rows to move independently from each other, which may be beneficial in higher-speed applications or those with extreme thrust loading. This is the standard cage for smaller bore bearings, typically 180 mm and below.

C design with stamped cage

Cylindrical Design

There are many different configurations of cylindrical roller bearings, depending on application needs and mounting requirements. Some of the configurations can have flanges on the inner ring, outer ring or separable rings. There are single-row and also multiple-row bearings with these different configurations.

The selection of cylindrical roller bearing configuration depends on the application conditions, mounting, and assembly requirements. At right are some of the more common configurations for cylindrical roller bearings. Listed for each of the different bearing configurations are the basic design features, typical cage types, and basic mounting considerations.

Machined Brass Cage

Machined brass cages are strong enough for high-speed applications and good for heavy-duty applications. The benefits of machined brass cages are low friction, quiet operation, high strength and cool operation. Machined brass cages have a two-piece design, held together with fasteners through the cage bridges. This is shown in the figure below:

One piece is a retainer cap ring and the other piece is a retainer body ring with integral separators (cage bridges). They are typically riveted together, although larger bearings may use cap screws.

(continued on page 10)

CA Style

The CA-style cage is a one-piece, double-pronged, machined-brass, inner-ring-guided cage. This is the standard cage for large bore bearings, typically 180 mm and above. The cage design provides adequate strength in guiding the heavy rollers through accelerations and decelerations experienced when entering and exiting the load zone. The brass cages have specially designed fingers to guide the rollers and limit skewing. Outboard flanges on the inner ring are used to retain the roller complement.

CA design with inner-ringguided, machined-brass cage

8

Bearing Designs	Design Features	Diagram
N	Two inner-ring flanges No outer-ring flanges Non-locating bearing (floating) Inner- or roller-guided cage	
NU	No inner-ring flanges Two outer-ring flanges Non-locating bearing (floating) Outer- or roller-guided cage	
NJ	One inner-ring flange Two outer-ring flanges Locates shaft axially in one direction Outer- or roller-guided cage	
NF	Two inner-ring flanges One outer-ring flange Locates shaft axially in one direction Inner- or roller-guided cage	
NP	Two inner-ring flanges One outer-ring flange One separable flange on outer ring Flange must be clamped against outer ring by means of the bearing mounting Locates shaft axially in both directions Inner- or roller-guided cage	
NUP	One inner-ring flange Two outer-ring flanges One separable flange on inner ring Flange must be clamped against outer ring by means of the bearing mounting Locates shaft axially in both directions Outer- or roller-guided cage	
NJF	One inner-ring flange One outer-ring flange Locates shaft axially in one direction Allows both shaft and housing to float Outer- or inner-guided cage	
NU + HJ	No inner-ring flanges Two outer-ring flanges One separable inner ring flange Locates shaft axially in one direction Outer- or roller-guided cage	
NJ + HJ	One inner-ring flange Two outer-ring flanges One separable inner ring flange Locates shaft axially in both directions Outer- or roller-guided cage	
NCF Full Complement	Two inner-ring flanges One outer-ring flange Retaining ring on outer ring to contain assembly Locates shaft axially in one direction Cageless design allows higher capacity bearing in a given envelope	

(continued from page 8)

There are three styles of machined brass cages: MA, MB and M. MA-type cages are outer-ring guided and are used in applications with pure outer-ring rotation. MB-type cages are inner-ring guided and are used in applications with pure inner-ring rotation. M-type machined brass cages are rollerguided and are used in applications with mixed rotation, where both the inner or outer ring could rotate. The standard Timken cage for most general applications is an MA-type brass cage. All three cage types are usually interchangeable between standard applications, but there are some exceptions. Many times, the flange design of the cylindrical roller bearing dictates the type of cage used. M-type cages are not recommended for thin cross-section bearings (thin, long rollers) due to possible skewing of the cage and rollers. The M-type cage is also not recommended for high-speed or oscillatory applications, where the cage can whirl due to higher G-forces on the cage.

Pin-Type Cage

Pin-type cages for cylindrical roller bearings have pins to support the rollers through their centers. The pins have one threaded end, which screws into one cage ring, and the other ends are welded to the other ring. There are some heavy-duty bearings where the pins are welded at both ends. The pin-type cage design allows for the largest number of rollers, and therefore the highest load capacity. This cage design is found on many larger cylindrical roller bearings.

Bearing Load Ratings and Life Calculations

The basic dynamic load rating and the static load rating are commonly used for bearing selection. The basic dynamic load rating is used to estimate life of a rotating bearing. Static load ratings are used to determine the maximum permissible load that can be applied to a nonrotating bearing. The basic philosophy of The Timken Company is to provide the most realistic bearing rating to assist our customers in the bearing selection process. Published ratings for Timken spherical and cylindrical bearings include the basic dynamic radial load rating C_{90} . This value is based on a basic rating life of ninety million revolutions. The basic static radial load rating is C_o.

Static Bearing Loads

The basic static load rating for a bearing is determined in accordance with ISO 76, and listed in the bearing tables. The equation for determining the equivalent static radial load is given below, and the static load factors X_0 and Y_0 are listed in the bearing tables. $P_{0T} = X_0 F_T + Y_0 F_a$

Where,

 P_{0r} = Static Equivalent Radial Load F_r = Applied Radial Load F_a = Applied Axial Load X_0 = Static Radial Load Factor Y_0 = Static Axial Load Factor

When selecting a bearing with an unknown static and/or pronounced shock loading, the equivalent radial load calculated for your application should be multiplied by a factor of safety between 2 and 4 (depending on the noise requirements). For more information on selecting a bearing for shock and static load conditions, contact your Timken representative.

Many different performance criteria exist that dictate how a bearing should be selected. These include bearing fatigue life, rotational precision, power requirements, temperature limits, speed capabilities and sound. This handbook deals primarily with bearing life as related to material associated fatigue life.

Bearing life is defined here as the length of time, or number of revolutions, until a fatigue spall of 6 mm² (0.01 in²) develops. Since metal fatigue is a statistical phenomenon, the life of an individual bearing is impossible to predetermine precisely. Bearings that may appear to be identical can exhibit considerable life scatter when tested under identical conditions. Thus it is necessary to base life predictions on a statistical evaluation of a large number of bearings operating under similar conditions. The Weibull distribution function is commonly used to predict life of a bearing at any given reliability level.

Rating Life

Rating life, L_{10} , is the life that 90 percent of a group of apparently identical bearings will complete or exceed before a fatigue spall develops. The L_{10} life is also associated with 90 percent reliability for a single bearing under a certain load.

Bearing Life Equations

Traditionally, the L_{10} life has been calculated as follows for bearings under radial or combined loading where the dynamic equivalent radial load, P_r , has been determined:

 $L_{10} = \left(\frac{C_1}{P_r}\right)^{10/3} (1 \ge 10^6)$ revolutions

or

$$L_{10} = \left(\frac{C_1}{P_r}\right)^{10/3} \left(\frac{1 \times 10^6}{60_n}\right) hours$$

Where n = RPM

With increased emphasis on the relationship between the reference conditions and the actual environment in which the bearing operates in the machine, the traditional life equations have been expanded to include certain additional variables that affect bearing performance. The approach whereby these factors, including a factor for useful life are considered in the bearing analysis and selection has been termed bearing systems analysis.

The ISO/ABMA expanded bearing life equation is:

$$L_{10a} = a_1 a_2 a_3 L_{10}$$

Where

- a_1 = reliability life factor
- $a_2 =$ material life factor
- a₃ = operating condition life Factor (to be specified by the manufacturer)

The Timken expanded bearing life equation is:

$$L_{10a} = a_1 a_2 a_{3d} a_{3k} a_{3l} a_{3m} a_{3p} a_4$$

Where

- $a_1 =$ reliability life factor
- a_2 = material life factor
- a_{3d} = debris life factor
- $a_{3k} = load$ zone life factor
- a_{31} = lubrication life factor
- a_{3m} = misalignment life factor

 a_{3p} = low load life factor

 $a_4 =$ useful life adjustment factor

Reliability Life Factor (a₁)

The equation for the life adjustment factor for reliability is:

$$a_1 = 4.48 \left(ln \frac{100}{R} \right)^{2/3}$$

To adjust the calculated L_{10} life for reliability, multiply by the a1 factor. If 90 (90 percent reliability) is substituted for R in the above equation, $a_1 = 1$. For R = 99 (99 percent reliability), $a_1 = 0.21$.

Note that the equation for reliability adjustment assumes there is not a minimum life below which the probability of failure is minimal (i.e., zero probability of failure produces zero life). However, extensive bearing fatigue life testing has shown a minimum life exists below which the probability of failure is negligible. For a more accurate prediction of bearing lives for small probabilities of failure, contact your Timken representative.

Material Life Factor (a₂)

The life adjustment factor for bearing material, a_2 , for standard Timken bearings manufactured from bearing-quality steel is 1.0. Bearings are also manufactured from premium steels, containing fewer and smaller inclusion impurities than standard steels and providing the benefit of extending bearing fatigue life (i.e., DuraSpexx bearings).

Application of the material life factor requires that fatigue life is limited by nonmetallic inclusions and that contact stresses are approximately less than 200 percent of the C rating, or less than 2400 MPa (350 KSI), and adequate lubrication is provided.

It is important to note that improvements in material can not offset poor lubrication in an operating bearing system. Please contact a Timken representative for applicability of the material factor.

Debris Life Factor (a_{3d})

Debris within a lubrication system reduces the life of a roller bearing by creating indentations on the contacting surfaces, leading to stress risers. The Timken life rating equations were developed based on test data obtained with 40µm oil filtration, and measured ISO cleanliness levels of approximately 15/12, which is typical of cleanliness levels found in normal industrial machinery. When more or less debris is present within the system, the fatigue life predictions can be adjusted according to the measured or expected ISO lubricant cleanliness level to more accurately reflect the expected bearing performance.

As opposed to determining the debris life factor based on ISO cleanliness levels, a Debris Signature Analysis™ can be performed for more accurate bearing performance predictions.

The Debris Signature Analysis is a process for determining the effects of the actual debris present in your system on the bearing performance. The typical way in which this occurs is through measurements of dented/bruised surfaces on actual bearings run in a given application. This type of analysis can be beneficial because different types of debris cause differing levels of performance, even when they are of the same size and amount in the lubricant.

Soft, ductile particles can cause less performance degradation than hard, brittle particles. Hard, ductile particles are typically most detrimental to bearing life. Brittle particles can break down, which will not affect performance to as large of a degree as hard ductile particles. For more information on Debris Signature Analysis or the availability of debris resistant bearings for your application, contact your Timken representative.

Surface Map of a Bearing Raceway with Debris Denting

Load Zone Life Factor (a_{3k})

The fatigue life of a bearing is a function of the stresses in rollers and raceways and the number of stress cycles that the loaded bearing surfaces experience in one bearing revolution. The stresses depend on applied load and on how many rollers support that load; the number of stress cycles depends on bearing geometry and, again, on how many rollers support the load.

Therefore, life for a given external load is related to the loaded arc, or load zone, of the bearing. The load zone in a spherical or cylindrical bearing is dominated by the internal clearance. Neglecting preload, less clearance in a bearing results in a larger load zone and subsequently longer bearing life.

180° load zone Zero clearance

Bearing Load Zones and Roller-Raceway Contact Loading

Using the dynamic equivalent load (Pr) instead of the applied radial load (Fr) in the equation for L10a roughly approximates the load zone factor for combined loading only. If a more accurate assessment of the load zone adjusted life is necessary (i.e., including the effects of internal clearance or fitting practice), contact your Timken representative to quantify this value using sophisticated computer programs.

Lubrication Life Factor (a₃₁)

The influence of lubrication film due to elastohydrodynamic (EHL) lubrication on bearing performance is related to the reduction or prevention of asperity (metal-to-metal) contact between the bearing surfaces.

During the last decade, extensive testing has been done at Timken's research facilities to quantify the effects of the lubrication-related parameters on bearing life. It has been found that the roller and raceway surface finish relative to lubricant film thickness have the most notable effect on improving bearing performance, while other factors include bearing geometry, material, loads and load zone also play an important role.

The following equation provides a simple method to calculate the lubrication factor for a more accurate prediction of the influence of lubrication on bearing life (L_{10a}).

 $a_{3l} = C_g \cdot C_l \cdot C_s \cdot C_v \cdot C_{gr}$

Where

 C_g = geometry factor C_l = load factor C_j = load zone factor C_s = speed factor C_v = viscosity factor C_{gr} = grease lubrication factor

A lubricant contamination factor is not included in the lubrication factor because our endurance tests are run with a 40µm filter, corresponding to an ISO 15/12 cleanliness level, to provide a realistic approximation of typical lubricant cleanliness.

Geometry factor - *Cg*

Cg is given for each part number in the bearing tables that follow. The geometry factor also includes the material and load zone effects, as these are also inherent to the bearing design. However, the primary effect of the load zone is on roller load distributions and contact stresses within the bearing [refer to the previous section – Load Zone Life Factor (a_{3k})], which are not quantified within the lubrication factor.

Note that the geometry factor (C_g) factor is not applicable to our DuraSpexx product. For more information on DuraSpexx, consult your Timken representative.

Load factor - C₁

The C_l factor is obtained from the following figure. Note that the factor is different for spherical and cylindrical roller bearings. P_r is the equivalent load applied to the bearing in Newtons, and is determined in the Equivalent Bearing Loads (P_r) section.

Speed factor - C_s

 C_s is determined from the following figure, where rev/min (RPM) is the rotational speed of the inner ring relative to the outer ring.

Viscosity factor - C_v

The lubricant kinematic viscosity [Centistokes (cSt)] is taken at the operating temperature of the bearing. The operating viscosity can be estimated by using the figure in the Lubrication section, and the viscosity factor (C_v) can then be determined from the following figure.

Grease lubrication factor – C_{gr}

For grease lubrication, the EHL lubrication film becomes depleted of oil over time and is reduced in thickness. Consequently, a reduction factor (C_{gr}) should be used to adjust for this effect.

$$C_{gr} = 0.79$$

Load Factor (C_I) vs. Equivalent Bearing Load (P_r)

Speed Factor (Cs) vs. Rotational Speed

Viscosity Factor (C_v) vs. Kinematic Viscosity

Misalignment Life Factor (a_{3m})

The effect of bearing life depends on the magnitude of the angle of misalignment, on the internal bearing geometry, and on the applied loads.

The misalignment life factor for spherical bearings is equal to one, $a_{3m} = 1$, due to the self-aligning capabilities of a spherical roller bearing, when the allowable misalignment in a SRB bearing is between 1° and 2.5°, depending upon the series of the bearing (see the Misalignment section, page 29). Life will be reduced if these limits are exceeded, when significant misalignment is introduced, due to roller-raceway contact truncation.

For cylindrical roller bearings, accurate alignment of the shaft relative to the housing is essential for proper performance.

For cylindrical roller bearings, accurate alignment of the shaft relative to the housing is essential for proper performance. The base condition for which the load rating of cylindrical roller bearings are defined is zero axial load and 0.0005 radians misalignment.

For cylindrical roller bearings, the misalignment factor is also a measure of the effect of bearing axial load on life.

Axial loading of a cylindrical roller bearing causes a moment to be generated about the roller center, thus shifting the roller-raceway contact stresses similar to bearing misalignment.

Performance of the cylindrical roller bearings under various levels of misalignment and axial load can be predicted using sophisticated computer programs. Using these programs, Timken engineers can design special bearing contact profiles to accommodate the conditions of axial load and/or bearing misalignment in your application. Contact your Timken representative for more information.

Low Load Life Factor (a_{3p})

Bearing life tests at Timken research facilities have shown greatly extended bearing fatigue life performance is achievable when the bearing contact stresses are low and the lubricant film is sufficient to fully separate the micro-scale textures of the contacting surfaces. Mating the test data with sophisticated computer programs for predicting bearing performance, Timken engineers have developed a low load factor for use in the catalog to predict the life increases expected when operating under low bearing loads. The following figures show the low-load factor (a3p) as a function of the lubricant life factor (a3l) and the ratio of bearing dynamic rating to the bearing equivalent load.

Roller Inner-Raceway Contact Stress without Misalignment

Roller Inner-Raceway Contact Stress with High Misalignment and Special Profiles

Low Load Factor (a_{3p}) vs. Lubricant Life Factor (a_{3l}) and C_{90}/P_r Ratio

Equivalent Bearing Loads (Pr)

To calculate the L_{10} life previously introduced, it is necessary to calculate a dynamic equivalent radial load, designated by P_r . The dynamic equivalent radial load is defined as a single radial load, that if applied to the bearing will result in the same life as the actual combined loading the bearing operates under.

$P_r - XF_r + YF_a$

Where

- P_r = dynamic equivalent radial load
- F_r = applied radial load
- F_a = applied axial load
- X = radial load factor
- Y = axial load factor

For spherical roller bearings, the values for X and Y can be determined using the equations below. Calculate the ratio of the axial load to the radial load. Compare this ratio to the e value for the bearing.

In equation form,

 $P_r = F_r + Y_1 F_a$ for $F_a/F_r \le e$, and

 $P_r = 0.67 F_r + Y_2 F_a$ for $F_a/F_r > e$.

Note that values for e, Y_1 , and Y_2 are available in the data tables.

For cylindrical roller bearings, the equations for equivalent radial load can be determined using the tables below.

Bearing Series 2, 3 and 10

Load Range Ratio	Equivalent Radial Load				
$0 \leq F_a / F_r \leq 0.11$	$P_r = F_r$				
$0.11 < F_a / F_r \le 0.30$	$P_r = 0.925 F_r + 0.682 F_a$				

Bearing Series 18, 19, 22, 23, 28, 29, 30 and 51

Load Range Ratio	Equivalent Radial Load
$0 \leq F_a / F_r \leq 0.17$	$P_r = F_r$
$0.17 < F_a / F_r \le 0.30$	$P_r = 0.925 F_r + 0.441 F_a$

Equivalent Radial Load for Cylindrical Roller Bearings

Radial Internal Clearance

Spherical and cylindrical roller bearings are ordered with a specified standard or nonstandard radial internal clearance value. The standard radial internal clearances are designated as C1, C2, normal, C3, C4, or C5 and are in accordance with ISO 5753. C1 represents the minimum clearance and C5 represents the maximum clearance. Non-standardized values are also available by special request. Consult your Timken representative for more details on obtaining bearings with non-standard radial internal clearance values.

