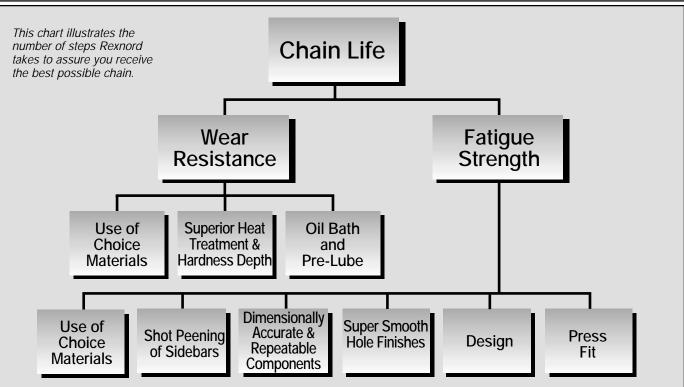
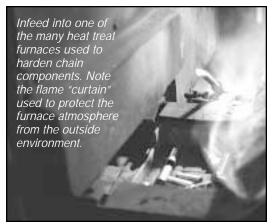

Rexnord & Link-Belt Conveyor,
Elevator, & Drive ChainsPerformance, Value, & Reliability
(English-Inch)



Special Application Chain	4-9
Engineered Steel Chains with Rollers	
Engineered Steel Chains without Rollers	
Engineered Steel Chain Attachments	15-29
Drive Chains	
Welded Steel Chains	
Welded Steel Chains Attachments	
Cast Chains	
Cast Chain Attachments	49, 51, 56-58
Drop Forged Chains	
Drop Forged Chains Attachments	
Polymeric Chains	
Live Roller Conveyor Chain	
Double Flex Chain	
Low Friction – LF Bushed Chain	
Platinum Series TM Corrosion-Resistant Chains	
Rex [®] and Link-Belt [®] Chain Interchange	
Sprockets	
Buckets	
Design and Selection	103-132
Maintenance Information	
Engineering Data	139-147
Chain and Sprocket Index	148-150
Subject Index	

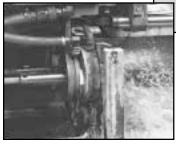
■ INTRODUCTION



CHAIN LIFE – THE CRITICAL CRITERION IN SELECTING YOUR CHAIN SUPPLIER

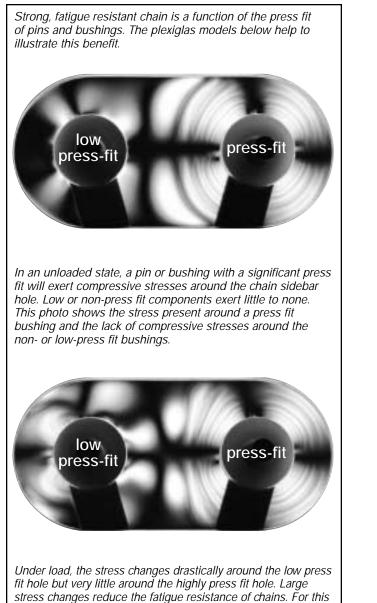
Chain repair and replacements add up to expensive delays and unforeseen material and labor expenses. Factors that can weigh heavily on your operation's profitability.

In order to meet tight schedules and keep overhead down, you need to select chain that will perform and last – even under the most rigorous conditions.


Rexnord Corporation, manufacturer of Rex[®] and Link-Belt[®] chain for over 100 years, is the leader in the engineered chain industry. Our many years of experience provide unique expertise in material selection, heat treatment and design engineering – key factors that add up to superior chain strength and extended wear life.

What to look for when specifying chain:

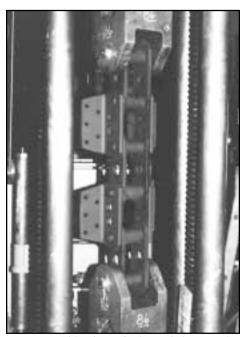
- Wear Resistance chain life is directly affected by the hardness of the wearing components. Quite simply, the harder the parts, the longer the wear life. Rexnord's heat treatment capabilities exceed that of other chain manufacturers. Combine this with the use of choice materials, and it adds up to superior chain that eliminates costly and unexpected downtime.
- **Fatigue Strength** a key factor leading to the durability of our chains is superior fatigue strength. Tightly controlled interference fits between the pins and chain sidebars, proper welding and stress relieving, heat treatment and regular testing, and application experience make our chains the number one choice for your particular application.


Cross-sections of heat treated chain components. The silver surfaces are the result of acid etching and illustrate the deep case depths our chain components have.

Custom built induction coils and ancillary equipment have been designed by Rexnord expressly for induction heat treating chain components and sprockets.

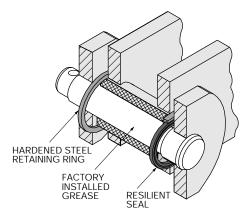
■ INTRODUCTION

reason, Rex and Link-Belt chains use an optimum amount of interference to provide that protective compressive stress!

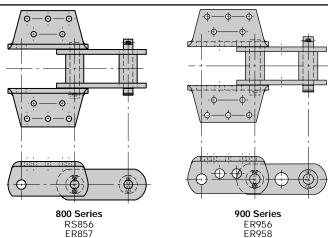

Pre-lubrication and shrink wrapping: Rexnord takes extra steps at the end of manufacturing to protect your chain. All chain is pre-lubricated and shrink wrapped. This means less corrosion and less break-in wear. Better for long-term storage too.

Fully machined pins offer dimensional accuracy critical in the manufacture of reliable, strong chain.

Rexnord has invested heavily in CNC controlled machinery for better lot-to-lot component uniformity.


This photo depicts a fatigue testing machine used by Rexnord to evaluate chain fatigue strengths and guide us in making improvements.

HIGH PERFORMANCE ELEVATOR CHAINS


Rex[®] heavy duty elevator chains have garnered a reputation as the longest lasting, most reliable chains available today for tough elevating applications. Clinker, finished cement, fertilizer, coal, you name it, and it can be elevated most efficiently and reliably with our chains.

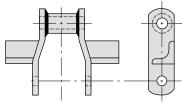
The 900 series chains are the newest addition to this line of chain. With larger components, the 900 series offers 30% greater fatigue strength over their 800 series counterparts. Lightening holes were added to the 900 series to offset the increase weight introduced by larger bushings and pins.

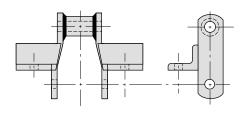
No matter which series you choose, you're guaranteed the highest level of heat treatment and manufacturing available in elevator chains today.

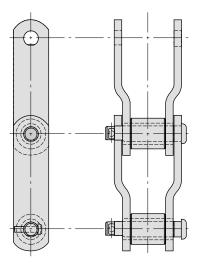
Sealed Joint Elevator Chains Factory installed grease sealed in, abrasives or corrosives sealed out. An option in these chains and denoted by the "SJM" prefix.

ER984

ER84


ER859


Linkmaster®


Keep the advantage of high press fits by using the Linkmaster assembly and disassembly tool. See page 138 for more details.

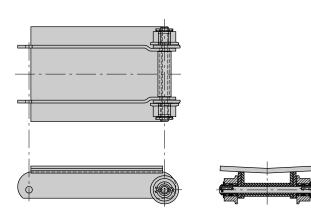
GRAIN HANDLING CHAINS

Rexnord manufactures a wide variety of chains for the grain industry. Welded steel chains are very popular due to the fact that they are easily modified by welding on a variety of attachments. Press fit engineered steel chains with rollers are used in longer, higher load systems. The chains shown are examples of these two chain types.

REX AND LINK-BELT ENGINEERED CHAIN APPLICATION FOR AMUSEMENT RIDES, RECREATIONAL LIFTS, AND OTHER PEOPLE MOVERS

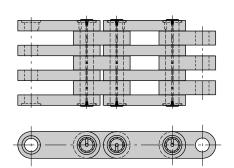
From time to time, chain application questions concerning driving or conveying functions on amusement rides and recreational lifts are brought to Rexnord's attention. Concern arises for the safety and the well being of people utilizing these units should chains prematurely or unexpectedly fail. A general review has been made to establish certain rules and recommendations for the selection and application of these rides and conveyances. The following reflects those conclusions:

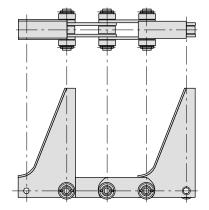
- 1. Chain should not be used for any amusement ride or recreational lift application unless there are adequate, functional, and operational safety backup devices to prevent hazardous or unsafe conditions from occurring.
- Chains containing castings or molded parts of any material should not be applied to these applications. This includes pintle, heavy pintle, combination, cast steel, nonmetallic, and similar chains.
- 3. Chains containing weldments of any nature should not be applied to these applications. This includes welded steel versions of basic cast pintle chains and engineered steel chains containing welded components.
- 4. Chain selections of any nature should not be made or changed without written approval of the appropriate representatives of an approved original equipment manufacturers of that equipment. This includes replacement chains from any manufacturer including Rexnord. Written approval is required for each purpose.

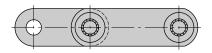

- 5. Chain selections for amusement rides or recreational lift applications should be of the engineered steel types of chain generally covered by ANSI standards B29.10, B29.12, and B29.15 after review of all application factors by and approval of the appropriate responsible representative of the original equipment manufacturer of the equipment.
- 6. Chains on these applications should be adequately lubricated and properly maintained at all times.
- 7. Chain reliability is based upon a good press fit of the pins and bushings into the sidebars. Therefore, do not grind the chain pins, bushings, or holes in the sidebars in order to assemble the chain as supplied from the factory.
- 8. Alteration of chain destroys the integrity of the press fits of the chain assembly. Therefore, do not alter or rebuild any chains for these applications.
- 9. If a customer applies an engineered chain product without our approval, it is a misapplication and, as such, is not warrantied under our standard conditions of sale.

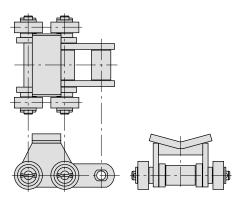
Should questions arise covering any of these policies or procedures, please contact your local Rexnord sales office.

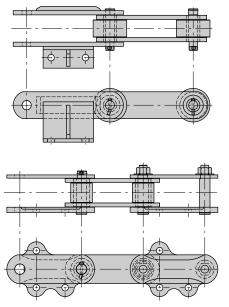
IN-FLOOR CONVEYING CHAIN


Rex[®] and Link-Belt[®] In-Floor Conveyor Chains are specially designed to move continuous loads, such as those found in the paper, steel and automotive industries. Rexnord manufactures a variety of configurations to accommodate a multitude of applications.

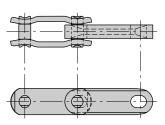

A complete selection of materials, top plates and pitch lengths are also offered.

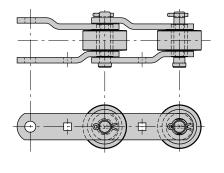

DRAW BENCH AND STEEL INDUSTRY CHAINS Hot steel slabs, coiled steel and metal tubing all

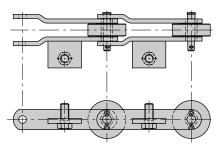

steel and metal tubing all move smoothly on our chains. Rollers, if needed, are fully machined and supplied with bearings. The large laced chains shown to the right are for draw benches used in the tube industry. These chains are fully machined on Rexnord's modern CNC milling machines.



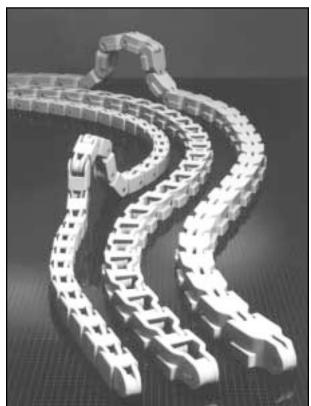
RECLAIMER AND BARGE/SHIP UNLOADING CHAINS

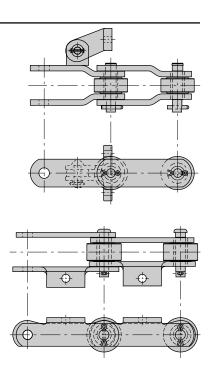

Many types of reclaimers and barge/ship unloaders use large engineered class chains. Rexnord can design new chains for these applications, or build replacement chains if given a sample. Below are some examples of chains we have made, but the styles we can make are virtually limitless.




BOTTLING AND BEVERAGE INDUSTRY

Some of the most commonly used engineered chains in the bottling industry are bottle washer chains. Rexnord makes a wide variety of these chains that meet or exceed OEM specifications. Chains and attachments can be modified to help solve maintenance problems. Below are some examples of chains we make.

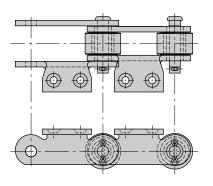

Side-flexing chains are also very common in bottling. Rexnord has one of the broadest lines of rugged polymeric and steel side-flexing chains for barrel, case and pallet conveying.

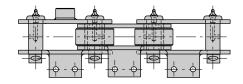


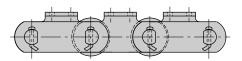
■ SPECIAL APPLICATION CHAIN CANE SUGAR AND SUGAR BEET PROCESSING

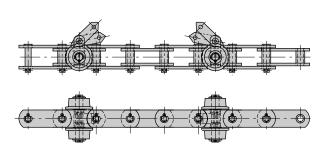
Bagasse, intermediate, feed tables and main cane carrier chains are all available from Rexnord. Many sugar processing chains are the same as they were years ago when mills were smaller. Today's larger mills require newer, stronger chains such as the Rex[®] F9184 – a larger version of the F2184. Contact Rexnord for a copy of the latest Sugar Mill Chains brochure.

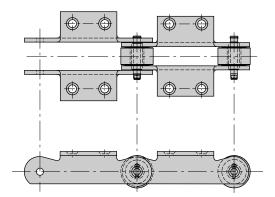
Many chain styles are available for sugar beet processing as well. As in cane sugar processing, this industry is very corrosive. Sealed Joint chains are available for sugar beet elevators to fend off pin and bushing corrosion. Special materials and platings are also available.

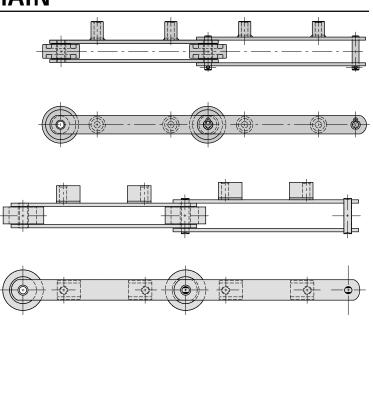


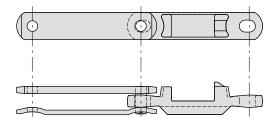

FOOD PROCESSING

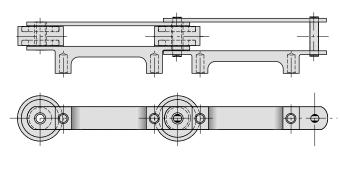

Engineered chain is used throughout the food processing industry. Some typical applications include hydrostatic cookers, overhead carcass conveyors, cutting tables and vegetable process conveyors. Examples of some of the metallic chain configurations used in this industry are shown below.


Rexnord offers a wide variety of material and/or coating options to combat the corrosive elements generally found in these applications. See pages 72-73 for examples of solutions that would apply to metallic chains. See pages 64-68 for polymeric chains and accessories.


Chains for the baking industry (oven, proofer, etc.) are also available. Contact Rexnord for details.

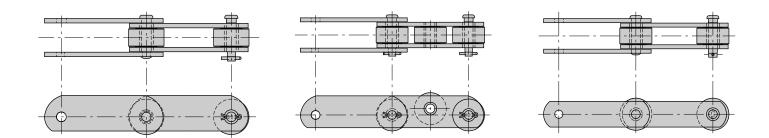


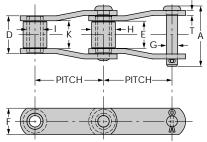



DISTRIBUTION AND MATERIAL HANDLING

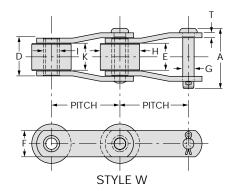
Today's large postal and consumer goods distribution centers rely heavily upon engineered chains to sort and move product. Sortation chains are the most common and Rexnord has developed many different styles to suit particular needs. Sorter cart mounting bosses can be modified in a number of ways to increase strength and performance. Chain rollers are available in molded thermoplastics or in super rugged urethane lagged steel – your choice.

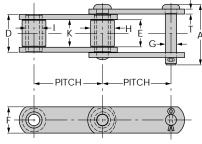
In-floor tow chains for automated cart conveyors are also made by Rexnord. Call for details.



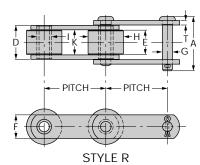


HIGH SIDEBAR AND GENERAL CONVEYING CONVEYOR CHAIN


Rex and Link-Belt[®] High Sidebar Conveyor Chains offer superior strength for conveying heavy loads, such as those found in the automotive, steel and general assembly industries. It rolls comfortably on any even, firm surface to provide efficient, economical conveying. Versions with intermediate rollers are available for accumulation conveyors.



For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

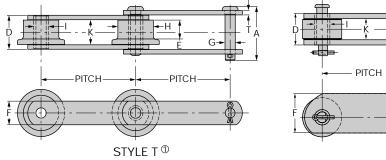


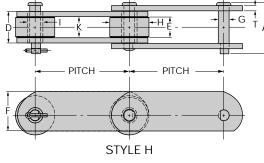
Properties TH CARB CIH SIH	Thru-Hardened Carburized Circumferentially Induction Hardened Selectively Induction Hardened
SIH	Selectively Induction Hardened
WI	White Iron

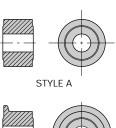
Dimensions are in inches. Strengths, loads and weights are in pounds.

Rest Chain No. Syle Pitch (Thain No. Average Working Pitch (Thain No. Maximum Working (Thain No. Maximum Wo						Rec.	Minimum		Over-All	Between	Sideba	ars		Pins		R	ollers		Bushings			
Chain No. Pilch Todal R.P.M. for 2.1. Spikt. Liss. vio per food K T G Dial Bile Properties Dial Bile Properties Dial Bile Properties Dial Dia Dial <thdial< th=""> <thdia< th=""><th>Rex</th><th>Link-</th><th>Stulo</th><th>Average</th><th>Rated Working</th><th>Maximum</th><th></th><th></th><th>Pin &</th><th></th><th></th><th>-</th><th>Diam</th><th></th><th>Face</th><th>Outside</th><th></th><th></th><th></th><th>Outside</th><th>Sprocket</th></thdia<></thdial<>	Rex	Link-	Stulo	Average	Rated Working	Maximum			Pin &			-	Diam		Face	Outside				Outside	Sprocket	
Name N Spic. Dis. Not. Dis. Not. A K I F F H Dis. Dis. RR432 RS625 N 1.654 1.650 280 8 3.0 2.03 1.00 1.13 3.8 CARB 1.00 8.4 TH 1.38 6.3 6.2 RR432 RS627 N 1.654 2.100 2.10 1.11 1.31 3.8 CARB 1.03 9.9 A CARB 1.38 6.3 78 R178 RS860 N 2.609 2.000 1.45 1.7 2.6 2.30 1.00 1.3 1.9 1.13 4.4 CARB 1.03 9.0 A CARB 1.48 6.3 78 R778 RS886 N 2.609 2.500 1.45 2.8 4.0 2.76 1.13 2.27 4.3 TH 1.00 88 A TH 1.63 6.3 78	Chain No.		siyie	Pitch	Ŭ Ŭ			~				Ů		Properties			Style	Properties	_ ~	Diam.		
RR362 R Second N 1.654 1.650 2.80 8 3.0 2.03 1.00 1.13 1.13 .38 CARB 97 .88 A TH 1.25 .56 62 RR42 RS627 N 1.654 2.10 2.80 2.14 1.07 1.66 1.13 .43 CARB 1.00 .88 A TH 1.38 .63 .63 .78 C1288 SS1088 N 2.609 2.00 1.45 16 2.5 2.30 1.06 1.6 1.13 .43 CARB 1.03 .90 A CARB 1.44 .63 .78 R178 K886 N 2.609 2.500 1.45 1.7 2.88 2.67 1.13 .42 CARB 1.03 .88 A TH 1.60 .63 .78 R776 R5886 N 2.609 2.500 1.45 2.8 4.1 2.58 1.07 .31 1.41 1.63 .56 TH 1.09 1.33 A <		Chain NO.			LUdu	12 T. Spkt.	Lbs.x10 3		A	К	T	F	G		E	н			D	I	110.1	
RR432 PS627 N 1 (54) 2100 280 228 1000 113 244 0TH 97 288 A TH 1.38 6.3 72 81X RS81X N 2.609 2.000 145 16 2.5 2.14 1.07 .16 1.13 .41 CARB 1.00 .88 A TH 1.39 .63 78 C1288 SS1098 N 2.609 2.000 145 17 2.6 2.36 1.06 19 1.00 .44 CARB 1.03 .90 A CARB 1.44 6.3 78 RT87 RS88 N 2.609 2.500 1.45 17 3.8 2.67 1.13 .42 CARB 1.08 88 A TH 1.63 .63 78 R14H RS609 2.500 1.45 2.8 4.00 1.13 .11 1.63 .56 TH 1.09 1.13 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.654</th> <th>-2.609-I</th> <th>nch Pitch</th> <th>۱</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									1.654	-2.609-I	nch Pitch	۱										
RR432 RS627 N 1.654 2.100 2.80 1.00 1.9 1.13 44 TH 9.7 3.88 A TH 1.38 6.33 6.33 B1X RS381 N 2.609 2.000 145 16 2.5 2.23 1.08 1.6 1.13 44 CARB 1.03 .90 A CARB 1.38 6.3 78 R178 RS86 N 2.609 2.00 145 17 2.6 2.36 1.00 .44 CARB 1.03 .90 A CARB 1.44 .63 78 R788 RS87 N 2.609 2.500 1.45 1.7 3.8 2.67 1.13 .41 CARB 1.08 88 A TH 1.63 .63 78 R141 R850 1.45 0.69 3.500 1.45 4.0 9.7 1.31 1.43 3.44 TH 1.00 8.8 A<	RR362	RS625	Ν	1.654	1.650	280	8	3.0	2.03	1.00	.13	1.13	.38	CARB	.97	.88	Α	TH	1.25	.56	62	
C1288 S1088 N 2.609 2.000 145 16 2.5 2.23 1.08 1.6 1.9 1.00 4.4 CARB 1.03 9.0 A CARB 1.38 6.3 78 BT78 K 2.609 2.000 145 17 3.2 2.41 1.13 41 CARB 1.08 8.8 A TH 1.50 6.3 78 R588 RS87 N 2.609 2.500 145 28 4.1 2.58 1.07 31 1.27 4.3 TH 1.00 88 A TH 1.69 6.3 78 81XH RS181H N 2.609 3.500 145 40 6.9 2.95 1.14 31 1.27 4.3 TH 1.00 88 A TH 1.69 6.3 78 81XH RS1013 R 2.609 3.500 145 40 6.4 2.75 1.13 31 1.63 55 TH 1.06 1.3 44 CARB 8.8 <th< th=""><th>RR432</th><th>RS627</th><th>Ν</th><th>1.654</th><th>2,100</th><th></th><th>21</th><th></th><th></th><th>1.00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>TH</th><th></th><th>.63</th><th>62</th></th<>	RR432	RS627	Ν	1.654	2,100		21			1.00								TH		.63	62	
1578 K 2.609 2.200 145 17 2.6 2.36 1.06 .19 1.00 .44 CARB 1.03 .90 A CARB 1.44 .63 .78 RR588 RS887 N 2.609 2.500 145 13 2.9 2.41 1.33 .25 1.13 .44 CARB 1.08 .88 A TH 1.63 .63 78 81XH RS81XH N 2.609 2.500 145 28 4.1 2.58 1.07 .31 1.27 .43 TH 1.00 .88 A TH 1.69 6.3 .78 270 S52004 N 2.609 3.500 145 400 6.9 2.95 1.14 .31 1.63 56 TH 1.09 1.13 A TH 1.77 81 270 7777 N 0.609 3.500 1.45 4.0 6.3 3.01 1.13 3.1 1.63 56 TH 1.09 1.13 A CARB 8.8			Ν	2.609	2,000	145	16	2.5	2.14	1.07	.16	1.13	.43	CARB	1.00	.88	А	TH	1.39	.63	78	
RR788 RS886 N 2.609 2.300 145 13 2.9 2.41 1.13 19 1.13 144 CARB 108 88 A TH 1.50 6.3 78 RR588 RS81W N 2.609 2.500 145 28 4.1 2.58 1.07 .31° 1.27 4.3 TH 1.00 .88 A TH 1.69 6.3 78 81XHH RS81XHH N 2.609 2.500 145 28 4.1 2.58 1.07 .31 1.27 4.3 TH 1.00 .88 A TH 1.69 6.3 78 270 S200 1.45 400 6.4 2.05 1.11 .10 1.3 .40 1.00 1.8 A TH 1.77 81 270 7777 N 0.000 1.30 1.15 6.4 2.01 1.01 1.3 .41 1.01 1.3 .41 1.01 1.01 1.3 .41 1.01 1.3 .41 1.01		SS1088	Ν					2.5									А					
RR588 Rs887 N 2 609 2.500 145 2.8 4.1 2.58 1.07 3.8 2.50 1.13 2.43 TH 1.00 88 A TH 1.63 6.3 78 81XHH R51XHH RS81XHH N 2.609 2.500 145 2.8 4.0 6.7 1.07 3.1 1.27 4.3 TH 1.00 88 A TH 1.63 6.3 78 2701 S52004 N 2.609 3.500 145 400 6.4 2.01 1.13 1.27 4.3 TH 1.00 8.8 A TH 1.63 6.3 78 2707 750 N 2.609 3.500 1.45 4.0 6.5 5.0 1.14 1.44 CARB 4.8 A CARB A A CARB A A </th <th></th>																						
81XH RS 2.609 2.500 145 2.8 4.1 2.58 1.07 3.31 1.27 4.3 TH 1.00 .88 A TH 1.69 6.3 78 81XHH RS 2.609 2.500 145 2.8 4.6 2.76 1.07 .31 1.27 4.3 TH 1.00 .88 A TH 1.69 6.3 78 270 S2004 N 2.609 3.500 145 40 6.4 3.01 1.14 31 1.63 56 TH 1.09 1.3 A TH 1.77 81 270 7777 S2004 N 2.609 3.500 1.45 40 6.4 3.01 1.3 A TH 1.00 1.8 A TH 1.75 .81 270 85303 N 3.000 1.300 1.30 1.40 2.55 .100 .19 1.13 .44 CARB .97 1.50 A TH 1.61 1.63 .64 TH 1.05 <																					-	
81XHH N 2.609 2.500 1.45 2.80 4.6 2.76 1.07 .31 1.63 .56 TH 1.09 .88 A TH 1.69 .63 .78 270 S2004 N 2.609 3.500 145 40 6.9 2.95 1.14 .31 1.63 .56 TH 1.09 1.13 A TH 1.77 .81 270 S2004 1.30 1.30 1.33 1.13 .31 1.63 .56 TH 1.09 1.13 A TH 1.75 .81 270 S13013 N 3.000 2.400 1.15 6.6 2.0 1.54 ⁴ .50 .19 1.00 .44 CARB .48 .88 A CARB .88 .63 .83 .303 N 3.075 .650 .110 .44 .50 .31 1.50 .63 SIH .45 .25 A TH .13 .44 .145 .25 A TH .213 .80 .30																						
270 SS2004 N 2.609 3.500 145 400 6.9 2.95 1.14 .3.1 1.63 5.6 TH 1.09 1.13 A TH 1.77 B.1 2700 7774 N 2.609 3.500 1.45 400 6.4 3.01 1.13 3.1 1.63 5.6 TH 1.09 1.13 A TH 1.77 B.1 270 Sette							-			-											-	
7774 N 2.609 3.500 145 40 6.4 3.01 1.13 .31 1.63 56 TH 1.06 1.13 A TH 1.75 .81 270 COUST-3.110-Inch Pict SR183 N 3.000 1.340 115 6 2.0 1.54% .50 .19 1.00 .44 CARB .48 .88 A CARB .88 6.3 3.03 3.03 84539 N 3.075 4.650 110 38 6.8 3.47 1.50 .31 1.50 .63 SIH 1.45 1.25 A CARB 1.38 A TH 2.13 .88 4539 7539 N 3.075 4.650 110 24 6.8 3.50 1.50 .31 1.50 .63 CARB 1.45 1.25 A CARB 1.38 A TH 213 .88 43 1.00 1.3 4.41 1.40 1.30 4.1 1.50 63 SIII 1.00 1.13 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>										-	-										-	
R\$303 N 3.000 1.00 1.00 1.00 4.6 0.00 <th></th> <th>552004</th> <th></th>		552004																				
RS303 N 3.000 1.340 1.15 6 2.0 1.54 [®] 5.0 1.9 1.00 44 CARB 4.8 .88 A CARB 1.88 6.3 3033 SR183 RS3013 R 3.000 2.100 1.15 1.3 4.0 2.25 1.00 1.9 1.13 4.4 CARB 9.7 1.50 A CARB 1.38 6.3 183 1539 RS1539 N 3.075 4.650 110 24 6.8 3.50 1.50 6.3 SIH 1.40 1.38 A CARB .88 4.53 1.88 4.53 7539 N 3.010 4.650 110 24 6.8 3.47 1.50 6.3 SIH 1.40 1.38 A CARB 1.88 A CARB 1.88 A CARB 1.88 A CARB 1.89 1.30 RS1113 R 4.000 2.000	1114		IN	2.009	3,300	140	40						.50		1.00	1.13	А	П	1.75	.01	270	
SR183 RS3013 R 3.000 2,100 115 13 4.0 2.25 1.00 .19 1.13 4.4 CARB 1.07 1.50 A CARB 1.38 .63 1833 A4539 N 3.075 4.650 110 24 6.8 3.47 1.50 .31 1.50 .63 SIH 1.45 1.25 A CARB 2.13 .88 4539 7539 N 3.075 4.650 110 24 6.8 3.50 .31 1.50 .63 SIH 1.45 1.25 A CARB 2.13 .89 1030 7539 N 3.075 4.650 110 24 6.8 3.57 1.50 .31 1.50 .63 SIH 1.45 1.25 A CARB 1.33 .49 TT 2.13 1.00 75 1.3 .42 2.28 1.00 .19 1.13 .44 TH® .90 1.50 A CARB 1.38 .63 1120 .56 .51 .53 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>3.</th><th></th><th></th><th>0-Inch P</th><th>itch</th><th>_</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th></t<>							_	3.			0-Inch P	itch	_			_						
A4539 RS1539 N 3.075 4.650 110 28 6.8 3.47 1.50 6.3 SIH 1.45 1.25 A TAB 2.13 8.8 4539 7539 N 3.075 4.650 110 24 6.8 3.50 1.50 6.3 CARB 1.45 1.25 A TH 2.13 8.9 1030 7539 N 3.075 4.650 110 24 6.8 3.50 1.50 6.3 CARB 1.45 1.25 A TH 2.13 8.9 1030 753 N 3.075 4.650 110 4.0 2.28 1.00 1.31 4.4 CARB 1.09 1.75 A CARB 1.63 4.9 SR189 RS4113 R 4.000 2.500 75 1.3 4.2 2.70 1.3 4.4 CARB 1.06 1.75 A CARB 1.63 1.83 1.83 </th <th></th>																						
1539 RS1539 N 3.075 4.650 110 24 6.8 3.50 1.50 .31 1.50 .63 CARB 1.45 1.25 A TH 2.13 8.9 1030 7539 N 3.110 4.650 110 40 9.1 3.47 1.50 .31 1.75 6.3 SH 1.40 1.38 A TH 2.13 1.00 7539 R<1001		RS3013																				
7539 N 3.000 4.650 110 210 9.0 3.47 1.50 .31 1.75 6.3 SIH 1.00 1.38 A TH 2.13 1.00 7539 (7539 N 3.00 2.60 100 2.10 1.30 1.40 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.40 TH 2.13 1.00 7539 R R 4.000 2.100 75 13 3.4 2.28 1.00 1.19 1.13 44 TH® 9.0 1.50 A CARB® 1.50 6.3 188 SR113 R 4.000 2.300 75 15 5.3 2.47 1.19 1.91 1.13 44 CARB 1.00 1.75 A CARB 1.56 6.3 188 SR188 R 4.000 2.500 75 21 4.2 2.50 .95 1.25 50 CARB 1.05 6.3 CARB 1		001530	_								-			-								
R S4013 R 4.000 2.00 75 13 3.4 2.00 1.13 1.13 4.4 CARB 1.00 6.4 CARB 1.00 6.63 188 R 54019 R 4.000 4.000 7.5 2.25 1.25 CARB 1.66 <th colspan<="" th=""><th></th><th>K2123A</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th>K2123A</th> <th></th>		K2123A																			
R81120 R84013 R 4.000 2.100 75 13 3.4 2.28 1.00 1.13 4.4 TH® 90 1.50 A CARB® 1.38 6.3 1120 R54113 R 4.000 2.300 75 13 4.2 2.32 1.13 .19 1.3 .44 CARB 1.09 1.55 A CARB 1.50 .63 188 SR194 R54216 R 4.000 2.300 75 15 5.3 2.47 1.19 .19 1.25 .44 CARB 1.06 1.57 A CARB 1.56 .63 188 SR184 R 4.000 2.500 75 21 4.2 2.47 1.19 .19 1.33 .44 CARB 1.06 1.57 A CARB 1.56 .63 188 4 R5418 R 4.000 4.200 75 23 7.0 3.25 1.31 .31 .45 .50 CARB 1.51 A CARB 1.50 .63 <	7539		IN	3.110	4,050	110	40	9.1				1.75	.03	SIH	1.40	1.38	А	IH	2.13	1.00	7539	
RS4113 R 4.000 2.300 75 13 4.2 2.32 1.13 1.19 1.13 1.44 CARB 1.09 1.05 A CARB 1.50 .63 188 SR194 RS4216 R 4.000 2,350 75 15 5.3 2.47 1.19 1.9 1.25 44 CARB 1.06 1.75 A CARB 1.56 .63 194 SR188 R 4.000 2,400 75 13 4.2 2.47 1.19 1.9 1.33 .44 CARB 1.06 1.75 A CARB 1.56 .63 188 4 RS4019 R 4.000 2,500 75 21 4.2 2.50 .95 .25 1.25 .50 CARB 1.25 .4 CARB 1.46 .75 1120 2188 RS42188 R 4.000 4,500 75 28 9.7 3.47 1.31 .33 1.50 .63 CARB 1.25 2.05 A CARB 1.46							_											_				
SR194 RS4216 R 4.000 2,350 75 15 5.3 2.47 1.19 1.9 1.25 4.4 CARB 1.09 2.00 A CARB 1.56 6.33 194 SR188 R 4.000 2,400 75 13 4.2 2.47 1.19 1.9 1.33 4.4 CARB 1.06 1.75 A CARB 1.66 .63 188 4 RS4019 R 4.000 2,500 75 21 4.2 2.50 .95 1.25 .50 CARB 1.97 1.50 A CARB 1.46 .75 1120 2188 RS2188 R 4.000 4,500 75 23 7.0 3.25 1.31 .31 1.50 .63 CARB 1.25 2.50 A CARB 1.46 .75 1120 3433 RS4328 R 4.000 7.50 75 21 1.31 2.31 1.55 2.50 CARB 1.25 2.05 A CARB 2.68 2.06	RR1120																					
SR188 R 4.000 2,400 75 13 4.2 2.47 1.19 1.9 1.13 4.4 CARB 1.06 1.75 A CARB 1.56 .63 188 4 RS4019 R 4.000 2,500 75 21 4.2 2.50 .95 .25 1.25 .50 CARB 9.7 1.50 A CARB 1.46 .75 1120 2188 RS2188 R 4.000 4,000 750 23 7.0 3.25 1.31 .31 1.50 .63 CARB 1.25 A CARB 1.46 .75 1120 2188 RS4328 R 4.000 4,500 755 28 9.7 3.47 1.31 .38 1.50 .63 CARB 1.25 2.05 A CARB 2.06 .94																-						
4 RS4019 R 4.000 2,500 75 21 4.2 2.50 .95 .25 1.25 .50 CARB .97 1.50 A CARB 1.46 .75 1120 2188 RS2188 R 4.000 4,200 75 23 7.0 3.25 1.31 .31 1.50 .63 CARB 1.25 1.75 A CARB 1.94 .94 188 531 RS4328 R 4.000 4,500 75 28 9.7 3.47 1.31 .38 1.50 .63 CARB 1.25 2.25 A CARB 2.06 .94 .94 188 331 RS4328 R 4.000 5,300 75 21 4.30 2.03 .38 1.50 .63 CARB 1.25 1.04 .44 .40 .46 .46 .75 1120 3438 A 0.00 7.50 75 23 7.6 2.02 .38 1.50 .63 CARB 1.25 2.05 A CA		RS4216					-															
2188 RS 2188 R 4.000 4.000 4.000 7.50 2.3 7.0 3.25 1.31 1.31 1.50 6.3 CARB 1.25 A CARB 1.94 .94 188 531 RS4328 R 4.000 4.500 7.50 2.8 9.7 3.47 1.31 .38 1.50 6.3 CARB ⁵ 1.25 A CARB 2.06 .94 531 X3433 N 4.000 5.300 7.50 21 4.30 2.01 .38 1.50 6.3 CARB ⁵ 1.25 A CARB 2.06 .94 531 X3433 N 4.000 7.000 7.50 57 12.1 4.30 2.00 .38 1.50 6.3 CARB 1.95 1.4 A CARB 1.94 .40 2.06 2.01 2.01 A CARB 1.01 2.02 1.50 6.3 CARB 1.25 2.00 A <		DC 4010																				
S31 RS4328 R 4.000 4.500 7.50 2.8 9.7 3.47 1.31 .38 1.50 6.3 CARB [®] 1.25 2.25 A CARB 2.06 .94 531 X3433 A 4.000 5,300 7.50 41 9.0 4.30 2.13 .38 1.50 6.3 CARB [®] 1.25 A CARB 2.06 .94 531 A2868 0.00 7.000 7.50 57 12.1 4.36 2.00 .38 1.50 6.3 CARB [®] 1.95 1.44 A CARB 2.06 .94 531 A2868 0.000 7.000 7.50 57 12.1 4.36 2.00 .38 1.55 .57 SIH 1.95 1.44 A CARB 2.05 A CARB 1.94 .40 2.06 .40 2.06 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41 .4																						
X3433 N 4.000 5,300 75 41 9.0 4.30 2.13 1.38 1.50 6.3 SIH 2.06 1.50 A CARB 2.88 1.00 3433 A2868 N 4.000 7,300 75 57 12.1 4.36 2.00 .38 1.50 6.3 SIH 2.06 1.50 A CARB 2.88 1.00 3433 A2868 N 4.000 7,200 75 57 12.1 4.36 2.00 .38 1.75 .75 SIH 1.95 1.44 A CARB 2.88 1.00 3433 A240 R 4.040 4,300 75 23 7.6 3.25 1.31 .31 1.50 .63 CARB 1.25 2.00 A CARB 1.94 .94 1113 R R02113 W 4.040 4.300 75 18 8.0 3.14 1.31 .31 1.50 .69 CARB 1.25 2.00 A CARB 1.94 .00								-														
A2868 N N 4.000 7.200 7.50 5.77 12.1 4.36 2.00 .38 1.75 S.H 1.95 1.44 A CARB 2.75 1.06 2858 3420 RS1113 R 4.040 4.300 7.50 2.33 7.61 3.14 1.50 6.57 S.H 1.95 1.44 A CARB 2.75 1.06 2858 3420 RS1113 R 4.040 4.300 7.55 2.33 7.6 3.25 1.31 1.50 6.50 CARB 1.25 2.00 A CARB 1.94 .94 .94 .113 R02113 W 4.040 4.300 7.55 1.88 8.0 3.14 1.31 .31 1.50 .69 CARB 1.25 2.00 A CARB 1.94 .94 .100 .213 R560 R 4.040 5.000 7.50 2.33 8.50 1.31 .388 1.50 .69 CIRB 1.25 2.00 A CARB 1.94 .100 </th <th></th> <th>134520</th> <th></th>		134520																				
AUXIO 100 AUXIO 1000 AUXIO 1000 AUXIO 1000 AUXIO 100 AUXIO 100 AUXIO 100 AUXIO 1000																						
3420 RS1113 R 4.040 4.300 75 23 7.6 3.25 1.31 1.50 6.3 CARB 1.25 2.00 A CARB 1.94 .94 1113 RO2113 W 4.040 4.300 75 18 8.0 3.14 1.31 .31 1.50 6.9 CARB 1.25 2.00 A CARB 1.94 .00 2113 RS60 R 4.040 5.000 75 23 8.5 3.40 1.31 .31 1.50 .69 CARB 1.25 2.00 A CARB 1.94 1.00 2113 RS60 R 4.040 5.000 75 23 8.5 3.40 1.31 .31 .150 .69 CARB 1.25 2.00 A CARB 1.94 1.00 213 RS60 R 4.040 6.600 75 23 8.5 3.40 1.31 .38 1.50 .69 CIH 1.25 2.00 A CARB 1.94 1.00 2.05	712000			4.000	7,200	75	57						.75	5111	1.75	1.44	7	ONIND	2.75	1.00	2000	
R02113 W 4.040 4.300 75 18 8.0 3.14 1.31 1.50 6.9 CARB 1.25 2.00 A CARB 1.94 1.00 2113 R560 R 4.040 5.000 75 23 8.5 3.40 1.31 1.38 1.50 6.9 CARB 1.25 2.00 A CARB 1.94 1.00 2113 C2848 N 4.040 6.600 75 233 8.5 3.40 1.31 1.38 1.50 6.9 CIRB 1.25 2.00 A CARB 1.94 1.00 2113 C2848 N 4.040 6.600 75 48 11.0 4.26 2.00 3.88 2.00 6.99 SIH 1.94 1.50 A TH 2.05 1.00 2.01 A TH 2.05 1.00 2.01 A TH 2.05 1.00 2.01 A TH 2.05 <	2420	DC1112		4 0 4 0	4 200	75	22						()		1 25	2.00			1.04	04	1110	
RS60 R 4.040 5.000 75 23 8.5 3.40 1.31 1.38 1.50 69 CIH 1.25 2.00 A CARB 2.06 1.06 RS60 C2848 N 4.040 6.600 75 48 11.0 4.26 2.00 1.38 2.06 51H 1.94 1.50 A TH 2.75 1.00 2848 2858 N 4.083 7.200 755 577 13.0 4.37 2.00 1.38 2.55 75 SIH 1.94 1.63 A CARB 2.05 1.10 2.83 3285 N 4.083 7.200 755 577 13.0 2.00 2.50 2.50 51H 1.94 1.63 A CARB 2.05 1.13 2.385 3285 N 4.50 7.500 60 91 2.10 2.50 2.50 2.40 SIH 1.95 2.00 A	3420					-		-						-				-			_	
C2848 N V 4.040 6,600 75 48 11.0 4.26 2.00 .38 2.00 6.9 SIH 1.94 1.50 A TH 2.75 1.00 2848 2858 N 4.083 7,200 75 57 13.0 4.37 2.00 .38 2.25 .75 SIH 1.94 1.63 A CARB 2.75 1.13 2858 3285 N 4.507 1.500 60 91 21.0 4.94 2.06 .500 2.50 .94 SIH 1.94 1.50 A TH 2.75 1.13 2858 3285 N 4.507 1.500 60 91 2.10 2.06 .500 2.50 .94 SIH 1.95 2.00 A TH 3.06 1.31 3285																					-	
2858 N 4.083 7,200 75 57 13.0 4.37 2.00 3.88 2.25 75 SIH 1.94 1.63 A CARB 2.75 1.13 2858 3285 N 4.500 1.500 600 91 21.0 4.94 2.06 5.50 2.50 94 SIH 1.94 1.63 A CARB 2.75 1.13 2858	C2040	K200				-																
3285 N 4.500 10,500 60 91 21.0 4.94 2.06 .50 2.50 .94 SIH 1.95 2.00 A TH 3.06 1.31 3285								-														
Sidebars are thru-hardened; bushings are carburized.		a ara three t					•••	21.0	4.94	2.00	.50	2.50	.94	SIH	1.90	2.00	А	IH	3.00	1.31	3283	