Standard radial internal clearance values are listed in the following tables based on bore size and type (tapered or cylindrical). The clearance required for a given application depends on the desired operating precision, the rotational speed of the bearing, and the fitting practice used. Most applications use a normal or C3 clearance. Typically, larger clearance reduces the operating load zone of the bearing, increases the maximum roller load and reduces the bearing's expected life (see the Bearing Life section, page 10). However, a spherical or cylindrical roller bearing that has been put into a preload condition can experience premature bearing damage caused by excessive heat generation and/or material fatigue.

Therefore, as a general guideline spherical and cylindrical roller bearings should NOT operate in a preloaded condition. For more information on the effect of bearing fitting practice on radial internal clearance, see the Bearing Mounting section (page 26).

To achieve an appropriate operating clearance, attention must be paid to the effects the fitting practice and thermal gradient within the bearing will have on the clearance. An interference fit between the inner ring and shaft or outer ring and housing will reduce the clearance within the bearing by typically 75 to 95 percent of the resultant fit.

Thus, a value of 85 percent can be used to approximate the amount of clearance loss due to the interference fit for most applications. For help selecting the necessary radial internal clearance for your application, consult your Timken representative.

> Spherical Roller Bearing Radial Internal Clearance for Cylindrical Bore

Bore D	iameter (mm)					Radial Internal Clearance (mm)							
		Gro	up 1	Gro	up 2	Gro	up N	Gro	up 3	Gro	Group 4		up 5
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
14	18			.010	.020	.020	.035	.035	.045	.045	.060	.060	.075
18	24			.010	.020	.020	.035	.035	.045	.045	.060	.060	.075
24	30			.015	.025	.025	.040	.040	.055	.055	.075	.075	.095
30	40			.015	.030	.030	.045	.045	.060	.060	.080	.080.	.100
40	50			.020	.035	.035	.055	.055	.075	.075	.100	.100	.125
50	65			.020	.040	.040	.065	.065	.090	.090	.120	.120	.150
65	80			.030	.050	.050	.080	.080	.110	.110	.145	.145	.180
80	100	.015	.035	.035	.060	.060	.100	.100	.135	.135	.180	.180	.225
100	120	.015	.040	.040	.075	.075	.120	.120	.160	.160	.210	.210	.260
120	140	.025	.050	.050	.095	.095	.145	.145	.190	.190	.240	.240	.300
140	160	.025	.060	.060	.110	.110	.170	.170	.220	.220	.280	.280	.350
160	180	.025	.065	.065	.120	.120	.180	.180	.240	.240	.310	.310	.390
180	200	.030	.070	.070	.130	.130	.200	.200	.260	.260	.340	.340	.430
200	225	.030	.080	.080	.140	.140	.220	.220	.290	.290	.380	.380	.470
225	250	.040	.090	.090	.150	.150	.240	.240	.320	.320	.420	.420	.520
250	280	.040	.100	.100	.170	.170	.260	.260	.350	.350	.460	.460	.570
280	315	.040	.110	.110	.190	.190	.280	.280	.370	.370	.500	.500	.630
315	355	.040	.120	.120	.200	.200	.310	.310	.410	.410	.550	.550	.690
355	400	.040	.130	.130	.220	.220	.340	.340	.450	.450	.600	.600	.750
400	450	.050	.140	.140	.240	.240	.370	.370	.500	.500	.660	.660	.820
450	500	.050	.140	.140	.260	.260	.410	.410	.550	.550	.720	.720	.900
500	560	.050	.150	.150	.280	.280	.440	.440	.600	.600	.780	.780	1.000
560	630	.060	.170	.170	.310	.310	.480	.480	.650	.650	.850	.850	1.100
630	710	.060	.190	.190	.350	.350	.530	.530	.700	.700	.920	.925	1.190
710	800	.060	.210	.210	.390	.390	.580	.580	.770	.770	1.010	1.010	1.300
800	900	.060	.230	.230	.430	.430	.650	.650	.860	.860	1.120	1.120	1.440
900	1000	.070	.260	.260	.480	.480	.710	.710	.930	.930	1.220	1.220	1.570
1000	1120	.080	.290	.290	.530	.530	.780	.780	1.020	1.020	1.330	1.330	1.720
1120	1250	.090	.320	.320	.580	.580	.860	.860	1.120	1.120	1.460	1.460	1.870
1250	1400	.090	.350	.350	.640	.640	.950	.950	1.240	1.240	1.620	1.620	2.060
1400	1600	.100	.400	.400	.720	.720	1.060	1.060	1.380	1.380	1.800	1.800	2.300
1600	1800	.110	.450	.450	.810	.810	1.180	1.180	1.550	1.550	2.000	2.000	2.550

Bore Di	iameter	Radial Internal Clearance (mm)												
(m	m)	Grou	up 1	Gro	up 2	Gro	up N	Gro	up 3	Gro	oup 4	Grou	up 5	
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
18	24			.015	.025	.025	.035	.035	.045	.045	.060	.060	.075	
24	30			.020	.030	.030	.040	.040	.055	.055	.075	.075	.095	
30	40			.025	.035	.035	.050	.050	.065	.065	.085	.085	.105	
40	50			.030	.045	.045	.060	.060	.080	.080	.100	.100	.130	
50	65			.040	.055	.055	.075	.075	.095	.095	.120	.120	.160	
65	80			.050	.070	.070	.095	.095	.120	.120	.150	.150	.200	
80	100	.035	.055	.055	.080	.080	.110	.110	.140	.140	.180	.180	.230	
100	120	.040	.065	.065	.100	.100	.135	.135	.170	.170	.220	.220	.280	
120	140	.050	.080.	.080.	.120	.120	.160	.160	.200	.200	.260	.260	.330	
140	160	.055	.090	.090	.130	.130	.180	.180	.230	.230	.300	.300	.380	
160	180	.060	.100	.100	.140	.140	.200	.200	.260	.260	.340	.340	.430	
180	200	.070	.110	.110	.160	.160	.220	.220	.290	.290	.370	.370	.470	
200	225	.070	.120	.120	.180	.180	.250	.250	.320	.320	.410	.410	.520	
225	250	.080	.140	.140	.200	.200	.270	.270	.350	.350	.450	.450	.570	
250	280	.080.	.150	.150	.220	.220	.300	.300	.390	.390	.490	.490	.620	
280	315	.100	.170	.170	.240	.240	.330	.330	.430	.430	.540	.540	.680	
315	355	.110	.190	.190	.270	.270	.360	.360	.470	.470	.590	.590	.740	
355	400	.120	.210	.210	.300	.300	.400	.400	.520	.520	.650	.650	.820	
400	450	.130	.230	.230	.330	.330	.440	.440	.570	.570	.720	.720	.910	
450	500	.150	.260	.260	.370	.370	.490	.490	.630	.630	.790	.790	1.000	
500	560	.170	.290	.290	.410	.410	.540	.540	.680	.680	.870	.870	1.100	
560	630	.180	.320	.320	.460	.460	.600	.600	.760	.760	.980	.980	1.230	
630	710	.190	.350	.350	.510	.510	.670	.670	.850	.850	1.090	1.090	1.360	
710	800	.210	.390	.390	.570	.570	.750	.750	.960	.960	1.220	1.220	1.500	
800	900	.240	.440	.440	.640	.640	.840	.840	1.070	1.070	1.370	1.370	1.690	
900	1000	.270	.490	.490	.710	.710	.930	.930	1.190	1.190	1.520	1.520	1.860	
1000	1120	.290	.530	.530	.770	.770	1.030	1.030	1.300	1.300	1.670	1.670	2.050	
1120	1250	.310	.570	.570	.830	.830	1.120	1.120	1.420	1.420	1.830	1.830	2.250	
1250	1400	.330	.620	.620	.910	.910	1.230	1.230	1.560	1.560	2.000	2.000	2.450	
1400	1600	.360	.680	.680	1.000	1.000	1.350	1.350	1.720	1.720	2.200	2.200	2.700	
1600	1800	.390	.750	.750	1.110	1.110	1.500	1.500	1.920	1.920	2.400	2.400	2.950	

Bore Dia	ameter (mm)		Radial Internal Clearance (μ m)										
		(21	(C2 Normal			(3	C4		C 5	
Over	Including	min	max	min	max	min	max	min	max	min	max	min	max
0	10	5	15	0	25	20	45	35	60	50	75		
10	24	5	15	0	25	20	45	35	60	50	75	65	90
24	30	5	15	0	25	20	45	35	60	50	75	70	95
30	40	5	15	5	30	25	50	45	70	60	85	80	105
40	50	5	18	5	35	30	60	50	80	70	100	95	125
50	65	5	20	10	40	40	70	60	90	80	110	110	140
65	80	10	25	10	45	40	75	65	100	90	125	130	165
80	100	10	30	15	50	50	85	75	110	105	140	155	190
100	120	10	30	15	55	50	90	85	125	125	165	180	220
120	140	10	35	15	60	60	105	100	145	145	190	200	245
140	160	10	35	20	70	70	120	115	165	165	215	225	275
160	180	10	40	25	75	75	125	120	170	170	220	250	300
180	200	15	45	35	90	90	145	140	195	195	250	275	330
200	225	15	50	45	105	105	165	160	220	220	280	305	365
225	250	15	50	45	110	110	175	170	235	235	300	330	395
250	280	20	55	55	125	125	195	190	260	260	330	370	440
280	315	20	60	55	130	130	205	200	275	275	350	410	485
315	355	20	65	65	145	145	225	225	305	305	385	455	535
355	400	25	75	100	190	190	280	280	370	370	460	510	600
400	450	25	85	110	210	210	310	310	410	410	510	565	665
450	500	25	95	110	220	220	330	330	440	440	550	625	735
500	560	25	100	120	240	240	360	360	480	480	600	690	810
560	630	30	110	140	260	260	380	380	500	500	620	780	900
630	710	30	130	145	285	285	425	425	565	565	705	865	1005
710	800	35	140	150	310	310	470	470	630	630	790	975	1135
800	900	35	160	180	350	350	520	520	690	690	860	1095	1265
900	1000	35	180	200	390	390	580	580	770	770	960	1215	1405
1000	1120			220	430	430	640	640	850	850	1060	1355	1565
1120	1250			230	470	470	710	710	950	950	1190	1510	1750
1250	1400			270	530	530	790	790	1050	1050	1310	1680	1940
1400	1600			330	610	610	890	890	1170	1170	1450	1920	2200
1600	1800			380	700	700	1020	1020	1340	1340	1660	2160	2480
1800	2000			400	760	760	1120	1120	1480	1480	1840	2390	2760

Cylindrical Roller Bearing Radial Internal Clearance for Cylindrical Bore

Spherical Roller Bearing Radial Internal Clearance for Tapered Bore

Timken Product and Technical Handbook

Bearing Precision

Standard Timken spherical and cylindrical roller bearings maintain normal tolerances according to ISO 492. For applications where the running tolerances are critical, P6 or P5 tolerances are recommended. The following table lists the critical tolerances for Timken spherical and cylindrical roller bearings with normal, P6 and P5 precision.

The C08 suffix denotes increased running accuracy on the inner and outer rings. The inner and outer ring runouts for C08 bearings are held to P5 tolerances.

For more information about the availability of P6, P5, C08 or other non-standard tolerances, contact your Timken representative.

Bearing Bore Diameter (mm)		Tolerai	nce on Bearing Diameter (un	g Bore 1)	Assemble	ed Inner Ring (um)	Runout	Tolerance on Inner Ring Width (µm)			
Over	Including	Normal	P6	Р5	Normal	P6	P5	Normal	P6	P5	
0.6	2.5	+ 0 - 8	+ 0 - 7	+ 0 - 5	10	5	4	+ 0 -40	+ 0 -40	+ 0 -40	
2.5	10	+ 0 - 8	+ 0 - 7	+ 0 - 5	10	6	4	+ 0 -120	+ 0 -120	+ 0 -40	
10	18	+ 0 - 8	+ 0 - 7	+ 0 - 5	10	7	4	+ 0 -120	+ 0 -120	+ 0 -80	
18	30	+ 0 -10	+ 0 - 8	+ 0 - 6	13	8	4	+ 0 -120	+ 0 -120	+ 0 -120	
30	50	+ 0 -12	+ 0 -10	+ 0 - 8	15	10	5	+ 0 -120	+ 0 -120	+ 0 -120	
50	80	+ 0 -15	+ 0 -12	+ 0 - 9	20	10	5	+ 0 -150	+ 0 -150	+ 0 -150	
80	120	+ 0 -20	+ 0 -15	+ 0 -10	25	13	6	+ 0 -200	+ 0 -200	+ 0 -200	
120	180	+ 0 -25	+ 0 -18	+ 0 -13	30	18	8	+ 0 -250	+ 0 -250	+ 0 -250	
180	250	+ 0 -30	+ 0 -22	+ 0 -15	40	20	10	+ 0 -300	+ 0 -300	+ 0 -300	
250	315	+ 0 -35	+ 0 -25	+ 0 -18	50	25	13	+ 0 -350	+ 0 -350	+ 0 -350	
315	400	+ 0 -40	+ 0 -30	+ 0 -23	60	30	15	+ 0 -400	+ 0 -400	+ 0 -400	
400	500	+ 0 -45	+ 0 -35	+ 0 -27	65	35	17	+ 0 -450	+ 0 -450	+ 0 -450	
500	630	+ 0 -50	+ 0 -40	+ 0 -33	70	40	19	+ 0 -500	+ 0 -500	+ 0 -500	
630	800	+ 0 -75	+ 0 -50	+ 0 -40	80	45	22	+ 0 -750	+ 0 -750	+ 0 -750	
800	1000	+ 0 -100	+ 0 -65	+ 0 -50	90	50	26	+ 0 -1000	+ 0 -1000	+ 0 -1000	
1000	1250	+ 0 -125	+ 0 -80	+ 0 -65	100	60	30	+ 0 -1250	+ 0 -1250	+ 0 -1250	
1250	1600	+ 0 -160	+ 0 -100	+ 0 -80	120	70	35	+ 0 -1600	+ 0 -1600	+ 0 -1600	
1600	2000	+ 0 -200	+ 0 -130	+ 0 -100	140	80	40	+ 0 -2000	+ 0 -2000	+ 0 -2000	

Inner Ring Tolerances for Both Bearing Types

Outer Ring Tolerances for Both Bearing Types

Beariı Diam	ng Outside leter (mm)	Toleran	ce on Bearing Diameter (u	j Outside m)	Assemb	led Outer Rin (um)	g Runout	Tolerance on Outer Ring Width (um)				
Over	Including	Normal	P6	P5	Normal	P6	P5	Normal	P6	P5		
2.5	6	+ 0 - 8	+ 0 - 7	+ 0 - 5	15	8	5					
6	18	+ 0 - 8	+ 0 -7	+ 0 - 5	15	8	5					
18	30	+ 0 - 9	+ 0 - 8	+ 0 - 6	15	9	6					
30	50	+ 0 -11	+ 0 - 9	+ 0 - 7	20	10	7					
50	80	+ 0 -13	+ 0 -11	+ 0 - 9	25	13	8					
80	120	+ 0 -15	+ 0 -13	+ 0 -10	35	18	10					
120	150	+ 0 -18	+ 0 -15	+ 0 -11	40	20	11					
150	180	+ 0 -25	+ 0 -18	+ 0 -13	45	23	13					
180	250	+ 0 -30	+ 0 -20	+ 0 -15	50	25	15					
250	315	+ 0 -35	+ 0 -25	+ 0 -18	60	30	18	Equal to Inner R	o Bearing As ling Width To	sembly's blerance		
315	400	+ 0 -40	+ 0 -28	+ 0 -20	70	35	20		-			
400	500	+ 0 -45	+ 0 -33	+ 0 -23	80	40	23					
500	630	+ 0 -50	+ 0 -38	+ 0 -28	100	50	25					
630	800	+ 0 -75	+ 0 -45	+ 0 -35	120	60	30					
800	1000	+ 0 -100	+ 0 -60	+ 0 -40	140	75	35					
1000	1250	+ 0 -125	+ 0 -80	+ 0 -50	160	85	40					
1250	1600	+ 0 -160	+ 0 -100	+ 0 -65	190	100	45					
1600	2000	+ 0 -200	+ 0 -130	+ 0 -85	220	100	55					
2000	2500	+ 0 -250	+ 0 -160	+ 0 -110	250	120	65					

Recommended Fitting Practice

The following tables list the recommended fitting practice for Timken spherical and cylindrical roller bearings. The tables assume:

- The bearing is of normal precision.
- The housing is thick and made from steel or cast iron.
- The shaft is solid and made from steel.
- The bearing seats are ground or accurately turned to less than approximately 1.6µm arithmetic average surface roughness.

The suggested fit symbols are in accordance with ISO 286 and are defined in the tables.

For help with a recommended fitting practice, especially those not conforming to the above listing, contact your Timken representative.

Fitting Practice

The proper fitting practice of a roller bearing is critical to achieving the expected performance of the bearing.

Typically, the reduction in radial internal clearance of Timken spherical and cylindrical bearings are 75 to 95 percent of the resultant fit of the bearing housing or shaft. Thus, for estimation of the loss in radial clearance due to fit, an average value of 85 percent can be used.

As a general guideline, rotating inner rings should be applied with an interference fit. Loose fits may permit the inner rings to creep or turn and wear the shaft and the backing shoulder. This wear will result in excessive bearing looseness and possible bearing and shaft damage. Additionally, abrasive metal particles resulting from creep or turning may enter into the bearing and cause excessive damage and vibration.

Stationary inner-ring fitting practice depends on the loading of the application. The load conditions and bearing envelope dimensions should be used to select the suggested shaft fit from the tables.

Similarly, rotating outer-ring applications should use an interference fit between the outer ring and housing.

Stationary outer rings are generally mounted with loose fits to permit assembly and disassembly. The loose fit also permits axial movement when a spherical bearing is mounted in the float position.

Thin-walled housings, light-alloy housings, or hollow shafts must use press fits tighter than required for thick-walled housings, steel or cast iron housings or solid shafts. Tighter fits are also required when mounting the bearing on relatively rough, or unground, surfaces.

Tapered Bore Axial Drive-Up

Typically, the tapered bore bearings are selected to simplify shaft mounting and dismounting. Since the spherical roller bearing is not separable, mounting can be simplified by use of an adapter sleeve with a cylindrical bore and tapered OD. A tapered bore roller bearing can also be used mounted directly onto a tapered shaft.