^① If driver has more/less than 12 teeth, increase/decrease RPM in direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM.


⁽²⁾ Fabricated steel sprockets are recommended ^③ Outer (pin-link) sidebars are .21 inches thick.


④ Extended rivet.


^⑤ Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

IEERED STEE

For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

STYLE B

ROLLERS

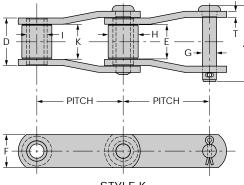
()	Properties IH CARB CIH SIH MI	Thru-Hardened Carburized Circumferentially Induction Hardened Selectively Induction Hardened White Iron

Dimensions are in inches. Strengths, loads and weights are in pounds.

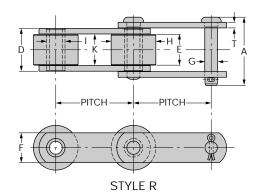
	Link-			Rated	Rec.	Minimum	Average	Over-All	Between	Sideba	ars		Pins		Ro	ollers		Bus	Sprocket	
Rex Chain No.	Belt Chain No.	Style	Average Pitch	Working Load	Maximum R.P.M. for	Ultimate Strength,	Weight Per Foot	Pin & Cotter	Sidebars	Thickness	Height	Diam.	Properties	Face Width	Outside Diam.	Style	Properties	Length	Outside Diam.	Unit No. [©]
	chair No.			Luau	12 T. Spkt.®	Lbs. x 10 ³		Α	К	Т	F	G	l '	E	Н	1		D	Ι	
								6.	000-Incl	h Pitch										
SR196	RS6018	R	6.000	2,600	40	18	5.0	2.72	1.19	.25	1.50	.44	CARB	1.09	2.00	А	CARB	1.69	.63	196
1604		W	6.000	2,800	40	20	5.3	2.69	1.06	.25	1.25	.50	CARB	.88	3.00	А	WI	1.56	.72	1604
2126	RS1116	R	6.000	3,400	40	21	5.0	2.89	1.25	.25	1.50	.56	CARB	1.19	2.00	А	CARB	1.75	.81	196
2190	RS2190	R	6.000	3,400	40	21	7.0	2.89	1.25	.25	1.50	.56	CARB	1.19	2.50	А	CARB	1.75	.81	197
1670		R	6.000	4,100	40	23	6.3	3.25	1.31	.31	1.50	.63	CARB	1.19	2.25	А	CARB	1.94	.94	2180
SR1114	RS1114	R	6.000	4,200	40	23	6.3	3.25	1.31	.31	1.50	.63	CARB	1.25	2.00	А	CARB	1.94	.94	196
2180		R	6.000	4,500	40	35	8.7	3.47	1.31	.38	1.75	.63	CARB	1.19	2.25	А	CARB	2.06	.94	2180
S951		R		4,500	40	37	10.7	3.47	1.31	.38	2.00	.63	-	1.19	3.00	А	CARB	2.06	.94	S951
2183	RS951	R	6.000	4,600	40	24	10.7	3.50	1.50	.31	1.50	.63	CARB	1.38	3.00	А	CARB	2.13	.89	1131
F2183		Т	6.000	4,600	40	24	11.1	3.50	1.50	.31	1.50	.63	CARB	1.13	3.00	В	WI	2.13	.88	S951
1036		Κ	6.000	4,600	40	24	4.8	3.50	1.50	.31	1.50	.63	CARB	1.45	-	А	TH	2.13	.88	1036
	RS658	TØ		4,650	40	18	9.6	3.32	1.50	.31	1.50	.63	CARB	1.13	3.00	В	WI	2.13	.89	1604
1617		R [©]	6.000	4,800	40	43	11.0	3.28	1.38	.31	2.50	.69	CARB	1.22	2.50	А	CARB	2.00	1.00	197
SR3130		W		5,200	40	45	10.0	3.53	1.25	.38	2.00	.75	CARB	.94	2.50	А	CARB	2.00	1.13	197
6	RS6238	R		5,600	40	45	11.0	3.67	1.38	.38	2.00	.75	TH®	1.31	2.50	А	CARB	2.13	1.13	197
6 Sp.		R		5,600	40	45	12.2	3.66	1.38	.38	2.00	.75	TH	1.25	3.00	А	CARB	2.13	1.13	1131
	RS953	Ν		5,600	40	27	8.7	3.57	1.38	.38	2.00	.75	TH	1.31	1.75	Α	CARB	2.13	1.13	953
DD5 (A	RS6438	R		5,600	40	45	12.6	3.57	1.38	.38	2.00	.75	CIH	1.31	3.00	А	CARB	2.13	1.12	1131
RR542		Ν	6.000	6,000	40	28	5.7	4.05	2.13	.31	1.50	.63	CARB	2.06	-	Α	TH	2.75	.89	110
BR2111	RS944+	N	6.000		40	67	9.6	3.84	1.56	.38	2.00	.88	TH	1.50		A	CARB	2.31	1.25	2111
C2124	DC00/	R	6.000	6,000	40	63	11.8	3.84	1.56	.38	2.00	.75	TH	1.25	2.75	A	CARB	2.31	1.13	2124
A212435	RS996	R		6,000	40	63	11.8	3.84	1.56	.38	2.00	.75	TH	1.44	2.75	A	CARB		1.13	2124
RS1131	RS1131	R	6.000	6,000	40	45	12.5	3.84	1.56	.38	2.00	.75	TH	1.38		A	CARB	2.31	1.13	1131
	R02184	W		6,500	40	58	12.3	3.76	1.38	.38	2.00	.88	CIH	1.06		A		2.13	1.25	1131
FX9184		W		8,300	40	100	15.2	4.41	1.56	.50	2.50	.94	CIH	1.20		A	CARB	2.53	1.38	9184
A2178 [©]	RS960	R		7,000	40	56	15.3	3.88	1.56	.38	2.25	.88	CIH	1.25		A		2.31	1.25	2124
A2198		R		7,650	40	64	18.2	4.43	1.56	.50	2.25	.88	CIH	1.25	2.75	A	CARB	2.56	1.30	2124
E200	RS2047 [@]	R	6.000		40	98	32.0	3.94	1.63	.38	2.50	.94	TH	1.57	3.00	A		2.38	1.38	2047
5208	D\$24000			8,950	40	54	10.5	4.90	1.94	.50	2.00	.88	CIH	1.88		A	TH	2.94	1.25	5208
	RS2600@	R	6.000		40	112	30.0	4.98	2.66	.38	3.00	1.00		2.29		A	TH	3.41	1.50	2600
C9856	1	Ν	6.000	14,000	40	82	22.1	5.96	3.00	.50	2.75	00.1	CIH	L .88	2.75	Α	CARB	4.00	1.50	9856

Sidebars are thru-hardened; bushings are carburized. If driver has more/less than 12 teeth, increase/decrease RPM in direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM.

⁽²⁾ Fabricated steel sprockets are recommended.


^③ Plated pin.

⁽⁴⁾ Chain furnished with attachments every pitch.


^⑤ Lower edge of sidebar is necked.

© Centerline of sidebar is .25" higher than centerline of roller. Sidebar extends .25" above roller.
 © When assembled with through rods, the roller flange is on the side opposite the end of the rod.
 P Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

STYLE K

Properties	
T 11 T	T 1

TH	Thru-Hardened
CARB	Carburized
CIH	Circumferentially Induction Hardened
SIH	Selectively Induction Hardened
WI	White Iron

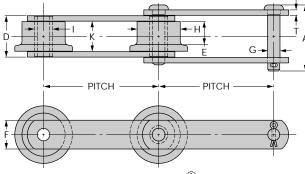
Dimensions are in inches. Strengths, loads and weights are in pounds.

	Link-			Rated	Rec.	Minimum	Average	Over-All	Between	Sideba	ars		Pins		Ro	ollers		Bus	hings	Sprocket
Rex Chain No.		Style	Average Pitch	Working		Strength,	Weight Per Foot	Pin & Cotter	Sidebars	Thickness	Height	Diam.	Properties		Outside Diam.		Properties	Length	Outside Diam.	Unit No.@
	ondin No.			Louu	12 T. Spkt.	Lbs. x 10 ³		A	К	Т	F	G		E	Н			D	I	
								8	.000-Inc	h Pitch										
A2800		R	8.000	9,800	26	94	62.2	4.71	1.81	.50	2.75	1.00	CIH	1.50	3.50	Α	CARB	2.81	1.50	2800
	RS2800 ³	R	8.000	11,900	26	112	30.0	4.98	2.66	.38	3.75	.94	TH	2.28	3.50	Α	TH	3.41	1.50	2800
	RS28043			24,300		150	47.0	6.86	3.64	.50	3.50		TH	3.20		Α	TH	4.64	1.99	2804
	RS2806 ³	R	8.000	35,000	26	217	75.0	7.99	4.71	.50	4.25	1.75	TH	4.34	5.00	A	TH	5.71	2.25	2806
								9	.000-Inc	h Pitch										
1039		Κ	9.000	4,650	22	24	4.3	3.50	1.50	.31	1.50	.63	CARB	1.45	1.25	Α	TH	2.13	.88	1039
ER911	RS911		9.000	4,650	22	33	8.5	3.45	2.006	.31	2.00	.63	CARB	1.44	3.00	А	WI6	2.13	.89	E911
	SS928	T℗	9.000	7,200	22	29	8.5	4.20	2.00	.38	2.00	.75	TH	1.69	1.86	Α	NONE	2.75	1.13	SS928
ER922	SS927		9.000	7,200	22	34	12.0	4.28	2.00	.38	2.00	.75	TH	1.94	3.50	A	WI	2.75	1.13	E922
FR922	SS922		9.000	7,200	22	34	12.5	4.28	2.00	.38	2.00	.75	TH	1.31	3.50	В	WI	2.75	1.13	F922
R2342			9.000	9,000	22	54	9.2	4.80	1.94	.50	2.00	.88	CIH	1.90		A	CARB	2.94	1.25	2342
R2405			9.000	9,000	22	88	9.7	4.80	1.94	.50	2.13	.88	TH	1.88		A	CARB	2.94	1.25	2342
ER933	00040			9,200	22	53	15.6	4.72	2.25	.38	2.50	.88	TH	1.75		E	WI	3.00	-	E933
FR933	SS942 SS933			9,200	22	39	12.4	4.57	2.25	.38	2.50	.88	TH	2.19		A	NONE	3.00	1.25	SS942
R4009 ⁴	S3933 RS4851		9.000 9.000	9,200 9,200	22 22	48 67	16.5 14.7	4.61 4.60	2.25 2.25	.38 .38	2.50 2.50	.88. 88.	TH CIH⊚	1.56 2.13	4.00 3.00	B [©]	WI TH	3.00	1.25	F933 4009
X4009 [©]	RS4852			12,700		65	18.5	5.69	2.23	.50		1.00		2.13		A	CARB [®]	3.63	1.50	4009
	RS4065			18,900		148	36.2	6.52	3.06	.50	3.50			2.50		A	CARB	4.31	2.00	4004
10000	RS2064			19,700		105	28.0	5.90	2.75	.50	3.50			2.69		A	TH	3.75	2.00	2064

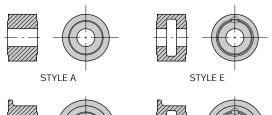
Sidebars are thru-hardened; bushings are carburized. © If driver has more/less than 12 teeth, increase/decrease RPM in direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM. @ Fabricated steel sprockets are recommended.

^③ Chain furnished with attachment every pitch.

⁽⁴⁾ Furnished as standard with G5 attachment every second pitch.


[®] When assembled with through rods, the roller flange is on the side opposite the end of the rod.

[®] Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.


VEERED STEE

2

For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

STYLE T ^①

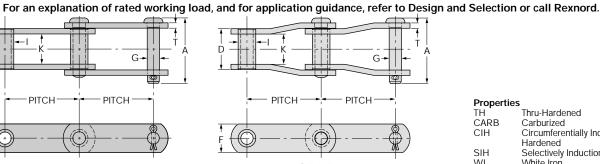
ROLLERS

тні	Thru-Hardened
CARB	Carburized
CIH	Circumferentially Induction Hardened
SIH	Selectively Induction Hardened
WI	White Iron

Dimensions are in inches. Strengths, loads and weights are in pounds.

	Link-	<u>г</u>		Rated		Minimum	Average	Over-All	Between	Sideba	ars		Pins			ollers			shings	Sprocket
Rex Chain No.	Belt	Style	Average Pitch	Working	R.P.IVI. TOP	Ultimate Strength,	Weight	Cotter	Sidebars		Height	Diam	^{1.} Properties		Outside Diam.		Properties	ii enain	Outside Diam.	Unit No.®
	Chain No.	1 '	1 '	Load	12 T. Spkt. ^①	Lbs. x 10 3	3 Per Foot	A	К	T	F	G	' '	E	Н		1 .	D		
								12	2.000-Inc	ch Pitch										
E1211	RS1211	R	12.000	4,650	14	31	7.0	3.44	1.50	.31	2.00	.63	CARB	1.38	3.00	Α	CARB	2.13	.89	E1211
	SS4038	R	12.000	6,200	14	29	9.0	3.82	1.63	.38	2.00		TH	1.56		Α	WI	2.38	1.13	4038
ER1222	SS1227	R		7,200		34	10.0	4.31	2.00	.38	2.00		TH	1.63		А	WI	2.75	1.13	E1222
FR1222	SS1222	T	12.000			34	10.5	4.31	2.00	.38	2.00		TH	1.25	-	D [®]		2.75	1.13	F1222
	SS1232	(T''	12.000			46	12.0	4.20	2.00	.38	2.00		TH	1.31	4.50	В	WI	2.75	1.13	F1232
R1251		K		9,000		56	9.8	4.90	1.94	.50	2.00		CARB	1.88	-	A	CARB	2.94	1.25	2397
ER1233		R		9,200		61	13.1	4.64	2.25	.38	2.50			1.75		E	WI	3.00	1.25	E1233
FR1233	SS1233			9,200		62	14.0	4.64	2.25	.38	2.50			1.56		D [®]		3.00	1.25	F1233
RR2397		K '		9,200	14	60	9.5	4.64	2.25	.38	2.50			2.19		A	CARB	3.00	1.25	2397
4011 ³	004050	R		9,200		63	12.6	4.62	2.25	.38	2.50		1.0	2.12	0.00	A	TH	3.00	1.25	4011
	RS4850			9,200		63	12.7	4.57	2.19	.38	2.50			2.13		A	TH	2.94	1.26	4011
ER1244		R		12,300		85	20.5	5.53	2.63	.50	2.50			2.50	-	A	CARB	3.63	1.50	E1244
FR1244				12,300		63	21.5	5.53	2.63	.50	2.50			1.75		D	WI	3.63	1.50	F1244
R1706 R2614		K)14,000)17,500		79 135	13.9 24.0	5.99 6.26	3.00	.50 .63	2.50 3.50			2.94		A	CARB CARB	4.00	1.50	2452 2614
R2014 R4010 ^④		R		23,500		135	39.2	6.79	3.25	.63	_	1.50		2.69 3.09		A	CARB	4.00	2.13	4010
K4010*		K	12.000	23,500		105	37.2				4.00	1.50		3.07	4.50	A	CARD	4.50	2.13	4010
								18	8.000-Inc	h Pitch										
ER1822		R		/=		34	8.5	4.31	2.00	.38	2.00	.75	TH	1.63		А	WI	2.75	1.13	E1822
FR1822		(T)	18.000	7,200	8	34	9.0	4.31	2.00	.38	2.00	.75	TH	1.25	3.50	D	WI	2.75	1.13	F1822
F1833		(T '		9,200		63	11.5	4.72	2.25	.38	2.50		TH	1.50		D	WI	3.00		F1833
FR1844		\Box	18.000	12,300	8	89	17.0	5.66	2.63	.50	2.50	1.00) TH	1.75	5.00	D	WI	3.63	1.50	F1844

STYLE D


Sidebars are thru-hardened; bushings are carburized. ⁽¹⁾ If driver has more/less than 12 teeth, increase/decrease RPM in direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM. ⁽²⁾ Fabricated steel sprockets are recommended.

Furnished as standard with G116 attachment every second pitch.
 Furnished as standard with G5 attachment every second pitch.

[®] Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

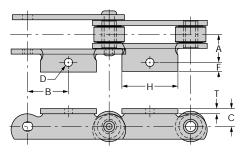
-1 G PITCH PITCH

STYLE I

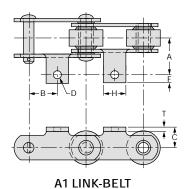
Properties	
тні	Thru-Hardened
CARB	Carburized
CIH	Circumferentially Induction
	Hardened
SIH	Selectively Induction Hardened
WI	White Iron

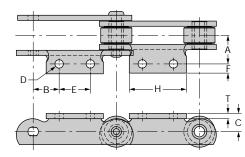
STYLE V

		011							Dime	ensions ar	e in ind	hes. Stre	ngths	, loads and	d weigh	nts are i	n pounds.
	Link-			Rated	Rec.	Minimum	Average	Over-All	Between		Sidebars			Pins	Bus	hings	Sprocket
Rex Chain No	Belt	Style	Average Pitch	Working	Maximum R.P.M. for	Ultimate Strength,	Weight	Pin & Cotter	Sidebars	Thickness	Height		Diam.		Length	Outside	Unit
Chain No.	Chain No.		PIICH	Load	12 T. Spkt. ^①	Lbs. x10 ³	Per Foot	A	К	Т	F	Properties	G	Properties	D	Diam.	No.@
							1.50	6-Inch F	Pitch				-				
	SS152		1.506	1 230	280	6	2.2	1.81	.81	.16	.88	TH	.31	CARB	1 1 3	.63	152
	33132	1	1.000	1,230	200	0		9-Inch P		.10	.00	111	.01	ONT	1.15	.00	152
S188 ^⑨	SBS188		2 6 0 0	2,740	145	23	3.8	2.69		25	1.13	TH	.50	CARB	157	.88	78
3100	303100		2.009	2,740	140	23		5-Inch F	1.06 Ditch	.25	1.13	IΠ	.50	CARD	1.37	.00	/0
ER1319	SBS131	1	3.075	4,450	110	36	7.4	3.52	1.31	.38	1.50	TH	.63	CARB	2.06	1.25	103
1536	SBS1972	l i	3.075	4,900	110	51	9.2	3.52	1.50	.38	1.75	TH	.63	TH	2.26	1.25	1536
1000	SB02103	v	3.075	5,000	110	28	5.6	3.03	1.38	.25	1.50	TH	.75	CARB	1.88	1.25	103
1535	SBS2162	İ	3.075	5,300	110	50	9.4	3.58	1.38	.38	1.75	TH	.75	CARB	2.14	1.25	1535
							4.00	0-Inch F	Pitch								
R2823		V	4.000	3,170	75	21	3.2	2.94	1.31	.25	1.13	TH	.50	CARB	1.81	.78	823
S823		V	4.000	3,450	75	22	5.2	3.08	1.47	.25	1.25	TH	.50	CARB	1.97	.78	823
SR825		V	4.000	6,000	75	55	8.7	3.87	1.56	.38	2.00	TH	.75	CARB	2.31	1.14	825
ER102B9	SBS102B		4.000	6,300	75	36 119	6.9	4.37	2.13	.38	1.50	TH	.63	CARB	2.89	1.00	102B
	SBS2236		4.000	9,900	75	119	19.2	4.90	1.91	.56	2.38	TH	.94	CARB	3.03	1.75	2236
55400 50								0-Inch F									1.
ER102.5®	SBS102.5		4.040	7,800	75	48	9.4	4.56	2.25	.38	1.75	TH	.75	CARB	3.01	1.38	102 ¹ /2
						_	4.76	0-Inch F	Pitch								
ER111®	SBS111		4.760	8,850	55	48	10.2	4.97	2.63	.38	2.00	TH	.75	SIH	3.39	1.44	111
						4.	760- and	17.240-	Inch Pitc	h							
ER111Sp79			4.760	8,850	40	48	8.8	4.97	2.63	.38	2.00	TH	.75	SIH	3.38	1.44	111Sp.
EKTTOP			7.240	0,000	40	-10				.00	2.00		.75	011	0.00	1.44	TTOP.
							6.00	0-Inch F	Pitch								
SR830			6.000	6,000	40	50	7.5	3.87	1.56	.38	2.00	TH	.75	CARB	2.31	1.16	830
ER110 ⁽⁹⁾	SBS110		6.000	6,300	40	36	6.3	4.37	2.13	.38	1.50	TH	.63	CARB	2.89	1.25	110
ER833 SR844	SBS844	 V®	6.000 6.000	8,900 9,000	40 40	48 52	9.3 10.4	4.97 5.31	2.63 2.50	.38 .50	2.00	TH TH	.75 .75	SIH CARB	3.38 3.50	1.44 1.19	833 844
6826	303044	V	6.000	9,600	40	68	12.0	5.03	2.38	.38	2.50	TH	.75	SIH	3.13	1.50	6826
ER856®	SBX856	I.	6.000	14,000	40	82	16.5	5.99	3.00	.50	2.50	TH	1.00	CIH	4.00	1.75	856
ER9563	001/0055		6.000	14,000	40	97	16.6	5.99	2.95	.50	3.00⑤	TH	1.00	CIH	4.00	1.75	856
ER857 ⁽³⁾	SBX2857 SBS850+		6.000 6.000	14,000	40 40	97 128	21.0 25.3	5.99 6.18	3.00 2.25	.50 .63	3.25⑤ 3.25⑥	TH	1.00	CIH SIH	4.00 3.51	1.75 2.00	856 RO850
R0850	SB0850+	V	6.000	16,100	40	1428	23.3	6.18	2.25	.63	3.25	TH	1.31	CIH	3.51	2.00	RO850
ER958		I.	6.000	16,300	40	97	21.0	6.07	3.00	.56	3.25	TH	1.13	CIH	4.13	2.00	958
	SS1654		6.000	18,300	40	175	35.4	6.38	2.25	.63	4.006	TH	1.50	SIH	3.51	2.50	1654
ER859 ³	SBX2859			22,000	40	155	34.0	7.62	3.75	.63	4.00 [©]	TH	1.25	CIH [®]	5.00	2.38	859
	SB06065	V	6.000	27,600	40	420	51.7	6.86 0.000-1	3.00 nch Pitch	.75	4.75	TH	1.75	TH	4.50	3.00	6065
ED1E0@	CDC1EC		6 050	15 000	40					FO	2 5 0	TU	1.00		4.25	1 7	122
ER150 [®] ERA150 [@]	SBS150+			15,000	40 40	85 82	16.6 16.6	6.36 6.34	3.34 3.34	.50 .50	2.50 2.50	TH TH	1.00	SIH SIH	4.35 4.34	1.75 1.75	132 132
SX175			6.050	18,500	40	114	24.5	6.69	3.19	.50	3.00	TH	1.19	CIH	4.44	2.00	SX175
ER864 ³	SBX2864	L'	7.000	22,000	40	155	33.0	7.62	3.75	.63	4.006	TH	1.19	CIH	5.00	2.00	864
ER984		i	7.000	24,000	40	155	33.0	7.35	3.75	.62	4.00	TH	1.38	CIH	5.00	2.50	984
SX886		V	7.000	24,000	40	255	42.0	6.79	2.75	.75	4.00	TH	1.63	CIH	4.25	2.63	SX886
	SBS4871	Ι	9.000	15,300	40	91	14.6	6.21	3.38	.50	3.00	TH	1.00	SIH	4.35	1.75	1903


Sidebars are thru-hardened; bushings are carburized.

¹⁰ If driver has more/less than 12 teeth, increase/decrease RPM in direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM. [®] Fabricated steel sprockets are recommended.

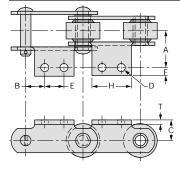

Both pins in a pin link have their heads on the same side. In the assembled chain the pin links are staggered
 Induction hardened sidebar edges furnished as standard.
 Outer (pin-link) sidebars are 2.50 inches high.
 Outer (pin-link) sidebars are 3.00 inches high.


⁽²⁾ No. S111 SP: has same inner link as No. S111 – 4.760-inch pitch.

Iteration and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

In the second

A1 REX

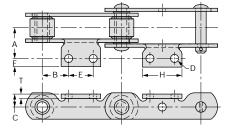


A2 REX

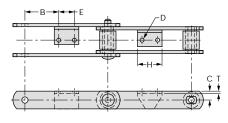
Dimensions are in inches. Weights are in pounds.

											alenn	nunes.	weights are	e în pounds.
Rex	Link-Belt	Α	В	С	D		E	F	G	Н	J	К	Т	Wgt.
Chain No.	Chain No.				Bolt Dia.	Bolt Hole								Per Foot
						A1								
4		1.38	2.00	.88	³ /8	.41	_	.53	_	2.75	_	_	.25	4.7
SR183 ²		1.47	1.50	.81	5/16	.34	-	.53	-	2.00	-	_	.19	4.4
SR194		2.00	2.00	1.13	3/8	.41	-	.63	-	3.25	-	-	.19	6.3
SR196		2.00	3.00	1.25	3/8	.41	_	.76	_	3.50	_	_	.25	6.6
S188		1.88	1.31	.81	3/8	.41	-	.69	-	2.12	-	-	.25	4.5
RR432		1.38	.83	.81	1/4	.28	-	.41	-	1.00	-	-	.19	4.0
RR588		1.94	1.31	.88	⁵ /16	.34	-	.90	-	2.13	-	-	.25	4.0
RR778		1.94	1.31	.88	5/16	.34	-	.72	_	2.13	_	-	.19	2.6
RR1120		1.38	2.00	.81	3/8	.41	-	.63	-	2.50	-	-	.19	3.6
1539		1.88	1.53	1.25	1/2	.56	_	.70	_	3.00	_	_	.31	7.9
2188		1.69	2.00	1.00	3/8	.41	-	1.03	-	2.75	-	-	.31	7.9
	RS 60	3	2.38	1.25	1/2	.53	_	.71	_	1.75	_	_	.38	9.2
	RS 625	1.19	.83	.69	1/4	.31	-	.53	-	.88	-	-	.13	3.2
	RS 627	1.38	.83	.81	1/4	.28	_	.53	-	1.00	-	-	.19	4.6
	RS 1539	1.88	1.53	1.25	1/2	.56	-	.65	-	2.75	-	-	.31	7.9
	RS 2188	1.81	2.00	1.00	1/2	.56	_	.85	-	3.00	-	-	.31	7.9
	RS 3013	1.47	1.50	.81	5/16	.34	-	.43	-	2.25	-	-	.19	4.5
	RS 4013	1.38	2.00	.81	3/8	.41	_	.53	_	2.50	_	_	.19	3.9
	RS 4019	1.38	2.00	.88	³ /8	.41	-	.51	-	2.50	-	-	.25	4.8
	RS 4113	1.72	2.00	1.00	3/8	.41	-	.59	-	2.50	-	-	.19	4.7
	S 4216	2.00	2.00	1.13	3/8	.41	-	.61	-	3.38	_	-	.19	5.6
	S 4328	2.00	2.00	1.25	1/2	.56	_	.88	_	2.00	_	_	.38	10.7
		2.00	2.00		A2 made also		with offse		ſS.	2.00			100	1017
4		1.38	1.25	.88	3/8	.41	1.50	.53		2.75			.25	4.7
6		2.13	1.25	1.63	¹ /2	.41	2.63	.53	-	5.50	-	-	.25	13.0
		2.13	1.69	1.63	1/2 1/2	.53	2.63	.72	-	5.50 5.50			.38	13.0
6 Sp.				1.63				.72	-		-	-		
A2124 SR183 ²		2.19	1.50 .97	.81	1/2 1/4	.53 .28	3.00 1.06	.71		4.50 2.00			.38 .19	13.8 4.6
SR183©		2.00	.97	1.00	3/8	.28 .41	2.00④	.44	-	3.38	-	-	.19	4.0
SR188		2.00	1.00	1.13	3/8	.41	2.00	.63	_	3.25	_	_	.19	6.3
SR194 SR196		2.00	2.00	1.13	³ /8	.41	2.00	.03	_	3.20	_	_	.19	6.6
E911		2.00	2.00	1.25	1/2	.41	3.50	1.00	_	5.50	_	_	.25	10.6
FR922		2.88	2.75	2.50	1/2	.53	3.50	1.00	_	5.50	_	_	.25	14.6
FR933		3.00	2.75	2.88	1/2	.53	3.50	.90	_	5.50	_	_	.25	19.4
ER102B		2.66	1.13	1.13	3/8	.33	1.75	.90	_	4.25	_	_	.31	9.4
S188		2.00	.67	.81	5/16	.34	1.25	.47	_	2.13	_	_	.25	4.5
S951		2.09	2.00	1.63	³ /8	.34	2.00	.47	_	3.50	_	_	.25	12.7
SR1114		2.19	2.00	1.03	3/8	.41	2.00	.64	_	3.50	_	_	.25	8.5
RS1131		3.00	1.69	1.63	1/2	.56	2.63	.69	_	4.50	_	_	.38	15.5
1539		2.00	.59	1.05	5/16	.30	1.88	.58	_	3.00	_	_	.30	7.9
2126		2.00	2.00	1.13	3/8	.34	2.00	.58	_	3.50	_	_	.25	6.0
2120		2.38	2.00	1.63	1/2	.56	2.00	.73	_	3.50	_	_	.23	10.2
2188		1.81	1.13	1.00	1/2	.56	1.75	.91	_	2.75	_	_	.30	7.9
3420		2.06	1.13	1.25	3/8	.41	1.50	1.00	-	2.75	_	_	.31	9.3
														, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

All attachments are thru-hardened. () All holes round and straight. () Al/A2 and K1/K2 attachments are combined on the same side bar. () 2.20Æ on outside sidebar, 1.78" on inside sidebar. () Not Central.


A2 Figure 1

A2 Figure 2

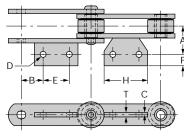

111

Ġ

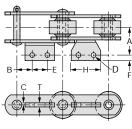
в

A3 LINK-BELT

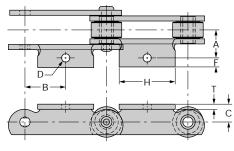
D P

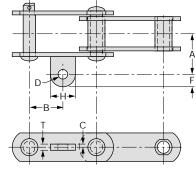

A5	
nJ.	

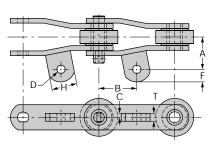
	_									Dimensions	are in i	nches. \	Neights are	e in pounds
Rex	Link-Belt	А	В	С	D		Е	F	G	Н	J	К	т	Wgt.
Chain No.	Chain No.			,	Bolt Dia.	Bolt Hole	-		U		5	ĸ	-	Per Foot
						A2 Figu	re 1							
	RS 658	2.63	1.50	2.50	³ /8	.44	3.00	.79	-	4.38	_	_	.31	12.2
	RS 886	2.09	.67	.81	5/16	.34	1.25	.61	-	2.13	-	-	.19	3.7
	RS 887	2.09	.67	.88	5/16	.38	1.25	.46	-	2.13	-	-	.25	4.5
	RS 951	2.19	2.00	1.63	³ /8	.44	2.00	.72	_	4.13	_	_	.31	12.4
	RS 1113	2.06	1.27	1.25	3/8	.41	1.50	.71	-	2.50	-	-	.31	9.3
	RS 1114	2.00	2.00	1.13	3/8	.41	2.00	.85	-	3.50	-	-	.31	8.5
	RS 1116	2.00	2.00	1.13	³ /8	.44	2.00	.69	-	2.88	-	-	.25	6.0
	RS 1131	3.00	1.69	1.63	1/2	.56	2.63	.69	-	5.50	-	-	.38	15.5
	RS 1539	1.98	.59	1.25	⁵ /16	.34	1.88	.58	-	2.75	-	-	.31	7.9
	RS 2188	1.81	1.13	1.00	1/2 3/2	.56	1.75	.86	-	3.00	-	-	.31	7.9
	RS 2190	2.00 1.38	2.00 1.41	1.13 .81	³ /8 5/16	.41	2.00	.69 .53	-	2.88 2.50	-	-	.25	7.2 3.9
	RS 4013 RS 4019	1.38	1.41	.81	^{3/16} ³ /8	.34	1.19	.53 .45	-	2.50	-	-	.19 .25	3.9 4.7
	RS 6018	2.00	2.00	.00	3/8	.41	2.00	.45	-	3.00	-	-	.25	6.6
	RS 6238	2.00	1.69	1.63	1/2	.56	2.63	.79	_	5.50	_	_	.23	13.3
	RS 6438	2.13	1.69	1.63	1/2	.56	2.63	.75	_	5.50	_	_	.38	14.8
		2.10	1.07	1.00	12	A2 Figu		.70		0.00			.00	11.0
	DC 011		0.75	1 7 5	17	•		1 0 0						10 (
	RS 911 SS 922	2.56 2.88	2.75	1.75 2.50	1/2 1/2	.53 .53	3.50 3.50	1.00 1.00	-	5.50 5.50	-	-	.25	10.6
	SS 927	2.88	2.75 2.75	2.50	1/2 1/2	.53	3.50	1.00	_	5.50	-	-	.25 .25	14.6 13.9
	SS 933	3.00	2.75	2.88	1/2	.53	3.50	1.41	_	5.50	_	_	.23	20.7
	RS 1211	2.56	3.00	1.75	1/2	.53	6.00	1.00	_	8.00	_	_	.25	9.5
	SS 1222	2.88	3.00	2.50	1/2	.53	6.00	1.00	-	8.00	_	-	.25	12.9
					, _	A3								
ER1222		2.88	3.00	2.50	¹ / ₂		3.00	1.00		0.00			25	13.1
FR1222		2.88	3.00	2.50	1/2	.53 .53	3.00	1.00	-	8.00 8.00	-	-	.25 .25	13.1
ER1233		3.25	3.00	3.00	1/2	.53	3.00	1.00	_	8.00	_	_	.23	17.1
FR1233		3.25	3.00	3.00	1/2	.53	3.00	1.25	_	8.00	_	-	.31	17.1
E1244		3.75	3.00	3.63	1/2	.53	3.00	1.13	-	8.00	-	-	.38	25.8
FR1244		3.75	3.00	3.63	1/2	.53	3.00	1.13	-	8.00	-	-	.38	25.8
F1822		2.88	3.50	2.50	¹ /2	.53	5.50	1.00	-	14.00	-	-	.25	11.4
F1844		3.75	3.50	3.63	1/2	.53	5.50	1.59	-	14.00	-	-	.38	22.3
2348		3.13	3.25	1.25	5/8	.66	2.75	1.28	-	8.00	-	-	.38	18.1
	RS 953 ²	2.34	2.00	1.00	⁹ /16	.53	2.00	.77	-	3.25	-	-	.38	9.9
						A5								
	SS928	-	3.38	1.00	1/2	.56	2.25	-	—	3.50	-	-	.38	9.4
	SS942	-	3.38	1.25	¹ /2	.56	2.25	-	-	3.50	-	-	.38	13.3
	SS1242	-	4.88	1.25	1/2	.56	2.25	-	-	3.50	-	-	.38	14.7
All attachmon	ts are thru-har	donod	-		-	-	-							

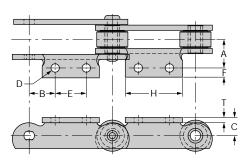

All attachments are thru-hardened. ^① All holes round and straight. ^③ Sidebars have .76" holes located on pitch-line midway between chain joints.

ENGINEERED STEEL


...


A11 REX

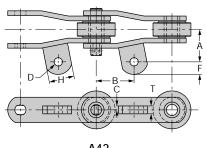

A11 LINK-BELT



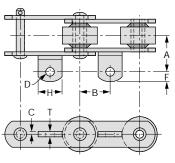
A22 LINK-BELT

A22 REX

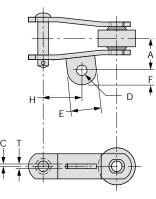
A20, A23 and A25

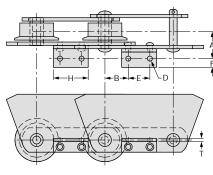

										Dimension	s are in	inches.	Weights are	e in pounds.
Rex Chain No.	Link-Belt Chain No.	A	В	С	D ^C Bolt Dia.	D Bolt Hole	E	F	G	н	J	К	Т	Wgt. Per Foot
						A11								
6		2.75	1.56	.19	1/2	.53	2.88	.84	-	4.50	-	-	.38	12.5
S951		2.19	2.00	.25	3/8	.41	2.25	.72	-	3.25	-	-	.25	12.0
2190		2.56	1.88	.19	1/4	.28	2.25	.50	-	3.25	-	-	.25	7.6
	RS 658	2.31	2.13	-	3/8	.39	1.75	.87	-	3.00	-	-	.19	12.0
	RS 2190	2.56	1.88	-	1/4	.28	2.25	.59	-	3.25	-	-	.38	7.9
	RS 6238	2.75	1.56	-	¹ / ₂	.56	2.88	1.00	-	4.50	-	-	.38	12.4
						A17								
531		2.00	2.00	1.31	1/2	.53	-	.72	-	1.50	-	-	.38	10.0
						A20								
2183		2.00	1.75	2.00	3/8	.41	2.50	.80	_	3.50	-	-	.31	11.7
F2183		2.00	1.75	2.00	3/8	.41	2.50	.63	-	3.50	-	_	.31	12.2
2190		2.00	2.00	1.13	³ /8	.41	2.00	1.03	-	3.50	-	-	.25	7.9
				A2	2 made also	for chain v	with strai	ght sideb	ars.					
S188		1.78	1.31	.08	³ /8	.41	-	.59	-	1.25	-	-	.31	4.8
3420		2.38	2.00	.25	⁵ /8	.69	_	.92	_	2.00	_	_	.50	9.1
						A22								
	SBS 188	1.78	1.31	.19	³ /8	.41	-	.59	_	1.19	_	_	.38	4.8
						A23								
FR922		3.41	3.13	1.00	1/2	.56	2.75	.88	_	4.75	_	_	.25	13.6
FR933		4.13	3.13	1.25	1/2	.56	2.75	.88	-	4.75	_	_	.25	18.6
FR1244		4.50	3.25	1.50	⁵ /8	.66	5.50	.88	-	7.50	-	-	.38	25.8
						A25								
S951		3.19	2.00	1.31	1/2	.56	2.00	.75	-	3.50	-	-	.25	13.2
2183		2.90	2.19	1.00	3/8	.41	1.63	.67	_	3.13	-	-	.25	11.4
F2183		2.90	2.19	1.00	3/8	.41	1.63	.67	-	3.13	-	-	.25	12.8

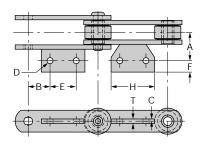
Dimensions are in inches. Weights are in pounds.


All attachments are thru-hardened. ^① All holes round and straight.

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

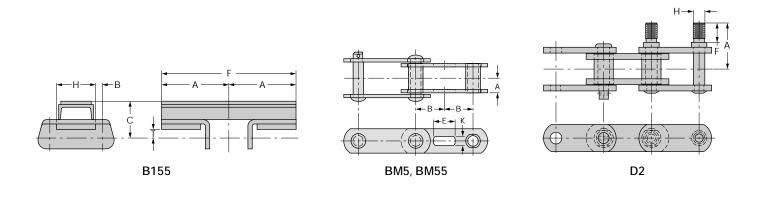

ENGINEERED STEEI

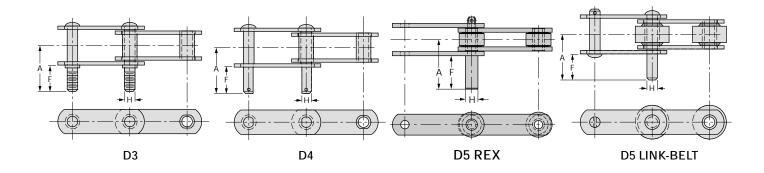

A42


A42 Figure 1

A42 Figure 2

AR7

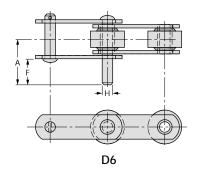

A63

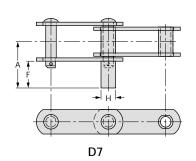

Dimensions are in inches. Weights are in pounds.

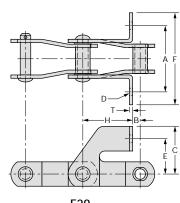
Rex Chain No.	Link-Belt Chain No.	A	В	с	D ^C Bolt Dia.	D Bolt Hole	E	F	G	Н	J	К	т	Wgt. Per Foot
						A42								
6		2.56	3.00	.31	5/8	.66	-	.86	_	2.00	-	-	.63	12.3
SR183		1.31	1.50	.13	⁵ /16	.34	_	.38	_	.88	_	_	.25	4.2
SR825		2.75	2.13	.31	⁵ /8	.66	-	.81	-	1.50	-	-	.63	9.4
SR830		2.56	3.00	.31	³ /4	.78	_	1.00	_	2.00	_	_	.63	8.1
RR1120		1.63	2.00	.19	³ /8	.41	-	.63	-	1.25	-	-	.38	3.5
RS1131		2.59	3.00	.31	⁵ /8	.66	-	1.00	-	2.00	-	-	.63	13.8
1604		1.75	3.00	.19	³ /8	.41	-	.63	-	1.25	-	-	.38	6.6
2180		2.69	3.00	.22	5/8	.66	-	.56	-	1.50	-	-	.44	10.2
F2184		2.56	3.00	.31	5/8	.66	-	1.00	-	2.00	-	-	.63	13.5
SR3130		2.38	3.00	.31	5/8	.66	-	.81	-	2.00	-	-	.63	11.0
						A42 Figu	ire 1							
	RS1113	2.38	2.02	.25	⁵ /8	.66	_	.94	_	1.50	_	_	.50	9.1
	RS1131	2.59	3.00	.23	⁵ /8	.69	_	1.00	_	2.00	_	_	.63	13.8
	RS2284	2.63	3.00	.31	5/8	.69	-	1.08	-	2.00	-	-	.63	13.1
	RS 2284+	2.63	3.00	.31	⁵ /8	.69	_	1.08	-	2.00	_	-	.61	13.1
	RS 2600	3.75	3.00	.31	⁵ /8	.69	-	.91	-	2.00	-	-	.61	27.7
	RS 3013	1.56	1.50	.13	³ /8	.41	-	.45	-	1.25	-	-	.25	4.3
	RS 4013	1.63	2.00	.19	³ /8	.41	-	.50	-	1.25	-	-	.38	3.7
	RS 6238	2.56	3.00	.31	⁵ /8	.66	-	.81	-	2.00	-	-	.61	11.3
	RS 6438	2.56	3.00	.31	⁵ /8	.66	-	.81	-	2.00	-	-	.61	13.0
						A42 Figu	ire 2							
	R0 2113	2.38	2.00	.25	⁵ /8	.66	-	.75	-	1.50	-	-	.50	9.5
	RO 2284	2.63	3.00	.31	⁵ /8	.69	-	.88	-	2.00	-	-	.63	13.1
	RO 2284+	2.63	3.00	.31	5/8	.69	-	.88	-	2.00	-	-	.63	13.1
						A63								
4		1.63	1.25	.13	⁵ /16	.34	1.50	.66	_	2.50	_	_	.25	4.8
		1.00	1.20		, 10	AR7		.00		2.00			.20	1.0
		2.31	2.12		⁵ /16		1.75	.75	_	2.00			.19	107
	RS 658	2.31	2.13	-	9/16	.39	1.75	./J	-	3.00	-	-	.17	18.7

All attachments are thru-hardened. ^① All holes round and straight.

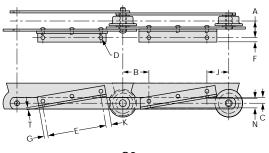
ENGINEERED STEEL

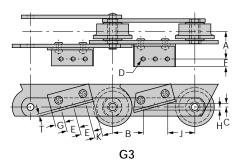

Rex Chain No.	Link-Belt Chain No.	A	В	С	D ^C Bolt Dia.	D Bolt Hole	E	F	G	Н	J	к	т	Wgt. Per Foot
						B155	5							
ER150 ⁵		-	.78	4.25	-	-	-	15.50	-	4.50	_	_	1.00	49.6
						BM5	2)							
	SS2004	.88	1.31	-	-	-	1.28	-	-	-	-	.66	-	6.9
						BM55	3							
	SBS1972	1.13	1.88	-	_	-	1.28	-	-	-	_	.66	-	9.2
	SBS3336	1.02	2.00	-	-	-	1.28	-	-	-	-	1.06	-	21.1
	SS2004	.88	1.31	-	-	-	1.28	-	-	-	-	.66	-	6.9
						D2								
1535		2.97	-	1	-	-	1	1.25	-	.75	-	-	-	8.8
						D3								
	SBS3336	3.54	-	-	-	-	-	1.44	-	.93	-	-	-	22.7
	SBS2236	3.54	-	-	-	-	-	1.44	-	.90	-	-	-	21.0
						D4								
	SBS2162	3.15	-	1	_	-	1	.88	-	.75④	1	1	-	10.2
						D5								
4		2.97	_	-	-	-	-	2.00	-	.75	_	-	-	4.9
	RS303	2.08	-	-	-	-	-	1.44	-	.50	-	-	-	2.2
	RS4019	2.99	-	-	_	-	-	2.00	-	.75	-	-	-	5.1

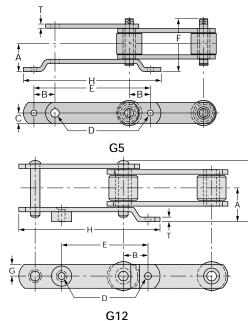

Dimensions are in inches. Weights are in pounds.

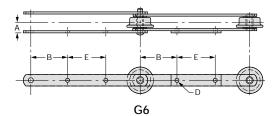

All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ Forged attachment sidebar on one side has slotted hole. Plain steel sidebar on opposite side.

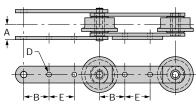
Steel slotted sidebars on both sides.
 Attachment threaded .88" back from end. Threads are 3/4-10 NC2A.


 $^{\textcircled{\sc 0}}$ Now known as ER Series chain. Previous prefix was SX.



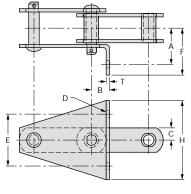




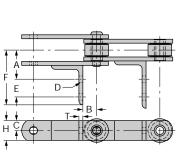

Rex	Link-Belt	А	В	С	D		F	F	G	н	I	К	т	Wgt.
Chain No.	Chain No.	Л	Ь	9	Bolt Dia.	Bolt Hole	L	•	0		5	ĸ	-	Per Foot
						D6								
	RS3013	2.39	-	-	-	-	_	1.50	-	.63	-	-	_	4.8
	SS152	2.23	_	-	-	-	-	1.50	-	.50	-	-	_	2.4
						D7								
	SS152	2.23	-	-	-	-	-	1.50	-	.56	-	_	-	2.6
						F29								
	SB02103	3.50	.63	2.68	3/8	.44	-	4.88		2.45	1	-	.25	8.0
						G2								
	SS922	3.03	3.34	.81	⁷ / ₁₆	.47	2.75	.84	.63	_	3.03	.63	.25	22.4
	SS933	3.16	3.25	1.03	⁷ /16	.47	2.75	.84	.63	-	3.13	.63	.25	29.6
	SS1233	3.16	3.94	1.69	⁵ /8	.68	4.50	.84	1.69	-	3.69	1.69	.25	21.3
		G3 Thi	s attachm	ent made	e with high si	idebars of 3	8.50 to 8	inches; w	veights are	e for 6-inch	bars.			
FR922		3.03	3.38	.39	3/8	.41	1.38	.75	1.06	.33	2.97	.88	.25	22.4
ER1233		3.16	3.94	.63	⁷ /16	.47	2.25	.84	1.69	.47	3.69	1.69	.25	21.3
FR1233		3.16	3.94	.63	⁷ /16	.47	2.25	.84	1.69	.47	3.69	1.69	.25	21.3
All attachmen	ts are thru-har	dened.												

^① All holes round and straight.

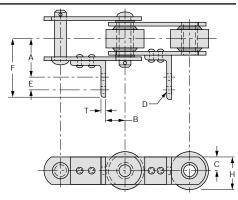
Dimensions are in inches. Weights are in pounds.

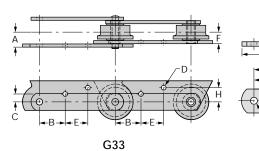


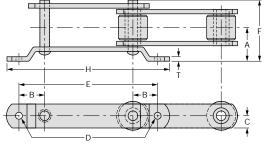
G16, G17, G18


Dimensions	are in	inches	Weights	are	in	nounds
Dimensions	arein	inches.	weights	are		pourius.

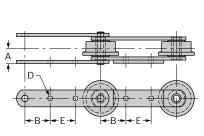
Rex	Link-Belt				D	D								Wqt.
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	к	Т	Per Foot
						G5								
4004		3.34	2.50	1.25	5/8	.66	14.00	6.34	_	16.50	_		.50	18.5
R4009		3.03	2.50	1.25	5/8	.66	14.00	5.53	_	16.50	_	_	.30	14.7
4010		3.90	3.38	2.00	¹³ /16	.84	18.75	7.38	_	21.25	_	_	.63	39.2
4065		3.94	2.50	1.75	5/8	.66	14.00	7.00	-	16.50	-	-	.63	38.6
				-		G6								
	RS911	1.39	3.13	-	7/16	.50	2.75	_	-	-	_	_	-	9.6
	SS922	1.78	3.00	_	1/2	.53	3.00	_	_	_	_	_	_	13.9
	SS927	1.78	3.00	_	$\frac{1}{2}$.53 ²	3.00	-	-	_	-	-	-	13.2
	SS933	1.91	3.25	_	1/2	.53	2.50	-	-	_	-	-	-	18.1
	SS1222	1.78	4.13	-	1/2	.53	3.75	-	-	-	-	-	-	11.6
	SS1227	1.78	4.13	-	¹ /2	.53 ²	3.75	-	-	-	-	-	-	11.8
	SS1232	1.78	4.13	-	1/2	.53	3.75	-	-	-	-	-	-	13.0
	SS1233	1.91	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	15.4
	SS4038	1.59	4.13	-	¹ / ₂	.53 ²	3.75	-	-	-	-	-	-	10.1
	RS4850	1.88	4.13	-	3/4	.783	3.75	-	-	-	-	-	-	16.4
						G12								
	RS4851	3.41	2.50	-	¹ /2	.56	9.00	5.53	1.25	13.82	-	_	.38	14.5
	RS4852	3.86	2.50	_	5/8	.66	9.00	3.78	1.25	13.82	_	_	.50	18.0
					G16 is calle	d G6 by so	me manu	facturers						
ER911		1.41	2.63	_	¹ / ₂	.56	3.75	_	_	_	_	_	_	9.6
ER922		1.78	3.00	_	1/2	.56	3.00	_	_	_	_	_	-	13.2
FR922		1.78	3.00	-	1/2	.56	3.00	-	-	-	-	-	-	13.9
ER933		1.90	3.25	-	1/2	.56	2.50	-	-	-	-	-	-	18.1
FR933		1.90	3.25	-	1/2	.56	2.50	-	_	-	-	-	-	18.1
E1211		1.41	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	8.2
ER1222		1.78	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	11.8
FR1222		1.78	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	11.6
ER1233 FR1233		1.90 1.90	4.12 4.13	-	⁵ /8 1/2	.69 .56	3.75 3.75	-	-	-	-	-	-	21.3 15.4
ER1233		2.34	4.13	-	5/8	.50	3.75	-	-	-	-	-	-	23.2
FR1244		2.34	4.13	-	⁵ /8	.69	3.75	-	-	-	-	-	-	23.2
ER1822		2.34	4.13 6.00	_	1/2	.69	3.75 6.00	-	_	-	_	_	-	23.2
FR1822		1.78	6.00	_	1/2	.56	6.00	_	_	_	_	_		9.9
F1833		1.90	6.00	_	1/2	.56	6.00	_	_	_	_	_	_	12.8
FR1844		2.34	6.00	_	1/2	.56	6.00	_	-	_	_	_	-	18.8
2348		1.90	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	16.4
		·		·	·	G17				·				
ER1244		2.34	4.13	_	5/8	.69	3.75	_	_	-	_	_	_	23.2
FR1244		2.34	4.13	_	1/2	.56	3.75	_	_	_	_	_	_	21.5
111277		2.00	1.13		12	00 G18								21.0
			3.13		1/2	.56	2.75							12.5
FR922		1.78		_				_	-	-		_	_	


All attachments are thru-hardened. ^① All holes round and straight. ^② Countersunk head for inside sidebar. ^③ These chains have offset sidebars.


G19



G29 REX

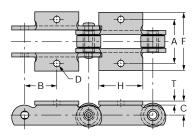


G29 LINK-BELT

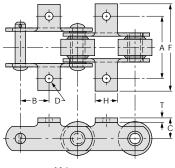
G100

G116, G117

Dimensions are in inches. We	ights are in pounds.
------------------------------	----------------------


Rex Chain No.	Link-Belt Chain No.	A	В	С	D ⁽ Bolt Dia.	D Bolt Hole	E	F	G	Н	J	к	T	Wgt. Per Foot
chain No.	chain No.				DUIL DIA.	G19								Terroot
	SS1222	2.78	2.63	-	1/2	.53	3.50	3.78	-	5.50	-	-	.25	13.9
	RS4328	2.63	2.50	-	¹ /2	.53	3.25	3.26	-	2.50	-	-	.38	14.1
	SBS102B	3.00	1.50	-	1/2	.53	3.25	3.62	-	4.50	-	-	.38	8.9
	SBS188	2.19	.94	-	3/8	.41	2.63	2.64	-	3.75	-	-	.25	7.5
				G29	made also f	for inner (ro	oller) link	<; "F″ is ∶	3.69".					
4		1.84	.88	.63	3/8	.41	1.13	3.472	_	1.25	-	-	.25	5.3
						G29								
	RS4019	1.84	3.13	.63	³ /8	.44	1.13	3.70	_	1.38	_	-	.25	5.4
					G33 we	eights are fo	or 6-inch							
FR922		1.78	3.06	.94	¹ / ₂	.56	2.69	1.38	_	1.69	_	_	_	22.4
ER933		1.90	3.06	.94	1/2	.56	2.69	1.50	_	1.69	_	-	_	25.2
FR933		1.90	3.06	.94	1/2	.56	2.69	1.50	-	1.69	_	-	-	25.2
						G100	0							-
	RS4065	3.94	2.50	1.50	5/8	.69	14.00	7.44	_	_	_	_	.50	41.0
	RS4851	3.94	2.50	1.25	⁵ /8	.69	14.00	5.44	_	_	_	_	.30	14.7
	RS4852	3.34	2.50	1.25	5/8	.69	14.00	6.21	-	-	_	-	.50	18.3
	107002	0.04	2.00	1.20	/0	.0 7 G110		0.21					.00	10.0
4011					3,0									
4011		1.88	4.13	-	3/43	.81 G11	3.75	-	-	-	-		—	12.6
ER1244		2.38	4.13	-	1/2 ³	.56	3.75	-	-	-	-	-	-	21.5
FR1244		2.38	4.13	-	1/23	.56	3.75	-	-	-	-	-	-	21.5
R1251		2.00	3.00	-	1/23	.56	4.00	-	-	-	-	-	-	9.8
R1706		2.56	3.00	-	1/ ₂ 3	.56	4.00	-	-	-	-	-	-	13.9

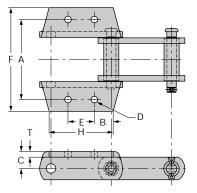
All attachments are thru-hardened.


^① All holes round and straight.
 ^② Block links only.

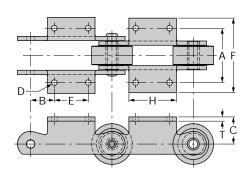
^③ Round holes, countersunk on inside links.

ENGINEERED STEEL

K1 REX


K1 LINK-BELT

	_	-	-	-	-		-	-	I	Dimensions	are in i	nches. \	Neights are	in pounds.
Rex	Link-Belt	А	В	С	D(Е	F	G	Н	J	К	т	Wgt.
Chain No.	Chain No.				Bolt Dia.	Bolt Hole								Per Foot
			,			K1								
4		2.75	2.00	.88	3/8	.41	-	3.81	-	2.75	-	-	.25	5.3
SR183@		2.94	1.50	.81	⁵ /16	.34	-	4.03	-	2.00	-	-	.19	4.9
S188		3.75	1.31	.81	³ /8	.41	-	5.12	-	2.12	-	-	.25	5.1
SR188 ²		3.44	2.00	1.00	³ /8	.41	-	5.13	-	3.38	-	-	.19	5.9
SR194 ²		4.00	2.00	1.13	³ /8	.41	-	5.25	-	3.25	-	-	.19	7.3
SR196 ²		4.00	3.00	1.25	³ /8	.41	-	5.66	-	3.50	-	-	.25	7.5
RR432		2.75	.83	.81	1/4	.28	-	3.56	-	1.00	-	-	.19	5.7
RR588		3.88	1.31	.88	⁵ /16	.34	-	5.66	-	2.13	-	-	.25	4.3
589		4.31	1.75 ³	1.25	¹ /2	.56	-	6.38	-	2.00	-	-	.38	11.8
RR778		3.88	1.31	.88	⁵ /16	.34	-	5.28	-	2.13	-	-	.19	3.0
RR1120		2.75	2.00	.81	3/8	.41	-	4.03	-	2.50	-	-	.19	4.0
C1288		3.00	1.30	.81	3/8	.41	-	4.81	-	2.13	-	-	.16	3.7
1539		3.75	1.53	1.25	¹ /2	.56	-	5.16	-	3.00	-	-	.31	9.0
2188		3.38	2.00	1.00	³ /8	.41	-	5.44	-	2.75	-	-	.31	8.8
5208		6.88	3.00	1.25	3/4	.81	_	9.00	_	2.00	-	_	.38	12.6
6826 ^②		6.00	3.00	1.63	1/2	.56	-	7.19	-	3.88	-	-	.38	15.3
	RS60	4.40	2.38	1.25	¹ /2	.53	-	5.83	-	1.75	-	-	.38	9.9
	RS625	2.38	.83	.69	1/4	.31	-	3.44	-	.88	-	-	.13	3.4
	RS627	2.75	.83	.81	1/4	.28	-	3.81	-	1.00	-	-	.19	5.7
	RS944+	4.75	2.50	1.63	⁵ /8	.69	-	6.48	-	2.50	-	-	.38	11.5
	RS1539	3.75	1.53	1.25	¹ /2	.56	-	5.05	-	2.75	-	-	.31	9.0
	RS2188	3.63	2.00	1.00	¹ /2	.56	-	5.33	-	3.00	-	-	.31	8.8
	RS3013	2.94	1.50	.81	⁵ /16	.34	-	3.79	-	2.00	-	-	.19	5.1
	S4013	2.75	2.00	.81	3/8	.41	-	3.81	-	2.50	-	-	.19	4.4
	S4019	2.75	2.00	.88	³ /8	.41	_	4.83	-	2.50	-	-	.25	5.4
	RS4113	3.44	2.00	1.00	³ /8	.41	-	4.62	-	2.50	-	-	.19	5.2
	S4216	4.00	2.00	1.13	3/8	.41	-	5.24	-	3.38	-	-	.19	6.3
	RS4328	4.00	2.00	1.25	1/2	.56	-	5.75	-	2.00	-	-	.38	11.7
	SBS188	3.75	2.00	.81	³ /8	.44	-	5.16	-	2.13	-	-	.25	5.1


All attachments are thru-hardened.
 All holes round and straight.
 Al/A2 and K1/K2 attachments are combined on the same side bar.

^③ Not central.

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

K2 for S102B, S102.5, ES1111, ES111SP, SR830 and ES833

K2 for All Others

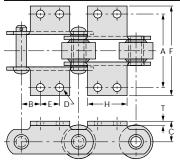
Dimensions are in inches. Weights are in pounds.

Rex	Link-Belt		_		D	D	_	_						Wgt.
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	K	Т	Per Foot
				ŀ	(2 made also	o for chain	with offse	et sideba	rs.					
42		2.75	1.25	.88	³ /8	.41	1.50	3.81	-	2.75	_	_	.25	5.3
6		4.25	1.69	1.63	1/2	.56	2.63	5.69	-	5.50	-	-	.38	15.0
ER102B ³⁹		5.31	1.13	1.13	3/8	.41	1.75	6.94	-	4.25	-	-	.38	9.0
ER102.539		5.31	1.16	1.13	³ /8	.41	1.75	6.78	-	4.56	_	_	.38	13.4
ER11139		6.25	1.22	1.50	³ /8	.41	2.31	7.88	-	5.22	-	-	.38	15.2
ER111Sp.39		6.25	1.22	1.50	3/8	.41	2.31	7.88	-	3.63	-	-	.38	13.0
ER150 ⁹		7.50	1.66	1.88	¹ /2	.56	2.75	9.81	-	4.25	-	-	.50	23.0
SR183 ²		3.13	.97	.81	¹ /4	.28	1.06	4.00	_	2.00	_	_	.19	4.9
S188		4.19	.67	.81	⁵ /16	.34	1.25	5.13	-	2.13	-	-	.25	5.8
SR188 ²		4.00	.75⑦	1.00	³ /8	.41	2.00⑦	5.03	-	3.38	_	-	.19	5.9
SR1942		4.00	1.00	1.13	3/8	.41	2.00	5.25	-	3.25	-	-	.19	7.3
SR196 ²		4.00	2.00	1.25	3/8	.41	2.00	5.66	_	3.50	_	_	.25	7.5
S823 ^④		5.25	1.44 ^⑦	1.06	³ /8	.41	1.69	6.88	-	2.75	-	-	.25	7.3
SR825 ⁽⁴⁾		6.00	.50	1.19	¹ /2	.56	2.63	8.88	_	3.75	_	_	.38	16.0
SR830 ⁶		6.00	1.69	1.19	1/2	.56	2.63	7.66	-	6.34	-	-	.38	12.3
ER83339		6.25	1.84	1.88	1/2	.56	2.31	8.13	_	6.94	_	_	.38	20.2
SR844④		6 & 4.9	1.56	1.19	$\frac{1}{2}$.56	2.75	7.50	-	4.00	-	-	.50	14.9
ER911		5.13	2.75	1.75	1/2	.56	3.50	7.13	_	5.50	_	_	.25	12.7
ER922		5.75	2.75	2.50	1/2	.56	3.50	7.56	-	5.50	_	-	.25	16.0
FR922		5.75	2.75	2.50	$\frac{1}{2}$.56	3.50	7.75	_	5.50	_	_	.25	16.6
ER933		6.50	2.75	3.00	9/16	.62	3.50	8.00	_	5.50	-	-	.38	25.2
FR933		6.00	2.75	2.88	1/2	.56	3.50	7.81	_	5.50	_	_	.31	22.3
S951		4.38	2.00	1.63	3/8	.41	2.00	6.31	-	3.50	-	-	.38	14.7
SR1114		4.00	2.00	1.13	3/8	.41	2.00	5.38	_	3.50	_	_	.31	10.7
RS1131		6.00	1.69	1.63	1/2	.56	2.63	7.38	_	4.50	-	-	.38	18.4
15392		4.00	.59	1.25	5/16	.34	1.88	5.16	_	3.00	_	_	.31	9.0
C2124 ⁵		4.38	1.50	1.63	1/2	.54	3.00	5.25	-	4.50	_	-	.38	15.8
A2124 ⁵		4.38	1.50	1.63	1/2	.56	3.00	5.25	_	4.50	_	_	.38	15.8
2126		4.00	2.00	1.13	³ /8	.00	2.00	6.06	-	3.50	-	-	.25	7.0
A2178 ⁵		4.38	1.50	1.63	1/2	.56	3.00	5.62	_	4.50	_	_	.23	15.3
2180		4.75	2.00	1.63	1/2	.56	2.00	6.22	-	3.50	-	-	.38	11.7
21882		3.63	1.13	1.00	1/2	.56	1.75	5.44	_	2.75	_	_	.30	8.8
A2198 ²		4.38	1.50	1.63	$\frac{1}{2}$.56	3.00	6.00	_	4.50	_	_	.50	18.2
28586		5.38	1.16	2.00	5/8	.69	1.75	6.75	_	6.38	_	_	.38	18.0
A2868		5.50	1.13	1.63	1/2 [®]	.56	1.75	7.00	_	5.75	_	_	.30	14.1
32856		6.50	1.13	2.06	3/4	.50	2.50	8.25	_	7.00	_	_	.50	40.0
3420		4.13	1.00	1.25	3/8	.41	1.50	6.13	_	2.75	_	_	.30	11.0
6826 ²		6.00	1.69	1.63	1/2	.56	2.63	7.19	_	3.88	_	_	.31	15.3
75396		4.13	.81	1.03	1/2	.56	1.50	5.78	_	4.72	_	_	.30	21.0
13370		1 4.13	.01	1.15	.17	.50	1.50	5.70	_	4.72	_		.51	21.0

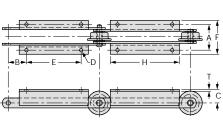
All attachments are thru-hardened.