Spherical Roller Bearing Mounted with an Adapter Sleeve

Bearings with a tapered bore typically require a tighter fit on the shaft than bearings with a cylindrical bore. The inner ring of the bearing is secured by driving it up a tapered shaft or sleeve. Also assembly procedures may require special fits. In these cases, experience should be used as a guideline. For approximating the clearance loss for axial drive-up, again the 85 percent radial loss approximation can be used. That is, the radial clearance loss per axial drive-up can roughly be approximated as 71µm/mm for a 1:12 tapered bore and 28µm/mm for a 1:30 tapered bore.

Measuring Radial Clearance

Typically, the radial internal clearance of a spherical or cylindrical roller bearing is measured using feeler gages. The roller bearing will be positioned vertically such that all of the clearance is to one side. One ring is moved relative to the other a few complete rotations so that the rollers are properly seated in the raceway. For spherical roller bearings, the roller is slightly pressed (see arrow in the following figure) so that its end is contacting the floating ring. Now the radial clearance can be measured by inserting the feeler gage between the roller and the outer raceway, starting with the smallest gage sizes and increasing until the gage will no longer pass through the gap.

Below is an example of how to measure radial internal clearance for a spherical bearing. The process for a cylindrical roller bearing is much the same.

Measuring Radial Internal Clearance

Spherical Roller Bearing Inner-Ring Fitting Practice

	Lood Condition	Shaft Diam	eter (mm)	Shoft Eite ^a	
		Over	Including	Snatt Fits	
		04	0	j6	
	Light or Fluctuating Variable Load	40	100	k6	
		100	200	m6	
		04	0	k5	
		40	65	m5	
		65	100	m6	
	Normal to Heavy Load	100	140	n6	
Rotating Inner Ring		140	280	р6	
or Direction of		280	500	r6	
Radial Load		500		r7	
Indeterminate		02	0	m 5	
		20	50	m6	
	Very Heavy or Sheek Lood	50	100	n6	
	very neavy of Shock Load	100	140	р6	
		140	200	r6	
		200		r7	
		18	100	k5	
	High Running Accuracy and Light Loads	100	200	m5	
Static Inner Ring	Floating Position with All Load Conditions	All Shaft D	liameters	g6	
Radial Load	Fixed Position with All Load Conditions	All Shaft D	liameters	h6	
Axialload	All Load Conditions	0	250	j6	
ANIAI LUAU		250		js6	

^a For solid steel shafts with normal precision bearings. For hollow or nonferrous alloy shafts or other precision class bearings, contact your Timken representative.

Spherical Roller Bearing Outer-Ring Fitting Practice

Housing	Load Co	nditions	Axial Displacement Requirements	Housing Diameter	Housing
Туре	Bearing Rotation & Load	Operating Conditions	(Fixed or Floating Position)	Over Including	Fits ^a
		All Operating Conditions Not Covered	Floating Position	All Sizes	H7
Colid or Colit	Static Outor Bing Load	Light to Normal Loads	Floating Position	All Sizes	H8
Housing		Heat Conducted Through Shaft	Floating Position	All Sizes	G7
riousing		Shock Loads & Temporary Unloading	Floating Position	All Sizes	J7
	Direction of Load Indeterminate	Light to Normal	Floating Position	All Sizes	J7
Rotating Outer Ring Load		Light or Variable Load	Fixed Position	All Sizes	M7
		Normal to Heavy Load	Fixed Position	All Sizes	N7
	notating outer hing Load	Heavy Load (Thin Wall Housing)	Fixed Position	All Sizes	P7
Solid Housing		Heavy Shock Load	All Sizes	P7	
		Light to Normal	Floating Position	All Sizes	J7
	Direction of Load Indeterminate	Normal to Heavy	Fixed Position	All Sizes	K7
		Heavy Shock Load	Fixed Position	All Sizes	M7
				0 125	M6
		High Stiffness at Variable Loads	Fixed Position	125 200	N6
				200	P6
Split Housing	High Accuracy Rotation and Quit Running	Light Loads, Indeterminate Load Direction	Fixed Position	All Sizes	K6
		Axial Displacement of Outer Ring Desired	Floating Position	All Sizes	J6
		Quiet Running	Floating Position	All Sizes	H6

^a For solid steel shafts with normal precision bearings. For hollow or nonferrous alloy shafts or other precision class bearings, contact your Timken representative.

Cylindrical Roller Bearing Inner-Ring Fitting Practice

	Load Conditions	Shaft Dian	Shaft Fits ^a	
		Over	Including	
		0	40	j6
		40	140	k6
	Light or Fluctuating Variable Load	140	320	m6
		320	500	n6
		500		р6
		0	40	k 5
		40	100	m5
	Normal to Heavy Load	100	140	m6
Rotating Inner		140	360	n6
Ring or Direction of		360	500	р6
Load		500		r6
Indeterminate		0	40	m 5
		40	65	m6
	Very Heavy or Shock Load	65	140	n6
		140	320	р6
		320	500	r6
		500		r7
		0	40	j5
	High Running Accuracy with Light Loads	40	140	k5
		140	200	m5
Static Inner Bing Badial	Floating Position with All Load Conditions	All Si	Zes	g6
Load	Fixed Position with All Load Conditions	All Si	zes	h6
Axialload	All Load Conditions	0	250	j6
Axidi Ludu	All Load Conditions	250		js6

^a For solid steel shafts with normal precision bearings. For hollow or nonferrous alloy shafts, tolerances are generally selected which give a slightly tighter fit than those in the table.

Cylindrical Roller Bearing Outer-Ring Fitting Practice

Housing	Load Co	unditions	Axial Displacement Requirements	Housing Dia	Housing Eite ^a	
1340	Bearing Rotation & Load	Operating Conditions	(lixed of floating floations)	Over	Including	11(5
		All Operating Conditions Not Covered Below	Floating Position	All S	Sizes	H7
Solid or Split	Static Outer Ring Load	Light to Normal Loads	Floating Position	All S	Sizes	H8
Housing		Heat Conducted Through Shaft	Floating Position	All S	Sizes	G7
		Shock loads & Temporary Unloading	Floating Position	All S	Sizes	J6
	Direction of Load Indeterminate	Light to Normal Loads	Floating Position	All S	J7	
		Light or Variable Loads	Fixed Position	All S	Sizes	M7
	Rotating Outer Ring Load	Normal to Heavy Loads	Fixed Position	All S	N7	
Solid Housing		Heavy Load (Thin Wall Housing)	Fixed Position	All S	Sizes	P7
Joint Housing		Light to Normal Loads	Floating Position	All S	Sizes	J7
	Direction of Load Indeterminate	Normal to Heavy Loads	Fixed Position	All S	Sizes	K7
		Heavy Shock Loads	Fixed Position	All S	Sizes	M7
		Lligh stiffnass at Variable Landa	Fixed Desition	0	125	M6
	High Assuracy Potation and	High sumess at variable Loaus	FIXEU F OSILIOII	125		N6
Split Housing	Quiet Running	Light Loads with Indeterminate Direction	Fixed Position All Siz		Sizes	K6
	5	Axial displacement of Outer Ring Desired	Floating Position	All S	J6	
		Quiet running	Floating Position	All S	H6	

^a For cast iron or steel housings. For housing of nonferrous alloys, tolerances are generally selected which give a slightly tighter fit than those in the table.

Timken Product and Technical Handbook

Shaft Tolerances and Resulting Fits

Bore Dia	ameter (mm)	Normal Precision Bore	g6	1	h6	1	js6		j6 Fit Tolerance Fit		
Over	Including	Tolerance	Tolerance -2	Fit 81	Tolerance 0	Fit 61	Tolerance 3	Fit 3	Tolerance 4	Pit 21	
0	3	-8	-8	6T	-6	8T	-3	11T	-2	12T	
3	6	0	-4	12L	0	8L 0T	4	4L 12T	6	2L 14T	
6	10	0	-12	41 14L	0	9L	4.5	5L	-2	2L	
0	10	-8	-14	3T	-9	8T	-4.5	13T	-2	15T	
10	18	-8	-0 -17	2T	-11	8T	5.5 -5.5	ос 14Т	-3	3L 16T	
18	30	0	-7	20L	0	13L	6.5	7L	9	4 L	
		-10	-20	3T	-13	10T	-6.5	17T	-4	19T	
30	50	-12	-25	25L 3T	-16	10L 12T	-8	20T	-5	23T	
50	65	0 -15	-10 -29	29L 5T	0 -19	19L 15T	9.5 -9.5	10L 25T	12 -7	7L 27T	
65	80	0	-10	29L	0	19L	9.5	10L	12	7L	
		-15	-29	51 341	-19	151 221	-9.5	251	-/	271 91	
80	100	-20	-34	8T	-22	20T	-11	31T	-9	33T	
100	120	0	-12	34L	0	22L	11	11L	13	9L	
100	140	-20	-34	39L	-22	201 25L	12.5	13L	-9	331 11L	
120	140	-25	-39	11T	-25	25T	-12.5	38T	-11	39T	
140	160	-25	-14 -39	39L 11T	-25	25L 25T	12.5 -12.5	13L 38T	14 -11	11L 39T	
160	180	0	-14	39L	0	25L	12.5	13L	14	11L	
100	100	-25	-39	11T	-25	25T	-12.5	38T	-11	39T	
180	200	-30	-15 -44	44L 15T	-29	29L 30T	-14.5	15L 45T	-13	13L 46T	
200	225	0	-15	44L	0	29L	14.5	15L	16	13L	
200	220	-30	-44	15T	-29	30T	-14.5	45T	-13	46T	
225	250	-30	-15	44L 15T	-29	29L 30T	-14.5	45T	-13	46T	
250	280	0	-17	49L	0	32L	16	16L	16	16L	
		-35	-49	181 491	-32	351	-16 16	51 I 16I	-16 16	51 I 16I	
280	315	-35	-49	18T	-32	35T	-16	51T	-16	51T	
315	355	0	-18	54L	0	36L	18	18L	18	18L	
055	400	-40	-34	54L	-30	36L	-10	18L	-10	18L	
355	400	-40	-54	22T	-36	40T	-18	58T	-18	58T	
400	450	0-45	-20	60L 25T	-40	40L 45T	20 -20	20L 65T	20 -20	20L 65T	
450	500	0	-20	60L	0	40L	20	20L	20	20L	
+50	500	-45	-60	25T	-40	45T	-20	65T	-20	65T	
500	560	-50	-22 -66	00L 28T	-44	44L 50T	-22	22L 72T	-22	22L 72T	
560	630	0	-22	66L	0	44L	22	22L	22	22L	
		-50	-66	28T	-44	50T	-22	72T	-22 25	72T 251	
630	710	-75	-74	51T	-50	75T	-25	100T	-25	100T	
710	800	0	-24	74L	0	50L	25	25L	25	25L	
000	000	-75	-74 -26	82L	-50	751 56L	-25	28L	-25 28	28L	
800	900	-100	-82	74T	-56	100T	-28	128T	-28	128T	
900	1000	-100	-26 -82	82L 74T	0 -56	56L 100T	28 -28	28L 128T	28 -28	28L 128T	
1000	1120	0	-28	94L	0	66L	33	33L	33	33L	
		-125	-94	97T 941	-66	125T	-33 33	158T २२।	-33 33	158T 331	
1120	1250	-125	-94	97T	-66	125T	-33	158T	-33	158T	
1250	1400	0	-30	108L	0	78L	39	39L	39	39L	
1400	1000	- 160	-108	108L	-78	78L	-39	39L	-39	39L	
1400	1600	-160	-108	130T	-78	160T	-39	199T	-39	199T	
1600	1800	0	-32 -124	124L 168T	0 _92	92L 200T	46 -46	46L 246T	46 -46	46L 246T	
1800	2000	0	-32	124L	0	92L	46	46L	46	46L	
1000	2000	-200	-124	168T	-92	200T	-46	246T	-46	246T	

All values in micrometers unless otherwise specified.

45		m5		m6		n6		nß		r6		r7	
Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit
4	0T	6	2T	8	2T	10	4T	12	6 T	16	10T	20	10T
0	12T	2	14T	2	16T	4	18T	6	20T	10	24T	10	28T
6	1T	9	4 T	12	4 T	16	8T	20	12T	23	15T	27	15T
1	14T	4	17T	4	20T	8	24T	12	28T	15	31T	15	35T
7	1T	12	6T	15	6T	19	10T	24	15T	28	19T	34	19T
 1	15T	6	20T	6	23T	10	27T	15	32T	19	36T	19	42T
9	177	15	/1	18	11	23	121	29	181	34	231	41	231
11	1/1 2T	17	231 0 T	21	201 0 T	12	311 15T	18	3/1 22T	23	421 20T	23	491 20T
2	21 21T	8	27T	21	21T	20	101 28T	20	45T	28	201 51T	45	201 59T
13	2T	20	9T	25	9T	33	17T	42	26T	50	34T	59	34T
2	25T	9	32T	9	37T	17	45T	26	54T	34	62T	34	71T
15	2T	24	11T	30	11T	39	20T	51	32T	60	41T	71	41T
2	30T	11	39T	11	45T	20	54T	32	66T	41	75T	41	86T
15	2T	24	11T	30	11T	39	20T	51	32T	62	43T	73	43T
2	30T	11	39T	11	45T	20	54T	32	66T	43	77T	43	88T
18	3T	28	13T	35	13T	45	23T	59	37T	73	51T	86	51T
 3	381	13	481	13	551	23	65 I	37	791	51	931	51	1061
18	31 20T	28	131 40T	35	131	45	231	59	3/1 70T	76	54 I 06T	89	541 100T
ა 21	301 3T	13	40 I 15T	10	15T	52	27T	68	/91 //3T	04 88	901 63T	04 103	63T
3	46T	15	58T	15	65T	27	77T	43	93T	63	113T	63	128T
21	3T	33	15T	40	15T	52	27T	68	43T	90	65T	105	65T
3	46T	15	58T	15	65T	27	77T	43	93T	65	115T	65	130T
21	3T	33	15T	40	15T	52	27T	68	43T	93	68T	108	68T
3	46T	15	58T	15	65T	27	77T	43	93T	68	118T	68	133T
24	4T	37	17T	46	17T	60	31T	79	50T	106	77T	123	77T
4	54T	17	67T	17	76T	31	90T	50	109T	77	136T	77	153T
24	41	37	1/1	46	1/1	60	311	79	50 I	109	801 100T	126	801 1507
4	54 I	17	0/ I 17T	17	/01 17T	31 60	901 21T	50	1091 50T	8U 112	1391 0/T	80	1501 0/T
24 4	41 54T	17	67T	40	76T	31	90T	50	109T	8/1	041 1/3T	8/	160T
27	4T	43	20T	52	20T	66	34T	88	56T	126	94T	146	94T
4	62T	20	78T	20	87T	34	101T	56	123T	94	161T	94	181T
27	4T	43	20T	52	20T	66	34T	88	56T	130	98T	150	98T
4	62T	20	78T	20	87T	34	101T	56	123T	98	165T	98	185T
29	4T	46	21T	57	21T	73	37T	98	62T	144	108T	165	108T
 4	69T	21	86T	21	97T	37	113T	62	138T	108	184T	108	205T
29	4T	46	21T	57	21T	73	37T	98	62T	150	114T	171	114T
4	691 FT	21	861	21	971	37	1131	62	1381	114	1901 1907	114	2111
32	51 77T	50	231	63	231 100T	80	401 125T	801	681 1527	100	1201 211T	189	1201 224T
32	5T	50	23T	63	23T	80	1251 40T	108	68T	172	132T	120	132T
5	77T	23	95T	23	108T	40	125T	68	153T	132	217T	132	240T
30	OT	56	26T	70	26T	88	44T	122	78T	194	150T	220	150T
0	80T	26	106T	26	120T	44	138T	78	172T	150	244T	150	270T
30	0T	56	26T	70	26T	88	44T	122	78T	199	155T	225	155T
0	80T	26	106T	26	120T	44	138T	78	172T	155	249T	155	275T
35	0T	65	30T	80	30T	100	50T	138	88T	225	175T	255	175T
0	110T	30	140T	30	155T	50	175T	88	213T	175	300T	175	330T
35	01	65	301	80	301	100	501	138	881	235	1851	265	1851
0	1101 0T	30	1401 24T	30	24T	50	1/51 56T	00 156	2131 100T	185	3101 210T	185	3401 210T
40	140T	34	17/IT	30	190T	56	212T	100	256T	200	2101 366T	210	2101 400T
40	0T	74	34T	90	34T	112	56T	156	100T	276	220T	310	220T
0	140T	34	174T	34	190T	56	212T	100	256T	220	376T	220	410T
46	0T	86	40T	106	40T	132	66T	186	120T	316	250T	355	250T
0	171T	40	211T	40	231T	66	257T	120	311T	250	441T	250	480T
46	0T	86	40T	106	40T	132	66T	186	120T	326	260T	365	260T
0	171T	40	211T	40	231T	66	257T	120	311T	260	451T	260	490T
54	0T	102	48T	126	48T	156	78T	218	140T	378	300T	425	300T
0	2141	48	2621	48	2861	/8	3161	140	3/81	300	5381	300	585 I
54	01 214T	102	48 I 262T	126	481 2067	156	/81 216T	218	1401 270T	408	3301 560T	455	3301 6157
65	2141 0T	40 122	2021 58T	40	58T	18/	9101 92T	262	170T	462	300 T	520	370T
03	265T	58	323T	58	350T	92	384T	170	462T	370	662T	320	720T
65	OT	123	58T	150	58T	184	92T	262	170T	492	400T	550	400T
0	265T	58	323T	58	350T	92	384T	170	462T	400	692T	400	750T

Housing Tolerances and Resulting Fits

Outside Diameter (mm)		Normal Precision Outside	G	7	H	16		H7		H8		J6	J7		
Over	Including	Diameter Tolerance	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	
6	01	0	20	5 L	9	OT	15	0T	22	0T	5	4 T	8	7T	
Ŭ	•.	-8	5	28L	0	17L	0	23L	0	30L	-4	13L	-7	16L	
10	18	0	24	6 L	11	OT	18	0T	27	0T	6	5T	10	8T	
		-8	6	32L	0	19L	0	26L	0	35L	-5	14L	-8	18L	
18	30	0	28	7L	13	OT	21	0T	33	0 T	8	5T	12	9T	
		-9	7	37L	0	22L	0	30L	0	42L	-5	17L	-9	21L	
30	50	0	34	9L	16	01	25	01	39	01	10	61	14	111	
		-11	9	45L	0	2/L	0	36L	0	50L	-6	21L	-11	25L	
50	80	0	40	TUL	19	01	30	01	46	01	13	61	18	121	
		-13	10	53L	0	32L	0	43L	0	59L	-b	26L	-12	31L	
80	120	15	4/	12L	22	01	35		54		16	01	22	131	
		-15		02L	0	3/L	0	JUC	0	09L	-0	31L	-13	3/L 14T	
120	150	0	54	14L	25	10	40		03	01	18	261	20	141	
		-18	14	12L	0	43L	0	JOL	0	01L	-/	30L	-14	44L	
150	180	0	04 14	14L 701	25		40	UI CEI	03	001	18	/ 1	20	141 E11	
		-20	61	79L 151	20	JUC	0	00L	72	00L 0T	-7	43L 7T	- 14	01L 16T	
180	250	-20	15	011	23	501	40	761	12	102	-7	521	-16	601	
		-30	60	171	22	0T	52	0T	0 	0T	-7	J2L 7T	-10	16T	
250	315	-25	17	10/1	0	671	0	97I	0	116	-7	601	-16	711	
		0	75	18	36	OT	57	071	89	OT	29	7T	39	18T	
315	400	-40	18	115	0	761	0	971	0	129	-7	691	-18	791	
		0	83	201	40	OT	63	OT	97	0T	33	7T	43	20T	
400	500	-45	20	128	0	851	0	1081	0	1421	-7	781	-20	881	
		0	92	221	44	OT	70	OT	110	0T	37	7T	48	22T	
500	630	-50	22	142L	0	94L	0	120L	0	160L	-7	87L	-22	98L	
		0	104	24L	50	OT	80	OT	125	OT	40	10T	56	24T	
630	800	-75	24	179L	0	125L	0	155L	0	200L	-10	115L	-24	131L	
	1000	0	116	26L	56	OT	90	0T	140	0T	46	10T	64	26T	
800	1000	-100	26	216L	0	156L	0	190L	0	240L	-10	146L	-26	164L	
1000	1050	0	133	28L	66	OT	105	0T	165	0T	56	10T	77	28T	
1000	1250	-125	28	258L	0	191L	0	230L	0	290L	-10	181L	-28	202L	
1250	1600	0	155	30L	78	OT	125	OT	195	0T	68	10T	95	30T	
1200	1000	-160	30	315L	0	238L	0	285L	0	355L	-10	228L	-30	255L	
1600	2000	0	182	32L	92	OT	150	OT	230	0T	82	10T	118	32T	
1000	2000	-200	32	382L	0	292L	0	350L	0	430L	-10	282L	-32	318L	
2000	2500	0	209	34L	110	OT	175	OT	280	0T	100	10T	141	34T	
2000	2000	-250	34	459L	0	360L	0	425L	0	530L	-10	350L	-34	391L	1

All values in micrometers unless otherwise specified.