O All holes round and straight.
 O A1/A2 and K1/K2 attachments are combined on the same side bar.

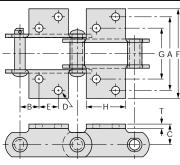
Full width attachment cannot be coupled consecutively.
 These chains have offset sidebars.

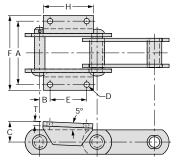

Inese chains have onset succeds.
 Lower edge of sidebar is necked.
 Full width attachment on outside only.

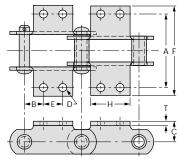
⑦ Not Central.


In the second
[®] Now known as ER Series chain. Previous prefix was S, ES or SX.

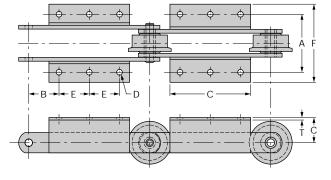
NEERED STEEI

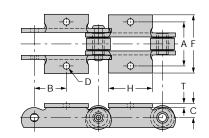

ENGI


K2 Figure 1

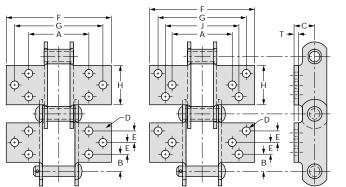

K2 Figure 2

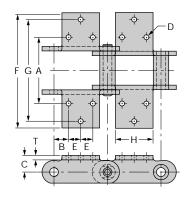
K2 Figure 3

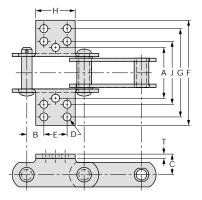

K2 Figure 4


K2 Figure 5

		•							l i i gui	Dimensions	s are in	inches. \	Veights are	e in pound
Rex Chain No.	Link-Belt Chain No.	A	В	с	D ^C Bolt Dia.	D Bolt Hole	E	F	G	н	J	К	Т	Wgt. Per Foot
		l				K2 Figu	re 1							
	RS658	5.25	1.50	2.50	³ /8	.44	3.00	6.83	_	4.38	_	_	.31	14.9
	RS886	4.19	.67	.81	5/16	.34	1.25	5.40	-	2.13	-	-	.19	4.6
	RS887	4.19	.67	.88	5/16	.38	1.25	5.10	-	2.13	-	-	.25	5.6
	S951	4.38	2.00	1.63	³ /8	.44	2.00	5.80	_	4.13	-	_	.31	14.3
	S960	4.38	1.50	1.63	1/2	.56	3.00	6.04	-	4.38	-	-	.50	18.2
	S996	4.38	1.50	1.63	1/2	.56	3.00	5.72	-	5.50	-	-	.38	15.8
	S1113	4.12	1.27	1.25	³ /8	.41	1.50	5.55	_	2.50	-	-	.31	11.0
	RS1114	4.00	2.00	1.13	3/8	.41	2.00	5.69	-	3.50	-	-	.31	10.7
	RS1116	4.00	2.00	1.13	3/8	.44	2.00	5.38	-	2.88	-	-	.25	7.0
	RS1131	6.00	1.69	1.63	¹ /2	.56	2.63	7.38	-	5.50	-	-	.38	18.4
	RS1539	3.97	.60	1.25	⁵ /16	.34	1.88	5.13	-	2.75	-	-	.31	9.0
	S1796	4.38	1.50	1.63	1/2	.56	3.00	5.73	-	4.38	-	-	.38	15.3
	RS2047	4.38	1.50	1.75	¹ / ₂	.53	3.00	6.70	-	4.38	-	-	.38	32.0
	RS2188	3.62	1.13	1.00	1/2	.56	1.75	5.33	-	3.00	-	-	.31	8.8
	S4013 RS4019	2.75	1.41	.81	⁵ /16	.34	1.19	3.81	-	2.50	-	-	.19	4.4
	RS6018	2.75 4.00	1.25 2.00	.88 1.25	³ /8 3/8	.41	1.50 2.00	3.77 5.23	-	2.50 3.00	-	-	.25 .25	5.3 6.2
	RS6238	4.00	1.69	1.63	¹ /2	.56			-	5.50	-	-	.25	
	130230	4.20	1.09	1.03	12	K2 Figu	2.63	5.75	-	5.50	-	-	.38	15.8
	DC011	L E 10	0.75	175	17-		3.50	710		5.50			25	107
	RS911	5.13	2.75	1.75	1/2	.53		7.13	-		-	-	.25	12.7
	SS922 SS927	5.75 5.75	2.75	2.50	1/2	.53	3.50	7.75 7.75	-	5.50	-	-	.25	16.6
	SS933	6.00	2.75 2.75	2.50 2.88	1/2 1/2	.53 .53	3.50 3.50	8.82	-	5.50 5.50	-	-	.25 .31	16.0 22.3
	\$1211	5.13	3.00	1.75	1/2	.53	6.00	7.13	_	8.00	_	_	.25	11.7
	SS1222	5.75	3.00	2.50	1/2	.53	6.00	7.75	_	8.00	_	_	.25	15.2
	SS1233	6.00	3.00	2.88	1/2	.53	6.00	8.82	_	8.00	_	_	.23	20.3
	00.1200	0100	0100	2100	, 2	K2 Figu		0.02		0100			101	2010
	SBS844	6.00	1.63	1.50	¹ /2	.56	2.75	8.00	_	4.00	_	_	.50	14.9
	1	0100	1100	1100	12	K2 Figu		0100		1100			100	,
	SBS4871	8.00	1.48	2.00	3/4	.81		10.44	-	8.00	-	-	.38	20.2
						K2 Figu								
	SBS102B	5.32	1.13	1.00	3/8	.41	1.75	6.76	-	2.85	-	-	.38	9.0
	SBS110	5.32	2.13	1.00	3/8	.41	1.75	7.07	-	2.88	-	-	.38	8.6
	SBS111	6.25	1.22	1.50	¹ /2	.53	2.31	8.28	-	3.62	-	-	.38	15.2
	SBS131	4.12	.79	1.00	1/2	.53	1.50	5.44	-	2.62	-	-	.38	10.2
	SBS150+	7.50	1.65	1.88	1/2	.53	2.75	10.06	-	4.25	-	-	.50	23.0
	SBS188	4.19	.68	.81	⁵ /16	.34	1.25	5.22	-	2.13	-	-	.25	5.8
	SBX856	6.31	1.88	1.88	1/2	.53	2.25	9.27	-	4.25	-	-	.50	23.0


All attachments are thru-hard
 ① All holes round and straight.

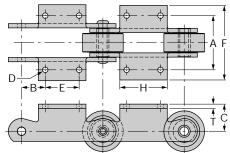

K3 REX



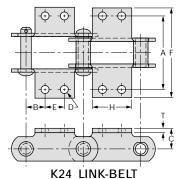
K3 on RS856 and SX150

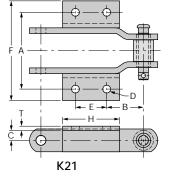
SBX150 PLUS SBX856 K3 LINK-BELT

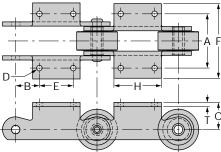
Κ6


K11 and K17 Dimensions are in inches. Weights are in pounds.

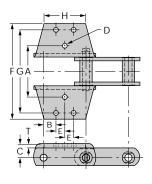
													3	e in pounds
Rex	Link-Belt	А	В	С	D ⁽	-	Е	F	G	Н	J	к	т	Wgt.
Chain No.	Chain No.				Bolt Dia.	Bolt Hole								Per Foot
						K3								
ER1503		7.50	1.66	1.88	¹ /2	.56	1.38	13.06	11.50	4.25	_	-	.50	26.2
ER856@3		6.56	1.63	1.88	1/2	.56	1.38	13.56	10.94	5.84	-	-	.50	26.9
E1211		5.13	3.00	1.75	1/2	.56	3.00	7.13	-	8.00	-	-	.25	11.7
ER1222		5.75	3.00	2.50	¹ /2	.56	3.00	7.75	-	8.00	-	-	.25	15.4
FR1222		5.75	3.00	2.50	1/2	.56	3.00	7.75	-	8.00	-	-	.25	15.2
ER1233		6.50	3.00	3.00	1/2	.56	3.00	9.00	- 1	8.00	- 1	-	.31	20.3
FR1233		6.50	3.00	3.00	¹ /2	.56	3.00	9.00	-	8.00	-	-	.31	20.3
ER1244		7.50	3.00	3.63	1/2	.56	3.00	9.75	-	8.00	-	-	.38	30.4
FR1244		7.50	3.00	3.63	¹ /2	.56	3.00	9.75	-	8.00	-	_	.38	30.4
FR1822		5.75	3.50	2.50	1/2	.56	5.50	7.75	-	14.00	-	-	.25	14.1
FR1844		7.50	3.50	3.63	1/2	.56	5.50	10.69	-	14.00	-	-	.38	29.0
	SBS150+	7.50	1.65	1.88	¹ /2	.56	1.34	13.59	11.50	4.25	-	-	.50	26.9
	SBX856	6.56	1.63	1.88	1/2	.56	1.38	13.27	12.06	4.25	10.98	-	.50	27.3
						K6								
	SBX 856	6.56	1.62	1.88	¹ /2	.56	2.76	10.94	10.94	4.25	6.94	-	.50	27.3
						K11								
BR2111		4.75	3.50	1.63	5/8	.69	-	6.88	-	3.00	-	-	.38	9.58
						K17								
531		4.00	2.00	1.31	1/2	.56	-	5.44	-	1.50	-	-	.38	10.6


All attachments are thru-hardened.

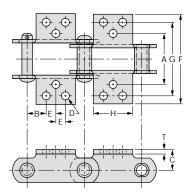

All holes round and straight.
 Full width attachment cannot be coupled consecutively.
 Now known as ER Series chain. Previous prefix was RS or SX.


ENGINEERED STEEL

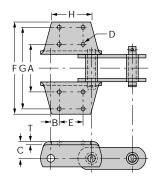
K20, K22, K23, K24 REX, K25

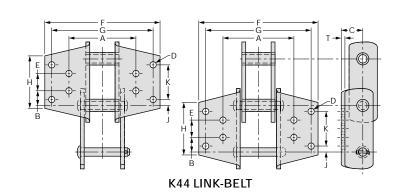

K26, K27 and K32 Dimensions are in inches. Weights are in pounds.

Rex	Link-Belt	1	1		D	1)				1				Wqt.
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	К	Т	Per Foot
						K20								
2183		4.00	1.75	2.00	³ /8	.41	2.50	5.69	_	3.50	_	_	.31	13.7
F2183		4.00	1.75	2.00	3/8	.41	2.50	5.69	-	3.50	-	-	.31	14.9
						K21								
R2342		6.75	3.13	1.25	⁵ /8	.69	2.75	8.38	_	5.00	-	_	.38	15.8
					, .	K22								
R102.5 ²⁵		5.31	1.14	1.13	$^{1/2}$.56	1.75	6.78	_	4.56	-	_	.38	14.5
ER102B ⁽⁵⁾		5.31	1.13	1.13	1/2	.56	1.75	6.94	_	4.25	_	-	.38	9.0
ER111 ²		6.25	1.22	1.50	1/2	.56	2.31	7.69	-	5.22	-	-	.38	15.2
RR542		5.38	2.13	1.00	1/2	.56	1.75	6.81	-	7.50	-	-	.31	6.5
S188		3.63	.69	.81	⁵ /16	.34	1.25	5.13	_	2.13	-	-	.25	5.8
ES833 ²		5.75	1.25	1.88	1/2	.56	3.50	7.19	-	7.44	-	-	.38	20.2
A2800		5.19	2.38	2.19	⁵ /8	.69	3.25	7.18	-	5.00	-	-	.50	26.2
						K23								
ER856 ⁽²⁾⁽⁵⁾		6.31	1.88	1.88	1/2	.56	2.25	9.50	-	6.91	-	-	.50	21.0
						K24								
ER856@5		7.25	1.75	1.88	⁵ /8	.69	2.50	9.38	_	6.91	1	-	.50	27.5
ER956 ²		7.25	1.75	1.88	5/8	.69	2.50	9.50	-	6.91	-	-	.50	29.0
1670		4.06	2.00	1.38	³ /8	.41	2.00	5.31	-	3.50	-	-	.31	11.2
C2848 ^②		5.38	1.13	2.00	⁵ /8	.69	1.75	7.13	-	6.06	-	-	.38	15.3
3285 ²		6.50	1.00	2.06	3/4	.81	2.50	8.25	-	7.00	-	-	.50	23.0
A4539 ²		4.13	.78	1.13	¹ / ₂	.56	1.50	5.53	-	4.56	-	-	.31	10.0
	SBX 856	7.25	1.75	1.88	⁵ /8	.69	2.50	9.27	-	4.25	-	-	.50	23.0
55440		5.04	0.4.0	4.4.9	<u>, , , , , , , , , , , , , , , , , , , </u>	K25				0.50				
ER110 ⁵		5.31	2.13	1.13	3/8	.41	1.75	6.44	-	3.50	-	-	.38	8.6
ER131 [®] ER922		4.13	.78	1.13	¹ / ₂	.56	1.50	5.59	-	2.50	-	-	.38	10.2
A2124 ³		5.75	3.00	1.63	1/2 1/2	.56 .56	3.00	7.56	-	5.00	-	-	.25	14.9
A2124® A21783		4.88	1.75 1.75	1.63 1.63		.56	2.50 2.50	6.50 6.50	-	4.50	-	-	.38	16.8
A2178® A21983		4.88 4.88	1.75	1.63	$\frac{1}{2}$ $\frac{1}{2}$.56	2.50	6.50	_	4.50 4.50	-	-	.38 .50	16.3 19.2
AZ 190		4.00	1.70	1.05	-12	.50 K26		0.30	_	4.30	-	_	.30	19.2
X3433④		E 21	110	110	1/2			6.04		4.05			20	111
⊼ј4јј⊎		5.31	1.13	1.13	¹ /2	.56 K27	1.75	6.94	-	4.25	-	-	.38	11.1
FD022 (2)(5)		6.00	140	1.00	1/2	.56	2.63	612		714			20	20.2
ER833 ²⁵		6.00	1.69	1.88	1/2	.56 K32		6.13	-	7.16	-	-	.38	20.2
R2823			04	1.00	3/0		1.69	4.25		2.75			25	E O
RZÖZJ		5.25	.06	1.00	3/8	.41	1.07	6.25	-	2.75	-	-	.25	5.9


All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ Full width attachment cannot be coupled consecutively.

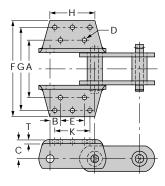
I consider a tradeministration of the comparison of t


^⑤ Now known as ER Series chain. Previous prefix was S, ES or RS.

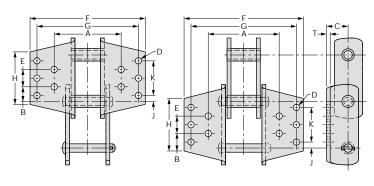

K35 REX

K35 LINK-BELT

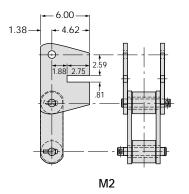
K44 REX

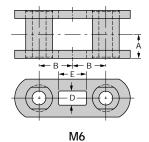


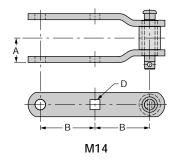
Dimensions are in inches. Weights are in	nounds


Rex	Link-Belt	А	В	С	D		E	F	G	н	J	к	т	Wgt.
Chain No.	Chain No.	'n	5	,	Bolt Dia.	Bolt Hole	1		Ű		,	Ň	•	Per Foot
						K35								
ER856@3		7.25	1.75	1.88	⁵ /8	.69	1.25	13.56	11.75	5.84	-	-	.50	26.9
	SBX856	7.50	1.75	1.88	5/8	.69	1.25	13.27	11.75	4.25	-	-	.50	27.3
						8 HOLES	– K44							
ER857 ²		7.00	1.25	2.50	¹ /2	.56	3.50	14.00	12.00	5.50	1.25	3.50	.50	38.0
ER859 ²		9.00	1.63	3.00	5/8	.69	2.75	15.00	13.00	5.92	.75	4.50	.63	59.0
ER958		7.00	1.25	2.50	1/ ₂	.56	3.50	13.68	12.00	5.75	1.25	3.50	.50	40.0
						K44								
	SBX2857	7.00	1.25	2.50	1/2	.56	3.50	13.50	12.00	5.31	1.25	_	.50	42.0
	SBX2859	9.00	1.63	3.00	⁵ /8	.69	2.75	14.82	13.00	5.87	.75	4.51	.63	59.3

All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ Full width attachment cannot be coupled consecutively. ⁽³⁾ Now known as ER Series chain. Previous prefix was RS.


ENGINEERED STEEL




K443 REX

K443 LINK-BELT

Dimensions are in inches. Weights are in pounds.

Rex Chain No.	Link-Belt Chain No.	Α	В	с	D ^C Bolt Dia.	D Bolt Hole	E	F	G	Н	J	К	т	Wgt. Per Foot
						10 HOLES	– K443							
ER864 ²		9.00	1.63	3.00	5/8	.69	3.75	15.00	13.00	7.00	.75	5.50	.63	55.0
ER984		9.00	1.62	3.00	⁵ /8	.69	3.75	14.88	13.00	7.32	.75	5.50	.62	58.0
						K443	3							
	SBX 2864	9.00	1.63	3.00	⁵ /8	.69	3.75	15.04	13.00	6.88	.75	5.50	.63	56.7
						M2								
C9856					Refer to	Drawing f	or Dimer	nsions						
						M6/M	06							
270		.88	1.31	_	²¹ /32	Slots	1.28	_	_	_	-	-	_	6.4
1536		1.11	1.53	-	²¹ / ₃₂	Slots	1.28	-	-	-	-	-	-	8.7
7774		.88	1.30	-	²¹ / ₃₂	Slots	1.28	-	-	-	-	-	-	6.8
						M14								
1036		1.39	3.00	-	9/ ₁₆ 3	Slots	-	-	_	-	-	-	-	4.7
1039		1.39	4.50	-	⁹ /16 ³	Slots	-	-	-	-	-	-	-	4.2
R2342		2.00	4.50	-	3/43	Slots	-	-	-	-	-	-	-	9.0
RR2397		1.90	6.00	-	7/ ₈ 3	Slots	-	-	-	-	-	-	-	9.3
R2405		2.00	4.50	-	7/ ₈ 3	Slots	-	-	-	-	-	-	-	9.4
R2614		2.66	6.00	-	1 ¹ /4 ³	Slots	-	-	-	-	-	-	-	23.4

All attachments are thru-hardened. ^① All holes round and straight. ^③ Full width attachment on outside only.

^③ Holes are square.

ENGINEERED STEEL DRIVE CHAINS

Designed to give you superior performance, even under the most punishing conditions

Rugged, all-steel Rex[®] and Link-Belt[®] drive chains are built to perform at levels other drive chains can't match. Rexnord began manufacturing drive chain in the late 1800's and has been a leader in drive chain innovation since. Today's chains are a product of over a century of improved product design, testing and application experience. No one else in the industry comes close to our level of expertise.

More built-in features for your money

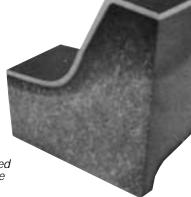
- Engineered interference fit construction designed to increase chain fatigue life and wear life.
- State-of-the-art heat treatment of all chain components to assure longer chain life. Rexnord has developed most of its own heat treating equipment in-house for better control and to precisely fit the heat treat needs of drive chain pins and bushings.
- Pins, bushings and rollers are manufactured to exact tolerances. Sidebars and sidebar holes are punched using the latest punch press technology to give superior fit and finish.
- Selectively Induction Hardened (SIH) pins, available in many of our drive chains, afford you unmatched toughness and wear resistance. Ideal for tough, shock loaded applications.
- Stocked in the largest network of warehouses in the industry. All backed up with extensive engineering and sales support.

Wear life is directly affected by the hardness and case depth of the wearing components

- Selectively Induction Hardened pins (the pin with the crescent-shaped hardened area) are heat treated only on the portion of the pin that experiences wear.
 The balance of the pin is left in a tough state to withstand shock loading.
- Chain rollers, sidebars and bushings are all heat treated for wear resistance and strength.
- Pins hardened by Rexnord's advanced induction hardening process feature extremely hard wear surfaces and deep case depths as shown below.

Ideal replacement for gearing, multiple strand roller chain, and belt drives

- Requires less precision and expense than gearing center distances are more flexible and adjustable.
- A single strand of Rex or Link-Belt drive chain can frequently replace multiple strand roller chain drives, thus simplifying maintenance. And unlike multiple strand chains, our drive chains run on simple flame-cut sprockets.
- Easily adjustable. The offset link design allows one link at a time to be taken out or inserted. No special connector links are required.
- Lower overhung loads than belt drives due to the elimination of pre-tensioning.

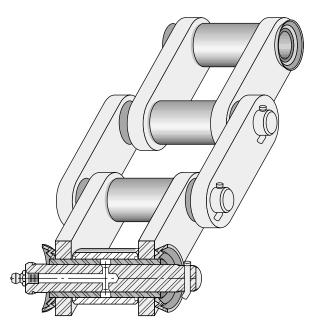

Rexnord chains run best on Rexnord sprockets

Although our drive chains may be run on commonly available flame cut sprockets, they give better long term performance when matched with our sprockets. Our sprockets are flame cut and induction hardened to give hard, deep case depths.

Most competitive sprockets have only a fraction of the case depth. Once the case depth is worn through, sprocket wear is rapid and chain interaction is affected, thus causing greater chain stress.

CIH pins (right and bottom) offer very hard and deep case depths around the full circumference of the pin. SIH pins (upper left) are hardened only on the load bearing surface so shock can be better absorbed by the back of the pin.

> Proprietary induction hardening process gives every heat treated sprocket superior case depths and hardness.

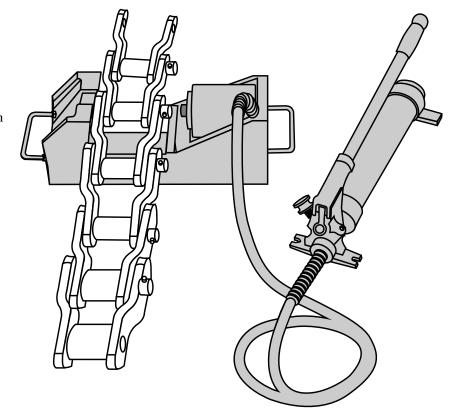

3100 SERIES DRIVE CHAINS

Longer life and durability than their ANSI roller chain equivalents

The 3100 Series drive chains are designed with all the features of our standard drive chains. But, unlike the others, they operate on standard ANSI roller chain sprockets. They may also be used to replace ANSI roller chains of the same pitch.

Sealed Joint Drive Chains

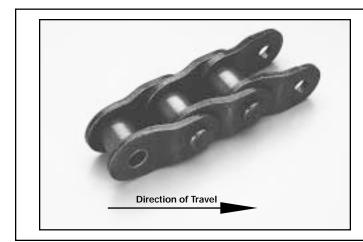
Rexnord engineers have developed a proprietary method of sealing both the roller and bushing area of **straight sidebar** chains. Keeps factory lubrication in and contamination out! Patent pending. Rexnord has had excellent success with its line of sealed joint elevator chains and is now using that technology to create sealed joint drive chains. Sealed joint drive chains are a new innovation. Please contact Rexnord to determine if this product is right for your application and if the chain you want is available.


- Factory installed grease is trapped in the joint to reduce break-in wear and provide constant lubrication during the life of the seal.
- Contaminants are sealed out to eliminate their abrasive or corrosive effects.

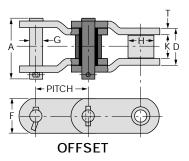
DRIVEMASTER® ASSEMBLY TOOL

The quick and safe way to assemble and disassemble Rex[®] or Link-Belt[®] drive chain

Easily assemble and disassemble our drive chains with this portable tool. An optimum amount of interference fit has been used to assemble this chain at the factory – Drivemaster allows you to maintain this optimum press fit in the field.


- Specify the chain or chains to be assembled and disassembled.
- Each Drivemaster comes with one adapter set to accept the chain or chains you specify when ordering the unit. Different chains require different adapter sets.
- Drivemaster can accept many other Rexnord chains such as welded steel and general engineered class chains. Again, specify the type of chains you anticipate working with.

Easy-to-use Drivemaster assembly tool reduces down-time, maintains interference fit and eliminates cumbersome assembly/disassembly methods.

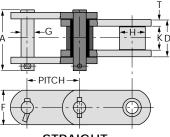

Application Assistance and Wear Analysis

- Rexnord engineers are always available for drive chain selection and application consultation.
- Rexnord also provides drive chain wear and failure analysis. This service is designed to help you get the most our of your Rex or Link-Belt chains.

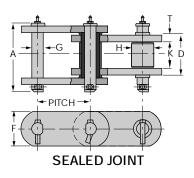
Remember Direction of Travel!

The general rule for direction of chain travel for offset drive chains is as follows: the narrow or roller end of the link in the tight side strand should always face the smaller sprocket, regardless of whether this is a driver or driven.

Properties TΗ Thru-Hardened CARB Carburized CIH Circumferentially Induction Hardened SIH Selectively Induction Hardened


Dimensions are in inches. Strengths, loads and weights are in pounds.

Rex	Link-Belt 1	Average	Rated	Minimum Ultimate	Over-All	Bushing ³	Sideb	ars [@]	Pins Diam.	Roller [©]	Between	Average	Sprocket [®]
Chain No.	Chain No.	Pitch	Working	Strength,	Width	Length	Thickness	Height	Properties	Diameter	Sidebars	Weight	Unit
0.12.11.1101	0.1.4.1.1.0.1		Load ²	Lbs. x 10^3	Α	D	Т	F	G	Н	К	Per Foot	No.
					Offs	et Sideba	r Drive Ch	ains					
R362	R0A620	1.654	1.650	14	2.03	1.25	0.13	1.13	0.38-CARB	0.88	0.97	2.0	62
R432	R0622	1.654	2,100	19	2.28	1.38	0.19	1.13	0.44-TH	0.88	0.97	3.5	62
R3112	-	2.000	3,400	38	2.91	1.75	0.25	1.63	0.56-TH	1.13	1.22	6.4	3112
B3113	ROA3160S	2.000	3,900	44	3.13	1.88	0.31	1.63	0.59-TH	1.13	1.19	7.3	3112
R506	R0770 ²	2.300	1,600	10	2.09	1.25	0.16	1.00	0.38-CARB	0.75	0.88	2.2	506
R514	R0A2010	2.500	4,650	57	3.50	2.13	0.31	1.63	0.63-SIH	1.25	1.44	7.8	514
A520	-	2.563	2,700	24	2.69	1.56	0.25	1.25	0.50-CARB	1.13	1.00	4.5	520
B578	R0578 [®]	2.609	1,800	10	2.27	1.38	0.16	1.00	0.38-CARB	0.88	1.03	2.3	78
R778	R0A881	2.609	2,300	18	2.41	1.50	0.19	1.13	0.44-CARB	0.88	1.06	2.3	78
R588	ROA882	2.609	2,450	19	2.67	1.63	0.25	1.13	0.44-CARB	0.88	1.06	3.8	78
B508H	-	2.620	2,400	19	2.63	1.56	0.25	1.13	0.44-CARB	1.00	1.06	3.8	508
AX1568	R0A2512	3.067	6,000	77	3.90	2.31	0.38	2.25	0.75-SIH	1.63	1.50	12.1	1568
1030	ROA40	3.075	4,650	27	3.50	2.13	0.31	1.50	0.63-CARB	1.25	1.44	6.8	1030
R1033	ROA1031	3.075	4,650	39	3.50	2.13	0.31	1.50	0.63-SIH	1.25	1.44	6.8	1030
R1035	ROA1032	3.075	4,650	52	3.50	2.13	0.31	1.63	0.63-SIH	1.25	1.44	7.2	1030
R1037	ROA40 Hyper	3.075	5,100	57	3.75	2.25	0.38	1.75	0.65-SIH	1.25	1.44	8.6	1030
Champ. 3	-	3.075	5,100	57	3.85	2.25	0.38	1.69	0.65-SIH	1.25	1.44	8.3	1030
R0-6706	-	3.075	9,000	60	4.55	2.94	0.38	2.00	0.88-CIH	1.75	2.19	14.0	R06706
3125	ROA3125 Hyper	3.125	6,600	84	4.00	2.38	0.38	2.25	0.80-SIH	1.63	1.56	12.3	3125
3125-2	ROA3125-2 Hyper	3.125	13,200	168	7.19	2.38	0.38	2.25	0.80-TH	1.63	1.56	24.6	D31
RX238	ROA2814	3.500	7,600	106	4.50	2.50	0.50	2.25	0.88-SIH	1.75	1.44	15.8	238
AX1338	-	3.625	9,200	124	4.98	2.81	0.56	2.50	0.94-SIH	2.13	1.63	20.6	AX1338
R0-6214	-	4.000	16,400	125	5.68	3.75	0.50	2.75	1.25-SIH	2.25	2.75	25.0	R06214
A1236	-	4.063	6,000	73	3.91	2.31	0.38	2.00	0.75-SIH	1.75	1.56	10.4	A1236
1240	ROA124	4.063	9,000	51	4.88	2.94	0.50	2.00	0.88-SIH	1.75	1.88	12.3	1240
1244	-	4.063	9,000	91	4.88	2.94	0.50	2.13	0.88-SIH	1.75	1.88	13.0	1240
R1248	ROA1242	4.063	9,000	102	4.88	2.94	0.50	2.25	0.88-SIH	1.75	1.88	15.7	1240
RX1245	ROA3315	4.073	10,000	124	5.19	3.06	0.56	2.38	0.94-SIH	1.78	1.88	18.7	1240
X1343 X1345	-		10,700	137	5.25	3.06	0.56	2.75	1.00-SIH	1.88	1.88	21.5	X1343
X1345 X1351	-	4.090 4.125	10,700 12,500	137 166	5.25 5.38	3.06 3.19	0.56 0.56	2.75 2.75	1.00-TH 1.13-SIH	2.00 2.25	1.88 2.00	22.8 24.8	X1345 X1351
R0635	 ROA3618		12,300	171	5.38	3.19	0.56	3.00	1.10-CIH	2.25	2.00	24.0	635
A1204	RUASOTO		13,500	169	5.63	3.19	0.56	3.00	1.10-CIH 1.13-TH	2.25	2.00	22.0	1204
R01205	_		16,400	196	5.03	3.75	0.56	3.00	1.25-CIH	2.50	2.25	28.5	1204
RX1203	R0A4020		17,500	223	6.31	4.00	0.63	3.50	1.25-SIH	2.50	2.69	34.0	1207
R01315	R0A5035	5.000	20.000	250	6.63	4.00	0.05	3.50	1.38-CIH	2.50	2.50	37.0	RO1315
R01355	-	5.000	20,000	250	6.81	4.00	0.75	3.75	1.38-CIH	2.75	2.69	43.6	RO1355
R01356	R05542	5.500	23,600	300	7.25	4.50	0.75	4.00	1.50-CIH	3.00	2.94	45.6	RO1355
1301	R0A5738©												
		6.000	23,600	287	7.25	4.50	0.75	4.00	1.50-CIH	3.00	2.94	45.0	1306
	_	6.000	23.600	300	7.25	4.50	0.75	4.75	1.50-SIH	3.00	2.94	47.2	1306
X1311	R06555 [®]												X1311
X1307	-		30,600	385	7.97	5.00	0.88	5.00	1.75-SIH	3.50	3.19	66.0	1307
1301 R01306/ R0S1306® RX9506H X1311	ROA5738 [®] ROA4824/ ROB4824 -	5.750 6.000 6.000 6.500	23,000 23,600 23,600 30,600	299 287 300 412	7.09 7.25 7.25 7.97	4.38 4.50 4.50 5.00	0.69 0.75 0.75 0.88	4.00 4.00 4.75 5.00	1.50-TH 1.50-CIH 1.50-SIH 1.75-SIH	3.00 3.00 3.00 3.50	2.94 2.94 2.94 3.19	45.0 45.0 47.2 77.9	1301 1306 1306 X131


^① Link Belt versions no longer available. Unless otherwise noted, Rex version is identical to the Link Belt version. Sections and links may be interchanged.

[©] Use pages 103-108 for drive chain selection procedures using selection tables. For alternate selection method using 'rated working load', see page 122.
 [®] All bushings are carburized except for RO1315, RO1355, RO1356, ROS1306, & RX95506H, which are thru-hardened.
 [®] All sidebars are thru-hardened except for R506, B578, 1030, 1240.

^⑤ All rollers are thru-hardened.

STRAIGHT

Pr	0	per	tie	es		
T 1					T 1	

TH	Thru-Hardened
CARB	Carburized
CIH	Circumferentially Induction Hardened
SIH	Selectively Induction Hardened

Dimensions are in inches. Strengths, loads and weights are in pounds.

Rex	Link-Belt 1	Average	Rated	Minimum Ultimate		Bushing ³	Sideb	ars [@]	Pins	Roller [©]	Between	Average	Sprocket [®]
Chain No.	Chain No.	Pitch	Working	Strength,	Width	Length	Thickness	Height	Diam. Properties	Diameter	Sidebars	Weight	Unit
			Load ²	Lbs. x 10 ³	Α	D	Т	F	G	Н	K	Per Foot	No.
					Strai	ght Sideb	ar Drive C	hains					
6425R	-	2.500	6,900	78	3.81	2.27	0.38	2.38	0.88-CIH	1.56	1.48	12.7	645
X345	RS3017 [®]	3.000	10,000	124	5.22	3.06	0.56	2.38	0.94-SIH	1.78	1.88	21.8	X345
X1353	-	4.090	16,000	205	5.81	3.50	0.63	3.00 [®]	1.31-SIH	2.63	2.18	32.6	X1353
X1365	-		30,600	407	7.97	5.00	0.88	5.00	1.75-SIH	3.50	3.19	68.0	X1365
A1309	R07080 [©]	7.000	37,150	606	8.00	5.00	0.88	6.00	2.13-TH	4.50	3.13	89.6	A1309
					3100 S	eries Offs	et Sidebar	Chains					
3120CM	ROA3120	1.500	2,100	28	2.28	1.38	0.19	1.81	0.44-TH	0.88	0.97	4.0	ANSI #120
3140CM	ROA3140	1.750	2,500	39	2.50	1.44	0.22	1.63	0.50-TH	1.00	0.97	5.2	ANSI #140
3160CM	ROA3160	2.000	3,450	50	2.91	1.75	0.25	1.88	0.56-TH	1.13	1.19	6.7	ANSI #160
3180	-	2.250	4,800	63	3.31	2.00	0.28	2.13	0.69-CIH	1.41	1.38	9.6	ANSI #180
					Sea	aled Joint	Drive Cha	ains					
SJLR1037	-	3.075	5,100	57	4.37	2.56	0.38	1.88	0.65-SIH	1.25	1.44	9.1	1030
SJLR1245	-	4.073	10,000	124	5.78	3.38	0.56	2.38	0.94-SIH	1.78	1.88	19.0	1240

⁰ Link-Belt versions no longer available. Unless otherwise noted, Rex version is identical to the Link-Belt version. Sections and links may be interchanged.
^(a) Use pages 103-108 for drive chain selection procedures using selection tables. For alternate selection method using 'rated working load,' see page 122.
^(a) All bushings are carburized except for RO1315, RO1355, RO1356, ROS1306, & RX95506H, which are thru-hardened.
^(a) All sidebars are thru-hardened except for R506, B578, 1030, 1240.
^(b) All rollers are thru-hardened.

[®] Fabricated steel sprockets are recommended.

© Functional equivalent, but not physicall identical to, Rex equivalent shown.

[®] Inner sidebars 3.50

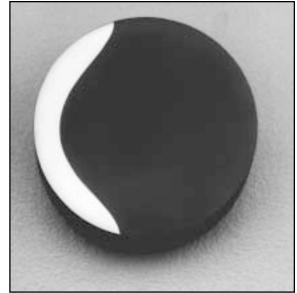
DRIVE CHAINS

■ WELDED STEEL CHAINS INDUSTRY'S HIGH PERFORMANCE WELDED STEEL CHAINS

Rex[®] Welded Steel chains are the material handling industry's choice for the most demanding applications. Our customers know that Rex chains provide superior strength and durability for extended wear life and trouble free service.

Rexnord Corporation, manufacturers of Rex chain for over 100 years, is the leader in the chain industry. Our years of experience provide unique expertise in material selection, heat treatment and chain design for improved chain strength and long wear life. What this means to you is superior value and greater productivity.

THE REX WELDED STEEL STORY


A lot goes into a Rex chain that is not visible on the surface. The precision of a diameter or the case depth of an induction hardened part can only be realized after an in-depth analysis. Rexnord regularly tests Rex and competitive chains and it is clear, all welded chains are not created equally. What follows is the story of how we make Rex welded steel chains to be the best – anywhere in the world!

Maximizing Chain Wear Life Through Superior Heat Treatments

Chain wear life is directly affected by the hardness of the wearing components. Quite simply, the harder the parts, the longer the wear life. Rexnord's heat treatment technology exceeds that of other chain manufacturers.

Computer controlled furnaces, and Rexnord designed induction heat treating equipment, produce chain components with the industry's hardest possible wearing surfaces and yet still provide the necessary toughness to resist shock loads. In addition, unique Rexnord process controls provide chains with consistent wear life. This allows users to predict the wear life of their chains, allowing for chain replacement as part of their preventative maintenance programs. In the end, superior chain eliminates costly and unexpected down time.

All Rex welded steel chains come standard with "premium" heat treatments. The photo (top right) shows a cross section of a Selectively Induction Hardened (SIH) chain pin. This exclusive Rexnord process involves super hardening only the portion of the chain rivet that wears as the chain articulates over the sprockets. The remainder of the rivet is

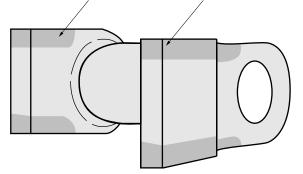
A cross section of a selectively induction hardened WHX pin – the crescent area is super-hardened to dramatically lengthen pin wear life. The balance of the pin material is left in the thru-hardened condition to give the pin excellent toughness.

held at thru-hardening levels to assure chain toughness and resistance to breakage. This treatment is standard on WHX Narrow Mill chains. Other manufacturers of welded chain compromise their design, either sacrificing component hardness or resistance to overloads.

Rex Wide Mill heat treated chains (WDH) come standard with thru-hardened rivets, sidebars and barrels. Other manufactures short-change wear life by not hardening the barrels – significantly reducing chain wear life. Only Rex Wide Mill chains have thru-hardened barrels!

The table below illustrates the importance of superior heat treatment. By using the table, one can predict the increase in wear life by upgrading the heat treatment. As an example, increasing hardness from 35RC to 60RC could provide up to double the chain life!

Importance of Heat Treatment


Heat Treatment	Not Hardened	Thru- Hardened	Induction Hardened		
Hardness RC (typ)	20	35	60		
Relative Wear Life*	1	2	4		

*Dry operating conditions

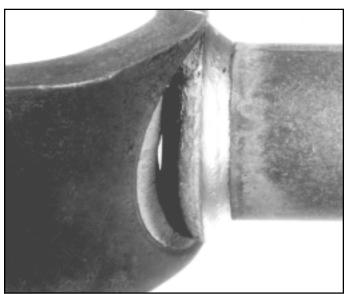
Maximizing Chain Wear Life - (Cont'd.)

The Rexnord story continues with a variety of heat treating options to further extend wear life and increase your plant's productivity. The graphic below represents a chain link with Selectively Induction Hardened (SIH) sidebars. This process can be applied to chain links to greatly improve sliding wear. If you regularly replace chains due to sidebar wear, you should select SIH sidebars. This is a very cost effective way to increase your chain life.

Selectively Induction Hardened Sliding Surfaces

Selectively Induction Hardened sidebars can be ordered to give greater resistance to abrasive sliding wear, thus providing greater sidebar life.

To extend wear life in especially corrosive applications, Rex welded steel chains can be provided with a variety of plating options or with stainless steel components. Contact Rexnord for application assistance. Let us put 100 years of experience to work for you!


MAXIMIZING CHAIN STRENGTH

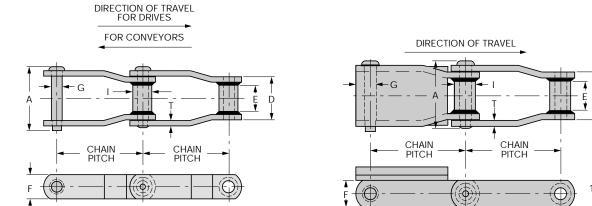
A key factor leading to the durability of Rex welded steel chains is superior fatigue strength.

Rex Narrow Series welded steel chains have tightly controlled, interference fits between the pin and chain sidebar hole. This interference fit creates a beneficial residual stress in the sidebar to greatly increase the fatigue life of the chain. The chains have a "stepped" (3 diameter) pin to ease assembly and protect the integrity of the interference fit.

Competitive chains with poorly controlled interference fits (or with clearance fits!) have much lower fatigue strength. Low fatigue strength chains are subject to unexpected chain failures after a chain sees many cycles of loading. Another key factor in providing maximum chain strength is proper welding, stress relieving, and heat treatment. Improper controls and processes can lead to failures around the weld either from improper weld penetration or by causing high hardness zones that result in brittle failures. Rexnord uses the latest technology in process and quality controls to assure proper weldments.

Rex welded links are regularly tested during each manufacturing lot to assure our process is in control, producing high quality welds. The photo below shows a welded steel link that has been destructively tested to assure the strength and penetration of the weld. As demonstrated in the photo, the chain material failed first, not the weld. This demonstrates a high quality weld.

Rexnord's quality assurance program requires welded steel links to be tested for weld strength and penetration.


MAXIMIZING PLANT PRODUCTIVITY

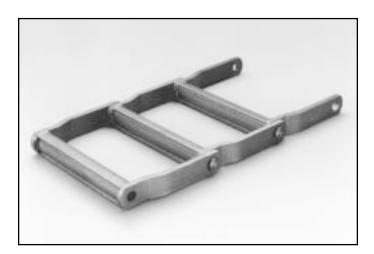
Rexnord Corporation brings many years of application and design experience with it to your plant in the form of chain, bearings and other fine power transmission components. Our sales people and application engineers are eager to work with your organization to maximize the productivity of your plant. Please call us for any assistance we might offer. We look forward to working with you.

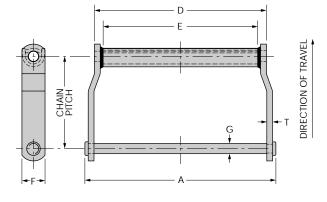
NARROW SERIES WR, WH, WHX AND WSX

- WR chains have only thru-hardened rivets.
- WH chains have all parts thru-hardened. .
- WHX chains have thru-hardened parts and selectively induction • hardened rivets as standard.
- WSX chains have all stainless steel construction. Sidebars are • 300 series; pins and barrels are precipitation hardened stainless.
- Riveted construction is standard. Pin and cottered construction • can be furnished on a made-to-order basis.

NARROW SERIES

	Dimensions are in inches. Strengths, loads and weights are in pound										ts are in pounds.	
_	_			Sideb	oars	Pins	E	arrel	Minimum	Rated	Average	
Rex Chain No.	Average Pitch	Α	E	Thickness	Height	G	D	1	Ultimate Strength,	Working	Weight	Sprocket Unit ^① No.
onum no.	1 Hon			Т	F	0	D	•	Lbs. x 10 ³	Load	Per Foot	110.
WR78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	21,000	3,000	4	78
WH78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	25,500	3,500	4	78
WHT78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	25,500	3,500	6	78
WH82	3.075	3.25	1.25	0.25	1.25	0.56	2.25	1.22	29,500	4,400	6	103
WH9103HD	3.075	3.81	1.25	0.38	1.50	0.75	2.28	1.25	51,000	6,000	8	103
WH784	4.000	2.98	1.12	0.25	1.13	0.50	2.00	0.88	24,000	3,500	3	130
WHT130/138	4.000	2.98	1.12	0.25	1.13	0.50	2.00	0.88	24,000	3,500	6	130
WHX124	4.000	4.18	1.63	0.38	1.50	0.75	2.81	1.44	50,500	7,350	9	H124
WHX124HD	4.063	4.82	1.63	0.50	2.00	0.88	3.00	1.63	80,000	9,150	14	H124
WSX124	4.000	4.35	2.01	0.38	1.50	0.75	2.81	1.44	Consult	Rexnord	14	H124
WHX111	4.760	4.79	2.25	0.38	1.50	0.75	3.38	1.44	50,500	8,850	8	111
WH720CS	6.000	3.61	1.12	0.31	1.56	0.75	2.16	1.44	54,000	5,700	6	CS720S
WHX106	6.000	4.18	1.63	0.38	1.50	0.75	2.81	1.44	50,500	7,350	7	106
WHX106SHD	6.000	4.78	1.50	0.50	2.00	0.88	3.00	1.63	82,000	9,150	12	106
WHX106XHD	6.050	4.87	1.63	0.50	2.00	1.00	3.00	1.75	Consult	Rexnord	13	106
WH110	6.000	4.57	1.88	0.38	1.50	0.75	3.00	1.25	50,500	7,900	7	110
WHX132	6.050	6.31	3.00	0.50	2.00	1.00	4.38	1.75	85,000	15,000	14	132
WSX132	6.050	6.25	3.00	0.50	2.00	1.00	4.38	1.75	Consult	Rexnord	14	132
WHX150	6.050	6.31	3.00	0.50	2.50	1.00	4.38	1.75	90,000	15,000	16	132
WHX155	6.050	6.48	2.75	0.56	2.50	1.13	4.38	1.75	102,000	17,500	19	132
WHX157	6.050	6.68	2.75	0.63	2.50	1.13	4.63	1.75	117,000	18,200	20	132
WHX2855	6.050	6.57	2.75	0.63	2.50	1.25	4.63	1.75	140,000	20,250	20	132
WHX3855	6.050	6.57	2.75	0.63	3.00	1.25	4.63	1.75	175,000	20,250	22	132
WHX159	6.125	6.87	2.88	0.63	3.00	1.25	4.63	2.00	204,000	20,250	27	132
WHX4855	12.000	6.57	2.75	0.63	2.50	1.25	4.63	1.75	119,000	20,250	15	4855
 Cast or fabricat 	od sprockot	c may bo u	cod									


Cast or fabricated sprockets may be used.


WIDE SERIES – WD, WDH

Rex[®] Wide Series chains are furnished standard with heat-treated rivets only (WD Series) or all components heat-treated (WDH Series). WDH Series chains are intended for use in applications where joint wear, barrel OD wear, and sidebar wear are a problem.

- WD Series have thru-hardened rivets.
- WDH Series have all parts thru-hardened.
- Riveted construction is standard. Pin and cottered construction can be furnished on a made-to-order basis.
- Lube holes drilled into barrels is an MTO option.
- Induction hardened pins are an MTO option.
- Galvanized pins are an MTO option.

→ Rexnord has found that some competitive wide mill drag chains use a low carbon steel for their barrels. A low carbon steel will not respond to heat treatment even though it may be put in a furnace and attempted to be heat treated. Rex Welded Steel chains use medium carbon steel barrels that respond very well to heat treatment and provide twice the wear resistance of these low carbon barrels. Harder components, longer life!

Rex Wide Series Chains are specially designed for loads and operating conditions imposed by drag conveyor service. As with our Narrow Series, many material and configuration options are available.

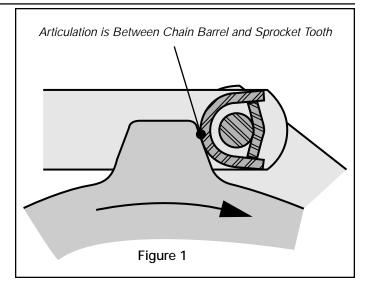
	ex n No.	Average Pitch	А	E	Sideb Thickness	ars Height	Pins	Barrel Length	Minimum Ultimate Strength, Lbs. x 10 ³		Ultimate Strength, Lbs. x 10 ³		el Ultimate h Strength, Lbs. x 10 ³		Rated Working Load		Ultimate Rated Strength, Load Lbs. x 10 ³		Average Weight Per Foot	Unit
WD Series	WDH Series				Т	F	G	D	WD Series	WDH Series	WD Series	WDH Series	rei 100t	NO.						
WD102	WDH102	5.000	9.13	6.50	0.38	1.50	0.75	7.75	38,300	55,000	8,500	10,000	11	H102						
WD104	WDH104	6.000	6.75	4.13	0.38	1.50	0.75	5.38	38,300	55,000	8,500	10,000	9	H104						
WD110	WDH110	6.000	11.8	9.00	0.38	1.50	0.75	10.38	38,300	55,000	8,500	10,000	12	H110						
WD113	WDH113	6.000	12.5	9.00	0.50	1.50	0.88	10.63	48,000	57,000	9,300	11,700	18	H110						
WD120	WDH120	6.000	12.1	8.75	0.50	2.00	0.88	10.25	70,000	79,000	12,300	15,000	20	H120						
WD112	WDH112	8.000	11.8	9.00	0.38	1.50	0.75	10.38	38,300	55,000	8,500	10,000	10	H112						
WD116	WDH116	8.000	15.5	13.0	0.38	1.75	0.75	14.13	55,000	59,000	10,700	11,500	13	H116						
WD118	WDH118	8.000	16.8	13.3	0.50	2.00	0.88	14.88	70,000	79,000	12,300	15,000	21	WD118 ²						
WD480	WDH480	8.000	14.6	11.2	0.50	2.00	0.88	12.75	70,000	79,000	12,300	15,000	18	H480						
	WDH580	8.000	14.6	11.2	0.50	2.00	1.00	12.75	-	108,000	-	20,500	18	H480						
	WDH680	8.000	15.33	11.2	0.63	2.00	1.00	13.00	-	108,000	_	20,500	21	H480						

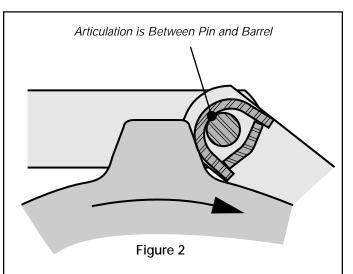
Dimensions are in inches. Strengths, loads and weights are in pounds.

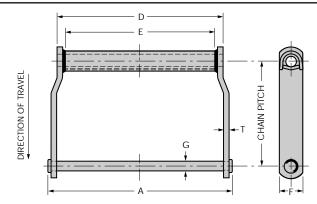
① Cast or fabricated steel sprockets may be used except as noted.
 ② Available as a fabricated steel sprocket only.

NEW! REVERSE BARREL WIDE MILL DRAG CHAINS

A simple and effective solution for an old problem.


The Problem: Since their introduction, wide mill welded steel chains were designed to run "narrow" or "closed end" forward. This is the direction of travel that the chains on the preceding page run. Running in this direction, an offset sidebar chain will experience scrubbing between the outside of the chain's barrel and the drive sprocket's tooth (Figure 1). On shorter conveyors, where the chain contacts the sprocket very frequently, this scrubbing can cause rapid wear of both the chain and sprocket. This scrubbing may not cause as much chain wear on longer conveyors but it will still cause sprocket wear.


The Solution: Rexnord engineers realized that if they reversed the barrel of the chain so it could run in the opposite direction, "wide" or "open end" forward, the scrubbing action could be eliminated. Instead of the articulation occurring between the outside of the chain barrel and the sprocket tooth it occurs inside the chain joint between the pin and the barrel (Figure 2). This arrangement is preferable since both the pin and the barrel of the wide mill chains are heat treated to withstand this type of wear.


How do I Know if I Need Reverse Barrel Chain?

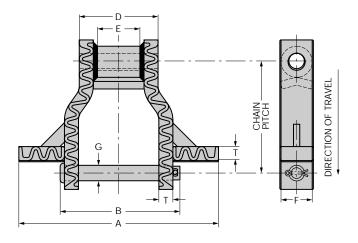
Note the difference in position of the pin within the barrel in Figures 1 and 2. When running narrow end forward and the engaged pin is being pulled forward at the time of engagement and the pin of the previous link is being pulled against the front of the barrel.

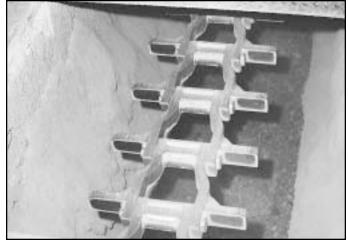
When reverse barrel chain is run wide end forward (Figure 2), the sprocket is pushing against the force applied. This may extend the useful life of chains used in long and/or heavy loaded applications where the typical mode of chain failure is breaking at the barrel welds.

Dimensions are in inches.	Ctrometho	Incode and	1 vero i m heto	ara in naunda
Dimensions are in inches.	Strendths.	ioads and	weights	are in bounds.

	Average			Sideb	ars	Pins	Barrel Length	Minimum Ultimate	Rated	Average Weight	Sprocket Unit
Chain No.	Pitch	Α	E	Thickness	6 Height C D Stu	Strength,	Working Load	Per Foot	No.		
				Т	F	0	D	Lbs. x 10 ³	LUdu		
WDH2210	6.136	11.9	9.00	0.38	1.50	0.75	10.38	55,000	10,000	11.5	H110
WDH2316	8.126	15.8	13.00	0.38	1.75	0.75	14.13	55,000	11,500	13	H116
WDH2380	8.161	14.6	11.25	0.50	2.00	0.88	12.75	79,000	15,000	18	H480

Other chains available on a made-to-order basis. Contact Rexnord.


40


■ WELDED STEEL CHAINS HEAVY DUTY WELDED STEEL DRAG CHAINS

Rex[®] Heavy Duty drag chains are ideal for conditions where severe abrasion and heat exist. They offer these important features and benefits:

- *Hardface welding* on both of the chain's sliding surfaces is standard. A typical weld hardness of 60 RC and a heavy weld bead give this chain excellent sliding wear resistance in cold and hot clinker applications.
- *Interference fits* between the pin and chain sidebar dramatically improves chain strength and joint wear life over that of a cast drag chain. In addition, no loose pins to move around in the chain joint.

- *An induction hardened pin* affords the best of two worlds a 60 RC typical hardened case and impact resistant material in the core of the pin. The result is longer service life and good resistance to shock loads.
- *Square edges on the wing and sidebar* of welded drag chain convey more efficiently than rounded cast chain edges. They also move a deeper bed of material with each revolution of the chain.
- *Heat treated and fabricated steel components* eliminate the failures that cast chains experience from casting porosity and inclusions.

WHX Drag Chains offer solutions to wear and breakage problems common with cast chains. Fabricated steel construction with heat treated pins, barrels, face plates, wings, and sidebars provide added protection not found in cast chain designs.

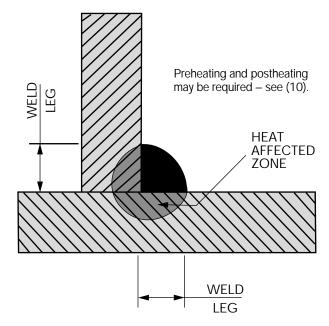
Dimensions are in inches. Strengths, loads and weights are in pounds.

			Sidebars		Pins		Barrel Length		Minimum	Rated	Sprocket			
Rex Average Chain No. Pitch		А	Thickness	Height	Heat	в	G	Heat	D	E	Ultimate Strength,	Working	Unit	
			Т	F Treat		В	G	Treat		E	Lbs. x 10 ³	Load	No.	
WHX5157	6.050	8 to 14 inches 2 inch increments	0.63	2.5	TH	6.94	1.13	SIH	4.63	2.75	117,000	18,200	5157 [®]	
WHX6067	9.000	10 to 26 inches 2 inch increments	0.75	2.5	TH	8.19	1.25	CIH	5.5	3.63	195,000	24,300	6121 [®]	
WHX5121 ^①	9.000	10 to 30 inches 2 inch increments	1.13	2.5	TH	9.75	1.25	CIH	6.31	3.63	205,000	27,600	6121 [®]	
WHX6121	9.000	10 to 30 inches 2 inch increments	1.13	2.5	TH	9.75	1.25	CIH	6.31	3.63	205,000	27,600	6121 [©]	

^① WHX5121 is dimensionally the same as WHX6121 except it runs closed end forward.

⁽²⁾ Octagonal tail wheels are available. The octagonal design reduces the scrubbing which reduces traditional tail sprocket life. See page 108.

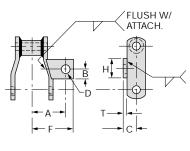
ATTACHMENT WELDING INSTRUCTIONS

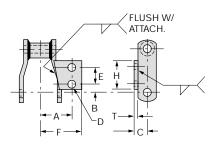

- Surfaces to be welded should be clean and free of foreign material. It is not necessary to remove the pre-lubricant before welding, however, proper ventilation is mandatory.
- 2 Weld strength should be sufficiently high to cause failure of the parent metal and not of the weld itself.
- 3 Welds should be free of cracks, undercutting, slag, inclusions, and excessive porosity. Craters due to stop welding should be located away from corners and edges; most craters contain slight cracks which can initiate failures at high stress areas.
- Weld beads should be free of pinholes, have uniformly fine surface ripples, and have little or no indication of where a new piece of filler metal was started.
- **5** Weld edges should indicate complete fusion without overlap or undercut.
- **6** Welds should be clean, free of spatter, slag, excessive oxides, and arc scars.
- Arcs should be struck on attachments, not on the sidebars. Arc scars on sidebars can produce early chain failure.
- 8 Convex shaped weld beads are preferred. Convex fillet welds are strong and less subject to cracking than concave forms.
- 9 Electrode selection is very important. An electrode that has been successfully used is E7018 (70,000 psi tensile strength, low hydrogen). This rod is for all position use, AC or DC. Good welding practice dictates that electrodes be stored in a dry atmosphere or baked prior to use. Specific electrode manufacturer recommendations should be closely followed.
- Preheating and Postheating Heat applied to the weld heat affected zone is always beneficial. These processes, while not generally required for small attachments, are recommended for large or heavily loaded attachments such as Styles "A" & "C" log cradles. No welding should be performed on parts below 70°F.

Heating is usually done by use of a neutral flame to heat the parts prior to or after welding.

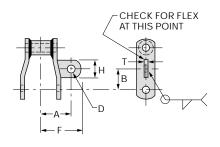
Preheat: Performed to reduce possibility of weld cracking both surface and subsurface. Parts to be welded – link and attachment – should be heated uniformly to 300°F.

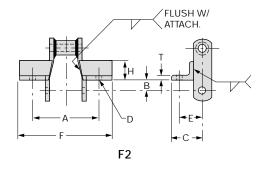
Postheat: Performed to relieve internal stresses and to reduce weld zone hardness. Heat affected zone of weld heated to 700°F.

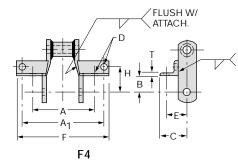

 Tack welds should never be used in areas that will not be welded in the finished product.

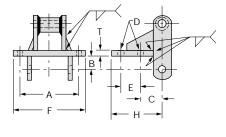

No welding should be performed on or immediately adjacent to an induction hardened or carburized part. Welding to an induction hardened part can produce tempering and softening of this hard surface. Welding attachments to the carbon rich surface of a carburized part will result in brittle welds and possible cracking.

CAUTION

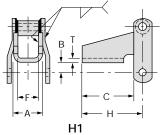

WELDED STEEL CHAINS – Attachments

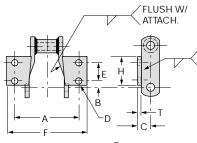

A1



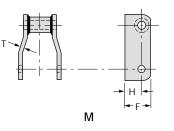

A2, A25²

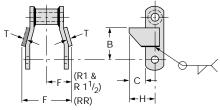
A22

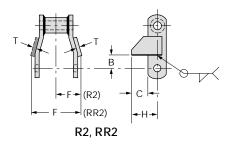


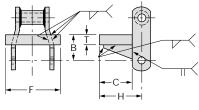

F26, F28

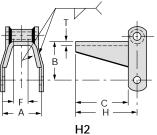
	Dimensions are in inches. Weights are in pounds.											
Chain			_	[)①	_	_		_	Average		
Number	A	В	С	Bolt Dia.	Bolt Hole	E	F	Н	Т	Weight per Ft.		
					A1							
WH78	2.00	1.25	0.81	3/8	.41	-	2.50	1.25	0.25	5		
WH82	2.09	1.50	0.88	³ /8	.41	-	2.75	1.75	0.25	6		
				A2	$\& A25^{(2)}$							
WH78	2.00	0.41	0.81	³ /8	.41	1.13	2.50	2.00	0.25	5		
WH82	2.13	0.75	0.88	3/8	.41	1.31	2.69	2.25	0.25	7		
WHX124	2.63	0.88	1.13	3/8	.41	1.94	3.19	3.00	0.38	10		
WHX124HD	2.63	0.94	1.50	1/2	.56	1.94	3.19	3.06	0.50	16		
WHX111	3.13	1.22	1.13	1/2	.56	2.31	3.75	3.50	0.38	10		
WHX132 ²	3.75	1.63	1.50	1/2	.56	2.75	4.59	4.25	0.50	16		
WHX150	3.75	1.63	1.75	¹ /2	.56	2.75	4.59	4.19	0.50	19		
WHX155	3.75	1.63	1.81	¹ /2	.56	2.75	4.59	4.19	0.56	22		
WHX157	4.00	1.75	1.88	¹ /2	.56	2.50	4.78	4.00	0.63	22		
WHX159	4.00	1.69	2.13	¹ /2	.56	2.75	4.78	4.25	0.63	30		
					A22							
WH78	1.88	1.31	_	3/8	.41	_	2.50	1.00	0.38	5		
					F2							
WH78	3.75	0.56	2.31	3/8	.41	1.44	4.69	1.25	0.25	6		
					F4							
WH78	3.753	0.69	2.31	3/8	.41	1.75	5.50	1.94	0.25	8		
WH82	4.133	0.81	2.38	3/8	.41	1.81	5.94	1.94	0.25	9		
WHX124	4.383	0.88	3.06	3/8	.41	2.06	6.19	2.30	0.38	12		
					F26							
WH720CS	3.75	3.00	2.38	³ /8	.41	2.63	5.00	6.78	0.25	8		
					F28							
WH720CS	3.75	3.00	2.38	3/8	.41	4.50	5.00	8.97	0.25	9		
^① All holes ro ^② A25 attach												

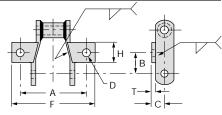

A25 attachment is for WHX132.
 A1 is 4.50 for WH78, 5.00 for WH82 and 5.25 for WHX124.


WELDED STEEL CHAINS – Attachments

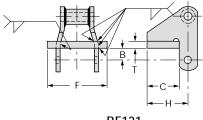



K2, K25²

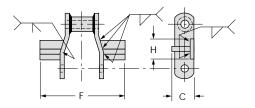



R1, R1¹/2, RR

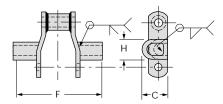
K1

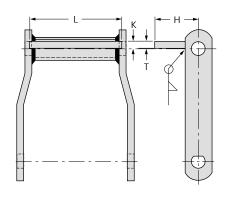

					Dimension	is are ir	n inches	. Weigh	ts are ir	•
Chain Number	Α	В	С) ^① Bolt Hole	E	F	H	Т	Average Weigh per Ft.
					H1					
WH78	1.75	0.50	3.06	-	-	-	0.88	3.63	0.25	8
WH82	2.00	0.63	3.00	-	-	-	1.13	3.63	0.25	10
					H2					
WH78	2.94	2.38	3.00	_	_	_	1.00	3.56	0.25	8
WH82	2.56	2.69	3.00	-	-	-	1.00	3.63	0.25	9
					K1					
WH78	4.00	1.25	0.81	3/8	.41	-	5.00	1.25	0.25	6
WH82	4.19	1.50	0.88	3/8	.41	-	5.50	1.75	0.25	7
				K2	& K25 ²					
WH78	4.00	0.41	0.81	³ /8	.41	1.13	5.00	2.00	0.25	6
WH82	4.25	0.75	0.88	3/8	.41	1.31	5.38	2.25	0.25	8
WH110	5.31	2.13	1.13	³ /8	.41	1.75	6.50	3.00	0.38	8
WHX111	6.25	1.22	1.13	1/2	.56	2.31	7.50	3.50	0.38	12
WHX124	5.25	0.88	1.13	3/8	.41	1.94	6.38	3.00	0.38	12
WHX124HD	5.25	0.94	1.50	1/2	.56	1.94	6.38	3.06	0.50	18
WHX1322	7.50	1.63	1.50	1/2	.56	2.75	9.19	4.25	0.50	19
WHX150	7.50	1.63	1.75	1/2	.56	2.75	9.19	4.19	0.50	22
WHX155	7.50	1.63	1.81	1/2	.56	2.75	9.19	4.19	0.56	25
WHX157	8.00	1.75	1.88	¹ /2	.56	2.50	9.56	4.00	0.63	26
WHX159	8.00	1.69	2.13	¹ /2	.56	2.75	9.56	4.25	0.63	35

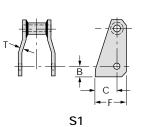
⁽¹⁾ All holes round and straight. ⁽²⁾ K25 attachment is for WHX132.

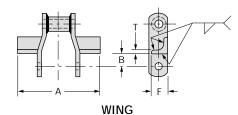

Dimensions are in inches. Weights	are in pounds.
-----------------------------------	----------------

[@] K25 attachn	nent is f	or WHX	132.	Dimensions are in inches. Weights are in pounds.							
Chain Number	А	В	с	Bolt Diameter Required	E	F	Н	Т	Average Weight		
				D					per Ft.		
				Μ							
WHX132	-	_	-	_	-	3.00	2.00	0.50	18		
WHX157	-	-	-	-	-	3.50	2.25	0.63	26		
WHX159	-	-	-	-	-	4.00	2.50	0.63	35		
				R1							
WH78	-	1.88	1.00	-	-	1.50	1.56	0.25	5		
WH82	-	2.18	1.25	-	-	1.63	1.88	0.25	6		
WHX124	-	2.72	1.13	-	-	2.16	1.88	0.38	9		
				R1 ¹ /2							
WH78	-	1.88	1.50	-	-	1.50	2.06	0.25	5		
				RR							
WH78	_	1.88	1.00	_	_	3.00	1.56	0.25	5		
WH82	-	2.19	1.25	-	-	3.25	1.88	0.25	7		
WHX124	-	2.72	1.13	-	-	4.34	1.88	0.38	10		
WHX124HD	-	2.72	1.13	-	-	5.13	2.13	0.50	18		
				R2							
WH78	-	0.69	1.00	-	-	1.50	1.56	0.25	5		
WH82	-	0.88	1.25	-	-	1.63	1.88	0.25	6		
WHX124	-	1.25	1.13	-	_	2.16	1.88	0.38	9		
				RR2							
WH78	-	0.69	1.00	-	-	3.00	1.56	0.25	5		
WH82	-	0.88	1.25	-	-	3.25	1.88	0.25	7		
WHX124	-	1.25	1.13	_	-	4.31	1.88	0.38	10		
				RF2							
WH78	-	1.50	2.13	-	-	3.00	2.69	0.63	10		
WHX124	-	2.50	2.50	-	-	4.25	3.25	1.00	19		
WHX124HD	-	2.50	2.50	_	-	4.75	3.50	1.00	25		


WELDED STEEL CHAINS – Attachments

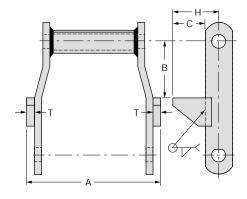

RF121


"A" STYLE



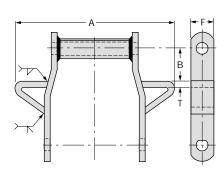
"C" STYLE

C1, C3, C4



Dimensions are in inches. Weights are in pounds.

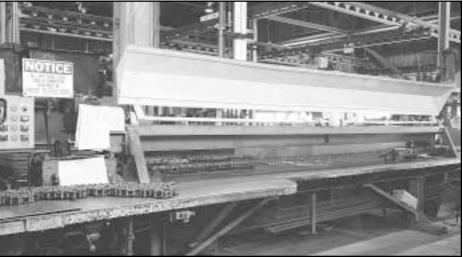
				Dime	nsior	is are ir	n inches	. Weigh	ts are ir	n pounds.
a .				Bolt Diamet	er					Average
Chain	A	в	с	Required		Ε	F	н	Т	Weight
Number		_	-	D		_	-		-	per Ft.
				RF12	1					
		4 = 4	1	RF 12			10.0	5.00	4 5 0	
WHX132	-	1.56	4.00	-		-	12.0	5.00	1.50	55
WHX150	-	1.56	4.00	-		-	12.0	5.25	1.50	57
WHX155	-	1.56	4.00	-		-	12.0	5.25	1.50	61
WHX157	-	1.50	4.00	-		-	12.0	5.25	1.50	63
WHX159	-	1.56	4.00	-		-	12.0	5.50	1.50	83
				S1						
WHX132	-	1.16	5.00	-		-	6.00	-	0.50	25
WHX150	-	1.16	5.25	-		-	6.50	_	0.50	27
WHX155	-	1.50	5.25	-		-	6.50	-	0.56	31
WHX157	-	1.50	5.25	-		-	6.50	-	0.63	34
WHX159	-	1.88	5.25	-		-	6.75	-	0.63	46
				WINC	;					
WH78	6.00	0.75	_	-		_	1.00	_	0.25	7
WH82	6.50	0.73	_	_		_	1.25	_	0.25	9
WHX124	8.50	1.19	-	-		_	1.50	_	0.25	14
WHX124HD	8.50	1.38	_	_		_	2.00	-	0.38	19
WHX132	12.0	1.50	_	-		_	2.00	_	0.30	24
WH260	7.00	0.53	_	-		_	1.75	-	-	4
		0.00		"A" STYLE	CRAD	F				, in the second s
WHX132			2.00		JITTE		11.0	2.00		22
WHX152	-	-	3.00	-	_	-	11.0	3.00	-	22
WHX150 WHX155	-	-	3.50	_		-	11.0 11.0	3.00 3.00	-	25
WHX155 WHX157	-	-	3.50 3.50	-		_	11.0	3.00	_	28 29
WHX157 WHX159	-	-		_		_			_	
WHX109	-	-	4.00	"C" STYLE		_	11.0	3.00	-	39
				"C" STYLE	RAD	LE				
WHX132	-	-	3.00	-		-	11.0	3.00	-	29
WHX150	-	-	3.00	-		-	11.0	3.00	-	31
WHX155	-	-	3.00	-		-	11.0	3.00	-	34
WHX157	-	-	3.00	-		-	11.5	3.00	-	35
WHX159	-	-	4.00	-		-	11.0	3.00	-	47
				Dime	nsior	is are ir	n inches	. Weigh	ts are ir	n pounds.
									Ave	erage
Chain Nun	nber	Н		К		L		Т	We	eight
									pe	r Ft.
				C1 – WIDE	SERIE	ES				
WD & WDH	102	1.5	0	0.38	F	5.38		.38		15
WD & WDH	-	2.3	-	0.38		1.13		0.38	-	11
WD & WDH		2.3		0.38		9.13		.38		17
WD & WDH	-	2.3		0.38		9.13		.38	-	14
WD & WDH	116	2.6		0.38		2.75		.38		20
		2.0	-	C3 – WIDE						-
WD & WDH	112	2.2	E	0.50		9.13		EO		19
WD & WDH		3.0		0.50		3.00		0.50 0.50		25
WD & WDH	-	3.0		0.50		3.00 3.63	-	0.50	-	26
WD & WDH		3.0		0.50		8.63	_	0.50		20
WD & WDH		3.0		0.50		1.13		0.50 0.50	-	21
WDH580	400	3.0		0.50		1.13		0.50 0.50		26
WDH500		3.0								20
	100		_	C4 – WIDE						1.0
WD & WDH		3.7		0.38		5.38		.38		18
WD & WDH		3.7		0.38		1.13		0.38	-	12
WD & WDH	-	3.7		0.38		9.13	_	0.38		21
WD & WDH		3.7		0.38		9.13		.38	-	17
WD & WDH	-	4.7		0.50		2.13		0.50		28
WD & WDH		4.8		0.38		2.75	0.38		-	25
WD & WDH	480	5.0		0.50		1.13		0.50		33
WDH580		5.0	00	0.50	1	1.13		.50		33
				matorial	C.					