K6		(6		K7 M6		M7 N6		N7		P6		P7				
	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit	Tolerance	Fit
	2	7T	5	10T	-3	12T	0	15T	-7	16T	-4	19T	-12	21T	-9	24T
	-7	10L	-10	13L	-12	5L	-15	8L	-16	1L	-19	4L	-21	4T	-24	1T
	2	9T	6	12T	-4	15T	0	18T	-9	20T	-5	23T	-15	26T	-11	29T
	-9	10L	-12	14L	-15	4L	-18	8L	-20	1T	-23	3L	-26	7T	-29	3T
	2	11T	6	15T	-4	17T	0	21T	-11	24T	-7	28T	-18	31T	-14	35T
	-11	11L	-15	15L	-17	5L	-21	9L	-24	21	-28	2L	-31	91	-35	51
	3	131	/	181	-4	201	0	251	-12	281	-8	331	-21	3/1	-1/	421
	-13	14L	-18	18L	-20	7L	-25	11L	-28	11	-33	3L	-37	101	-42	61
	4	151	y of	211	-5	241	0	301	-14	331	-9	391	-26	45 I	-21	511
	-15	1/L 10T	-21	22L	-24	8L DOT	-30	13L	-33	11	-39	4L	-45	131	-51	81
	4	101	10	251	-0	281	0	351	-16	381	-10	451	-30	5ZT	-24	591
	-18	19L	-20	20L	-28	9L DDT	-35	15L 40T	-38	11	-45	5L FOT	-52	151 01T	-59	91
	4	211	12	201	-0	331	0	401	-20	40 I	-12	521	-30	011 10T	-28	001 10T
	-21	22L 21T	-20	30L 20T	-33	10L 22T	-40	10L 40T	-40	21 45T	-32	0L E2T	-01	101 61T	-00	EOT
	-21	211	-28	201	-0	171	-40	251	-20	401	-12	121	-50	11T	-20	2T
	5	23L 24T	-20	37L 33T	-33	37T	-40	2JL 46T	-4J	51T	-32	60T	-01	70T	-00	79T
	-24	351	-33	/31	-0	221	-46	301	-22	81	-14	161	-41	11T	-33	2T
	5	27T	16	36T	-9	41T	0	52T	-25	57T	-14	66T	-47	79T	-36	88T
	-27	401	-36	511	-41	261	-52	351	-57	101	-66	211	-79	12T	-88	1T
	7	29T	17	40T	-10	46T	0	57T	-26	62T	-16	73T	-51	87T	-41	98T
	-29	47L	-40	57L	-46	30L	-57	40L	-62	14L	-73	24L	-87	11T	-98	1T
	8	32T	18	45T	-10	50T	0	63T	-27	67T	-17	80T	-55	95T	-45	108T
	-32	53L	-45	63L	-50	35L	-63	45L	-67	18L	-80	28L	-95	10T	-108	0L
	0	44T	0	70T	-26	70T	-26	96T	-44	88T	-44	114T	-78	122T	-78	148T
	-44	50L	-70	50L	-70	24L	-96	24L	-88	6L	-114	6L	-122	28T	-148	28T
	0	50T	0	80T	-30	80T	-30	110T	-50	100T	-50	130T	-88	138T	-88	168T
	-50	75L	-80	75L	-80	45L	-110	45L	-100	25L	-130	25L	-138	13T	-168	13T
	0	56T	0	90T	-34	90T	-34	124T	-56	112T	-56	146T	-100	156T	-100	190T
	-56	100L	-90	100L	-90	66L	-124	66L	-112	44L	-146	44L	-156	0L	-190	0L
	0	66T	0	105T	-40	106T	-40	145T	-66	132T	-66	171T	-120	186T	-120	225T
	-66	125L	-105	125L	-106	85L	-145	85L	-132	59L	-171	59L	-186	5L	-225	5L
	0	78T	0	125T	-48	126T	-48	173T	-78	156T	-78	203T	-140	218T	-140	265T
	-78	160L	-125	160L	-126	112L	-173	112L	-156	82L	-203	82L	-218	20L	-265	20L
	0	92T	0	150T	-58	150T	-58	208T	-92	184T	-92	242T	-170	262T	-170	320T
	-92	200L	-150	200L	-150	142L	-208	142L	-184	108L	-242	108L	-262	30L	-320	30L
	0	1101	0	1751	-68	178T	-68	243T	-110	220T	-110	285T	-195	305T	-195	370T
	-110	250L	-175	250L	-178	182L	-243	182L	-220	140L	-285	140L	-305	55L	-370	55L

When using a tight fit inner ring, the method of assembly will depend on whether the bearing has a cylindrical or tapered bore. When mounting a cylindrical bore with a tight fit, mounting is simplified by heating the inner ring, traditionally done via submersion in hot oil or by induction heating (see photo below).

When heating in oil, it takes approximately 30 minutes to raise the temperature of the bearing to the appropriate level and the oil temperature should not exceed 120°C (250°F). Induction heating, on the other hand, is very rapid and care should be taken not to heat the bearing above 93°C (200°F).

As a general rule, the temperature difference between the inner ring and the shaft needs to be approximately 80°C (175°F) to slip on the ring. The ring should be moved onto the shaft while still at temperature and then allowed to cool and securely seat itself on the shaft. The inner ring retaining device should only be tightened after the bearing has cooled. A mechanical or hydraulic press can also be used to press on cylindrical bore bearings, but this is typically only used for small-diameter product.

Tapered bore bearings are always mounted with a tight fit and must be mounted onto a mating tapered surface.

Tapered adapter sleeves can be used to provide a tapered bearing seat; however, the bearing is often pressed directly on to tapered journals machined into the shaft. When the shafts are manufactured with tapered journals, the journals and inboard abutment face (e.g., fillet ring) should be gauged for proper size. Two tools, the sine bar and ring gage, are available to aid in these measurements. The ring gage is a tapered bore master that is placed on the bearing journal and then used as a reference surface for measuring between the gage face and the shaft shoulder. This measurement, along with the dimensional constants of the gage, can then be used to determine the required length of the fillet ring. If the fillet is sized properly, the bearing will then simply have to be pressed up firmly against the face of the fillet ring to achieve the proper fit and radial internal clearance.

In the case where the bearing is not being pressed up against a backing shoulder, alternate methods must be used to determine that the bearing has been pressed up properly. One method is to measure the axial distance the bearing moves up the tapered seat, but the preferred method is to measure the reduction in radial internal clearance. A comparison must be made, so the radial internal clearance must be measured before the bearing is mounted and then compared to the

mounted value. The radial internal clearance can be measured by placing a feeler gage between the unloaded roller and the outer raceway. The best location is at top dead center when the bearing is resting on its outer ring.

To remove tight fit inner rings, similar principals to mounting are again used. Heating, hydraulic nuts and mechanical removal tools can be used, or hydraulic pressure is applied to the shaft. This requires that an annular groove be machined in the bearing seat, which is fed to an axial hole breaking out on the end of the shaft. After the axial retaining devices have been removed, hydraulic pressure is applied to the axial cavity until sufficient fluid flows into the groove beneath the bearing and builds up pressure. The pressure is then used to expand the inner ring and relieve the interference between the ring and shaft. Once expanded, the inner ring will slide from the shaft.

Induction Heating of a Large Bore Spherical Roller Bearing

26

Speed Ratings

For Timken spherical roller bearings, the thermal speed ratings are listed in the bearing tables. The thermal speed ratings for Timken cylindrical roller bearings are located in the part number listings at the back of this catalog. These values have been generated by balancing the heat generated within the bearing to the heat dissipated from the bearing. In calculating these numbers, the following assumptions have been made:

- The radial load is 5 percent of the static load rating.
- For oil, it is assumed to be in a bath with the fill to the middle of the lowest rolling element, and for grease it is assumed a 30 percent bearing cavity fill.

- The oil viscosity is assumed to be 12 cSt (ISO VG32) operated at 70°C, and the grease base oil viscosity is assumed to be 22 cSt operated at 70°C.
 The bearing and its components are at 70°C and the bearing environment is at 20°C.
- The housing and shaft are steel or cast iron.
- The bearing rotational axis is horizontal.
- The outer ring is stationary and the inner ring is rotating.
- The bearing radial internal clearance complies with class normal, and standard fits are used.
- The bearing does not contain seals.

• The bearing does not experience misalignment or axial load.

Thus, the thermal speed ratings are for reference only, and can be considerably lower or higher depending on your application. Consult your Timken representative for more accurate information regarding a bearing's speed limitations in your application.

Temperature Limitations

Standard Timken spherical roller bearings are dimensionally stabilized up to 200°C. Upon special request, the bearings can be ordered with dimensional stabilization up to 250°C (S2 suffix) or 300°C (S3 suffix). Consult your Timken representative for availability in specific part numbers. Standard Timken cylindrical roller bearings are dimensionally stabilized up to 150°C. Upon special request, the bearings can be ordered with dimensional stabilization up to 200°C (S1 suffix), 250°C (S2 suffix) or 300°C (S3 suffix).

Above this, typical high temperature steels used by Timken for tapered roller bearings are also an option for both spherical and cylindrical roller bearings. Consult your Timken representative for availability of S1, S2, S3 suffixes or high temperature steels in specific part numbers and applications.

A bearing lubricant must perform three fundamental functions:

 reduce friction and wear by separating adjacent surfaces and limiting metal-to-metal contact;
 transfer heat from the bearing surfaces;

3) protect the bearing surfaces from corrosion and dirt. Many different lubrication systems – including grease, oil level, force-fed oil and oil-mist systems – can be used to successfully lubricate the bearing surfaces.

The simplest lubrication system for any bearing application is grease. Grease life is dependent upon such factors as speed, environmental conditions and operating temperature. Past experience is the best guide to relubrication frequency.

When grease lubrication is used, the grease should be packed into the bearing, making sure that it gets between the rollers and the cage, not just on the outside of these parts. Over greasing in certain applications also can be a problem. In high-speed applications, over greasing will generate excessive heat, which can lead to lubricant degradation and bearing damage.

Based on these considerations, the bearing and housing should be filled 100 percent and 30 to 50 percent respectively for normal applications. Cylindrical roller bearings generally use NLGI No. 1 or No. 2 greases.

Oils are selected primarily on the basis of application requirements, regardless of the type of lubricant system. The recommended volume of oil in any system must always be maintained to prevent premature bearing damage. The simplest type of oil lubrication system is the oillevel system, where the bearings are partially submerged in a static oil reservoir. The oil level must be to the center of the lowest rolling element. This type of system is generally only used for low and moderate speed applications because of the limited ability to transfer heat.

Force-fed oil systems are more elaborate than static oil systems. In a typical system, oil is pumped from a central reservoir to each bearing. Circulating oil provides a continuous, regulated oil flow providing the advantage of maximum heat removal and washing action to remove contamination or debris, which could cause premature bearing wear.

Oil-mist systems deliver very fine particles of oil suspended in a low-

velocity, low-pressure air stream. Oil mist provides minimum cooling capacity because the slow airflow rates and the low specific heat of air.

Regardless of the lubrication system selected for a particular application, the lubricant itself should be selected so that the viscosity is sufficient to yield proper bearing life, predicted by the a3l life factor. The figure below is used to predict the oil's kinematic viscosity versus temperature (use base oil for grease).

Higher viscosity lubricants will increase the likelihood of adequate film thickness but will also increase bearing torque and operating temperature and lower bearing speed limit. The lubricant must be selected to balance these tradeoffs between bearing torque and life adjustment to obtain proper bearing lubrication.

Kinematic Viscosity

Misalignment

Timken spherical roller bearings have the ability to accept a certain degree of misalignment between the shaft and the housing and are thus said to be self-aligning. This is accomplished because the shaft, inner ring and roller assemblies can pivot about the center of the bearing, with the rollers maintaining adequate contact in the spherical raceway of the outer ring. The maximum misalignment for the most common series is listed at right.

Maximum Misalignment for a Bearing Series

Bearing Series	Maximum Misalignment
238	± 1.0°
222, 230, 231, 239, 249	± 1.5°
223, 240	± 2.0°
232, 241	± 2.5°

For cylindrical roller bearings, the misalignment factor is also a measure of the axial load effect on life. Axial loading of a cylindrical roller bearing causes a moment to be generated about the roller center, and shifts the roller-raceway contact stresses similar to bearing misalignment. The base condition for cylindrical roller bearings is defined at zero axial load and 0.0005 radians misalignment. Performance of the bearing under other operating conditions can be predicted using SYSx or GST, and special profiles can be designed to accommodate the conditions of axial load and/or bearing misalignment.

Required Minimum Load

To prevent gross sliding of the spherical rollers or cylindrical rollers, a minimum load must be applied upon the bearing.

Usually the weight of the components supported by the bearing combined with the external loading of the application exceeds the minimum required load of a spherical roller bearing. Confirming that a particular bearing is loaded to this minimum amount is particularly important for high-speed applications. If the minimum load requirement is not met, additional radial load should be applied. A general guideline to use for the required minimum load is:

$F_{rm} \approx 0.02 \bullet C$

Where

F_{rm} = minimum radial load (kN) C = basic dynamic radial load rating (kN)

For more information on the minimum load required for your application, consult your Timken representative.

Timken cylindrical roller bearings are designed with the optimal amount of axial internal clearance between the flange face and the roller ends. Two competing characteristics are present when designing the axial internal clearance of a cylindrical roller bearing.

First, to prevent thermal effects from seizing the bearing, enough clearance must be designed into the bearing to allow the roller to effectively change size as necessary for an application. Second, the amount of skewing allowed by the roller is maintained by this clearance. Thus, smaller axial internal clearance allows less roller skew. By using sophisticated design software, the bearings are designed to allow the maximum amount of axial clearance without compromising bearing performance due to roller skew. For ISO normal class bearings, this value

is usually negligible at about 1.5 ten thousandths of the total bearing's radial section.

Allowable Axial Float from Center

A cylindrical roller bearing's main advantage is the ability to internally float. This ability is designed into the bearing by eliminating flanges and extending the raceway in that direction (i.e., the difference between NUP & NJ). The bearing data tables list the value "S," which is the axial float from center for a given bearing design. Starting when the bearing components are all axially aligned, this is the value it can float in one direction before the roller-raceway contact is truncated.

For N and NU bearing designs without flange rings, the total allowable bearing float from one side to the other is two times the S value listed in the tables.

Product Enhancements

Bearing Profiles

The industry standard cylindrical roller bearing profile has flat inner and outer raceways, and a single, non-tangent radius dub on the roller body. The flanges (ribs) are flat and perpendicular to the raceways, and the roller ends are flat. Standard Timken catalog parts follow the same profiling nominal dimensions (see figure below).

Timken can supply a multiple radius dub (MRD) profile on the roller body similar to what is typically manufactured on tapered roller bearing cones. With the MRD profile on the roller, edge stresses associated with roller-inner as well as roller-outer raceway contacts are reduced if not eliminated.

Flange Face: • Flat to slight crown

- (no hollow)
- · Perpendicular to small layback
- Raceway:
 Flat to slight crown (no hollow)

Standard Timken Outer Raceway and Flange Profile

Roller and Raceway Scuffing

In cylindrical roller bearings, there are primarily three contact locations where scuffing occurs:

- Between roller body contacts in full complement cylindrical roller bearings.
- Between the roller end-flange face contacts in any CRB.
- Roller body-inner raceway contacts in caged spherical or cylindrical roller bearings.

The information in this section should be used along with the Required Minimum Load or Lubrication discussion, pages 28 and 29.

There are two primary methods for reducing the risk of roller body scuffing in roller bearings that will be discussed within. The first method is to decrease the radial play in the bearing. By decreasing the radial internal clearance in the bearing, the roller load zone increases and the rollers are guided through a larger portion of their operation.

There are limits to how far the radial internal clearance can be reduced however. There are methods of surface modifications to the roller bodies and raceways that can make the lubricant film more effective and reduce the risk of scuffing.