WLEDED STEEL CHAINS

RR

Chain Number	А	В	С	н	Т	Average Weight per Ft.						
	RR – WIDE SERIES											
WD & WDH102	9.25	1.25	1.75	2.50	0.38	13						
WD & WDH104	6.94	3.00	1.75	2.50	0.38	9						
WD & WDH110	11.94	3.00	1.75	2.50	0.38	14						
WD & WDH112	11.94	3.00	1.75	2.50	0.38	12						
WD & WDH113	12.69	3.00	1.75	2.50	0.50	16						
WD & WDH116	15.69	3.00	2.25	3.13	0.38	17						
WD & WDH118	16.94	3.00	2.25	3.25	0.50	22						
WD & WDH120	12.34	3.00	2.25	3.25	0.50	23						
WD & WDH122	12.34	3.00	2.25	3.25	0.50	19						
WD & WDH480	14.88	3.00	2.25	3.25	0.50	21						
WDH580	14.88	3.00	2.25	3.25	0.50	21						
WDH2210	12.09	3.00	-	2.50	0.38	13						
WDH2316	15.91	3.00	-	3.00	0.38	16						
WDH2380	14.78	3.00	-	3.25	0.50	21						

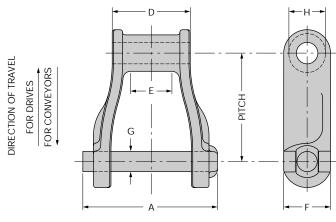
Dimensions are in inches. Weights are in pounds.


WING (Wide)

	Dimensions are in inches. Weights are in pounds											
Chain Number	A	В	F	Т	Average Weight per Ft.							
	WING – WIDE SERIES											
WD & WDH102	14.38	1.75	1.50	0.38	15							
WD & WDH104	11.50	2.75	1.50	0.38	11							
WD & WDH110	17.00	2.63	1.50	0.38	16							
WD & WDH112	17.00	3.25	1.50	0.38	13							
WD & WDH113	17.00	2.50	1.50	0.50	17							
WD & WDH116	22.00	3.25	1.75	0.38	18							
WD & WDH120	17.00	3.25	2.00	0.50	28							
WD & WDH122	17.00	3.25	2.00	0.50	24							
WD & WDH480	22.00	3.25	2.00	0.50	25							
WDH580	22.00	3.25	2.00	0.50	25							
WDH2210	17.00	2.25	1.50	0.38	16							
WDH2316	22.00	3.25	1.75	0.38	18							
WDH2380	22.00	3.25	2.00	0.38	26							

Engineered Steel and Welded Steel Chains are recommended for most applications. Engineered Steel construction is strongly recommended for bucket elevator applications.

Cast Chains (pages 47-51) may be slightly better suited to applications involving severely corrosive atmospheres or where chain temperatures reach above 500° F. Contact Rexnord for recommendations relating to the specific application.


Cast Combination Chains (pages 54-55) may provide superior service where heavy downward loading and sliding across an extremely gritty or abrasive surface has resulted in a chain wear problem. Where, in addition, problems have been encountered with chain breakage due to heavy impact loading, *XHD Heavy Duty Cast Combination Chain* (pages 52-53) should be considered.

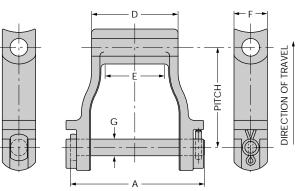
All Cast and Cast Combination chains are 100% inspected and proof tested to ensure that no poorly molded links leave the factory.

MILL - NARROW SERIES

Narrow Series Mill Chains are used primarily for drag conveyor service in the forest products industry, but are also used in many other applications where a sliding chain is required. The closed joint construction permits operation in a moderately dusty or abrasive atmosphere.

Furnished pin and cotter as standard.

Dimensions are in inches. Strengths, loads and weights are in pounds


Chain No.	Average	А	D	E	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit
	Pitch				F	G	Н	Load	Per Foot 12T	12T Sprocket	No. ^①
H74	2.609	3.06	1.63	0.94	1.00	0.38	0.88	1,850	3.0	115	78
H78	2.609	3.50	1.88	0.94	1.13	0.50	0.94	2,850	4.2	115	78
H82	3.075	4.06	2.19	1.25	1.25	0.56	1.22	3,700	5.5	90	103
H124	4.000	4.75	2.81	1.88	1.50	0.75		5.000	8.8	75	H124

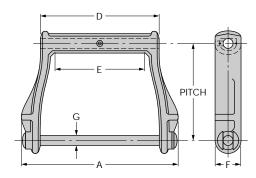
© Cast or fabricated sprockets may be used. See pages 54 58 for attachment listings.

See pages 56-58 for attachment listings.

DRAG CHAINS

Drag Chains are suited for handling abrasive bulk materials such as cement clinker, coal ashes and similar materials. Heads on links act as pushers for conveying material and broad wearing shoes are designed to prolong the life of the chain and the trough.

Manufactured in through hardened cast steel. Furnished pin and cotter as standard.


Dimensions are in inches. Strengths, loads and weights are in pounds.

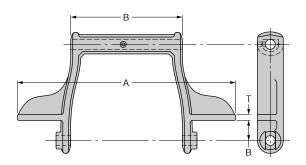
Chain No.	Average Pitch	A	E	Sidebars			Rated Working			Sprocket Unit No.®	
				F	G	Н	LOad	Per Fool	12T Sprocket		
CC119	6.000	8.25	5.25	3.63	2.00	1.00	16,000	21	11	119	
CC123	9.000	12.59	8.44	6.25	2.50	1.25	23,400	36	7	H123	

^① Cast or fabricated sprockets may be used.

H SERIES

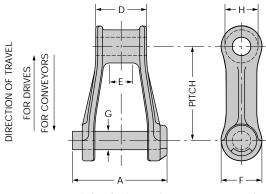
Available in riveted or cottered construction. Riveted construction shown and furnished unless otherwise specified.

Dimensions are in inches. Strengths, loads and weights are in pounds.


ſ	Chain No.	No. Average A D		р	E Sidebars		Pins	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit	
		Pitch			-	F	G	Load		Per Foot	12T Sprocket	No.®
ſ	H104	6.000	7.50	5.44	4.13	1.50	.63	4,160	8.0	11	H104	
	H110	6.000	12.50	10.69	9.13	1.50	.63	4,160	12.9	11	H110	

^① Cast or fabricated sprockets may be used.

Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.


■ CAST CHAINS WING ATTACHMENT

Di	Dimensions are in inches. Weights are in pounds.											
Chain No.	Average Weight Per Foot	А	В	Т								
H110	14.6	17.00	2.25	.22								

PINTLE

Pintle Chains are ideal for oven and furnace conveying operations. They are also suitable for a variety of low speed drive applications. The closed pin joint construction permits operation in a moderately dusty or abrasive atmosphere.

Furnished pin and cotter as standard.

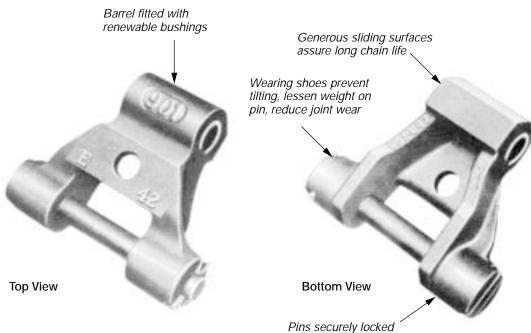
	Dimensions are in inches. Strengths, loads and weights are in pounds												
Chain No.	Average	А	D	E	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit		
	Pitch				F	G	Н	Load	Per Foot	12T Sprocket	No.①		
945	1.630	2.06	1.06	0.69	0.75	.31	0.63	830	1.5	230	45		
955	1.630	2.25	1.13	0.69	0.84	.38	0.63	1,060	1.9	230	45		
977	2.308	2.50	1.25	0.69	1.00	.44	0.81	1,650	2.0	135	67		
988	2.609	3.00	1.63	0.88	0.94	.44	0.88	2,150	2.9	115	78		
C9103	3.075	3.69	1.88	1.13	1.50	.75	1.25	4,250	5.7	90	103		
4124	4.043	4.72	2.25	1.50	1.75	.81	1.38	4,560	8.5	65	4124		
C720	6.000	3.63	1.88	1.00	1.50	.69	1.38	3,220	4.2	35	720S		
720S	6.000	3.94	1.88	1.44	1.56	.75	1.44	4,250	5.1	35	720S		
A730	6.000	3.94	2.00	1.13	1.75	.75	1.50	4,500	6.0	35	A730		
CS720S	6.000	3.94	1.88	1.13	1.56	.75	1.44	4,250	5.4	35	CS720S		
CS730	6.000	3.94	2.00	1.13	1.75	.75	1.50	4,500	6.4	35	CS730		
SCA9103	3.075	3.69	1.88	1.13	1.50	.75	1.25	4,250	5.7	90	103		

REX PINTLE CHAINS - 400/900 SERIES AND 700 SERIES

^① Cast or fabricated sprockets may be used.

Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

900 SERIES PINTLE CHAINS

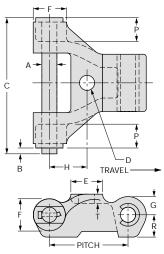

900 Pintle Chains, often called intermediate carrier chains, are widely used in the sugar industry. Multiple strands, fitted with overlapping, beaded slats, form a continuous apron conveyor for intermediate carrier service.

The renewable bushings provide a hard, durable pin-bearing surface and permit high working loads.

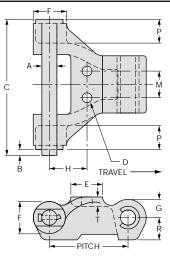
Links have outboard driving lugs for operation on double sprockets. This method of engagement prevents the jamming of cane in the link pockets. All links have generous sliding surfaces to resist wear. Wear shoes at the open end of the link support the chain and lessen the weight on the pin, thereby reducing joint wear. Heavy cross-sections, formed by the wear shoes and reinforcing ribs, strengthen the links. Slots cast in the lugs protect the pin ends and prevent pin rotation.

Links are available in cast material and stainless steel. Pins and bushings are available in case-hardened steel or stainless steel. Bushings of ultra-high molecular weight polyethylene (UHMW-PE) are also available.

Chains with cast links and stainless steel pins and bushings are normally recommended. For greater corrosion resistance all stainless steel chains are preferred.



to prevent rotation


LINK-BELT 900 SERIES PINTLE CHAINS

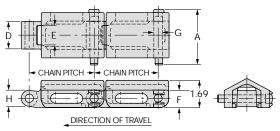
Dimensions are in inches. Strengths, loads and weights are in pounds.

Link-Belt Chain No.	Average Pitch	Rated Working Load	Average Weight	Sprocket Unit No.	Attachments Available	
901	3.149	4,150	12.2	901	E41, E42, E43, E44	
902	2.970	4,150	12.5	902	E41, E42, E43, E44	
907	3.170	4,150	12.1	907	E51	

E41, E42, E51 Attachments

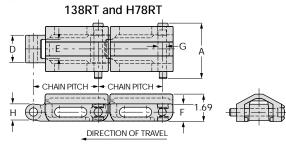
E43, E44 Attachments

Dimensions are in inches. Weights are in pounds.


												5	
Chain No.	А	В	С	D	E	F	G	Н	М	Р	R	Т	Weight
						E4	1						
901	.625	.19	5.50	.66	1.25	1.34	.78	1.38	-	1.13	.94	.36	12.2
902	.625	.19	5.50	.66	1.25	1.34	.88	1.38	-	1.13	.94	.36	12.5
E42 [©]													
901	.625	.19	5.50	.66	1.25	1.34	.78	1.58	-	1.13	.94	.36	12.2
902	.625	.19	5.50	.66	1.25	1.34	.88	1.48	-	1.13	.94	.36	12.5
						E4	3						
901	.625	.19	5.50	.41	1.25	1.34	.78	1.38	1.09	1.13	.94	.36	12.2
902	.625	.19	5.50	.41	1.25	1.34	.88	1.38	1.09	1.13	.94	.36	12.5
						E4	4 ①						
901	.625	.19	5.50	.41	1.25	1.34	.78	1.58	1.09	1.13	.94	.36	12.2
902	.625	.19	5.50	.41	1.25	1.34	.88	1.48	1.09	1.13	.94	.36	12.5
						E	51						
907	.625	.19	5.50	.66	1.31	1.44	.72	1.69	-	1.13	.94	.36	12.1
① Slate may	ha accombl	ed with land l	anding of tra	iling		•							

 $^{\textcircled{0}}$ Slats may be assembled with laps leading or trailing.

TRANSFER


These chains are very popular on lumber sorting tables or anywhere a variety of flat products are sorted. Roof-Top Chain is used chiefly in multiple strands on transfer conveyors.

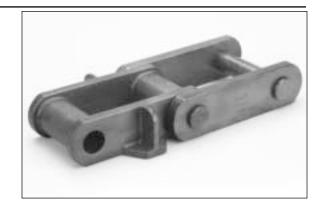
130RT

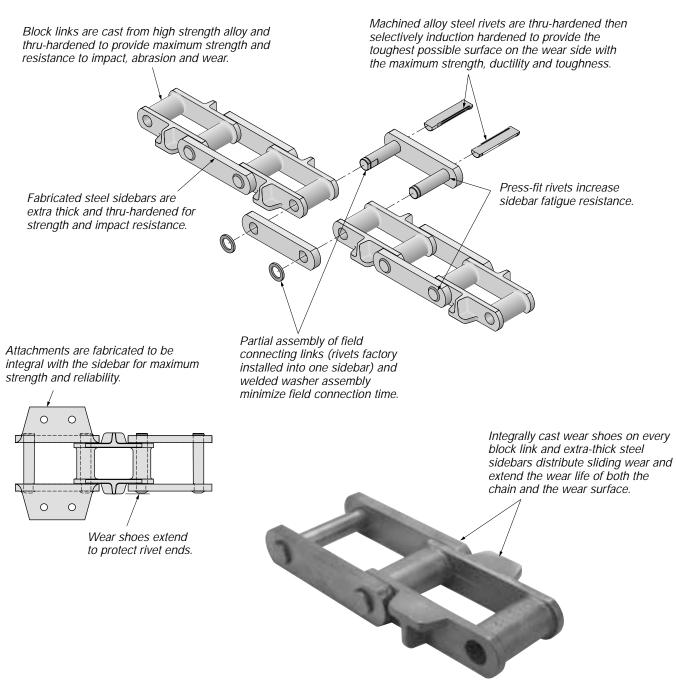
Furnished pin and cotter as standard.

TRANSFER CHAINS – ROOF-TOP

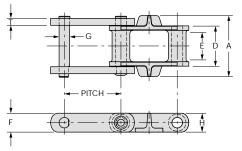
Furnished pin and cotter as standard.

Dimensions are in inches.	Strengths,	loads and	weights are	in pounds.

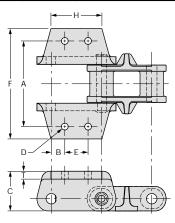

Chain No.	Average Pitch	A	D	E	Sidebars F	Pins G	Barrel Diameter H	Rated Working Load	Average Weight Per Foot	Recommended Max. RPM for 12T Sprocket	Sprocket Unit No.®
H78RT	2.609	3.50	1.88	1.06	1.13	.50	0.94	2,350	6.0	115	78
130RT	4.000	3.50	1.69	.95	1.06	.50	1.00	2,200	5.2	60	130
138RT	4.000	3.50	1.69	.95	1.06	.50	1.00	2,200	5.8	60	130

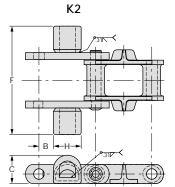

^① Cast or fabricated sprockets may be used.

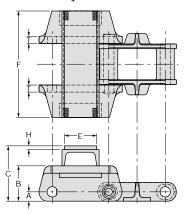
Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.


HEAVY DUTY CAST COMBINATION

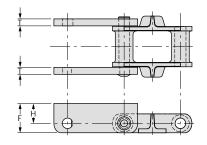
XHD Extra Heavy Duty Cast Combination Chains are specifically designed for applications where chain wear and breakage problems result due to a combination of heavy impact loading and an extremely gritty or abrasive environment. XHD chains include features that make them ideally suited for applications such as log handling conveyors.

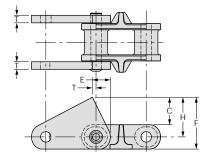



Cast and Cast Combination Chains are not recommended for elevator service.


Dimensions are in inches. Weights are in pounds.

Chain No.	Average	А	D	Е	Side	ebar	Pin	Barrel	Rated Working	Average Weight	Recommended Max. RPM for 12T	Sprocket
	Pitch		2	-	Т	F	G	Н	Load	per Foot	Sprocket	Number
XHD124	4.060	4.88	3.00	1.75	.63	2.00	0.88	1.63	9,000	17.0	60	XHD124
XHD132	6.050	6.50	4.31	2.94	.75	2.00	1.13	1.75	17,000	18.4	30	XHD132
XHD157	6.050	6.88	4.63	3.00	.75	2.00	1.25	1.84	20,000	24.3	30	XHD157





"C" Style Cradle

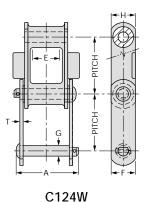
"B" Style Pulpwood Flight

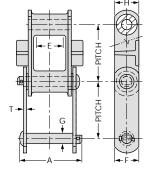
M1

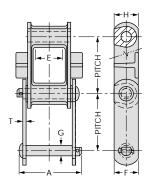
S1

	_			_	Dimensio	ns are i	n inches	. Weigh	nts are i	n pounds
Chain Number	A	В	с	E Bolt Dia.) ^① Bolt Hole	E	F	Н	т	Average Weight per Ft.
				Don Dia.	Bont mono					рег г.
					K2					
XHD124	7.13	1.06	3.25	1/2	.56	1.94	9.13	4.25	0.63	26
XHD132	9.00	1.65	3.75	1/2	.56	2.75	11.31	6.34	0.75	31
XHD157	9.31	1.65	4.00	1/2	.56	2.75	11.31	6.81	0.75	36
					M1					
XHD132	-	_	-	-	-	-	3.00	2.00	0.75	22
XHD157	-	-	-	-	-	-	3.50	2.25	0.75	28
					S1					
XHD124	-	0.32	2.25	-	-	1.50	4.25	3.25	0.63	20
XHD132	-	0.58	2.75	-	-	2.00	4.75	3.75	0.75	23
XHD157	-	0.39	2.75	-	-	2.00	5.25	4.00	0.75	28
				"C" S	Style Cradl	е				
XHD132	-	1.53	3.00	-	-	-	11.50	3.00	_	26
XHD157	-	1.53	3.00	-	-	-	13.50	3.00	-	29
			"	B" Style	Pulpwood	Flight				
XHD132	1.50	2.75	4.88	_	_	3.50	11.31	0.38	0.75	32
XHD157	1.50	2.75	4.88	-	-	3.50	11.31	0.38	0.75	37

Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request. **CAST CHAINS**


COMBINATION


Combination Chains are used extensively for conveyor applications. Because the chain joints are well protected and have generous pin bearing surfaces, they are widely used for handling stone, gravel and similar materials. They are also used for drag conveyor applications because the large link surfaces provide long wear life.


LINK-BELT® STANDARD SERIES CAST COMBINATION CHAINS

							D	imensions a	re in inches	s. Strengths, Ic	ads and weights	are in pounds.
Link-Belt Chain No.	Average Pitch	А	D	E	т	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit No.①
	FIGH					F	G	н	Load	Per Foot	12T Sprocket	₩0.©
						ROLL	ER-TOP					
C55	1.630	2.06	1.20	0.60	0.19	0.75	0.38	0.63	1,100	2.0	230	55
C56	1.630	2.06	1.20	0.73	0.19	0.75	0.38	0.74	1,100	2.1	230	56
C77	2.308	2.19	1.25	0.50	0.19	0.88	0.44	0.72	1,400	2.2	135	67
C188	2.609	2.69	1.56	0.74	0.25	1.13	0.50	0.88	2,400	3.6	115	78
C131	3.075	3.47	2.03	1.09	0.38	1.50	0.63	1.22	3,800	6.5	90	103
C102B	4.000	4.31	2.88	1.63	0.38	1.50	0.63	0.97	5,000	6.7	60	102B
C102 ¹ /2	4.040	4.59	2.97	1.92	0.38	1.75	0.75	1.38	6,700	9.2	60	1021/2
C111	4.760	4.72	3.38	2.12	0.38	1.75	0.75	1.44	7,500	9.6	45	111
C133	6.000	3.88	2.25	1.25	0.38	2.00	0.88	1.75	5,000	8.8	35	133
C110	6.000	4.31	2.88	1.76	0.38	1.50	0.63	1.25	5,000	6.0	35	110
C132	6.050	6.27	4.38	2.62	0.50	2.00	1.00	1.72	10,500	14.0	30	132

^① Cast or fabricated sprockets may be used. See pages 56-58 for attachment listings.

C111W2, C132W2

Available in riveted or cottered construction. Cottered construction shown. Cottered construction furnished unless otherwise specified.

C132W1

							Di	mensions a	re in inche	s. Strengths,	loads and weight	s are in pounds.
Link-Belt Chain No.	Average Pitch	A	D	E	т	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight Per	Recommended Max. RPM for	Sprocket Unit No. ^①
Chain NO.	PIICH					F	G	Н	Load	Ft.	12T Sprocket	NU.~
C111W2	4.760	5.12	2.42	.38	.44	1.75	.75	.72	5,950	11.8	55	111
C124W ³	4.063	5.12	1.69	.50	.38	2.25	.88	1.75	6,300	15.4	75	1240
C132W1	6.050	6.54	3.04	.50	.44	2.00	1.00	1.73	8,330	15.6	40	132
C132W2	6.050	6.54	3.04	.50	.44	2.00	1.00	1.73	8,330	16.0	40	132

Cast or fabricated sprockets may be used.

Induction heat treated sidebars.
Round barrel. All other chains have an elliptical barrel. See page 58 for attachment listings.

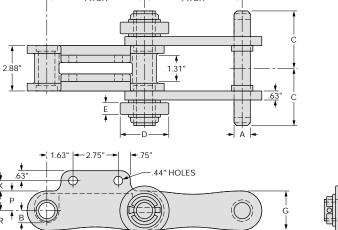
Cast and Cast Combination Chains are not recommended for elevator service.

SM COMBINATION CHAINS

SM Combination Chains are designed primarily for high temperature applications and are extensively used for conveying steel sheets or bars through normalizing and heat-treating furnaces. The chains usually operate in channels under the floor and are thus protected from full exposure to furnace heat. The conveyed material is pushed through the furnace by fingers attached to the center links of the chain. The center links and sidebars are well proportioned for strength and rigidity. Sidebars are cast with bosses which fit into sockets in the center links. This design interlocks the center links and sidebars and relieves the pin from handling the entire working load placed on the chain.

Sidebars and center links are cast.


Steel pins are heat-treated. They are free to float in the chain joint. This permits pin rotation, thus exposing the entire pin circumference to wear. It also helps correct pin bending that might occur as a result of high temperatures. The pins extend on each side of the chain to provide a mounting for outboard rollers. Rollers rotate freely on case-hardened steel bushings and are held in place by cast washers.

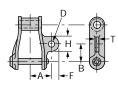

Clearances between all moving parts are carefully controlled by machining, to prevent binding during operation at high temperatures.

Bosses on sidebars fit sockets in center links to reduce stress on pins.

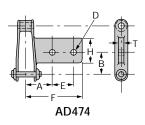
Rollers rotate freely on hardened steel bushings.

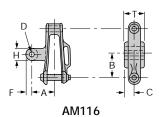
Free-floating steel pins are heat-treated. Rotation helps correct bending at high temperatures and distributes wear over entire pin surface.

Dimensions are in inches. Strengths, loads and weights are in pounds.

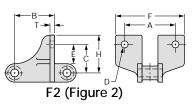

Link-Belt Chain No.	Average Pitch	А	В	С	D	E	G	к	Ρ	R	Rated Working Load	Average Weight Per Foot	Sprocket Unit No.①
SMGL618 ²	6.000	.98	.75	3.44	3.00	.78	2.50	.72	1.19	1.19	Contact	24	SMGL618
SMGL628	6.000	1.23	1.00	3.47	3.50	.81	3.00	.53	1.38	1.38	Rexnord	31	SMGL628
SM621	9.000				Offse	t SM Com	bination (Chain, cor	ntact Rexr	nord			SM621
SM622	6.000				Offse	t SM Com	hbination (Chain, cor	ntact Rexr	nord			SM622

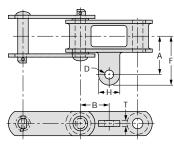
^① Cast or fabricated sprockets may be used.


⁽²⁾ Chain with plain center link (no attachment) also available.

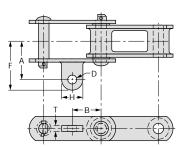

Cast and Cast Combination Chains are not recommended for elevator service.

CAST CHAINS – Attachments


A22 (Figure 1), A42

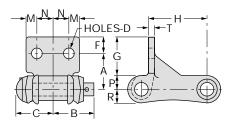


R D Æ

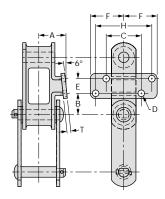

F2 (Figure 1)

A22 (Figure 1)

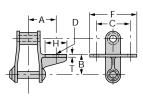
A22 (Figure 2)

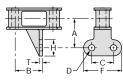

Dimensions are in inches.

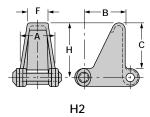
		i		i	-				n Inches
Chain Number	А	В	С		0	E	F	н	т
Number				Bolt Dia.	Bolt Hole				
				A22 (Fig	ure 1)				
H78	1.88	1.31	-	³ /8	.41	-	0.66	1.31	0.41
				A22 (Fig	ure 2)				
C188	1.44	1.31	-	3/8	.41	-	2.08	1.19	.38
				A22 (Fig	ure 3)				
C55	1.50	.81	-	⁵ /16	.34	-	1.92	.75	.25
				A42					
C9103	1.84	1.50	-	3/8	.41	-	0.63	1.25	0.41
7000				AD47					
720S C720	3.38 3.38	2.25 2.25	-	1/2 1/2	.56 .56	2.50 2.50	-	2.81 2.81	0.50 0.50
0720	5.50	2.25	_	F4	.30	2.50	_	2.01	0.50
H78 ²	3.75	1.00	1.44	3/83	.41	0.88	0.94	4.50	0.31
1170-	5.75	1.00	1.44	AM11		0.00	0.74	4.30	0.31
720S	2.69	3.00	0.94	5/8	.69	_	0.69	1.38	1.88
C720	2.69	3.00	0.94	⁵ /8	.69	-	0.69	1.38	1.88
				F2 (Figu	re 1)				
720S ⁴⁵	4.25	3.00	2.00	³ /8	.41	1.25	5.31	3.81	0.25
A730 ⁶	4.25	3.00	2.00	³ /8	.41	1.13	5.50	3.94	0.38
C720	4.25	3.00	2.00	³ /8	.41	1.25	5.31	3.81	0.25
955	1.06	0.63	0.94	³ /16	.22	0.50	1.81	1.25	0.16
977	1.75	0.75	1.44	⁵ /16	.34	0.94	2.63	2.00	0.25
988	2.03	1.19	1.38	⁵ /16	.34	0.90	2.90	1.97	0.28
C9103	2.22	1.25	2.00	³ /8	.41	1.25	3.00	2.66	0.31
				F2 (Figu	re 2)				
C77	1.75	3.40	1.00	5/16	.36	.94	2.62	1.94	.25
C102.5	5.75	2.92	2.00	³ /8	.44	1.13	7.12	3.07	.31
C111 C111	6.38	3.00	2.00	³ /8	.44	1.13	7.75	3.00	.34
(SPECIAL)	6.38	3.00	2.00	³ /8	.44	1.13	7.75	3.00	.34
C131	4.69	2.13	1.69	3/8	.44	.94	6.12	2.75	.44
C188	2.00	1.38	1.50	⁵ /16	.34	.94	2.75	2.18	.31

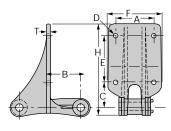

Note: Links with attachments on only one side are made right- and left-hand.
Style of hole, round.
Furnished cottered only at attachment links.

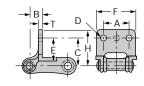
- Style of hole, square.
 No's. C720S- and 720S-F2 have 2 additional holes 1.94 inches apart and 1.31 inches above first line of holes. Attachments face toward open end of link.
 Attachment face for these chains has cloverleaf outline instead of rectangular.
 No. A730-F2 has 2 additional holes 2 inches apart and 1.31 inches above first line of holes.
- Attachment faces toward open end of link.


CAST CHAINS – Attachments


F8


G6




G19 (Figure 1)

G19 (Figure 2)

F26, F28

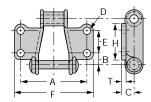
F28, F29

Dimensions are in inches.

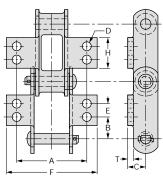
Chain					D ^①		_		-		
Number	A	В	С	Bolt D	ia. Bolt I	Hole	E		F	н	Т
					F8						
4124	2.94	-	2.19	1/2	.5	6	1.31		5.00	3.88	.50
					F26						
720S	3.75	3.00	2.38	³ /8	.4	1	2.63	3	5.38	6.75	0.25
C720	3.75	3.00	2.38	3/8	.4	1	2.63	3	5.38	6.75	0.25
CS720S	3.75	3.00	2.38	³ /8	.4	1	2.63	3	5.38	6.75	0.25
		_			F28						_
720CS	3.75	3.00	2.38	3/8	.4	1	4.50)	5.38	8.84	0.25
C720	3.75	3.00	2.38	³ /8	.4	1	4.50		5.50	8.88	0.25
CS720S	3.75	3.00	2.38	³ /8	.4	1	4.50		5.38	8.84	0.25
CS730	3.75	3.00	2.38	3/8	.4	1	4.50)	5.38	8.31	0.25
					F29			ļ			
C9103	2.22	0.44	2.00	³ /8	.4	1	1.25	5	3.06	2.66	0.41
SCA9103	2.72	2.63	2.00	³ /8	.4	1	N/A		3.06	2.66	0.38
					F30			ļ			
C9103	2.22	0.63	2.00	1/2	.5	6	1.25	5	3.25	2.63	0.34
				(62					,	
C102.5	2.62	1.59	2.06	³ /8	.4	1	.88		2.31	3.50	.25
C131	2.19	1.26	1.68	3/8	.4	4	.56		2.03	3.06	.28
C188	1.60	1.03	1.68	3/8	.4		.56		1.91	3.06	.25
				G19 (Figure 1)					,	
H78	2.19	1.63	2.63	³ /8	.4		-		3.50	1.25	0.25
				G19 (Figure 2)					,	
C55	1.69	1.04	.88	5/16			-	_	1.75	1.00	-
C131	2.39	2.01	2.88	3/8	.4		-		3.88	1.00	.28
C188	1.94	1.86	1.50	³ /8	.4	1	-		2.88	1.25	.25
Chain Numb	er A		В	С	D	E	Ξ		F	Н	Т

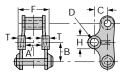

Chain Number	Α	В	С	D	E	F	Н	Т
				H2				
H78	2.38	2.31	2.94	-	-	1.06	3.50	-
Noto: Links with	attachm	onts on a	nly one e	ido aro m	ado right	and loft	hand	

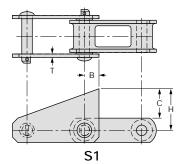
Note: Links with attachments on only one side are made right- and left-hand.
Style of hole, round.
Right-hand attachment shown. Left-hand also available.

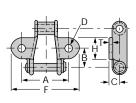

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

CAST CHAINS

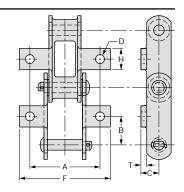

CAST CHAINS – Attachments


G27


K2 (Figure 1)



K2 (Figure 2), K3



K1 (Figure 1)

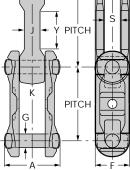
K1 (Figure 2)

Chain				n n	0				
Chain Number	Α	В	С	-	Bolt Hole	E	F	Н	Т
				G27					
C188	3.32	0.88	_	-	_	_	1.12	1.89	0.25
				K1 (Figu	re 1)				
H78	4.00	1.25	0.81	³ /8	0.41 ³	-	5.00	1.38	0.22
952	2.13	0.69	0.44	³ /16	0.22②	-	2.88	0.75	0.16
955	2.00	0.78	0.44	1/4	0.282	_	2.88	0.81	0.16
962	2.38	0.78	0.44	1/4	0.28	-	3.28	0.97	0.19
977	3.00	1.16	0.66	¹ /4	0.28 ³	-	3.88	1.31	0.16
988	3.81	1.31	0.66	⁵ /16	0.34	-	4.69	1.38	0.19
C9103	4.19	1.50	0.81	3/8	0.413	-	5.44	1.72	0.22
				K1 (Figu					
C55	2.04	0.82	0.50	1/4	0.31	-	2.92	0.82	0.16
C77	3.00	1.15	0.66	³ /8	0.41	-	4.13	1.12	0.22
C131	4.12	1.54	1.00	3/8	0.44	-	5.50	1.50	0.38
C188	3.75	1.31	0.81	3/8	0.44	—	5.06	1.19	0.25
H78	1.00	0.44	0.01	K2 (Figu		4.4.0	F 00	0.10	0.05
988	4.00 3.63	0.41	0.81	³ /8 5/16	0.41 0.34	1.13 1.25	5.00 4.50	2.13 2.13	0.25
988	3.03	0.00	0.00			1.25	4.50	2.13	0.19
C102B	F 22	1 1 0	1.00	K2 (Figu ³ /8		4 75	/ 57	2.00	0.00
C102B	5.32 5.32	1.12 2.12	1.00 1.00	3/8 3/8	0.41 0.41	1.75 1.75	6.57 6.64	2.88 2.88	0.38
C110 C111	6.25	1.22	1.13	1/2	0.41	2.31	7.50	3.50	0.38
C131	4.12	0.79	1.13	1/2	0.53	1.50	5.25	2.50	0.38
C132	7.50	1.65	1.25	1/2	0.53	2.75	9.36	4.00	0.50
C188	4.18	0.68	.81	5/16	0.34	1.25	5.10	2.12	0.25
4124	5.00	1.13	1.19	3/8	0.44	1.81	6.26	3.13	0.28
				K3			0.20		
C102.5	5.31	1.14	1.19	1/2	0.53	1.75	6.55	2.88	0.50
0102.0	0.01		1.17	, 2 M1	0.00	1.70	0.00	2.00	0.00
720S	1.50	3.00	1.50	3/4	0.81	_	3.00	1.50	0.75
C720	1.50	3.00	1.50	3/4	0.81	_	3.00	1.50	0.75
				S1					
C102B	_	0.83	3.00	_	_	_	_	3.75	0.38
C102.5	_	1.01	2.88	-	_	_	_	3.87	0.38
C111	-	0.86	3.50	-	-	-	-	4.38	0.38
C111 W2	-	0.86	3.50	-	-	_	-	4.38	0.38
C132	-	1.13	4.00	-	-	-	-	5.00	0.50
C132 W1	-	1.13	4.00	-	-	-	-	5.00	0.50
C132 W2	-	1.13	4.00	-	-	-	-	5.00	0.50
Vote: Links v D Style of hole 2 Style of hole 3 Style of hole 4 Style of hole 5 Steel sideb 5 Steel sideb 5 Steel sideb	e, round. (e, round c e, square. ar. Center ar. Center	(Unless o countersu rlink attac rlink attac	therwise nk. hment is hment is	noted.) .25". .22".	are made i	right- an	d left-ha	nd.	

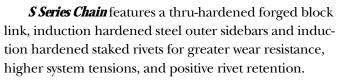
CAST CHAINS

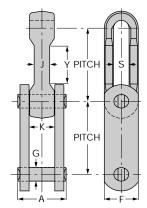
348

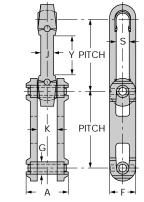
DROP FORGED


Standard Forged Chain combines the strength and relatively light weight to make it a good choice for use with trolley, scraper flight and assembly conveyors. All forged construction with thru-hardened links and pins assures long life.

X Series Chain flexes both horizontally and vertically, which makes it ideal for overhead conveyors with vertical curves.


PITCH


PITCH



"X" Series Drop Forged Chain

N348 is used primarily for overhead conveyor service where corrosion is a concern. Polymeric links and stainless steel pins of N348 resist corrosion.

"S" Series Drop Forged Chain Dimensions are in inches. Strengths, loads and weights are in pounds.

"N" Series Polymeric Chain

Rex Chain No.	Average Pitch	Pins	Overall Width	к	Chain Height	Link Thickness	S	Rateo Workir			Dart I	Brinell ardness	Average Ultimate	
		G	А		F	J		Load	Ű				Strength	
						517	NDARD	ORGED	CHAIN			44/000		-
468	4.031	0.75	3.31	1.69	1.88	1.13	0.88	5,80	0 7.8	Side L Center Pin	Link 3 Link 3 3	11/388 31/388 40/415	88,000	468
698 ³	6.031	1.13	3.75	1.63	2.59	1.00	1.25	10,80	0 12.5	Side L Center Pin		11/388 31/388 40/415	175,000	698
998 3	9.031	1.13	3.75	1.69	2.66	1.00	1.25	10,80	00 10.3	Side L Center Pin	Link 3	11/388 31/388 40/415	175,000	998
9118	9.031	1.38	4.88	2.13	3.00	1.31	1.50	18,30	00 16.3	Side L Center Pin		02/363 02/363 11/363	1250,00	0 9118@
						"X" SE	RIES DR	OP FOR	ED CHAIN					
X348	3.015	0.50	1.75	0.81	1.09	0.50	0.56	2,00	0 1.9	Side L Center Pin	Link 3	02/341 02/341 41/388	40,000	348
X458 ³	4.031	0.63	2.19	1.06	1.38	0.63	0.69	4,00	0 3.1	Side L Center Pin	Link 3	11/388 31/388 63/415	57,000	458
X678 ₃	6.031	0.88	3.03	1.38	2.00	0.81	1.00	7,10	0 6.5	Side L Center Pin	ink 3 Link 3	11/388 31/388 40/415	125,000	678
Rex Chain N		verage Pitch	Pins		Overall Width	к	He	nain ight	Link Thickness	s	Rate Worki	ng	Average Weight	Sprocket Unit No.®
onann N	0.	i non	G		Α			F	J		Load		Weight	10.
62.40		0.10			1 75				ED CHAIN	0.5/	0.00		0.4	2.4.0
S348 S458		3.019 4.031	0.50		1.75 2.06	0.81		.13	0.50 0.63	0.56 0.69	2,00		2.4 3.5	348 458
S458 S468		4.031 4.031	0.63		2.06	1.06		.38	1.13	0.89	6,70		3.5 7.9	458 468
S400 S678		5.031	0.73		3.00	1.44		.00	0.81	1.00	7.70		8.6	678
S698		5.031	1.13		3.25	1.63		50	1.00	1.25	10,80	-	11.7	698
S698HD	e	5.031	1.13		3.88	1.63	2.	88	1.00	1.25	13,00		12.2	698
S998		9.031	1.13		3.25	1.69		50	1.00	1.25	10,80		12.1	998
S9118	Q	9.031	1.38		4.38	2.13	3.	.00	1.31	1.50	18,30	0	23.3	9118 [©]

^① Cast or fabricated sprockets may be used.

3.015

N348

⁽²⁾ Available only as a fabricated sprocket.

^③ Available with 8642 alloy steel. Increases hardness and ultimate strength. Contact Rexnord.

1.75

0.81

0.50

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

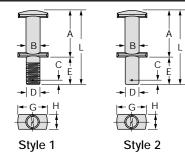
SERIES POLYMERIC CHAIN

0.50

0.50

700

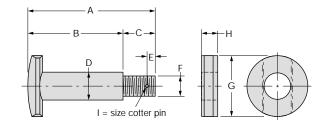
0.6


1.09

DROP FORGED – Attachments

CHAIN NUMBER	ATTACHMENTS AVAILABLE*
S348, X348	A53 , S2
S458, X458	A22, A52, F2A, M9, M37, M40, S22, extended pin
468, S468	F2A, F2C, S2, extended pin
X658	
S678, X678	A22, A53, F2C, F2F, G47, K2, extended pin
698, S698	A53, A54, F2D, G2-2A, extended pin
998, S998	A42, F2A, G1B, S2A, S22, extended pin
9118, S9118	S22

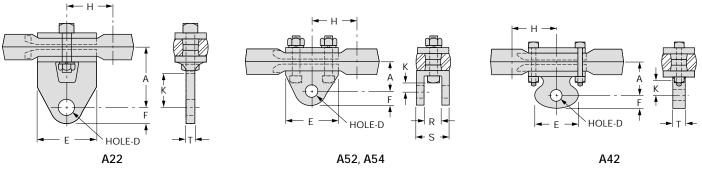
*Bold face type indicates attachments normally carried in stock.


ATTACHMENT PINS

Dimensions are in inches. Strengths, loads and weights are in pounds.

									gino, iouuo	
Chain Number	Style	А	В	C	D	E®	F	G	Н	Extension (Diameter)
X348	1	B + C	1.72	1.00-2.00	0.50	0.25	0.50	1.19	0.50	0.50 Threaded
458	1	B + C	2.20	1.13-2.63	0.63	0.25	0.50	1.22	0.63	0.50 Threaded
458	1 or 2	B + C	2.20	2.00-5.50	0.63	0.25	0.63	1.22	0.63	0.63 Threaded or Plain
468	1 or 2	B + C	3.19	1.38-2.63	0.75	-	0.75	1.69	0.77	0.75 Threaded or Plain
468	1	B + C	3.19	1.50-5.50	0.75	_	0.63	1.69	0.77	0.63 Threaded
678	1 or 2	B + C	3.00	1.00-3.00	0.88	0.25	0.63	1.88	0.88	0.63 Threaded or Plain
678	1	B + C	3.00	1.00-1.50	0.88	0.25	0.75	1.88	0.88	0.75 Threaded
678	1	B + C	3.00	1.50-2.25	0.88	-	0.88	1.88	0.88	0.88 Threaded
698, 998	1 or 2	B + C	3.88	2.00	1.13	0.50	0.75	2.50	1.16	0.75 Threaded or Plain
698, 998	1 or 2	B + C	3.80	2.00	1.13	0.31	1.13	2.50	1.13	1.13 Threaded or Plain
9118	1 or 2	7.38	4.88	2.50	1.38	0.50	1.13	3.00	1.44	1.13 Threaded or Plain
9118	1 or 2	7.38	4.88	2.50	1.38	0.50	1.38	3.00	1.44	1.38 Threaded or Plain

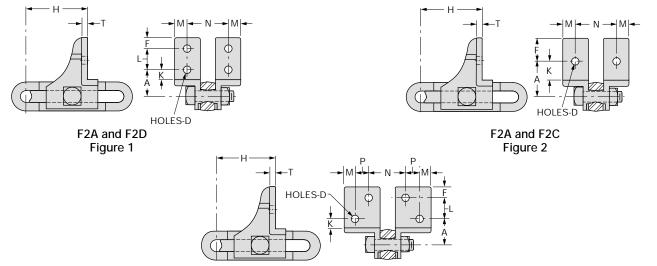
COUPLING PINS AND WASHERS


Bolted Coupler Pin Available for all rivetless chains.

Dimensions are in inches. Strengths, loads and weights are in pounds.

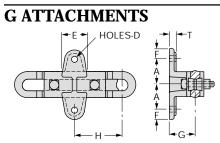
Chain Number	Α	В	С	D	E	F	G	Н	I Cotter Size	Extension (Dia.)	Average Weight
X348	2.31	1.5	.81	0.5	0.16	0.38	1.00	0.27	0.13	0.38 dia. threaded	0.20
458	2.88	1.89	.98	0.63	0.30	0.50	1.25	0.28	0.13	0.50 dia. threaded	0.38
468	3.97	2.88	1.09	0.75	0.19	0.63	1.56	0.39	0.13	0.63 dia. threaded	0.75
X678	3.91	2.94	.97	0.88	0.25	0.63	1.88	0.50	0.13	0.63 dia. threaded	0.94
698	4.92	3.81	1.11	1.13	0.27	0.75	2.38	0.63	0.13	0.75 dia. threaded	2.00
998	4.92	3.81	1.11	1.13	0.27	0.75	2.38	0.63	0.13	0.75 dia. threaded	2.00
9118	6.09	4.97	1.13	1.38	0.25	1.00	3.00	0.69	0.19	1.00 dia. threaded	4.00

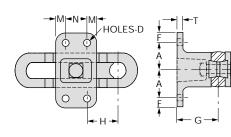
DROP FORGED – Attachments


A ATTACHMENTS

Dimensions are in inches. Strengths, loads and weights are in pounds.

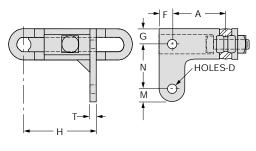
Attachment No.	Chain Number	Α	D	E	F	Н	К	R	S	Т	Average Weight
A22	X458, S458	2.00	0.68	2.38	0.81	2.02	1.06	-	-	0.50	1.5
	X678, S678	2.84	0.66	3.63	0.75	3.00	1.50	-	-	0.53	3.1
A42	998, S998	2.75	0.91	4.00	0.94	4.50	1.63	_	_	1.06	6.9
A52	X458, S458	2.88	0.53	2.25	0.63	2.00	1.88	0.69	1.19	-	1.6
A53	X348, S348	2.50	0.53	1.59	0.63	1.50	1.75	0.56	0.94	-	0.6
	X678, S678	2.25	0.66	3.56	0.88	3.00	1.09	1.13	1.88	-	2.8
	698, S698	2.75	0.91	4.00	0.94	3.00	1.06	1.44	2.38	_	6.0
A54	698, S698	2.50	0.66	2.97	0.88	3.00	1.13	1.13	2.00	-	4.0


F ATTACHMENTS

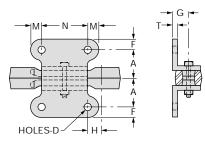


F2C and F2F Figure 3

						Di	mensions	are in inch	nes. Streng	gths, loads	s and weig	hts are in pounds.
Attachment No.	Chain Number	Α	D	F	н	К	L	М	Ν	Р	Т	Average Weight
F2A Figure 1	998, S998	2.02	0.56	0.63	6.00	0.75	2.00	0.88	6.00	-	0.38	9.1
F2A Figure 3	X458, S458	1.94	0.56	0.94	3.22	0.94	-	0.75	3.63	-	0.25	2.2
	468, S468	1.97	0.56	0.75	2.78	1.00	-	0.94	4.00	_	0.31	2.5
F2C Figure 3	X678, S678	1.94	0.56	0.81	4.69	0.88	1.38	0.69	2.56	0.88	0.31	4.7
F2C Figure 2	468, S468	1.97	0.56	0.88	2.91	1.00	-	0.75	3.94	-	0.25	2.4
F2D	698, S698	2.03	0.56	0.75	4.34	0.75	2.00	1.00	3.94	-	0.34	5.9
F2F	X678, S678	1.94	0.56	0.63	4.69	0.88	1.25	0.81	2.06	1.06	0.38	4.4


DROP FORGED – Attachments

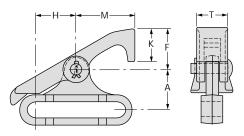
G2-2A

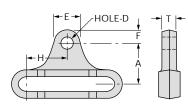


G47

Dimensions are in inches. Strengths, loads and weights are in pounds.

Attachment No.	Chain Number	А	D	F	G	Н	М	Ν	Т	Average Weight
G1B	998, S998	2.50	0.69	1.00	2.94	2.53	1.00	4.00	0.38	11.2
G2-2A	698, S698	2.00	0.56	0.75	4.00	1.44	0.75	3.25	0.38	7.4
G47	X678, S678	3.50	0.56	0.88	1.00	4.81	0.88	3.00	0.38	5.2

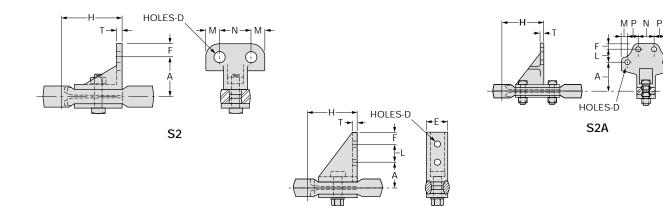

K ATTACHMENTS


Attachment No.	Chain Number	A	D	F	G	Н	М	N	Т	Average Weight
K2	X678, S678	1.75	0.56	0.75	1.38	1.50	0.75	3.00	0.38	3.9

■ DROP FORGED – Attachments

M ATTACHMENTS

M40 attachment with pusher dog #1



M37, M40

Dimensions are in inches. Strengths, loads and weights are in pounds.

Attachment No.	Chain Number	А	D	F	G	Н	М	N	Т	Average Weight
M37	X458, S458	2	0.77	1.13	0.56	2	-	-	0.45	1.3
M40	X458, S458	2	0.53	1.13	0.56	2	-	-	0.45	1.3
M40 with pusher dog	X458, S458	2	-	-	2	2	1.63	2.81	1.38	3.1

S ATTACHMENTS

Dimensions are in inches.	Strengths, lo	ads and weights	are in pounds.

Attachment No.	Chain Number	A	D	E	F	Н	L	М	N	Р	Т	Average Weight
S2	X348, S348	2.19	0.41	-	0.63	2.25	-	0.44	2.63	-	0.25	0.8
	468, S468	2.69	0.56	-	0.75	2.91	-	0.75	1.50	-	0.31	1.9
S2A	998, S998	4.00	0.56	-	0.75	5.28	1.75	0.75	2.13	1.53	0.31	8.8
S22	X458, S458	2.25	0.56	1.38	0.63	3.19	2.00	-	-	-	0.31	2.0
	X678, S678	2.88	0.69	1.81	0.88	4.94	2.25	-	-	-	0.31	4.7
	998, S998	3.25	0.81	2.38	1.50	6.50	3.00	-	-	-	0.63	11
	9118, S9118	4.25	0.81	3.00	1.25	7.19	6.50	-	-	-	0.38	15

S22

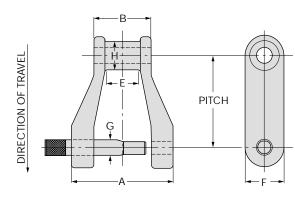
POLYMERIC CHAINS

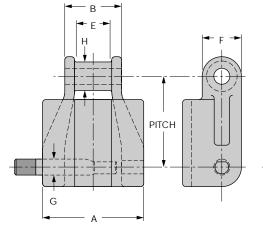
STRAIGHT RUNNING CHAINS

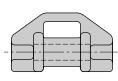
Design Features

Rex[®] straight running polymeric chains are designed specifically for those applications requiring corrosion resistant chains that operate over standard metal or polymeric sprockets.

The link material is a low friction thermoplastic that has proven itself as a chain material for over a decade. This material resists most chemicals, and because of its low friction characteristics, reduces energy consumption and noise while increasing chain, sprocket and conveyor wear strip life. Wide wearing surfaces on top and bottom of the link offer extended sliding wear life.


Chain pins are manufactured from stainless steel. The latest technology in chain design has been used to provide the greatest chain strength and wear life at a reasonable cost. The use of stainless steel pins with the corrosion resistant thermoplastic material offers a chain capable of withstanding most corrosive applications. Non-metallic pins are also available, contact Rexnord for details.




Design Benefits

- Simple Two Piece Construction Pins are easily assembled into links yet pins will not "work out" or rotate in service. No extra spring pins or cotters to fall out or snag conveyor apparatus. Every link is a "Master Link."
- Lightweight Less "dead weight" in your conveyor system will extend conveyor component life – longer chain life – longer conveyor "way" life – longer sprocket life – longer bearing life – longer reducer life – longer motor life!
- **Clean** In normal service, Rex Polymeric Chain will not corrode and contaminate the product. It is easily washed with water during operation, saving both time and money.
- **Completely Interchangeable** As a replacement for metal chains, Rex Polymeric Chain will run on existing carrying and return "ways," The chains will not intercouple with metal chains.
- **Low Coefficient of Friction** Rex chain materials have a very low coefficient of friction – this means less chain load and less energy consumption to convey the same tonnage.
- Brute Strength Rex Polymeric Chain has the highest possible working load. This is accomplished through "Balanced Design" of the link and pin. For a comparison to your current chain or for chain recommendations consult Rexnord.
- **Operating Range** Allowable temperature range of Rex Polymeric Chain is enough to handle most applications: -40°F to +180°F.
- **Quiet Running** Because of its unique design, the Rex Polymeric Chain is an ideal chain for reducing noise in many applications. Make your own test to prove if the noise level is adequate for your needs.

POLYMERIC CHAINS STRAIGHT RUNNING CHAINS

NHT78

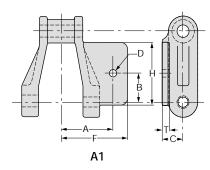
Dimensions are in inches. Strengths, loads and weights are in pounds.

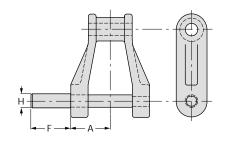
Rex Chain No.	Average Pitch	Overall Width	Length of Bearing	Max. Allowable Sprocket Face	Height of Sidebar	Link Thickness	Pins	Average Weight	Sprocket Unit No.	Bottom Sliding Area Sq. Inches Per Foot
		Α	В	E	F	J	G			
NH45	1.630	2.19	1.31	.75	.88	.31	.63	0.9	N45	8.8
NH77	2.308	2.19	1.31	.75	1.10	.38	.81	1.1	N77	10.4
NH78	2.609	2.91	1.63	.94	1.13	.44	.88	1.4	N78	11.5
NHT78	2.609	2.91	1.63	.94	1.69	.44	.88	2.0	N78	11.5
NH82	3.075	3.29	2.00	1.13	1.50	.50	1.25	2.2	N82	13.7
Chains are normally	stocked. Chain	s are patented	#4682687	•					•	

CAUTION: ANY UNUSUAL burrs, ridges or protrusions on sprocket teeth or in conveyor system which would cut into polymeric chains must be removed.

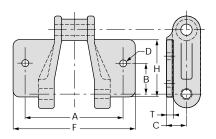
Specifications

FDA and USDA – Chain materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment and Sanitation Division of USDA.

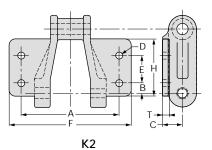

See pages 130-132 for important application information.

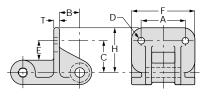

NOTE: The purpose of the table below is to account for cycles of load. This is an important consideration relating to fatigue and is critical to the successful application of chains made from any nonmetallic material.

Ratio of Chain Speed (FPM)		Rated Work	ing Load – Pounds*	
to Sprocket Centers (FT)	NH45	NH77	NH78 & NHT78	NH82
0.1	800	1100	1750	2400
0.1	750	1050	1650	2250
0.5	700	950	1350	2100
1.0	600	800	1100	1700
2.0	500	680	925	1400
5.0	400	540	750	1200
10.0	330	450	650	950


*Working load ratings for Polymeric Chains are established according to chain speed (FPM) and sprocket centers (FT).

POLYMERIC CHAINS – Attachments **STRAIGHT RUNNING CHAINS – ATTACHMENTS**





D5, D6, D7, D8 & D9

K1

F2

are in inches. Strengths, loads and weights are in pounds

						Dimensions are in inches. Strengths, loads and weights are in pounds.							
Rex	А	В	с		D①	Е	F	н	т	Weight	Link Weight W/O Pins Per	Pin Weight Per 100	
Chain No.			-	Bolt Dia.	Bolt Hole						100 Pieces	Pieces	
						A1							
NH45	1.63	.38	.69	1/4	.28	-	2.00	1.47	.19	1.4	9	4.5	
NH78	1.94	1.06	.81	1/4	.28	-	2.50	2.31	.25	1.7	25	11.8	
NH82	2.13	1.00	.88	¹ /4	.28	-	2.68	2.25	.31	2.4	44	17.8	
						D5							
NH45	1.09	-	-		_	_	1.50	.31	_	1.1	7	7.7	
						D6							
NH45	1.09	_	_		_	_	1.50	.38	_	1.2	7	9.2	
NH77	1.09	-	-		_	-	1.50	.38	-	1.3	13	11.2	
						D7							
NH45	1.09	-	_		_	_	1.50	.44	_	1.3	7	10.8	
NH78	1.44	-	-		_	-	1.50	.44	-	1.7	20	18.2	
NH82	1.66	-	-		-	-	1.50	.44	-	2.6	43	24.2	
						D8							
NH45	1.09	-	_		_	_	1.50	.50	_	1.5	7	12.8	
NH78	1.44	-	-		-	-	1.50	.50	-	1.8	20	20.1	
NH82	1.66	-	-		-	-	1.50	.50	-	2.7	43	26.1	
						D9							
NH45	1.09	-	-		-	-	1.50	.56	-	1.6	7	15.0	
NH78	1.44	-	-		-	_	1.50	.56	-	1.9	20	22.4	
NH82	1.66	-	-		_	-	1.50	.56	-	2.8	43	28.3	
						F2							
NH78	2.03	.94	1.47	1/4	.28	.90	2.90	2.06	.25	1.7	25	11.8	
NH822 ²	2.22	1.25	1.91	1/4	.28	1.25	3.28	2.50	.38	2.5	46	17.8	
						K1							
NH45	3.25	.38	.69	1/4	.28	_	4.00	1.47	.19	1.2	12	4.5	
NH78	4.00	1.25	.81	1/4	.28	-	5.00	2.31	.25	1.9	30	11.8	
NH82	4.25	1.00	.88	¹ /4	.28	_	5.38	2.25	.31	2.6	49	17.8	
						K2							
NH45	3.25	-	.69	1/4	.28	.81	4.00	1.47	.19	1.2	12	4.5	
NH78	4.00	.41	.81	1/4	.28	1.13	5.00	2.31	.25	1.9	30	11.8	
NH82	4.25	.34	.88	1/4	.28	1.31	5.38	2.25	.31	2.6	49	17.8	
Style of bole; rou		.04	.00	74	.20	1.51	0.00	2.20	.01	2.0	47	17.0	

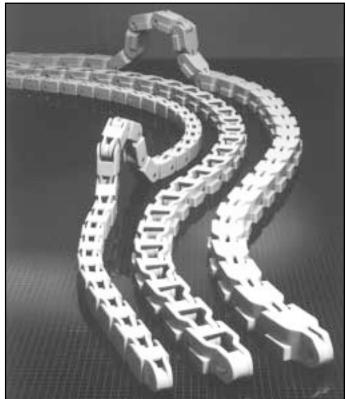
^① Style of hole: round.

Style of hole, round.
 Custom bolt-on attachment available – contact Rexnord.
 A attachments are available right hand and left hand.

A, F, and K attachments are available blank (no holes), with holes as shown, or as required.

POLYMERIC CHAIN

DOUBLE FLEX CHAINS


Design Features

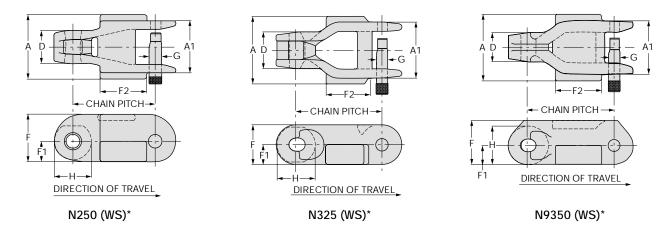
The Rex[®] Polymeric Double Flex Chains are designed for curved or straight unit handling conveyors. The chain will flex in the vertical and horizontal planes.

The chains are made from an exclusive low friction material that has proven itself as long wearing and shock resistant. With a stainless steel pin, the chains will not rust and will resist the same chemicals as acetal thermoplastic. Non-metallic pins are also available, contact Rexnord for details.

The latest technology in chain design has been used to provide the greatest chain strength and wear life at a reasonable cost.

Conveyor operators will appreciate the quiet running chains that reduce daily work area stress. Maintenance people laud the chain's light weight and ease of installation.

FDA and USDA – Chains materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment, and Sanitation Division of USDA.


Design Benefits

- Simple Two Piece Construction Pins are easily assembled into links yet pins will not "work out" or rotate in service. No extra spring pins or cotters to fall out or snag conveyor apparatus.
- Lightweight Less "dead weight" in your conveyor system will extend conveyor component life – longer chain life – longer conveyor "way" life – longer sprocket life – longer bearing life – longer reducer life – longer motor life!
- **Clean** In normal service, chains will not corrode and contaminate the product. They are easily washed with water during operation, saving both time and money.
- Easy Maintenance Chains are engineered for ease of assembly or disassembly. Since it is lightweight, a 10 foot strand of N325WS weighs 12 pounds, so one person can handle routine maintenance.
- **Operating Range** Allowable temperature range of Rex polymeric chains is enough to handle most applications, -40°F to +180°F.
- **Completely Interchangeable** A replacement for metal chains. These chains will run on existing carrying and return "ways." Chains will not intercouple with metal chains and require proper care with catenary design consult Rexnord.
- Low Coefficient of Friction Rex chain materials have a very low coefficient of friction. This means less chain load and less energy consumption to convey the same tonnage.
- **Brute Strength** These chains have the highest possible rated Working Load. This is accomplished through "Balanced Design" of the link and pin. For a comparison to your current chain or for chain recommendations consult Rexnord.
- **Protects Conveyed Material** The polymeric chains will not damage most products.
- **Quiet Running** Because of its unique design, these chains are ideal for reducing noise in many applications... make your own test to prove if the noise level is adequate for your needs.

POLYMERIC CHAIN

DOUBLE FLEX CHAINS

See pages 130-132 for important application information.

Dimensions are in inches. Weights are in pounds.

Rex Average Chain No. Pitch		Overa	II Width	Nidth Lenath			Wear Shoe		Diameter	.	Minimum		Bottom Sliding	
		With Wear Shoes	Without Wear Shoes	of Barrel	Max. Allowable Sprocket Face	Height of Sidebar	Height	Length	of Pin or Rivet	Diameter of Barrel	Flex Radius	Average Weight		
		A A1 D	D	1 400	F	F1	F2	G	Н	R				
N250(WS)	2.500	1.94	1.56	1.00	.75	1.44	.63	1.41	.38	1.13	20	0.9	2.1	
N325(WS)	3.268	2.56	2.13	1.38	.63	1.50	.75	1.63	.44	1.44	24	1.2	3.2	
N9350(WS)	3.500	2.66	2.13	1.16	.81	1.75	.75	1.84	.44	1.50	24	1.8	4.2	

* Note: WS version has wear shoes. Chains are normally stocked. Chains travel open end forward. Chains are patented: #4682687 CAUTION: ANY UNUSUAL burrs, ridges or protrusions on sprocket teeth or in conveyor system which would cut into polymeric chains must be removed.

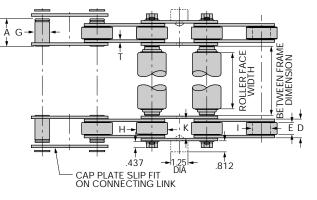
Ratio of Chain Speed (FPM) to Sprocket	Rated Working Load – Pounds*						
Centers (FT)	NH250(WS)	NH9350(WS)					
0.1	800	1500	1875				
0.2	750	1500	1875				
0.5	700	1250	1565				
1.0	600	1030	1290				
2.0	500	850	1065				
5.0	400	650	815				
10.0	330	540	675				

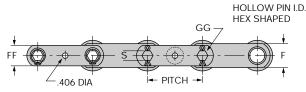
Dimensions are in inches. Weights are in pounds.

*Working load ratings for Polymeric Chains are established according to chain speed (FPM) and sprocket centers (FT).

NOTE: The purpose of the table to the left is to account for cycles of load. This is an important consideration relating to fatigue and is critical to the successful application of chains made from any nonmetallic material.

LIVE ROLLER CHAIN


NOW MANUFACTURED AT THE ENGINEERED CHAIN OPERATION!


Rex[®] Live Roller Conveyor Chains are precision conveyor carrier roller chains which may be combined with quiet running Rex Whisperol polymeric rollers or with standard hexagonal axle conveyor rollers.

The conveyor chain's special Rexnord engineered hexagonal shaped hollow pin allows the chain to accept standard size hexagonal axles offered on conveyor rollers.

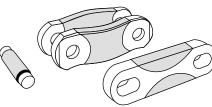
The combination of precision conveyed carrier roller chain and the free turning conveyor rollers produces a heavy duty roller flight conveyor which can be used as an accumulating and minimum pressure conveyor. The combination of Rex live roller conveyor chain with conveyor rollers is ideally suited for conveyor lines handling items which must be blocked, stopped or accumulated without stopping the conveyor.

The conveyed object, which is carried directly on the conveyor rollers, can be halted for accumulation, assembly or inspection at any location on the conveyed line. Because the conveyor rollers are free turning, line pressure is held to a minimum allowing fragile items, such as furniture, sub-assemblies, and light cartons, to be conveyed or accumulated without fear of damage.

			Vorking Average Pi		Conn.			Thru-Hardened Sidebars			Carburized Pins		Carburized Rollers		Carburized Bushings			
Chain Average Working	Working			Center Ce	Center	nter Sidebar	Pin	ness Roller	Pin	ight Roller	0. D.	ns Hex	Face		Bush Length	<u> </u>	Sprocket Unit No.	
No.		Load			Line	Line		Link	Link	Link	Link	0. D.	ПСЛ	Width	0. D.	Longin	0. D.	
				Α	В	С	К	Т	TT	FF	F	G	GG	Е	Н	D	I	
RF3007	3.000	4,000	3.9	1.78	.94	.81	1.18	.16	.19	1.13	1.31	.75	⁷ /16	.75	1.75	1.16	.94	RF3007
RF4007	4.000	4,000	3.4	1.78	.94	.81	1.18	.16	.19	1.13	1.31	.75	⁷ /16	.75	1.75	1.16	.94	RF4007
RF3011	3.000	5,000	6.9	2.13	1.16	.97	1.41	.19	.19	1.50	1.75	1.06	¹¹ /16	.97	2.25	1.38	1.31	RF3011
RF4011	4.000	5,000	5.7	2.13	1.16	.97	1.41	.19	.19	1.50	1.75	1.06	¹¹ /16	.97	2.25	1.38	1.31	RF4011

NOTE: Shaft extension for any live roller chain is A + 0.437. Chains are normally in stock.

Sidebars are thru-hardened; bushings are carburized.


DOUBLE FLEX CHAIN

3500 STEEL DOUBLE FLEX CHAIN

Fabricated steel 3500 chain is designed to operate in either direction. This feature plus its ability to flex in two planes, and its excellent wear durability, makes it popular for a wide range of applications in the unit handling industry.

Induction Hardening

Pin bearing

surfaces and all sliding surfaces are induction hardened.

Selective hardened areas provide long life, yet leave tough chain with high strength to handle big loads.

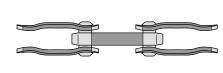
Shielded Rivets

Cupped configuration on the outer sidebar both protects and shields rivet ends, as well as provide

relief for side-flex. No rivet wear prevents the possibility of disassembly while in operation.

Beveled Block Link

The 3500 block link is beveled to provide additional protection for conveyors handling plastic cases.

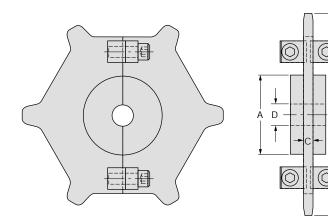


Large Sliding Area

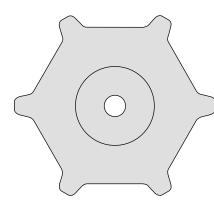
3500 Double Flex Chain presents solid, substantial sliding surfaces to channel tracks.

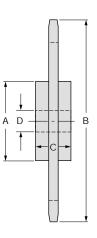
Nearly 50% greater sliding bearing area than dropforged chain results in lower sliding bearing pressure, thus decreasing wear on chain and channels. Again, increased chain life, lower chain replacement costs.

Make multiple turns in one run, saving on transfer points. It flexes around 20" radius corners, assuring more compact plant layouts.



Fewer terminal units mean lower cost installations, easier maintenance.

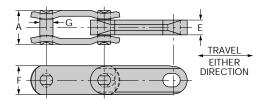

3500 Fabricated Steel Sprockets


These sprockets can be furnished split, solid and bronze bushed. Heat treated keys are recommended.

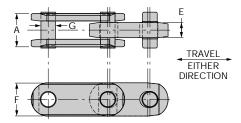
Flanged idler wheels available, specifications and price on application.

Split

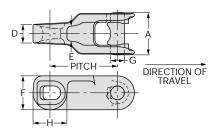
B

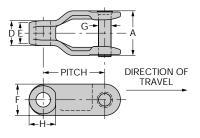

Solid

Dimensions are in inches. Weights are in pounds


						5		•	
No. of No. o		Pitch	Hub Diam.	Outside Diam.	Hub ^① Length		Approx. Weight Each		
reeur	Filches	Diain.	Α	В	С	D	Split	Solid	
5	10	8.90	4.00	9.75	2	2.44	14.5	12.5	
6	12	10.63	4.50	11.50	2	2.69	20.5	18.5	
7	14	12.36	5.00	13.31	2	2.94	25.5	23.5	
8	16	14.10	5.00	15.25	2	2.94	31.0	29.0	
9	18	15.84	5.00	16.88	2	2.94	38.5	36.0	

Overall width of split sprocket is 2⁵/8 inches.
 Stock bore is 1¹/4 inches.


DOUBLE FLEX CHAIN


3500 Steel Chain

3498 Steel Chain

9250 Cast Chain

SM120 Cast Chain

Dimensions are in inches. Loads and weights are in pounds.

Rex Chain No.	Average Pitch	Rated Working Load ^①	Overall Width	Length of Barrel	Max. Allowable Sprocket Face	Height of Sidebar	Diameter of Pin or Rivet	Barrel	Flex Radius	Average Weight	Sprocket Unit No.
			A	D	E	F	G	H	R		
3500 ^②	2.5③ 3.0	See Table Below	1.50	-	.63	1.25	.56	-	20	3.3	3500
9250	2.5	900	1.56	.69	.75④	1.25	.50	1.25	18	3.3	9250
SM120	2.5	1,100	1.78	1	.75④	1.25	.50	1.13	36	3.6	9250
3498	1.75 2.5 ^⑤	See Table Below	1.44	-	.63	1.38	.63	-	16	4.5	3498

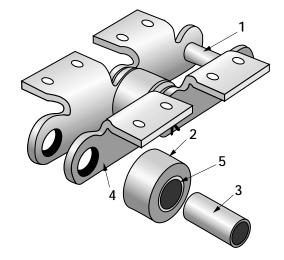
Ratio of Chain Speed (FPM) to	Rated Working Load – Pounds					
Conveyor Length (Ft)	3500 Chain	3498 Chain				
0.1 to 0.6	4000	5000				
1.0	3400	4250				
1.5	2900	3650				
2.0	2600	3250				
2.5	2300	2850				
3.0	2100	2600				
3.0 to 15.0	2100	2600				

Refer to page 151 for use of "Rated Working Load" in conveyor chain selection.
When chain is to be run in channel, 2" x 1" x ³/₁₆" (2.32 lbs. per foot), standard bar channel is suggested.
Block link is 3-inch pitch and outside link is 2¹/₂" pitch.
Face on drive side of tooth.
Cluber 1: a to 1 2⁻¹ witch and outside link is 2¹/₂" pitch.