Scuffing between the roller endflange face contacts typically occurs in a cylindrical roller bearing when large axial loads are applied to the bearing. In this situation, a different bearing type is usually the best solution (i.e., spherical roller bearing, tapered roller bearing). However, some applications or customers require the use of a cylindrical roller bearing with large axial loads. In this situation, a non-standard cylindrical roller bearing can be designed with spherical roller ends and laid back flange faces, or modified surface finishes to increase the lubricant film generation at this interface.

Engineered Surfaces

Timken engineered surfaces provide improved wear, fatigue, frictional, and marginal lubrication performance of spherical and cylindrical bearings. The engineered surfaces team selects and confirms the optimum tribology surface or coating to meet your needs. Contact your Timken representative for more information.

Four-row Cylindrical Bearings

Timken four-row cylindrical bearings are designed with well-balanced cross-sections to provide the highest radial capacity possible within the bearing envelope. The four-row cylindrical assembly is an ideal bearing for rolling mills at the back-up roll position where radial loads can be extremely high. The cylindrical bearing design can tolerate moderate to high mill speeds. The rollers and outer race sections are matched to ensure equal load distribution from row to row. The roller and raceway profiles are custom designed and manufactured to allow optimized stress distribution while minimizing the effect of roller-edge loading based on your specific load cycle.

Inner rings are interchangeable with the outer assemblies. Timken typically provides the inner rings with additional grind stock. This allows the mill operator to optimize the roll's precision by finish grinding the inner ring after mounting on the roll neck. Inner rings also can be provided in a finished state with no additional grinding required after mounting on the roll neck or furnished with a tapered bore for your application.

Precision runout characteristics are another reason to select the Timken four-row cylindrical assembly. Our standard for holding bearing runout is P5, which is two classes higher than the normal precision class P0. In addition, our envelope tolerances (bore, OD and width) for the assembly also are typically held to one class higher than normal, P0.

The bearings listed in this catalog range in size from 230 mm bore to 1,040 mm bore. However, when requested, Timken can design and manufacture larger sizes. Our team of engineers is ready to work with you, whether retrofitting an existing mill or creating bearings for a new mill in the earliest design stages.

Design

Figure 1: This four-row assembly includes two double outer rings with triple flanges in each ring. The outer ring assembly includes the two double outer rings, rollers and two cages, which create a unitized construction. Handling is made simpler with this design, and a loading slot is used for roller insertion. Lubrication is accomplished via slots in the faces of the outer ring. The cage is roller guided and produced as a single piece, machined-brass design. The rollers are staggered between the races. This construction is ideal for smaller mills, such as bar mills, and is well suited for grease lubrication.

Fig. 1

Figure 2: This four-row assembly is similar to the Figure 1 design with the exception that the double outer rings include radial oil holes at the center of each double outer ring for oil lubricated applications. The cage and roller sets are again integrated with the double outer ring for ease of installation into the chock.

Fig. 2

Figure 3: This four-row assembly includes two double outer rings with an integral center rib, two separable

flange rings at each end of the assembly, and a central separable flange ring mounted between the two outer rings. This assembly style allows for complete disassembly for inspection of all internal components and raceways. The inner ring assembly is typically a two-piece design, but can also be supplied as either one-piece or four-piece designs. The cage is roller guided and is a single piece, machined-brass design.

Figure 4: This four-row assembly is similar to the Figure 3 design but with a pin-type cage. The inner ring assembly is typically a two-piece design, but can also be supplied as either a one-piece or four-piece. It is also important to note that special processes have been established in cage design, manufacturing and welding to assure high and consistent quality of the final product.

Fig. 4

The bearing shown in Figure 4 includes a groove, and oil holes through the central rib for a circulating oil system. Timken also offers this bearing design with special modifications for oil-mist and airoil lubricating systems. Contact your Timken representative for more information.

Four-row part numbers are listed on pages 48 and 49.

Bear Di (I	ing Bore ameter mm)	Inner Ri Tole (µ	ng Bore erance m)	Seat I (µ	Deviation um)	Resultant Fit for Inner Ring (µm)		
Over	Including	min	max	min	max	min	max	
3	6	-7	0	+ 19	+ 27	19 T	34 T	
6	10	-7	0	+ 23	+ 32	23 T	39 T	
10	18	-7	0	+ 28	+ 39	28 T	46 T	
18	30	-8	0	+ 35	+ 48	35 T	56 T	
30	50	-10	0	+ 43	+ 59	43 T	69 T	
50	65	-12	0	+ 53	+ 72	53 T	84 T	
65	80	-12	0	+ 59	+ 78	59 T	90 T	
80	100	-15	0	+ 71	+ 93	71 T	108 T	
100	120	-15	0	+ 79	+ 101	79 T	116 T	
120	140	-18	0	+ 92	+ 117	92 T	135 T	
140	160	-18	0	+ 100	+ 125	100 T	143 T	
160	180	-18	0	+ 108	+ 133	108 T	151 T	
180	200	-22	0	+ 122	+ 151	122 T	173 T	
200	225	-22	0	+ 130	+ 159	130 T	181 T	
225	250	-22	0	+ 140	+ 169	140 T	191 T	
250	280	-25	0	+ 158	+ 190	158 T	215 T	
280	315	-25	0	+ 170	+ 202	170 T	227 T	
315	355	-30	0	+ 190	+ 226	190 T	256 T	
355	400	-30	0	+ 208	+ 244	208 T	274 T	
400	450	-35	0	+ 232	+ 272	232 T	307 T	
450	500	-35	0	+ 252	+ 292	252 T	327 T	
500	560	-40	0	+ 280	+ 324	280 T	364 T	
560	630	-40	0	+ 310	+ 354	310 T	394 T	
630	710	-50	0	+ 340	+ 390	340 T	440 T	
710	800	-50	0	+ 380	+ 430	380 T	480 T	
800	900	-65	0	+ 430	+ 486	430 T	551 T	
900	1000	-65	0	+ 470	+ 526	470 T	591 T	
1000	1120	-80	0	+ 520	+ 586	520 T	666 T	
1120	1250	-80	0	+ 580	+ 646	580 T	726 T	
1250	1400	-100	0	+ 640	+ 718	640 T	818 T	

Roll Neck Tolerance and Inner Ring Fit (using P6 bore tolerance)

Bear (ring O.D. mm)	Outer Tole ()	Ring O.D. erance .um)	Seat D	eviation um)	Resulta Outo (ant Fit for er Ring μm)
Over	Including	min	max	min	max	min	max
3	6	-7	0	+ 10	+ 22	10 L	29 L
6	10	-7	0	+ 13	+ 28	13 L	35 L
10	18	-7	0	+ 16	+ 34	16 L	41 L
18	30	-8	0	+ 20	+ 41	20 L	49 L
30	50	-9	0	+ 25	+ 50	25 L	59 L
50	80	-11	0	+ 30	+ 60	30 L	71 L
80	120	-13	0	+ 36	+ 71	36 L	84 L
120	150	-15	0	+ 43	+ 83	43 L	98 L
150	180	-18	0	+ 43	+ 83	43 L	101 L
180	250	-20	0	+ 50	+ 96	50 L	116 L
250	315	-25	0	+ 56	+ 108	56 L	133 L
315	400	-28	0	+ 62	+ 119	62 L	147 L
400	500	-33	0	+ 68	+ 131	68 L	164 L
500	630	-38	0	+ 76	+ 146	76 L	184 L
630	800	-45	0	+ 80	+ 160	80 L	205 L
800	1000	-60	0	+ 86	+ 176	86 L	236 L
1000	1250	-80	0	+ 98	+ 203	98 L	283 L
1250	1600	-100	0	+ 110	+ 235	110 L	335 L

Cylindrical Roller Bearing Four-Row Fitting Practice (Outer Ring)

Chock Bore Tolerance and Outer Ring Fit (using P6 outer ring OD tolerance)

Spherical and Cylindrical Bearing Part Numbers

Image: 1	D	Princip Dimensio	oal ons	Fig.	Basic Rati	: Load ings		Dimer	nsions (I	mm)		E Fille	Backing ar et Dimens	nd ions	(Calcula	ation F	actors	\$	
d b c cos cos cos regroup regroup <thregroup< th=""> regroup regr</thregroup<>		(mm)			(k	(N)			(mm)				<u>(mm)</u>							
100 280 52 1 423 766 2 214 188 211 2 0 16 35 3 204 188 211 2 0 16 35 5 3 204 188 211 20 16 35 5 3 006 280 0 1 685 100 2.1 280 2.1 280 2.1 280 2.1 280 2.1 280 2.1 280 2.1 280 2.1 280 2.1 280 1.1 270 280 1.1 270 280 1.1 270 280 1.1 270 280 1.1 270 280 1.1 270 280 1.1 270 280 1.1 280 210 200 200 280 210 200 210 210 210 210 210 210 210 210 210 210 210 210 210	d	D	В		C	Co	rsmin	D1	b	k	d2	d _a	D _a	**rs(max)	e	¥1	Y2	Y0	Cg	
190 2.00 5.2 1 2.40 7.5 2.47 1.88.8 2.10 2.40 2.40 2.40 2.40 2.7	180	250	52	1	429	740	2	231	5.5	3	204	188.8	241.2	2.0	0.18	3.8	5.6	3.7	0.066	
200 7.5 1 0.24 1.00 2.1 2.24 2.00 2.1 2.8 4.8 4.2 2.0 0.19 3.5 3.5 0.071 310 10 12 1944 140 2.1 2.7 1.8 1.7 5.737 1.002 2.998 2.1 0.33 2.2 0.73 0.073 340 110 1 1460 2.000 2.1 0.24 1.0 0.35 2.2 2.1 0.37 2.2 2.1 0.07 340 140 1 1710 2600 4 313 1.6 5 2.51 2.1 7.0 3.0 0.35 1.2 3.2 1.7 0.076 0.0 1.0 0.077 1.0 3.0 0.03 1.2 3.2 0.077 1.0 3.0 0.03 1.2 3.2 0.08 1.0 1.0 1.0 0.077 1.0 3.0 0.00 1.0 1.0 1.0 1.0 </td <td>190</td> <td>260</td> <td>52</td> <td>1</td> <td>435</td> <td>766</td> <td>2</td> <td>242</td> <td>5.5</td> <td>3</td> <td>214</td> <td>198.8</td> <td>251.2</td> <td>2.0</td> <td>0.18</td> <td>3.8</td> <td>5.7</td> <td>3.8</td> <td>0.068</td> <td></td>	190	260	52	1	435	766	2	242	5.5	3	214	198.8	251.2	2.0	0.18	3.8	5.7	3.8	0.068	
200 200 200 200 100 11 21 228 43 23 10 23 10 23 10 23 10 23 10 23 10 103 11 1250 2003 21 023 23 2 10 22 23 11 10 229 11 030 23 2 10 21 133 23 23 23 23 23 23 24 21 033 2 2 11 030 25 031 22 32 21 033 22 11 030 25 25 031 22 130 030 030 22 13 2 033 20 031 23 23 23 20 031 23 23 20 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 2	200	290	/5	1	824	1340	2.1	260	14	/.5	224	200.2	2/9.8	2.1	0.24	2.8	4.2	2.8	0.072	
S10 G2 I 390 21 210 230 243 240 230 241 210 238 21 0.33 22 32 24 210 238 21 0.33 22 32 23 24 0.073 340 110 1 1400 2860 3 284 11 6 271 2140 2860 25 0.4 1.7 25 1.7 0.076 360 188 1 1400 1960 4 331 16.5 9 271 171.0 343.0 3.0 0.35 1.3 2.0 0.076 360 188 1 2240 238 1.5 280 230 288 1.1 1.018 3.5 3.8 0.075 340 181 1.4500 2300 330 3.0 3.0 2.1 2.1 0.078 370 120 1.590 2300 3.0 3.0	200	280	00 00	1	565	1010	Z.1	258	8.5	4.5	228	210.2	209.8	2.0	0.19	3.5	5.3	3.5	0.071	
340 112 1 1400 121 1 16 5 2 2 121 133 12 120 123 121 133 12 121 133 12 121 133 155 123 121 133 123 121 133 155 121 133 155 121 133 <th< td=""><td></td><td>310</td><td>8Z</td><td>1</td><td>964</td><td>1540</td><td>2.1</td><td>2/8</td><td>14</td><td>7.5</td><td>237</td><td>210.2</td><td>299.8</td><td>Z.I</td><td>0.24</td><td>2.8</td><td>4.1 2</td><td>2.1 2</td><td>0.073</td><td></td></th<>		310	8Z	1	964	1540	2.1	2/8	14	7.5	237	210.2	299.8	Z.I	0.24	2.8	4.1 2	2.1 2	0.073	
340 112 1 140 1 710 280 3 243 2140 2200 2.5 0.4 1.7 2.5 1.7 0.07 360 18 1 1400 1960 4 313 16.5 9 2.7 1.7 34.0 3.0 0.35 1.7 2.5 1.7 0.07 420 18 1 1700 2800 1.5 3.2 2.5 1.2 1.7 3.4 3.0 0.34 2.3 2.0 0.08 1.0 0.07 1.0 3.4 2.8 1.1 2.7 0.08 1.0 0.07 1.0		240	109	1	1200	2000	2.1	209	16.5	0	229	210.2	299.0	2.1	0.00	2	ა 20	2	0.075	
200 100 1 100 100 1 100		340 340	1/0	1	1400	2240	3	293	10.5	9 6	243	214.0	320.0	2.0	0.31	2.Z	0.Z 2.5	2.1	0.075	
Bio Col Col <thcol< th=""> <thcol< th=""> <thcol< th=""></thcol<></thcol<></thcol<>		340	98	1	1/10	1960	3	204	16.5	Q Q	257	214.0	320.0	2.0	0.4	1.7	2.5	1.7	0.070	
420 138 1 1290 430 535 225 12 270 200 400 420 344 2 3 2 0.083 340 60 1 583 1080 2.1 278 5.5 4.5 244 200 2.0 1.0 1.8 3.8 5.7 3.8 0.075 340 118 1 1450 1280 3.00 1.4 7.5 2.00 2.1 0.18 3.8 0.075 370 150 1 1980 2200 4 310 11 6 2.0 2.70 3.8 0.30 0.31 1.7 2.5 1.7 0.081 400 144 1 2.170 3250 4 339 16.5 9 2.74 2.370 383.0 3.0 0.32 2.1 1.0 0.082 400 144 1 2.170 3.8 1.7 2.2 3.3 2.2		360	128	1	1400	2600	4 4	313	16.5	9	231	217.0	343.0	3.0	0.27	2.5	29	2.J	0.077	
20 100 1 120 100 1 120		420	120	1	2240	2000	- 5	352	22.5	12	271	217.0	400.0	<u> </u>	0.33	2	2.5	2	0.077	
100 000 1 100 100 1 100	220	300	60	1	583	1080	21	278	85	45	2/1	220.0	289.8	7.0 2.1	0.04	28	57	3.8	0.000	
340 118 1 1450 230 3 295 11 6 294 2324 3276 2.5 0.32 2.1 1.2 0.073 370 120 1 1890 2200 4 321 15.5 9 266 237.0 33.0 0.31 1.2 2.0 1.080 400 108 1 1670 2360 4 345 165.9 9 277 237.0 383.0 3.0 0.27 2.5 3.8 2.5 0.082 440 144 1 2707 235.0 4 33 16 5 277 220.0 44.00 0.32 2.1 1.1 1.4 1.070 220 4 33.0 1.0 1.6 1.1 1.0 </td <td>220</td> <td>340</td> <td>90</td> <td>1</td> <td>1150</td> <td>1880</td> <td>3</td> <td>306</td> <td>14</td> <td>75</td> <td>240</td> <td>232.4</td> <td>327.6</td> <td>2.1</td> <td>0.10</td> <td>2.8</td> <td><u> </u></td> <td>27</td> <td>0.073</td> <td></td>	220	340	90	1	1150	1880	3	306	14	75	240	232.4	327.6	2.1	0.10	2.8	<u> </u>	27	0.073	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		340	118	1	1450	2490	3	295	11	6	254	232.4	327.6	2.5	0.32	2.0	31	2.7	0.079	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		370	120	1	1690	2600	4	321	16.5	9	265	237.0	353.0	3.0	0.31	2.2	3.2	2.1	0.080	
		370	150	1	1990	3200	4	310	11	6	260	237.0	353.0	3.0	0.39	1.7	2.6	1.7	0.081	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		400	108	1	1670	2360	4	345	16.5	9	277	237.0	383.0	3.0	0.27	2.5	3.8	2.5	0.082	
		400	144	1	2170	3250	4	339	16.5	9	274	237.0	383.0	3.0	0.35	1.9	2.8	1.9	0.082	
240 320 60 1 6110 1180 2.1 238 8.5 4.5 257 250.2 309.8 2.1 0.16 4.1 6.1 4 0.078 360 118 1 1400 2730 3 316 11 6 274 252.4 347.6 2.5 0.3 2.2 3.3 2.2 0.081 400 128 1 1940 3110 4 347 16.5 9 290 257.0 383.0 3.0 0.38 1.8 2.6 1.7 0.066 440 120 1 2060 2950 4 382 22.5 12 303 248.5 4.0 0.38 1.8 2.8 1.8 0.086 440 160 1 2500 4 360 16.5 9 307 274.6 385.4 3.0 0.23 2.1 3.1 2.0 0.086 400 140 1<		460	145	1	2570	3450	5	387	22.5	12	297	240.0	440.0	4.0	0.32	2.1	3.1	2	0.088	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	240	320	60	1	6110	1180	2.1	298	8.5	4.5	267	250.2	309.8	2.1	0.16	4.1	6.1	4	0.078	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		360	118	1	1400	2730	3	316	11	6	274	252.4	347.6	2.5	0.3	2.2	3.3	2.2	0.081	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		360	92	1	1210	2050	3	326	14	7.5	280.0	252.4	347.6	2.5	0.23	2.9	4.4	2.9	0.081	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		400	128	1	1940	3110	4	347	16.5	9	290	257.0	383.0	3.0	0.31	2.2	3.3	2.2	0.084	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		400	160	1	2250	3640	4	338	11	6	283	257.0	383.0	3.0	0.38	1.8	2.6	1.7	0.086	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		440	120	1	2060	2950	4	382	22.5	12	306	257.0	423.0	3.0	0.27	2.5	3.8	2.5	0.086	
500 155 1 2980 4040 5 423 22.5 12 324 260.0 40.0 4.0 0.31 2.2 3.3 2.1 0.092 400 104 1 1550 2580 4 360 16.5 9 307 274.3 385.4 3.0 0.24 2.8 4.2 2.8 0.086 400 140 1 1960 3460 4 348 11 6 299 267.3 392.7 4.0 0.33 2.1 3.1 2 0.086 440 144 1 2390 3770 4 381 16.5 9 314 268.5 431.5 4.0 0.33 2.1 3.2 2.1 0.086 440 144 1 2300 3770 4 307 1.4 7.5 307 2.6 3.0 0.33 1.1 2.5 0.13 480 174 1 3100 </td <td></td> <td>440</td> <td>160</td> <td>1</td> <td>2620</td> <td>3970</td> <td>4</td> <td>373</td> <td>22.5</td> <td>12</td> <td>303</td> <td>248.5</td> <td>431.5</td> <td>4.0</td> <td>0.36</td> <td>1.9</td> <td>2.8</td> <td>1.8</td> <td>0.088</td> <td></td>		440	160	1	2620	3970	4	373	22.5	12	303	248.5	431.5	4.0	0.36	1.9	2.8	1.8	0.088	
260 380 75 1 916 1740 2.1 331 8.5 4.5 294 270.2 349.8 2.1 0.18 3.7 5.5 3.6 0.085 400 104 1 1550 2580 4 360 16.5 9 307 274.6 385.4 3.0 0.24 2.8 4.2 2.8 0.086 440 144 1 2300 3770 4 381 16.5 9 314 268.5 431.5 4.0 0.33 2.1 3.2 2.1 0.086 440 180 1 2810 4480 4 371 14 7.5 307 277.0 423.0 3.0 0.33 1.7 2.6 1.7 0.090 480 174 1 3100 4760 5 406 22.5 12 320 2.70 433.0 3.0 0.31 2.1 3.2 8.1 0.090		500	155	1	2980	4040	5	423	22.5	12	324	260.0	480.0	4.0	0.31	2.2	3.3	2.1	0.092	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	260	360	75	1	916	1740	2.1	331	8.5	4.5	294	270.2	349.8	2.1	0.18	3.7	5.5	3.6	0.085	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		400	104	1	1550	2580	4	360	16.5	9	307	274.6	385.4	3.0	0.24	2.8	4.2	2.8	0.086	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		400	140	1	1960	3460	4	348	11	6	299	267.3	392.7	4.0	0.33	2.1	3.1	2	0.086	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		440	144	1	2390	3770	4	381	16.5	9	314	268.5	431.5	4.0	0.31	2.1	3.2	2.1	0.089	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		440	180	1	2810	4480	4	371	14	7.5	307	277.0	423.0	3.0	0.39	1.7	2.6	1.7	0.090	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		480	130	1	2450	3430	5	416	22.5	12	328	280.0	460.0	4.0	0.27	2.5	3.7	2.5	0.091	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		480	174	1	3100	4760	5	406	22.5	12	329	277.0	463.0	3.0	0.35	1.9	2.8	1.9	0.092	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		540	165	1	3380	4610	6	456	22.5	12	350	286.0	514.0	5.0	0.31	2.1	3.2	2.1	0.096	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	280	380	/5	1	889	1/20	2.1	352	11	6	314	290.2	369.8	2.1	0.18	3.8	5.6	3.7	0.086	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		420	106	1	1630	2820	4	379	16.5	y o	326	294.6	405.4	3.0	0.23	2.9	4.4	2.9	0.090	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		420	140	1	2060	3790	4	369		6	320	287.3	412.7	4.0	0.31	2.2	3.3	2.1	0.090	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		460	140	1	2010	4060	5	401	10.5	9	333 220	300.0	440.0	4.0	0.3	2.Z	3.3 2.7	2.Z	0.092	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		400	180	1	2870	4880) 5	390	14	1.0	330	300.0	440.0	4.0	0.37	1.0	2.7	1.0	0.094	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		500	130	1	2000	3070) 5	438	22.0	12	300	300.0	480.0	4.0	0.20	2.0	3.9	2.0	0.094	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		500	170	1	2020	4300 5270	5	423	22.5	12	340 277	200.0	450.0	5.0	0.04	2	2.3	1.5	0.095	
300 420 30 1 1200 2420 3 303 11 0 342 312.4 407.0 2.3 0.13 0.3 0.3 0.32 0.13 0.3 0.3 0.33 0.33 0.33 0.33 0.4 414 16.5 9 352 314.6 445.4 3.0 0.23 2.9 4.3 2.8 0.094 460 160 1 2600 4740 4 401 14 7.5 346 314.6 445.4 3.0 0.32 2.1 3.1 2 0.095 500 160 1 2930 4810 5 434 16.5 9 361 320.0 480.0 4.0 0.31 2.2 3.3 2.1 0.097 500 200 1 3510 6020 5 422 14 7.5 356 320.0 480.0 4.0 0.38 1.8 2.6 1.7 0.098 540 140 1 2900 4230 5 461 22.5 12 3	300	/20	90	1	1260	2/20	0 3	285	22.J 11	6	3/7	300.0	107.6	2.5	0.31	2.2	5.2	2.1	0.100	
100 100 10000 1000 1000	500	460	118	1	1970	3330	<u> </u>	Δ1Δ	16.5	q	352	314.6	407.0	3.0	0.13	29	3.5 4 २	2.5	0.002	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		460	160	1	2600	4740	4	401	14	75	346	314.6	445.4	3.0	0.32	2.5	31	2.0	0.095	
500 200 1 3510 6020 5 422 14 7.5 356 320.0 480.0 4.0 0.38 1.8 2.6 1.7 0.098 540 140 1 2900 4230 5 472 22.5 12 378 320.0 520.0 4.0 0.38 1.8 2.6 0.099 540 192 1 3750 5870 5 461 22.5 12 375 320.0 520.0 4.0 0.35 1.9 2.9 1.9 0.100 320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095 320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095		500	160	1	2930	4810	5	434	16.5	9	361	320.0	480.0	4.0	0.31	2.1	3.3	21	0.097	
540 140 1 2900 4230 5 472 22.5 12 378 320.0 520.0 4.0 0.26 2.6 3.9 2.6 0.099 540 192 1 3750 5870 5 461 22.5 12 375 320.0 520.0 4.0 0.26 2.6 3.9 2.6 0.099 320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095		500	200	1	3510	6020	5	422	14	7.5	356	320.0	480.0	4.0	0.38	1.8	2.6	1.7	0.098	
540 192 1 3750 5870 5 461 22.5 12 375 320.0 52.0 4.0 0.35 1.9 2.9 1.9 0.100 320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095		540	140	1	2900	4230	5	472	22.5	12	378	320.0	520.0	4.0	0.26	2.6	3.9	2.6	0.099	
320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095 320 440 90 1 1270 2500 3 405 11 6 361 332.4 427.6 2.5 0.18 3.7 5.5 3.6 0.095		540	192	1	3750	5870	5	461	22.5	12	375	320.0	520.0	4,0	0.35	1.9	2.9	1.9	0.100	
	320	440	90	. 1	1270	2500	3	405	11	6	361	332.4	427.6	2.5	0.18	3.7	5.5	3.6	0.095	
<u>- +00 121 1 2140 3/30 4 434 10.3 3 3/2 334.0 403.4 3.0 0.23 2.9 4.4 2.9 0.08 </u>		480	121	1	2140	3790	4	434	16.5	9	372	334.6	465.4	3.0	0.23	2.9	4.4	2.9	0.098	

**These maximum fillet radii will be cleared by bearing corners.

Notes:

• Contact customer engineering for missing data.

• Geometry factor given for through hardened inner raceways, contact customer engineering for the value with case carburized inner raceways.

• Lifting holes and other bearing modifications are avaialable per customer request.

Weight (kg)		Refer Thermal Rati	ence Speed ings		Part N	lumber	
(k	g)	(rp	m)	Straight	Bore	Tapered	Bore
Straight	Tapered	Oil	Grease	World	Timken	World	Timken
8.07	7.77	1900	1500	23936CAW33	SP310942	23936CAKW33	SP601872
8.38	8.08	1800	1400	23938CAW33	SP604293	23938CAKW33	SP608419
18.1	17.6	1700	1400	23038CAW33	SP166459	23038CAKW33	SP181718
11.9	11.6	1600	1300	23940CAW33	SP613604	23940CAKW33	SP618819
23.4	22.7	1600	1300	23040CAW33	SP311846	23040CAKW33	SP316428
30.9	30.4	1200	1000	24040CAW33	SP342334	24040CAK30W33	SP728440
42.5	41.2	1200	1000	23140CAW33	SP392762	23140CAKW33	SP395860
52.4	51.7	880	790	24140CAW33	SP196753	24140CAK30W33	SP210773
44	43	1500	1200	22240CAW33	SP206494	22240CAKW33	SP207938
59.4	57.6	1000	900	23240CAW33	SP221638	23240CAKW33	SP244204
94.5	92.5	1000	960	22340CAW33	SP243638	22340CAKW33	SP247411
12.8	12.4	1500	1200	23944CAW33	SP622364	23944CAKW33	SP626079
30.3	29.4	1400	1200	23044CAW33	SP319004	23044CAKW33	SP321948
40.8	40.2	1100	960	24044CAW33	SP258597	24044CAK30W33	SP270977
53.5	51.8	1100	960	23144CAW33	SP970654	23144CAKW33	SP770762
67.6	66.6	760	690	24144CAW33	SP182052	24144CAK30W33	SP293197
60.9	59.7	1300	1100	22244CAW33	SP970568	22244CAKW33	SP448815
82.3	79.9	890	790	23244CAW33	SP458440	23244CAKW33	SP460128
120	117	960	840	22344CAW33	SP250255	22344CAKW33	SP255193
14	13.4	1300	1100	23948CAW33	SP632015	23948CAKW33	SP635954
43.7	43	1000	870	24048CAW33	SP347046	24048CAK30W33	SP729188
33	32	1300	1100.0	23048CAW33	SP780054	23048CAKW33	SP440567
66.7	64.6	990	860	23148CAW33	SP400943	23148CAKW33	SP404497
83.2	82	680	620	24148CAW33	SP307920	24148CAK30W33	SP313028
82.7	80.9	1200	1000	22248CAW33	SP211467	22248CAKW33	SP212800
111	108	780	690	23248CAW33	SP319491	23248CAKW33	SP324018
154	151	850	750	22348CAW33	SP259640	22348CAKW33	SP262996
24	23.2	1200	1000	23952CAW33	SP334862	23952CAKW33	SP341163
48	46.5	1100	1000	23052CAW33	SP325165	23052CAKW33	SP329008
66.7	65.6	910	780	24052CAW33	SP359246	24052CAK30W33	SP366205
92.1	89.3	880	770	23152CAW33	SP377186	23152CAKW33	SP386398
112	111	600	550	24152CAW33	SP519858	24152CAK30W33	SP772858
107	105	1100	940	22252CAW33	SP215080	22252CAKW33	SP219069
146	142	690	620	23252CAW33	SP461527	23252CAKW33	SP466498
187	183	780	690	22352CAW33	SP264706	22352CAKW33	SP266858
25.4	24.6	1100	940	23956CAW33	SP397748	23956CAKW33	SP398801
52.3	50.7	1100	920	23056CAW33	SP331805	23056CAKW33	SP552734
/1.5	70.4	820	710	24056CAW33	SP431211	24056CAK30W33	SP448298
97.3	94.Z	810	/10	23156CAW33	SP411992	23156CAKW33	SP417013
122	120	540	500	24156CAW33	SP464279	24156CAK30VV33	SP48/440
113	110	1000	870	22250UAW33	SP224834	22256UAKVV33	SP220923
154	150	04U 710	580	23250UAW33	5P492033	23256CAKVV33	SP301595
220	222	/10	630 960	223306AW33	57208294	22350UAKVV33	SP2/2/98
4U.I	30.0 60.0	1000	000 050	233000AVV33	3r03002U 5r03002U	233000 AKW33	07040309 00040111
12.1	ບຽ.ຽ 100	1000	000	230000AVV33	3733/32/ CD121550	230000 AN W33	07343111 0720010
102	100	740	04U	240000AVV33	5743433U 5060000	24000UAK30VV33	57/23010 CD421400
129	120	/30	040	231006AW33	3r00U003 CD102210	231006AKW33	07421400 07421400
100	103	470	440 700	241006AVV33 222600 AVV22	01 1200 10 CD222820	241006AN30W33 22260CAV/M22	0F//3341 CD222100
143 101	140	J20 500	790	222006AVV33	SF 232030 SD/6700/	222000411933	01200123 CD460252
101 // 0/	10J //1	060	200	232006/10/233	SF 40/004 SD6//010	232000/01/1933	SF 403333 SD6/F071
42.4 70	41	020	700	233040AVV33	SF 044310 SD862000	233046/10/10/23	CD2//2610
/0	/0./	JZU	/00	230046AVV33	31 002000	230046AN W33	31343010

Equivalent Dynamic Bearing Load

P = F r + Y 1 F a F a / F r ¬Ë e

 $P=0.67\ F \quad r+Y \ {}_2\ F \ {}_a \qquad \qquad F \ {}_a \ / \ F \ {}_r > e$

Equivalent Static Load

 $P_0 = F_r + Y_0 F_a$

D	Princip Dimensio	oal ons	Fig.	Basic Rati	Load ings		Dimer	nsions (I	mm)		E Fille	Backing an et Dimens	nd ions		Calcu	lation	Factor	'S	
-	(mm)			(K	(N)	-	D4	(mm)		-10	-	(mm)	**		V4	V a	V O	0]
d	U 400	B	1	C	C0	rsmin	U1	b	K	d2	da	D _a	^{**ľ} s(max)	e	¥1	¥2	YU	Cg	
	480	160	1	2660	4970	4	423	14	/.5	367	334.6	465.4	3.0	0.31	2.2	3.3	2.2	0.098	
	540	1/b	1	3500	5680	5	467	22.5	12	385	340.0	520.0	4.0	0.31	2.1	3.Z	Z. I	0.101	
	540	218	1	4070	6890	5	456	10.5	9 10	38Z	340.0	520.0	4.0	0.39	1./	2.0	1./	0.102	
2/0	080 420	208	1	4300	0870	21	490	22.5	12	401	340.0	100 0	4.0	0.30	1.9	2.8 0 /	1.9	0.105	
340	420	00	1	12/0	2740	2.1	390 126	- 11	4.0	307 201	300.Z	409.0	2.1 2.1	0.12	0.0 2.0	0.4 5.0	2.0	0.095	
	400 520	90 122	1	1340	Z740 4220	১ চ	420	11 22 F	0	205	250 0	449.0 502.0	2.1	0.17	ა.უ ე დ	0.9	ა.უ ე დ	0.101	
	520	100	1	2000	4000 50/0	5	407	16.5	12	201	350.0	502.0	4.0	0.24	2.0	4.Z	2.0	0.102	
	580	190	1	3990	6540	5	499	22.5	12	411	360.0	560.0	4.0	0.00	2.1	3.1	21	0.104	
	580	243	1	4910	8220	5	433	16.5	9	406	360.0	560.0	4.0	0.01	17	2.5	1.6	0.100	
	620	243	1	5040	8030	6	527	22.5	12	400	366.0	594.0	5.0	0.4	1.7	2.5	1.0	0.100	
360	480	90	1	1380	2900	3	445	11	6	400	372.4	467.6	2.5	0.00	4.1	6.1	4	0.103	
000	540	134	1	2590	4540	5	485	22.5	12	414	378.0	522.0	4.0	0.10	2.9	4.4	29	0.104	
	540	180	1	3320	6320	5	475	16.5	9	412	378.0	522.0	4.0	0.31	2.0	32	2.0	0.105	
	600	192	1	4160	7010	5	523	22.5	12	435	380.0	580.0	4.0	0.3	2.2	3.3	2.1	0.100	
	600	243	1	4950	8430	5	509	16.5	9	422	380.0	580.0	4.0	0.4	1.7	2.5	1.7	0.110	
	650	232	1	4790	8530	6	551	22.5	12	448	386.0	624.0	5.0	0.35	1.9	2.9	1.9	0.112	
380	520	106	1	1810	3800	4	481	14	7.5	431	394.6	505.4	3.0	0.18	3.8	5.6	3.7	0.107	
	560	135	1	2650	4840	5	508	22.5	12	439	398.0	542.0	4.0	0.22	3.1	4.6	3	0.108	
	560	180	1	3430	6810	5	497	16.5	9	434	398.0	542.0	4.0	0.3	22	33	22	0 109	
	620	194	1	4230	7150	5	542	22.5	12	452	400.0	600.0	4.0	0.3	2.3	3.4	22	0.100	
	680	240	1	5720	9250	6	581	22.5	12	472	406.0	654.0	5.0	0.35	1.9	2.9	1.9	0.112	
400	540	106	1	1840	3910	4	498	14	7.5	447	414.6	525.4	3.0	0.17	3.9	5.9	3.9	0.109	
	600	148	1	2890	5710	5	541	22.5	12	464	418.0	582.0	4.0	0.23	3	4.4	2.9	0.112	
	600	200	1	4020	7730	5	527	22.5	12	457	418.0	582.0	4.0	0.31	2.2	3.2	2.1	0.113	
	650	200	1	4520	7710	6	567	22.5	12	474	426.0	624.0	5.0	0.29	2.3	3.4	2.3	0.115	
	720	185	1	4850	7320	6	631	22.5	12	504	426.0	694.0	5.0	0.25	2.7	4	2.6	0.121	
	720	256	1	6450	1050	6	615	22.5	12	500	426.0	694.0	5.0	0.35	1.9	2.9	1.9	0.121	
	820	243	1	7260	1040	7.5	696	22.5	12	534	432.0	788.0	6.0	0.3	2.2	3.3	2.2	0.126	
420	560	106	1	1860	4030	4	519	16.5	9	468	434.6	545.4	3.0	0.16	4.1	6.1	4	0.112	
	620	150	1	3250	6010	5	562	22.5	12	485	438.0	602.0	4.0	0.22	3	4.5	3	0.115	
	620	200	1	4110	8070	5	547	22.5	12	477	438.0	602.0	4.0	0.3	2.3	3.4	2.2	0.117	
	700	224	1	5590	9620	6	607	22.5	12	504	446.0	674.0	5.0	0.31	2.2	3.3	2.1	0.122	
	700	280	1	6700	11500	6	593	22.5	12	494	446.0	674.0	5.0	0.38	1.8	2.6	1.7	0.123	
440	600	118	1	2300	4930	4	550	16.5	9	493	454.6	585.4	3.0	0.17	3.9	5.8	3.8	0.114	
	650	157	1	3570	6640	6	589	22.5	12	509	463.0	627.0	5.0	0.22	3.1	4.6	3	0.119	
	650	212	1	4500	8940	6	572	22.5	12	500	463.0	627.0	5.0	0.3	2.3	3.4	2.2	0.120	
	720	226	1	5320	10200	6	633	22.5	12	527	466.0	694.0	5.0	0.3	2.3	3.4	2.2	0.123	
	720	280	1	6840	12000	6	613	22.5	12	515	466.0	694.0	5.0	0.37	1.8	2.7	1.8	0.124	
	790	280	1	7640	12600	7.5	675	22.5	12	549	472.0	758.0	6.0	0.35	1.9	2.9	1.9	0.130	
460	680	163	1	3500	7040	6	617	22.5	12	530	483.0	657.0	5.0	0.22	3.1	4.6	3	0.122	
	680	218	1	4950	9850	6	601	22.5	12	523	483.0	657.0	5.0	0.29	2.3	3.4	2.2	0.122	
	760	240	1	6440	11200	7.5	666	22.5	12	554	492.0	728.0	6.0	0.3	2.3	3.4	2.2	0.128	
	830	296	1	8530	14200	7.5	707	22.5	12	574	492.0	798.0	6.0	0.35	1.9	2.9	1.9	0.131	
	650	128	1	2730	5890	5	601	16.5	9	538	492.0	632.0	4.0	0.17	3.9	5.8	3.8	0.126	
	700	165	1	3980	7460	6	633	22.5	12	547	503.0	677.0	5.0	0.21	3.2	4.8	3.1	0.126	l
	700	218	1	4970	1010	6	622	22.5	12	542	503.0	677.0	5.0	0.28	2.4	3.5	2.3	0.126	
	790	248	1	6820	12000	7.5	691	22.5	12	577	512.0	758.0	6.0	0.3	2.3	3.4	2.3	0.132	l
	790	308	1	8190	15100	7.5	674	22.5	12	569	512.0	758.0	6.0	0.37	1.8	2.7	1.8	0.132	l
	8/0	310	1	9170	15300	/.5	/39	22.5	12	601	512.0	838.0	6.0	0.35	1.9	2.9	1.9	0.136	l
500	870	310	1	91/0	15300	/.5	/39	22.5	12	601	512.0	838.0	6.0	0.35	1.9	2.9	1.9	0.136	l
500	620	90	1	1490	3760	3	586	-	7.5	542	512.4	607.6	2.5	0.12	5.5	8.1	5.4	0.122	

**These maximum fillet radii will be cleared by bearing corners.

Notes:

• Contact customer engineering for missing data.

• Geometry factor given for through hardened inner raceways, contact customer engineering for the value with case carburized inner raceways.

• Lifting holes and other bearing modifications are avaialable per customer request.

Wei	ight	Refer Thermal Rati	ence Speed nas		Part N	umber	
(k	q)	(rp	m)	Straight Bore		Tapered Bore	
Straight	Tapered	Oil	Grease	World	Timken	World	Timken
105	103	690	600	24064CAW33	SP932718	24064CAK30W33	SP731052
167	162	670	590	23164CAW33	SP803877	23164CAKW33	SP422970
208	205	430	400	24164CAW33	SP653050	24164CAK30W33	SP774226
240	233	520	470	23264CAW33	SP471017	23264CAKW33	SP200925
18.9	18.3	580	490	23868CAW20	SP524348	23868CAKW20	SP530205
44.3	42.8	880	740	23968CAW33	SP527511	23968CAKW33	SP540000
105	102	850	720	23068CAW33	SP313872	23068CAKW33	SP343848
142	140	630	550	24068CAW33	SP732209	24068CAK30W33	SP735084
211	204	610	540	23168CAW33	SP672527	23168CAKW33	SP424359
273	269	390	360	24168CAW33	SP782444	24168CAK30W33	SP782290
306	297	470	420	23268CAW33	SP471918	23268CAKW33	SP473963
46.3	44.8	850	710	23972CAW33	SP564729	23972CAKW33	SP601556
110	106	810	680	23072CAW33	SP261646	23072CAKW33	SP344481
151	149	580	510	24072CAW33	SP738813	24072CAK30W33	SP742611
222	215	570	500	23172CAW33	SP426033	23172CAKW33	SP429657
280	276	370	350	24172CAW33	SP774577	24172CAK30W33	SP780135
340	330	450	410	23272CAW33	SP479168	23272CAKW33	SP483241
69.5	67.4	760	640	23976CAW33	SP646640	23976CAKW33	SP650133
116	112	760	640	23076CAW33	SP344959	23076CAKW33	SP346541
153	151	540	470	24076CAW33	SP811658	24076CAK30W33	SP743930
230	223	560	500	23176CAW33	SP639591	23176CAKW33	SP646493
377	366	420	390	T3-23276CAW33	SP671270	T3-23276CAKW33	SP675256
71.7	69.4	720	610	23980CAW33	SP652511	23980CAKW33	SP656200
150	146	700	590	23080CAW33	SP351132	23080CAKW33	SP352527
206	203	510	450	24080CAW33	SP744268	24080CAK30W33	SP748096
262	253	510	450	23180CAW33	SP682447	23180CAKW33	SP686248
344	337	630	550	T3-22280CAW33	SP238672	T3-22280CAKW33	SP241786
455	441	380	350	T3-23280CAW33	SP485639	T3-23280CAKW33	SP492512
631	619	410	370	T5-22380CAW33	SP937521	T5-22380CAKW33	SP793732
74.5	72.1	680	570	23984CAW33	SP658335	23984CAKW33	SP669178
157	152	660	560	23084CAW33	SP360962	23084CAKW33	SP363220
214	210	480	420	24084CAW33	SP750952	24084CAK30W33	SP754760
353	342	450	410	23184CAW33	SP431465	23184CAKW33	SP432430
 441	434	260	250	24184CAW33	SP790493	24184CAK30W33	SP794675
 102	98.5	630	540	23988CAW33	SP671367	23988CAKW33	SP676653
 181	175	620	530	23088CAW33	SP390726	23088CAKW33	SP364450
 251	247	450	400	24088CAW33	SP758321	24088CAK30W33	SP761981
 362	351	430	390	23188CAW33	SP434520	23188CAKW33	SP436527
 456	450	2/0	260	24188CAW33	SP800873	24188CAK30W33	SP802302
 595	5//	330	300	13-23288CAW33	SP/3059/	13-23288CAKW33	SP744283
 205	199	590	500	23092CAW33	SP366431	23092CAKW33	SP367439
 2/9	2/4	420	370	24092CAW33	SP/00010	24092CAK30W33	SP764171
 441	427	410	3/0	23192UAW33	SP/15684	Z319ZUAKW33	57440394
 /01	b/b 100	300	280	13-Z3Z9ZUAW33	5P369103	13-Z3Z9ZUAKW33	57508682
 12/	123	560	480	23996CAW33	57132409	2399bUAKW33	57/4/095 60075000
 215	208	560	480	23096CAW33	5P3/2232	23096CAKW33	573/5069
292	200	400	300	24090GAW33	57/50194		57/08088
 490	4/4	380	350	13-Z3196UAW33	57440628	13-23196UAKW33	57450576
 010	609 700	230	220	13-Z4196UAW33	5P803999	13-2419bUAK3UW33	57805986
 010	/92	290	260		57692594 50605504	I-23296UAKW33	5F241486
010 607	/92	290	200	15-23296UAW33	5r092594	15-23290UAKW33	5F24148b
0Z./	00.0	310	2/0	238/500CAVV20	54218434	238/5000AKW20	242710/1

Equivalent Dynamic Bearing Load

P = F r + Y 1 F a F a / F r ¬Ë e

 $P = 0.67 F \quad r + Y \ {}_2 \ F_a \qquad \qquad F_a \ / \ F_r > e$

Equivalent Static Load

 $P \,_0 = F \,_r + Y \,_0 \,F_a$

۵	Princip Dimensio	al ons	Fig.	Basic Rat	Load ings		Dimer	nsions (r	nm)		E Fillo	acking ar et Dimens	nd ions	(Calcula	ation F	actors	;	
	(mm)			(k	(N)		-	(mm)				(mm)							
d	D	B		C	Co	rsmin	D1	b	k	d2	da	Da	** ^r s(max)	е	Y1	¥2	Y0	C g	
	670	128	1	2720	6160	5	622	22.5	12	561	518.0	652.0	4.0	0.17	4	6	3.9	0.127	
	720	167	1	4110	7890	6	657	22.5	12	571	523.0	697.0	5.0	0.21	3.2	4.8	3.2	0.131	
	720	218	1	5070	10500	6	652	25.4	8.5	569	523.0	697.0	5.0	0.27	2.5	3.7	2.4	0.128	
	830	264	1	7490	13200	7.5	723	22.5	12	603	532.0	798.0	6.0	0.3	2.2	3.3	2.2	0.136	
	920	336	1	10700	18000	7.5	778	22.5	12	630	532.0	888.0	6.0	0.36	1.9	2.8	1.8	0.141	
530	710	136	1	3080	6770	5	659	22.5	12	591	548.0	692.0	4.0	0.17	4	6	4	0.131	
	780	185	1	4870	9320	6	708	22.5	12	612	553.0	757.0	5.0	0.22	3.1	4.7	3.1	0.134	
	780	250	1	6230	12700	6	688	22.5	12	601	553.0	757.0	5.0	0.29	2.4	3.5	2.3	0.134	
	870	272	1	7530	14600	7.5	767	27.1	8.5	635	562.0	838.0	6.0	0.29	2.3	3.4	2.2	0.140	
560	750	140	1	3280	7240	5	696	22.5	12	624	578.0	732.0	4.0	0.16	4.2	6.2	4.1	0.135	
	820	195	1	5400	10400	6	745	22.5	12	644	583.0	797.0	5.0	0.22	3.1	4.6	3.1	0.138	
	820	258	1	6880	14000	6	729	22.5	12	636	583.0	797.0	5.0	0.28	2.4	3.5	2.3	0.140	
	920	280	1	8880	15800	7.5	806	22.5	12	671	592.0	888.0	6.0	0.29	2.3	3.5	2.3	0.144	
600	800	150	1	3760	8360	5	742	22.5	12	665	618.0	782.0	4.0	0.16	4.1	6.1	4	0.141	
	870	200	1	5770	11400	6	789	22.5	12	685	623.0	847.0	5.0	0.21	3.2	4.8	3.2	0.143	
	980	300	1	10000	18100	7.5	863	22.5	12	720	632.0	948.0	6.0	0.29	2.3	3.4	2.3	0.153	
	980	375	1	12100	22900	7.5	836	22.5	12	702	632.0	948.0	6.0	0.37	1.8	2.7	1.8	0.151	
630	850	165	1	4340	9850	6	786	22.5	12	707	653.0	827.0	5.0	0.17	3.9	5.9	3.9	0.147	
	920	212	1	6520	12700	7.5	838	22.5	12	724	658.0	892.0	6.0	0.21	3.2	4.8	3.2	0.149	
	920	290	1	8370	17400	7.5	815	22.5	12	712	658.0	892.0	6.0	0.28	2.4	3.5	2.3	0.149	
	1030	400	1	13500	25700	7.5	878	22.5	12	742	662.0	998.0	6.0	0.37	1.8	2.7	1.8	0.157	
670	900	170	1	4760	10700	6	834	22.5	12	747	693.0	877.0	5.0	0.17	4.1	6	4	0.150	
710	950	180	1	5180	11900	6	880	22.5	12	790	733.0	927.0	5.0	0.17	4.1	6	4	0.149	
	1030	236	1	8060	16300	7.5	939	22.5	12	815	738.0	1002.0	6.0	0.21	3.3	4.9	3.2	0.160	
	1150	438	1	16100	31100	9.5	983	22.5	12	832	750.0	1110.0	8.0	0.37	1.8	2.7	1.8	0.168	
	1150	438	1	16100	31100	9.5	983	22.5	12	832	750.0	1110.0	8.0	0.37	1.8	2.7	1.8	0.168	
750	1000	185	1	5590	13000	6	927	22.5	12	834	773.0	977.0	5.0	0.16	4.2	6.2	4.1	0.163	
	1090	335	1	11300	24300	7.5	970	22.5	12	852	778.0	1062.0	6.0	0.28	2.5	3.7	2.4	0.168	
850	1120	200	1	6470	15600	6	1041	22.5	12	941	873.0	1097.0	5.0	0.16	4.3	6.5	4.2	0.175	
900	1180	206	1	7100	17100	6	1100	22.5	12	992	923.0	1157.0	5.0	0.15	4.4	6.6	4.3	0.187	
	1180	280	1	9180	23900	6	1085	22.5	12	990	923.0	1157.0	5.0	0.21	3.3	4.9	3.2	0.182	
	1180	280	1	9180	23900	6	1085	22.5	12	990	923.0	1157.0	5.0	0.21	3.3	4.9	3.2	0.182	
950	1250	224	1	7950	19700	7.5	1161	22.5	12	1051	964	1236	7.5	0.16	4.3	6.4	4.2	0.186	

**These maximum fillet radii will be cleared by bearing corners.

Notes:

• Contact customer engineering for missing data.

• Geometry factor given for through hardened inner raceways, contact customer engineering for the value with case carburized inner raceways.

• Lifting holes and other bearing modifications are avaialable per customer request.

Weight (kg)		Refer Thermal Rati	rence Speed ings		Part Ni	ımber	
(k	g)	(rp	om)	Straight Bore)	Tapered Bore	
Straight	Tapered	Oil	Grease	World	Timken	World	Timken
131	127	540	460	239/500CAW33	SP537610	239/500CAKW33	SP540110
225	218	520	450	230/500CAW33	SP770713	230/500CAKW33	SP780405
2.9	281	370	330	240/500CAW33	SP709700	240/500CAK30W33	SP692056
582	564	360	330	T3-231/500CAW33	SP377500	T3-231/500CAKW33	SP379171
988	959	260	240	T5-232/500CAW33	SP900250	T5-232/500CAKW33	SP744993
155	150	500	430	239/530CAW33	SP542079	239/530CAKW33	SP544750
308	298	490	420	230/530CAW33	SP286272	230/530CAKW33	SP288174
419	413	350	310	240/530CAW33	SP693155	240/530CAK30W33	SP701215
640	613	330	300	T3-231/530CAW33	SP380696	T3-231/530CAKW33	SP382271
177	172	470	400	239/560CAW33	SP547766	239/560CAKW33	SP550592
355	344	440	390	230/560CAW33	SP290304	230/560CAKW33	SP293375
475	467	320	290	240/560CAW33	SP703556	240/560CAK30W33	SP708327
754	731	310	280	T3-231/560CAW33	SP384459	T3-231/560CAKW33	SP387228
217	210	440	370	239/600CAW33	SP552246	239/600CAKW33	SP554271
402	390	420	360	230/600CAW33	SP297558	230/600CAKW33	SP303257
905	877	280	250	T5-231/600CAW33	SP186778	T5-231/600CAKW33	SP953346
1150	1135	160	160	T5-241/600CAW33	SP596092	T5-241/600CAK30W33	SP859736
277	268	400	350	239/630CAW33	SP558376	239/630CAKW33	SP560883
477	462	390	340	230/630CAW33	SP304486	230/630CAKW33	SP306410
671	660	270	250	240/630CAW33	SP711109	240/630CAK30W33	SP717749
1370	1350	150	140	T-241/630CAW33	SP215922	T-241/630CAK30W33	SP253714
316	306	380	320	239/670CAW33	SP565414	239/670CAKW33	SP567184
364	353	350	300	239/710CAW33	SP570952	239/710CAKW33	SP575077
667	623	330	290	T3-230/710CAW33	SP308048	T3-230/710CAKW33	SP310307
1835	1805	130	120	T-241/710CAW33	SP134712	T-241/710CAK30W33	SP428574
1825	1800	130	120	T-241/710CAFW33	SP134712	T-241/710CAFK30W33	SP428574
417	404	320	280	239/750CAW33	SP580995	239/750CAKW33	SP584129
1065	1050	210	190	T3-240/750CAW33	SP718477	T3-240/750CAK30W33	SP721222
553	536	280	240	239/850CAW33	SP587492	239/850CAKW33	SP588453
612	592	260	220	239/900CAW33	SP596845	239/900CAKW33	SP600305
838	824	110	100	249/900CAW33	SP806999	249/900CAK30W33	SP809944
838	-	110	100	T-249/900CAW33	SP950790	_	_
769	745	240	210	239/950CAW33	SP697514	239/950CAKW33	SP699710

Equivalent Dynamic Bearing Load

 $P = F_{r} + Y_{1} F_{a} F_{a} / F_{r} \neg \ddot{E}e$ $P = 0.67 F_{r} + Y_{2} F_{a} F_{a} / F_{r} > e$

Equivalent Static Load

 $P_0 = F_r + Y_0 F_a$

Princ	ipal Dimen (mm)	sions	Fig.	Basic I Ratin (kN	Load Igs)	Dimensions (mm)					Calculation Factors	
h	n (,	B		C (internet	, Co	d1	D1	FF	r/r1	S(2)	Ca	
180	280	46	1	391	505	-	244	205	21	6.6	0 113	
200	310	51	1	445	602	-	270	229	2.1	8.6	0 123	
	310	51	3	445	602	240	270	229	2.1	-	0.123	
	320	88.9	1	1130	1650	-	281	228	3	6.4	0.153	
	360	58	2	870	1080	258	312	243	4	4.7	0.139	
	360	58	1	870	1080		312	243	4	4.7	0.139	
	360	58	3	870	1080	258	312	243	4	-	0.139	
	360	98	1	1410	1900	-	312	241	4	9	0.159	
	360	98	3	1410	1900	256	312	241	4	-	0.159	
	360	98/143	10	1410	1900	-	312	241	4	33.5	0.159	
	420	80	2	1130	1310	280	337	260	5	8	0.147	
	420	80	1	1130	1310	-	337	260	5	8	0.147	
	420	138	1	2240	2720	-	347	247	5	12.8	0.169	
220	340	56	1	565	759	-	297	250	3	8.4	0.133	
	350	98.4	1	1400	2060	-	308	249	3	7.4	0.165	
	400	65	1	865	1100	-	332	270	4	5.2	0.147	
	400	65	3	865	1100	286	332	270	4	-	0.147	
	400	108	1	1820	2350	-	348	259	4	7.4	0.169	
	400	133.4	1	2210	3030	-	344	260	3	8.8	0.180	
	460	88	1	1390	1620	-	371	284	5	9.4	0.158	
	460	145	2	2560	3230	302	381	277	5	13.8	0.183	
	460	145	1	2560	3230	-	381	277	5	13.8	0.183	
	460	145	3	2560	3230	302	381	277	5	-	0.183	
228.6	342.9	44.45	6	593	842	268	304	314	4/3	-	0.137	
240	360	56	1	595	832	-	317	270	3	8.4	0.140	
	390	107.95	1	1750	2550	-	343	273	3	6.6	0.178	
	440	72	2	1080	1300	313	365	295	4	6.5	0.157	
	440	72	1	1080	1300	-	365	295	4	6.5	0.157	
	440	72	3	1080	1300	313	365	295	4	-	0.157	
	440	120	1	1660	2360	-	365	295	4	11.5	0.179	
	440	146	1	2630	3660	-	378	287	3	9.1	0.194	
	500	95	2	1900	2190	334	415	306	5	10.3	0.173	
	500	95	1	1900	2190	-	415	306	5	10.9	0.173	
	500	155	1	2430	3240	-	403	310	5	19.4	0.193	

NU

NJ

art Numbers		mbers
	Timken	=
1A	CP277565	2
1A	CP102045	+
/A	CP115633	ភ
1A	CP325346	
1A	CP123824	5
IA	CP131492	_
/IA	CP132336	
1A	CP142406	
AN	CP148146	
IA	CP958586	<u> </u>
4	CP152030	D
A	CP158956	
1A	CP163890	
1A	CP196323	
1A	CP343925	D
Α	CP211178	.2
IA	CP214181	
1A	CP219609	
AW61	CP371986	
Α	CP180435	

 	Angle Ring (Figu	ire 8 & 9)		Weight	Reference Speed F	Thermal Ratings	Part Numbers	
				(Kg)	(rp	om)		
Part Number	Weight (kg)	B1	B2		Oil	Grease	World	Timken
				10.7	2500	2100	NU1036MA	CP277565
				14.6	2300	1900	NU1040MA	CP102045
				15.4	2300	1900	NUP1040MA	CP115633
				29.7	1200	1000	NU5140MA	CP325346
				27.8	1500	1300	NJ240EMA	CP123824
				27.4	1500	1300	NU240EMA	CP131492
				28.2	1500	1300	NUP240EMA	CP132336
				47	1100	1000	NU2240EMA	CP142406
				48.2	1100	1000	NUP2240EMA	CP148146
				51.5	1100	1000	NU2240EMA	CP958586
HJ340	5.6	18	33	58.8	1400	1200	NJ340MA	CP152030
HJ340	5.6	18	33	57.8	1400	1200	NU340MA	CP158956
				104	1000	900	NU2340EMA	CP163890
				18.5	2000	1600	NU1044MA	CP196323
				38.9	1000	930	NU5144MA	CP343925
				38.5	1500	1300	NU244MA	CP211178
				39.5	1500	1300	NUP244MA	CP214181
				62.6	1000	920	NU2244EMA	CP219609
				81.4	910	830	T2-NU5244MAW61	CP371986
				75.9	1200	1100	NU344MA	CP180435
				127	860	780	NJ2344EMA	CP227913
				125	860	780	NU2344EMA	CP243800
				129	860	780	NUP2344EMA	CP244101
				16.7	1000	890	NP5145MB	CP248826
				20.2	1800	1500	NU1048MA	CP256286
				54.7	890	810	NU5148MA	CP770255
				53.5	1300	1100	NJ248MA	CP264746
				52.6	1300	1100	NU248MA	CP267649
				54.4	1300	1100	NUP248MA	CP269588
				85.6	1000	900	NU2248MA	CP270853
				108	790	730	NU5248MAW61	CP740397
				97.5	1000	930	NJ348EMA	CP627081
				96.1	1000	930	NU348EMA	CP753352
				153	840	750	NU2348MA	CP295002

NP

NUP

41

Princi	ipal Dimens (mm)	sions	Fig.	Basic I Ratir (kN	Basic Load Dimensions Ratings (kN) (mm)						Calculation Factors	
d	D	В		C	, Co	d1	D1	F.E	r/r1	S(2)	Ca	
260	360	/6	1	/68	710		325	285	2 1/1 5	2.6	0 139	
200	400	-+0 65	1	700	1020		240	203	2.1/1.5	2.0	0.155	
	400	00	1	100	1030	-	349	290	4 F	9.9	0.131	
	480	80	1	1320	1/10	-	399	320	5	ð	0.170	
	480	130	1	2060	2970	-	398	320	5	11.5	0.194	
	480	158.75	1	3120	4250	-	412	308	5	9.3	0.205	
280	420	65	2	754	1080	330	369	316	4	9.9	0.157	
	420	65	1	754	1080	-	369	316	4	9.9	0.157	
	460	123.8	1	2350	3560	-	402	321	3	10.9	0.204	
	500	165.1	1	3370	4760	-	431	327	4	10	0.216	
	580	175	1	3120	4270	-	467	362	6	20.3	0.217	
292.1	387.35	57.15	3	854	1420	322	357	311	3	-	0.169	
300	380	48	2	531	985	329	356	321	2.1/1.5	5.1	0.161	
	460	74	1	1000	1420	-	402	340	4	10.7	0.170	
	480	127	3	2380	3670	361	419	341	3	-	0.210	
	540	177.8	1	3930	5590	-	467	352	4	11.7	0.229	
305	460	65	4	1280	1950	359	-	422	5	4.7	0.184	
	460	65	3	1280	1950	359	406	342	5/2	-	0.184	
320	480	74	1	1020	1490	-	422	360	4	11.7	0.176	
	580	92	1	1850	2460	-	485	390	5	9.4	0.196	
	580	150	1	2720	3980	-	485	390	5	18.9	0.223	
	580	190.5	1	4480	6440	-	503	380	5	11.9	0.243	
340	520	82	1	1240	1800	-	455	385	5	10.5	0.187	
360	540	82	1	1270	1880	-	475	405	5	10.5	0.191	
	650	232	1	5320	7710	-	552	422	6	14.1	0.262	
	650	232	1	5320	7710	-	552	422	6	14.1	0.262	
380	560	82	1	1300	1960	-	495	425	5	9.5	0.199	
400	600	90	2	1560	2340	470	527	450	5	9	0.210	
	600	90	1	1560	2340	-	528	450	5	9	0.210	
	720	185	1	4890	7340	-	608	480	6	12.1	0.272	
420	620	90	1	1590	2440	-	548	470	5	13	0.216	
457.2	685.8	139.7	4	3540	5480	530	-	640	6.4	9.9	0.262	
460	680	100	1	1940	3020	-	601	516	6	8.5	0.233	
469.9	571.5	82.55	3	1450	3170	503	539	491	3	-	0.246	

NU

N

Part Numbers		mbers
World	Timken	
NU1952MA	CP311624	2
NU1052MA	CP318009	–
NU252MA	CP337067	ວ
NU2252MA	CP344617	
NU5152MAW61	CP662640	5
NJ1056MA	CP351707	
NU1056MA	CP349609	
NU5156MAW56	CP502131	
NU5256MAW61	CP743549	ň
NU2356MA	CP370344	
NUP5159MA	CP429923	
NJ2860EMA	CP432298	
NU1060MA	CP445781	
NUP5160MA	CP764735	
NU5260MAW61	CP611256	_
N5161M	CP469444	
NUP5161M	CP484506	
NU1064MA	CP486648	
NU264MA	CP493365	
NU2264MA	CP503238	
NU5164MAW61	CP758000	
NU1068MA	CP519139	
NU1072MA	CP528174	
T3-NU3272MA	CP946735	

CP605732

CP614658

CP625091

				13.7	860	730	NJ2860EMA	CP432298
				45.7	1300	1100	NU1060MA	CP445781
				96.5	660	600	NUP5160MA	CP764735
				196	570	530	NU5260MAW61	CP611256
				41.3	670	590	N5161M	CP469444
				42.7	670	590	NUP5161M	CP484506
HJ1064	5.64	19	36	48.1	1300	1000	NU1064MA	CP486648
				115	890	780	NU264MA	CP493365
				180	660	610	NU2264MA	CP503238
				241	520	480	NU5164MAW61	CP758000
HJ1068	7.38	21.3	39.5	64.2	1100	1000	NU1068MA	CP519139
				68	1100	940	NU1072MA	CP528174
				362	470	440	T3-NU3272MA	CP946735
				362	470	440	T3-NU3272MAW61	CP946735
				71.3	1000	890	NU1076MA	CP534785
HJ1080	10.5	23	43	94.2	970	820	NJ1080MA	CP560479
HJ1080	10.5	23	43	91.9	970	820	NU1080MA	CP561388
				364	420	390	T3-NU2280MA	CP561941
				96.1	920	780	NU1084MA	CP587351

188

130

46.5

410

810

450

370

690

400

N5191M

NU1092F2M

NUP5194MAR330...394

Reference Thermal

Speed Ratings

(rpm)

Grease

860

1400

1000

780

650

1300

1300

650

610

620

700

0il

1000

1600

1100

850

710

1600

1600

710

660

690

810

Weight

(Kg)

14.9

30

69.7

113

140

32.1

31.8

88.3

152

234

18.9

B2

d₁

F

Angle Ring (Figure 8 & 9)

B1

Weight (kg)

Part Number

Principal Dimensions (mm)		Fig.	Basic Load Ratings (kN)		Dimensions (mm)					Calculation Factors		
d	D	В		C	Co	d1	D1	F,E	r/r1	S(2)	Cg	
480	600	56	2	866	1680	523	560	511	3	7.4	0.216	
	650	78	7	1530	2580	538	593	523	5	7	0.230	
	700	100	2	2360	3920	560	622	536	6	9.8	0.253	
500	670	100	1	2130	4140	-	608	543	5	5	0.264	
560	680	56	2	816	1780	607	638	597	3	7.4	0.233	
	820	115	1	2650	4270	-	726	625	6	18.8	0.269	
600	800	90	3	2200	3870	669	739	649	5	-	0.272	
	800	90	7	2200	3870	669	739	649	5	7	0.262	
	800	118	3	3030	5800	670	736	649	5	-	0.296	
	870	118	1	3130	5210	-	779	667	6	16.8	0.262	
630	850	128	3	3470	6520	704	782	683	6	-	0.312	
647.7	774.54	101.6	6	2160	5340	692	732	746	5/1.5	-	0.314	
660.4	863.6	107.95	3	3230	6030	728	800	704	5	-	0.311	
	838.2	114.3	6	2990	6400	725	781	801	6/1.5	-	0.323	
673.1	838.2	117.475	3	3020	6800	728	782	710	5	-	0.331	
710	950	140	2	4020	8190	794	866	770	6	11.1	0.348	
723.8	908.05	120.65	6	3440	7440	788	848	870	5/1.5	-	0.343	
850	1050	125	2	3660	8170	918	982	896	5/6	8	0.373	
950	1250	132	1	4360	8520	-	1147	1025	7.5	12.8	0.381	
	1250	132	3	4360	8520	1055	1147	1025	7.5	-	0.381	

NU

NJ

	Angle Ring (Fig	ure 8 & 9)		Weight (Kg)	Reference Thermal Speed Ratings (rpm)		Part Numbers	
Part Number	mber Weight (kg) B1 B2			Oil	Grease	World	Timken	
				38.9	500	440	NJ1896MA	CP684465
				77.2	450	390	NJF5196MA	CP640672
				138	710	610	NJ1096EMA	CP481212
				104	400	350	NU29/500M	CP666941
				43.8	400	340	NJ18/560EMA	CP716354
				213	630	540	NU10/560MA	CP738425
				136	330	290	NUP19/600EMA	CP758111
				135	330	290	NJF51/600EMA	CP766240
				173	310	280	NUP29/600MA	CP774123
				249	550	480	NU10/600MA	CP778235
				229	290	260	NUP29/630EMA	CP802469
				99.8	290	260	NP51/648M	CP561692
				176	270	240	NUP51/660MA	CP117430
				160	270	240	NP52/667M	CP229691
				167	260	240	NUP51/673MANS	CP152541
				307	240	220	NJ29/710MA	CP771048
				197	240	210	NP51/724M	CP248834
				255	200	180	T-NJ51/850MA	CP431299
				482	180	160	NU19/950MA	CP724445
				502	180	160	NUP19/950MA	CP737874

NUP

NP

Principal Dimensions		Fig.	Basic Rat	c Load tings								
	(mm)			(k	(N)		(mm)					
d	D	В		C	Co	d1	D1	F,E	r/r1	S(2)		
200	250	24	1	193	343	218	231	238	1.5	1.1		
220	270	24	1	202	377	239	251	258	1.5	1.1		
	300	48	1	575	1010	251	272	283	2.1	1.5		
260	320	28	1	297	561	283	299	307	2	1.1		
	360	60	1	846	1490	294	320	333	2.1	1.5		
280	350	33	1	362	682	307	326	334	2	1.1		
300	380	38	1	464	858	330	354	363	2.1	1.5		
	420	72	1	1260	2240	342	374	390	3	3		
320	400	38	1	479	912	350	374	383	2.1	1.5		
	440	72	1	1300	2380	363	394	411	3	3		
340	420	38	1	492	966	370	394	403	2.1	1.5		
	520	133	1	2710	4200	397	463	486	5	5		
360	440	38	1	506	1020	390	414	423	2.1	1.5		
380	480	46	1	708	1360	417	446	457	2.1	1.5		
	520	82	1	1820	3410	430	469	487	4	4		
400	500	46	1	722	1420	434	464	474	2.1	1.5		
440	540	46	1	756	1560	475	506	516	2.1	1.5		
460	580	56	1	1030	2020	503	539	553	3	3		
	620	95	1	2310	4580	516	557	579	4	4		
500	620	56	1	1070	2190	544	579	593	3	3		
530	650	56	1	1100	2320	574	610	624	3	3		
600	730	60	1	1170	2610	645	681	695	3	3		
630	780	69	1	1410	3080	681	722	738	4	4		
710	870	74	1	1740	3900	768	813	831	4	4		

NCF

Calculation Weight		Referen Speed	ce Thermal I Ratings	Part Numbers			
	(Kg)		rpm)				
Cg		Oil	Grease	World	Timken		
0.111	2.52	730	600	NCF1840V	CP888795		
0.118	2.92	660	540	NCF1844V	CP893357		
0.145	10.9	650	550	NCF2944V	CP896582		
0.136	4.8	570	470	NCF1852V	CP902548		
0.165	18.5	530	450	NCF2952V	CP908789		
0.145	7.2	540	440	NCF1856V	CP914453		
0.156	10	500	410	NCF1860V	CP924699		
0.190	31.5	420	370	NCF2960V	CP930628		
0.163	10.6	460	380	NCF1864V	CP941080		
0.198	32.9	390	340	NCF2964V	CP946349		
0.170	11.2	420	350	NCF1868V	CP949915		
0.222	97.7	350	310	NCF3068V	CP957288		
0.175	11.4	390	330	NCF1872V	CP960013		
0.188	19.1	370	310	NCF1876V	CP963855		
0.227	52.9	300	260	NCF2976V	CP218100		
0.193	20.6	340	290	NCF1880V	CP970038		
0.205	22.3	300	250	NCF1888V	CP973511		
0.219	34.2	290	240	NCF1892V	CP982466		
0.261	84	240	210	NCF2992V	CP986564		
0.232	36	260	220	NCF18/500V	CP991661		
0.239	37.8	240	200	NCF18/530V	CP992526		
0.259	50.2	210	180	NCF18/600V	CP998904		
0.273	72.2	200	170	NCF18/630V	CP217594		
0.300	91.6	170	140	NCF18/710V	CP204493		

Pr	incipal Dimensior	15	Fig.				
(mm)				1 mil rev	90 mil rev	rev	
d	D	В		C1(4)	C90(4)	Co	
230	330	206	1	2120	550	3956	
240	330	220	1	1924	498	4320	
240	320	200	2	1990	516	3896	
280	390	220	1	2620	680	5200	
300	420	300	3	4080	1058	8360	
340	480	350	3	5180	1342	10800	
379.950	540	400	4	6900	1790	14640	
380	540	400	4	6900	1790	14640	
390	540	320	4	5720	1482	11880	
550	740	510	4	11780	3060	28160	
571.1	812.97	594	4	15440	4000	34720	
-	920	670	4	19540	5060	45200	
700	930	620	4	16920	4380	44000	
-	1030	750	4	24600	6360	58800	
750	1000	670	4	20000	5200	50400	
800	1080	700	4	22600	5880	58800	
820	1130	800	4	27400	7120	68400	
820	1100	720	4	23000	5960	57600	
850	1150	840	4	28800	7460	74800	
850	1180	850	4	29600	7680	72800	
900	1220	840	4	30200	7820	78000	
1040	1439.89	1000	4	42600	11060	101200	

Fig. 1

Fig. 2

Part Number

RZ-230AA

RZ-240AA

RZ-240AC

RZ-280AA

RZ-300AA RZ-340AA

RZ-380AA

RZ-380AB

RZ-390AA

RZ-550AA

RZ-571AA

RZ-650PA

RZ-700AA

RZ-730PA

RZ-750AA

RZ-800AA

RZ-820AA

RZ-820AC

RZ-850AA

RZ-850ABDR

RZ-900AA

RZ-1040AA

	-		-
Γ.			- 11
	Η.	ы	<u> </u>

Diameter Under

Rollers

(mm)

F

260

270

260

312

332

378

422

422

431

600

636

723

763

809

813

878

903

892

928

940

989

1133

Fillet Dimensions

(mm)

Inner rs

2.1

2.1

2.1

3

7x20°

8x20°

10x20°

10x20°

15x20°

14x20°

18x20°

20x20°

20x20°

23x20°

22x20°

23x20°

25x11°20'

24x24°

27x20°

-

-

5

Outer r1s

2.1

2.1

2.1

3

1.5

1.5

2

2

2

2

5

4

3

6

3

3

7.5

3

4

7.5

4

7.5

Weight

(kg)

58

56,7

44,6

82,5

130

207

296

296

230

648

1030

1066

1190

1534

1500

1960

2510

2000

2680

2940

3030

5060

Calculation

Factors

Cg

0.147

0.157

0.148

0.168

0.191

0.212

0.234

0.234

0.225

0.310

0.327

-

0.377

-

0.393

0.419

0.433

0.417

0.449

0.445

0.464

0.505

49

Timken Performance. Competitive Solutions.

Timken® is the registered trademark of The Timken Company. timken.com/spherical timken.com/cylindrical

©2003 The Timken Company Printed in USA 20M 02-03-05 Order No. 5714

WORLDWIDE LEADER IN BEARINGS AND STEEL