Is Block link is 1.75" pitch and outside link is 2¹/₂" pitch. Note: For ratios below 0.1 and above 15.0, consult Rexnord for recommended rated

working load. In applications without static operating conditions (shock loads), a service factor must be applied to provide for dynamic fluctuations. Speed Factors are found on page 153 or contact Rexnord. Design Working Load = $P_m x$ Service Factor x Speed Factor.

LF (LOW FRICTION) BUSHED CHAIN


Developed initially for the meat industry, the rollers of this engineered steel conveyor chain are bushed with acetal thermoplastic to resist corrosion and reduce rolling friction by 40%.

Improved Handling - The extremely low friction of LF bushed rollers on either stainless or carbon steel chain bushings minimizes pulsating action on long slow-moving conveyors.

Saves Power – Because of low coefficient of rolling friction LF bushed rollers drastically reduce horsepower requirements, thereby reducing operating costs. No Lubrication - Built in self lubricating properties of this material assures smooth trouble free operation under dry conditions.

Cleaning - LF bushed rollers may be safely applied in applications where steam or commercial cleaning agents are required.

- Pins are case hardened steel with three (3) diam-1. eter construction for easier assembly, disassembly.
- Rollers are case hardened steel and have low-friction 2. bushed surface for smooth, long-life performance.
- Chain bushings are of stainless steel, heat treated for 3. extra corrosion and wear resistance. Carbon steel bushings available where corrosion is not a threat.
- Sidebars are accurately punched for good pitch 4. control. Chain can be galvanized, or provided with other coatings for added corrosion resistance at slight additional cost.
- 5. LF materials resist corrosion and wear, have low friction: require no lubrication.

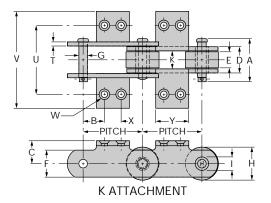
	Dimensions are in menes. Loads and weights are in pounds.															
	F		Rated	Max.	Max		Pin		Sidebars	_	Pins	Rol	lers	Bush	nings	
Rex Chain No.	Average Pitch	Max. Load ^①	RPM 12T Spkt.	MUTS x 10 ³	Length	Between	Thickness	Height	Diam.	Face Width	0. D.	Length	0. D.	Sprocket Unit No.@		
					Α	К	Т	F	G	E	Н	D	I			
BA3420	4.04	3,150	75	23	3.25	1.25	.31	1.50	.63	1.94	2.00	1.94	.94	1113		
SRD196	6.00	1,950	40	18	2.72	1.13	.25	1.50	.44	1.06	2.00	1.69	.63	196		
SRH1114	6.00	3,150	40	23	3.25	1.31	.31	1.50	.63	1.19	2.00	1.94	.94	196		
BA1670	6.00	3,150	40	23	3.25	1.31	.31	1.50	.63	1.19	2.25	1.94	.94	2180		

Dimensions are in inches. Loads and weights are in pounds

LF (LOW FRICTION) BUSHED CHAIN

The configurations shown are versions commonly used in the meat industry:

Pins and rollers are case hardened (carburized).


Sidebars and chain bushings are thru-hardened. Roller bushings are LF Acetal.

Pins, rollers and sidebars are galvanized, and chain bushings are stainless steel.

For a greater degree of corrosion resistance, these chains are available with the following optional finishes: Sidebars can be provided with an optional coating for a higher level of corrosion resistance. Pins and rollers can be electroless nickel plated (ENP).

LF bushed chains are available for other applications.

ATTACHMENTS

Dimensions are in inches. Loads and weights are in pounds.
--

Rex Chain No.			W	1	_				Wgt. Per Ft.
w/K-Attachment Every Pitch	U	V	Bolt Dia.	Bolt Hole	В	Х	Y	С	K-Attachment Every Pitch
BA3420-K28	4.13	5.93	3/8	.41	1.27	1.50	2.75	1.25	11.0
SRD196-K201	4.00	5.66	⁷ /16	.50	2.00	2.00	3.50	1.25	7.5
SRH1114-K28	4.00	5.38	³ /8	.41	2.00	2.00	3.50	1.12	10.7
BA1670-K241	4.06	5.31	¹¹ /16	.78	2.00	2.00	3.50	1.38	11.2

Attachment holes are countersunk.

CHAIN INTERCHANGE

The following tables can be used to interchange Rex[®] and Link-Belt[®] chains. Details on chains included in the listings can be found in the Engineered Steel and Cast Chains sections of this catalog. To interchange Drive Chains see pages 34-35. To interchange Standard Series Cast Combination Chains see page 53. In some cases, Rex and Link-Belt brands may couple – but this should not be assumed. Attachments should be compared by catalog data rather than number. For interchange verification or assistance, contact Rexnord.

Chains are listed in numerical order. To find the desired chain follow down the first column to the number of the chain to be replaced.

REX TO LINK-BELT INTERCHANGE

Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page
4	RS4019	10	531	RS4328	10	FR1222	SS1222	13
6	RS6238	11	RR588	RS887	10	FR1233	SS1233	13
81X	RS81X	10	RR778	RS886	10	C1288	SS1088	10
81XH	RS81XH	10	SR844	SBS844	14	1535	SBS2162	14
81XHH	RS81XHH	10	R0850	SB0850 Plus	14	1536	SBS1972	14
S102B	SBS102B	14	RS856	SBX856	14	1539	RS1539	10
S102.5	SBS102.5	14	ER857	SBX2857	14	BR2111	RS944 Plus	11
S110	SBS110	14	ER859	SBX2859	14	A2124	RS996	11
ES111	SBS111	14	ER864	SBX2864	14	2126	RS1116	11
S131	SBS131	14	ER911	RS911	12	2183	RS951	11
SX150	SBS150 Plus	14	ER922	SS927	12	FX2184	R02184	11
SR183	RS3013	10	FR922	SS922	12	2188	RS2188	10
S188	SBS188	14	FR933	SS933	12	2190	RS2190	11
SR194	RS4216	10	SR1114	RS1114	11	A2198	RS960	11
SR196	RS6018	11	RR1120	RS4013	10	3420	RS1113	10
270	SS2004	10	RS1131	RS1131	11	X4004	RS4852	12
RR362	RS625	10	E1211	RS1211	13	R4009	RS4851	12
RR432	RS627	10	ER1222	SS1227	13	4065	RS4065	12

LINK-BELT TO REX INTERCHANGE

Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page
RS81X	81X	10	SS922	FR922	12	SS2004	270	10
RS81XH	81XH	10	SS927	ER922	12	SBS2162	1535	14
RS81XHH	81XHH	10	SS933	FR933	12	RS2188	2188	10
SBS102B	S102B	14	RS944 Plus	BR2111	11	RS2190	2190	11
SBS102.5	S102.5	14	RS951	2183	11	R02184	FX2184	11
SBS110	S110	14	RS960	A2198	11	SBX2857	ER857	14
SBS111	ES111	14	RS996	A2124	11	SBX2859	ER859	14
SBS131	S131	14	SS1088	C1288	10	SBX2864	ER864	14
SBS150 Plus	SX150	14	RS1113	3420	10	RS3013	SR183	10
SBS188	S188	14	RS1114	SR1114	11	RS4013	RR1120	10
RS625	RR362	10	RS1116	2126	11	RS4019	4	10
RS627	RR432	10	RS1131	RS1131	11	RS4065	4065	12
SBS844	SR844	14	RS1211	E1211	13	RS4216	SR194	10
SBO850 Plus	R0850	14	SS1227	ER1222	13	RS4328	531	10
SBX856	RS856	14	SS1222	FR1222	13	RS4851	R4009	12
RS886	RR778	10	SS1233	FR1233	13	RS4852	X4004	12
RS887	RR588	10	RS1539	1539	10	RS6018	SR196	11
RS911	ER911	12	SBS1972	1536	14	RS6238	6	11

SPROCKET TYPES

Sprockets can be supplied in various materials and styles, depending upon the application and severity of service requirements. For most engineered chain applications, fabricated steel sprockets are recommended as offering the best combination of performance, availability, and price. Fabricated steel sprockets can be provided for every chaintooth combination and are readily available.

SPROCKET STYLES

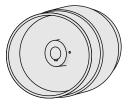
Cast Arm Body – This type of sprocket is generally used where larger sizes are required. The use of arms reduces weight, facilitates handling, and lowers cost.

Cast Split (Arm or Plate) Body – The split body design facilitates mounting and removal from shafts without disturbing bearings or other connected equipment, which greatly reduces installation and downtime.

Cast Plate Body – Plate bodies are generally required for the smaller sizes where the use of arms is impractical, and on larger sizes when the chain pull exceeds the strength of the arm body sprockets.

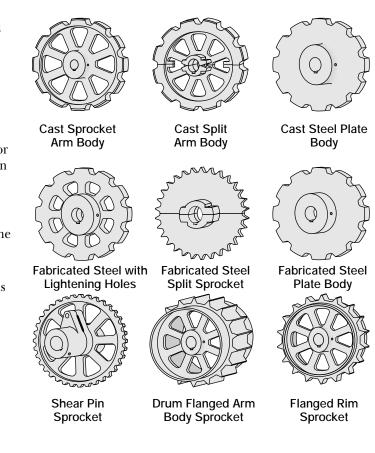
Fabricated Steel Sprockets – Fabricated steel sprockets are flame cut and manufactured from plain carbon steel. The teeth are flame or induction hardened.

Shear Pin – A sprocket is modified by the addition of shear pin hubs and shear pins. They are used in applications where jamming or overloading is prevalent. The shear pins are designed to transmit the required torque under normal operating conditions, but to fail when an overload or jam occurs, thus protecting machinery and equipment from damage.


Special Sprockets – Sprockets can be made of special design, such as flanged-rim (used particularly in the rock products and fertilizer industries). Long-tooth or gapped-tooth sprockets can also be made.

SEGMENTAL SPROCKETS AND TRACTION WHEELS

Can be supplied with either solid or split bodies, and have removable and replaceable sprocket segments or traction wheel rims. Rims are made of specially hardened steel for superior wear resistance. Accurate machining and precisely drilled holes permit sprocket segments to be reversed, thus doubling sprocket life and minimizing downtime.


TRACTION WHEELS

Primarily designed for single-strand bucket elevator service, traction wheels can also be used on other type conveyors providing the coefficient of friction is sufficient under normal load to allow the traction wheel to drive the unit. A distinct advantage of a traction wheel is

Sprockets can also be supplied in various cast materials, with or without hardened teeth. The cast sprocket tables present the available patterns for producing cast sprockets.

Whatever the types selected, our sprockets are designed for proper chain-sprocket interaction. Rexnord engineers have selected the proper tooth pressure angle, pitch line clearance, bottom diameter and tooth pocket radius for optimum performance and service life.

Segmental Sprocket with Split Body

Segmental Traction Wheel with Split Body

that the chain will slip on the wheel in the event of an obstruction or overload, thereby preventing damage to elevator or conveyor components. Traction wheels are ideal for service in abrasive environments since there is less scrubbing of the chain on a traction wheel as compared to sprocket.

SELECTION, SPECIFICATION AND ORDERING INFORMATION

Number of Teeth

Sprockets preferably should have no less than 12 teeth, particularly if speeds are high and the chain loads great. Sprockets having less than 12 teeth should be adapted only to slow and medium speeds. The number of teeth and sprocket speed (revolutions per minute) control the amount of impact of the chain seating on the sprocket. Impact is reduced as the number of teeth is increased or as speed is decreased. Likewise the chain pull is reduced as the sprocket size is increased for any one power drive. Consequently, a lighter chain – for greater economy – may often be used. With a greater number of teeth angular motion or friction in the chain joints is reduced.

Height of Teeth

Height of teeth of standard sprockets is generally based on providing a working face what will accept the maximum possible amount of wear elongation combined with a smooth topping curve. A further limitation that takes precedence over the above is that when a sprocket series is capable of being used with chains designed for conveyor/elevator service, the top of the tooth of all standard sprockets having ten or more teeth is designed to be low enough to clear a slat or carrier mounted on the lowest possible "K" attachment of any chain using sprockets of that series.

As a precaution, it is recommended that orders for sprockets specify whether it is necessary for the top of the tooth to clear any slat, bucket or carrier mounted to a chain attachment, or welded to the chain.

Bore and Hub Size

The size of the bore and hub are determined by the torque to be transmitted. The hub specification charts included in this catalog provide selections based on a design shear stress of 6000 psi, maximum.

Gapped Sprockets

Some attachments require gapped sprockets to avoid interference between the sprocket and chain or assembled fittings. Such attachments usually are those wherein the space between side bars is utilized by the attachment or its fitting. The gap spacing must be a multiple of the particular attachment spacing in the chain, also of the number of teeth on the sprocket. When some teeth must be topped off (that is, omitted) – as distinguished from gaps that extend within the root diameter, it will be assumed that topping off the teeth flush with the root diameter will suffice to clear the obstruction. If gaps are required, complete details must accompany the order.

HEAT TREATMENT

Fabricated steel sprockets are normally supplied with induction hardened teeth. Cast sprockets, if hardened, are either induction hardened or cast as chill iron. The catalog cast sprocket tables identify cast sprockets with hardened teeth.

Rexnord takes an extra step when heat treating segmental sprockets and tractions wheels to provide the utmost in hardness and case depth.

Prior to induction hardening, segmental rims are "soaked" with carbon in large carburizing pits specifically designed for this purpose. The carburizing process provides deep penetration of carbon into the segment's working surfaces, thereby increasing its hardenability.

After the carburizing process, the segments are taken to Rexnord's induction heat treat area where the segments are enveloped in a large electrical coil, heated to a "cherry red", and quickly quenched. This final process produces the hardest, deepest cases available in an engineered sprocket or traction wheel today.

The carburizing/induction heat treatment process is standard for most all of our segmental sprockets and traction wheels. If you have a very severe sprocket wear problem this may be the answer – contact Rexnord to find out if it is available for your particular sprocket type because not all sizes and styles are available.

Relative depth of hardened material developed from flame, induction or chill rim hardening methods. Relative depth of hardened material developed through the two-step carburizing/ induction hardening process used in our segmental sprockets and traction wheels. More hardened material means longer sprocket and chain life!

SELECTION, SPECIFICATION & ORDERING INFORMATION – (Cont'd.)

Web Holes

Large plate or web-body sprockets can be furnished, when specified, with holes for hoisting slings or hooks. Such holes may necessitate an extra charge.

Weights

Listed weights represent averages only and may differ from those of the sprockets furnished, because of the differences in hub sizes. Average weights do not necessarily indicate the relative strengths of the various sprockets. They are given primarily for estimating shaft loads and freight charges. All weights are based on arm body construction.

Style Plate-Body or Arm-Body Construction

It will be noted that the smaller sprockets in each series (both stock and order-size) are furnished only with plate-body. Lack of space between the hub and the sprocket rim makes it impractical to furnish these sprockets with arm-body construction. All stock and order sizes will be furnished plate body. For arm body design, consult Rexnord.

Hubs

All hubs are furnished long central (style C) unless specified by the customer or if footnoted in the tables. Depending on how mounted, offset hubs or flush one side (style B) may be preferable for driver sprockets mounted on gearbox output shafts. Offset hubs are where hubs are not of equal length. If other than long central hubs are desired, be sure to specify this on the order.

All hubs are given a squaring cut, (faced) then sprockets are finish bored. Facing is provided as follows:

	CAST HUBS	FABRICATED HUBS		
Long Central	Faced 1 side	Faced both sides		
Flush one side	Hub faced	Hub faced		
Offset hubs	Faced both sides	Both hubs faced		

Bore

Sprockets are bored to commercial tolerances (see table below) Closer tolerances are available at extra cost.

BORE RANGE	TOLERANCE (INCES)
Up thru 2.000	+.001/+.003
Over 2.000 thru 4.000	+.001/+.004
Over 4.000 thru 6.000	+.001/+.005
Over 6.000	+.001/+.006

Keyseat and Keyscrews

Standard straight keyseats on the centerline of a tooth are finished with one setscrew over the keyseat and one at 90°.

Multiple Sprocket Alignment

On a multiple strand conveyor or elevator, it is important that driving sprockets teeth be properly aligned in service. It is recommended that drive sprockets be ordered in sets with keyseats properly located relative to the teeth. Sprockets ordered as matched sets will be match marked. Sprockets are to be installed such that all match marks face the same end of the shaft.

At the tail end of a multiple strand conveyor, only one sprocket should be fixed (keyed or set screwed) to the shaft. The remainder of the tail sprockets should be allowed to turn freely on the shaft to compensate for differences in strand length that may change over time.

• Sprockets with Hubs Central

Order should specify "Matched in Sets of Two," "Matched in Sets of Three," etc.

• Sprockets with Unequal Hubs

If sprockets will be installed with like hubs all facing the same end of the shaft, the order should specify "Matched in Line."

If sprockets will be assembled with like hubs facing opposite ends of the shaft, the order should specify "Matched in Pairs."

Sprocket Availability

Fabricated Steel sprockets (split or solid) are readily available and most any sprocket design can be provided. For the quickest possible delivery, Rexnord maintains an inventory of plates and hubs for many commonly used sprockets.

Cast sprockets with solid hubs are stocked and identified in the cast sprocket tables. The stocked sprocket is bored and keyed to order. Split sprockets, sprockets with hub dimensions other than shown, or sprockets with any other non-standard feature are available but must be cast to order. If delivery is an important factor, fabricated steel sprockets are recommended.

SELECTION, SPECIFICATION & ORDERING INFORMATION – (Cont'd.)

How To Order

- 1. Quantity Number of sprockets required.
- **2. Sprocket Unit Number and Chain Number –** Refer to the chain and sprocket index.
- 3. Teeth –

Number of teeth on sprocket.

4. Material –

Cast or fabricated steel should be specified. Standard materials will be provided unless specified.

5. Heat Treatment -

Fabricated steel sprockets will have induction hardened teeth. Cast sprockets will have hardened teeth if specified in the cast tooth sprocket tables. Specify any non-standard heat treatments.

6. Hub Construction –

Hubs will be provided as standard with solid hubs, long central (Style C) unless specified otherwise. Refer to page 79 for standard hub specifications.

7. Hub Size – CAST SPROCKETS:

Stocked cast tooth sprockets are listed in the tables with hub dimensions and a maximum bore. Sprockets with hub or bore dimensions other than as shown require a CAST TO ORDER sprocket. These special sprockets are available but if lead time is a factor, consider using a fabricated steel sprocket which is more readily available.

If no hub size is specified by the customer, the standard hub will be provided unless the shaft exceeds the maximum allowable bore, in which case a cast to order sprocket will be necessary.

For CAST TO ORDER sprockets: If no hub size is specified, a hub will be selected appropriate for the shaft size and most readily available from the foundry.

If desired, hub sizes may be specified on CAST TO ORDER sprockets, refer to the selection procedures on pages 81-82.

Hub Size – FABRICATED STEEL SPROCKETS

For fabricated steel sprockets, most any size hub is readily available. When delivery is especially critical, standard hub sizes are recommended. Standard fabricated steel hubs as shown in the table on page 79 will be provided unless specified on the order.

8. Bore –

Specify size and type of bore. Standard tolerances will be provided unless specified.

9. Keyseat and Setscrews -

A keyway with two setscrews will be provided on all sprockets unless specified otherwise.

10. Previous Order or Quotation -

Provide information regarding previous order or quotation to assure compliance.

11. Gapped Sprockets -

Specify chain attachment used and spacing.

12. Drop Forged Chain Sprockets –

Specify number of actual teeth.

13. Shear Pin Sprockets -

Specify torque level sprockets should shear. A bore size must be specified.

SPROCKETS

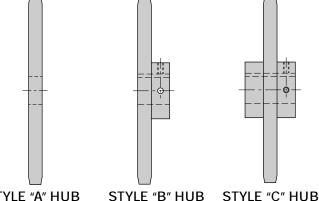
FABRICATED STEEL SPROCKETS

Listed below is the plate thickness for each sprocket unit. Refer to chain and sprocket index to determine proper unit number for each chain.

All sprockets are readily available as fabricated steel. Fabricated assemblies for traction wheels, drum flanged, sprockets, and for wide mill chain sprockets are also readily available.

4 .63 698° 1.25 X1365 6SP 1.13 710 2.25 1535 25° .38 720S° 1.13 1536 32° .50 CS720S° 1.13 B1537 34 .50 A730° 1.13 1568	2.75 1.00 1.25 1.25 1.25 .88 2.00 1.75 1.00
6SP 1.13 710 2.25 1535 25 ⁰ .38 720S ⁰ 1.13 1536 32 ⁰ .50 CS720S ⁰ 1.13 B1537 34 .50 A730 ⁰ 1.13 1568	1.00 1.25 1.25 1.25 .88 2.00 1.75
25 [®] .38 720S [®] 1.13 1536 32 [®] .50 CS720S [®] 1.13 B1537 34 .50 A730 [®] 1.13 1568	1.25 1.25 .88 2.00 1.75
32 ⁰ .50 CS720S ⁰ 1.13 B1537 34 .50 A730 ⁰ 1.13 1568	1.25 .88 2.00 1.75
34 .50 A730 [®] 1.13 1568	1.25 .88 2.00 1.75
	2.00 1.75
42 ¹⁰ .56 CS730 ¹⁰ 1.13 1604	1.75
45 [@] .63 823 [®] 1.13 1654	
51 [®] .56 825 [®] 1.25 E1822	1.00
S51 [®] .56 830 [®] 1.25 F1822	
52 ⁰ .63 833 2.25 F1833	1.25
55 ¹ 0.63 844 ¹ 0 2.25 E1836	2.00
57 .63 847 1.75 F1844	1.50
D60 ¹ .88 RO850 2.00 F1855	1.50
H60 .63 SX850 2.00 1903	3.00
RS60 1.12 856 2.75 2047	1.25
62 [®] .75 859 3.25 2064	2.25
64S [®] 1.25 RS860 1.75 2111	1.25
67 ^① .63 864 3.25 2113	1.12
78 [®] .88 SX877 2.50 2124 [®]	1.25
H78 [®] 1.00 SX886 2.25 2136	1.75
102B [®] 1.75 E922 1.75 2180 [®]	1.13
102-1/2 [®] 1.75 E911 1.25 F2183	1.00
103 [®] 1.13 F922 [®] 1.13 2198	1.25
106 1.75 E928 1.75 2231	.63
110 [®] 1.75 E933 2.00 2236	1.75
111SP 2.25 F933 [®] 1.25 2342 [®]	1.50
111 [®] 2.25 S951 1.00 2348 [®]	1.25
114 1.13 952 [®] .63 2397	1.75
119 [®] 3.50 953 1.25 2405	1.50
SM120 [®] .75 958 2.75 2452	2.50
H124 [®] 1.50 984 3.50 2590	2.50
130 [®] 1.00 998 [®] 1.25 2614	2.25
131T [®] 1.50 1030 1.25 2800	1.50
132 ⁰ 2.75 1036 1.25 2804	3.00
R133 1.25 1039 [®] 1.50 2806	4.00
152 .75 1112 .88 2848	1.75
183 [©] .75 1113 [©] 1.13 2858	1.75
SX175 2.75 1120 [®] .75 2868	1.75
183 [®] .75 1124 .88 RF3007 188 1.00 1131 [®] 1.25 RF3011	.63
	.88
194 [®] 1.00 1204 2.00 3112 196 [®] 1.00 1207 2.25 3125	1.00 1.25
190° 1.00 1207 2.25 3123 197 [®] 1.13 E1211 1.25 D3125	1.25
238 1.25 E1222 1.75 3285	1.25
270 1.00 F1222 ⁰ 1.00 3433	1.75
303 .38 F1232 1.25 4004	2.25
X345 1.75 E1233 2.00 4005	1.13
348 ¹ .63 F1233 1.25 RF4007	.63
4580 .88 1240 1.75 4009	1.75
468 [®] 1.50 E1244 2.25 4010	2.75
501 .75 FR1244 1.50 4011	2.00
506 .75 1251 1.75 RF4011	.88
508 .88 1301 2.50 4038	1.25
514 1.25 RO1305 2.25 4539	1.25
514 1.25 1.01303 2.25 4337 520 .88 1306 2.50 4855	2.25
A522 .75 1307 2.75 5157	2.75
S521 1.25 A1309 2.75 5208	1.75
531 ⁰ 1.13 X1311 2.75 6065	2.50
CA550 .63 AX1338 1.25 6121	3.50
568 1.25 X1343 1.50 6826	2.00
584 1.50 X1345 1.50 7539	1.25
589 1.13 X1351 1.75 8755	2.75
CA620 .88 X1353 2.00 9118	1.75
635 1.75 RO1355 2.25 9250 [®]	.75
678 [®] 1.13 RO1356 2.50 9856	2.50

Sprocket Weight


Total Sprocket Weight = [.22 (PD)2 PW] + W

PD = Pitch Diameter of Sprocket

PW = Plate Width of Sprocket (See table at left)

W = Hub Weight (See table below)

Calculated weight is an approximate to be used for estimating shaft loads and shipping weights.

STYLE "A" HUB TABLE INSTRUCTIONS

When using the tables below, and only the torque or Hub Size Letter is known, locate the appropriate row which will give you the recommended bore and hub size based on the limitations of typical SHAFT material having a maximum torsional shear stress of 6,000 psi.

If the shaft size is known, use the bore diameter column to find the recommended hub dimensions.

SOLID HUBS

Dimensions are in inches. Strengths and weights are in pounds.

Bore ⁽¹⁾ Diameter	Hub ² Letter	Maximum ³ Torque	Hub Diameter	Length ⁴	Weight [®]
^{15/} 16	В	1.0	2.50	1.50	1.0
1 ³ /16	С	2.0	2.50	1.50	1.0
1 ⁷ /16	D	3.5	2.50	1.50	2.7
1 ¹¹ /16	E	5.6	3.00	1.50	3.7
1 ¹⁵ /16	F	8.5	3.00	1.50	3.7
2 ³ /16	G	12.5	3.50	2.00	6.0
2 ⁷ /16	Н	17.0	4.50	2.00	10.0
2 ¹¹ /16	1	23.0	4.50	2.00	10.0
2 ¹⁵ /16	J	30.0	4.50	2.00	10.0
3 ³ /16	К	38.0	5.25	3.00	20.0
37/16	L	47.0	5.25	3.00	20.0
311/16	M	60.0	6.00	3.00	26.0
3 ¹⁵ /16	N	70.0	6.00	3.00	26.0
47/16	0	100.0	7.25	4.00	46.0
4 ¹¹ / ₁₆	-	120.0	7.25	4.00	46.0
4 ¹⁵ /16	Р	140.0	7.25	4.00	46.0
5 ⁷ /16	Q	190.0	8.75	5.00	85.0
5 ¹⁵ /16	R	245.0	8.75	5.00	85.0
6 ¹ /2	S	320.0	9.50	6.50	115.7

SPLIT HUBS

Dimensions are in inches. Strengths and weights are in pounds.

Bore Sizes	Maximum Torque	Hub Length	Bolt Clearance Diameter	Weight
1 ¹⁵ /16 – 2 ¹⁵ /16	30	2.88	7.50	20.0
3 – 3 ¹⁵ /16	70	2.88	8.75	27.0
4 – 4 ¹⁵ /16	140	3.88	10.75	57.0
5 – 5 ¹⁵ /16	245	4.88	11.50	80.0

Consult factory for larger bores. ^① See instructions above.

See Instructions above.
 Hub letter – From Drive Chain Selection tables.

In-Lbs. (in thousands)

 Add plate thickness for length through bore (see table at left); Hubs furnished long central unless specified by customer.

^⑤ Weight shown for solid hub. Actual weight should be reduced by bore.

^① Available in cast, see pages 81-88.

⁽²⁾ Available in cast or polymeric, see pages 81-88 and 94-98.

FABRICATED STEEL SPROCKETS AND OCTAGONAL TAIL WHEELS FOR HEAVY DUTY WELDED STEEL DRAG CHAINS

Drive Sprockets

Rex Unit Number	Number of Teeth	Pitch Diameter	Outside Diameter	Tooth Width "T" Inches	"T" Average Plate Only Weight Lbs.
	6	12.10	12.10		93
	7	13.94	14.11		127
	8	15.81	16.13		166
5157	9	17.69	18.16	2.75	209
	10	19.58	20.18		256
	11	21.47	22.20		308
	12	23.38	24.22		365
	8	23.50	23.94		360
6121	9	26.30	26.95	3.50	440
0121	10	29.12	29.96	3.30	550
	11	31.95	32.40		680

 $^{\textcircled{O}}$ Sprockets listed are most common. Any number of teeth are readily available. Split sprockets are available.

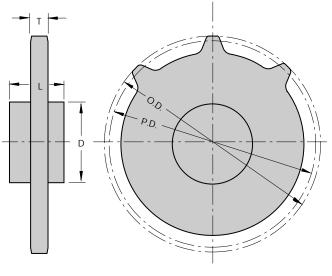
Unit No. 5157 for WHX 5157 Chain

Finished Bore Range Inches	Solid Hub Dia. x Length Inches	Average Hub Only Weight Lbs.
2 - 4	6 x 5.50	15
4 - 5	7.25 x 6.50	25
5 - 6	9 x 7.75	50

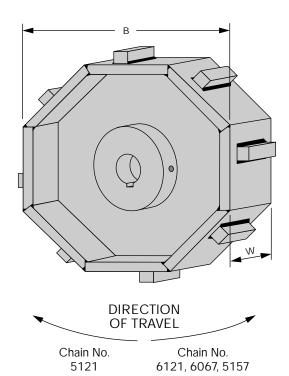
Unit No. 6121 for WHX 5121/6121/6067 Chain

Finished Bore Range Inches	Solid Hub Dia. x Length Inches	Average Hub Only Weight Lbs.
2 – 4	6 x 5.50	15
4 – 5	7.50 x 6.50	25
5 – 6	9 x 7.75	50
6 – 7	10.50 x 8.50	100
7 – 8	11.50 x 10.50	130

OCTAGONAL TAIL WHEELS


Octagonal tail wheels offer several advantages over conventional sprockets. Chain/tail wheel forces are transmitted directly between sidebars and the octagon surfaces, eliminating barrel and sprocket tooth wear. Side guide lugs are provided to keep the chain centralized on the tail wheel.


Octagon plates and guide lugs are made of hardened steel. Sidebar contact surfaces can be hardfaced for maximum wear resistance.


Rex Chain Number	Bottom Flat "B" (Inches)	Width "W" (Inches)
WHX5157	11.85	6.50
WHX6067	18.88	7.50
WHX5121/WHX6121	18.88	9.00

Finished Bore Range (Inches)	Hub Dia. x Length (Inches)
0 to 3.937	6 x 5
4 to 4.937	7.25 x 6.50
5 to 5.937	9 x 7.75

Flame Cut Steel Sprocket with Hardened Teeth

CAST SPROCKETS

Cast to Order Hub Specifications

The following table provides recommended hub specifications for use when ordering cast to order sprockets.

Procedure

If torque and bore size are known:

- 1. Locate torque in left hand column. The next column over gives the minimum hub length.
- 2. Locate bore size in top row.
- The intersection of the top row and the column 3. selected in Step 1 is the minimum hub O.D.

If torque only is known:

- 1. Locate torque in left hand column. The next column over gives the minimum hub length.
- 2. Move to the right to the first number shown (this is the minimum hub O.D.).
- Move vertically to the top row to determine the 3. minimum bore.

Dimensions are in inches. Strengths are in pounds. 17/16 111/16 115/16 23/16 27/16 211/16 215/16 33/16 37/16 311/16 315/16 47/16 415/16 57/16 81/2 Bore ¹³/16 1³/16 5¹⁵/16 **6**¹/2 7 71/2 8 Width 1/4 1/4 3/8 3/8 1/2 1/2 5/8 5/8 3/4 3/4 7/₈ 7/8 1 1¹/4 **1**¹/4 1¹/2 1¹/2 1³/4 1³/4 2 1 Key Size Height 1/4 1/4 3/8 3/8 1/2 1/2 5/8 5/8 7/8 3/4 3/4 7/8 1 1 **1**¹/4 **1**¹/4 1¹/2 **1**¹/₂ **1**¹/₂ 11/2 1¹/2 **1**¹/₂ Hub Square Key Flat Key Hub² Allowable Size Length Torque Diameters of Hugs - Keyseated Letter 500 $1^{1/2}$ А 1¹/2 2 2¹/2 $2^{1/2}$ 3 3¹/2 4 4 $4^{1/2}$ 5 В 1,000 1¹/2 $1^{1}/_{2}$ 2 $2^{1}/2$ $2^{1/2}$ 3 3¹/2 4 4 $4^{1}/_{2}$ 5 $5^{1}/_{2}$ When torque and bore intersect in one of these blank spaces, it indicates that the shaft is larger than required to transmit the torque produced by $1^{1}/_{2}$ 2 $2^{1/2}$ 2¹/2 3 $3^{1}/_{2}$ 4 $4^{1}/_{2}$ 5 5¹/2 5¹/2 С 2,000 4 first hub diameter below in the same column for the bore required. The correct hub length and D 3,500 2 21/2 21/2 3 $3^{1/2}$ 4 4 41/2 5 51/2 51/2 6 2 3 31/2 31/2 4 4¹/2 51/2 51/2 61/2 Е 5,600 4 5 6 the torque this hub will safely transmit is found 31/2 8,500 31/2 4 4 $4^{1/2}$ 5 51/2 51/2 61/2 71/2 3 6 F in the same row as the hub diameter used. G 12,500 3 4 4 41/2 $4^{1/2}$ 5 $5^{1/2}$ $5^{1/2}$ 6 61/2 71/2 8 С Н 17,000 3 $4^{1}/_{2}$ 4¹/2 5 5 $5^{1}/_{2}$ $5^{1}/_{2}$ 6 $6^{1}/2$ $7^{1}/2$ 8 9 R 0 W $4^{1}/_{2}$ $5^{1}/_{2}$ $5^{1}/_{2}$ $6^{1}/_{2}7^{1}/_{2}$ 8 9 $9^{1/2}$ 23,000 4 5 5 6 1 9 5 5 51/2 6 61/2 71/2 8 **9**¹/₂ 10 J 30,000 4 Т 6 **9**¹/₂ 51/2 51/2 6¹/2 7¹/2 9 101/2 Κ 5 U 5 8 10 38,000 6 61/2 47,000 5 М 61/2 71/2 8 9 **9**¹/₂ 10 101/2 1 6 6 11 60,000 5 Ν 61/2 $6^{1/2}$ 7 71/2 8 9 **9**¹/₂ 10 101/ 11 12 Μ 9 $9^{1/2}$ 10¹/ Ν 70,000 6¹/2 7 $7^{1/2}$ 8 10 12 6 11 $7^{1}/_{2}$ 8 8¹/2 $9^{1/2}$ 10¹/ 9 10 12 Ο 100,000 6 11 HUB Ρ 140,000 6 8¹/2 9 91/ 10 101/ 11 12 12 9¹/₂ 9 10 101/2 11 12 Q 190,000 8 12 10 245,000 $10^{1/2}$ 11 12 12 12 R 8 S 320,000 8 11 12 12 12 13

Hub Sizes are Based on Use with Commercial Cold Finished Steel Shafting and Keys^①

Design shear stress = 6,000 psi.

Т

U

V

W

Х

Υ

Ζ

400,000

500,000

600,000

720,000

850,000

1.000.000

1,250,000

10

10

10

12

12

12

12

These lengths are the minimum recommended; longer hubs can be furnished at additional cost. For drives, offset hubs, one side flush, are recommended for all Driver sprockets.

Long central hubs are recommended for all DriveN. For improved system performance – fab steel drive sprockets are recommended over cast. ③ For a sprocket without a keyseat, a somewhat smaller hub may be used. Consult Rexnord for assistance.

torsional shear stress.

When torque and bore intersect in one of

these blank spaces, it indicates that the shaft is subject to greater than 6,000 psi 9 91/2 10

1¹/2 1³/4 1³/4

12

12 13

13 13 14

13

13

13

14 15 15

15 15 16

14

12 12 12 13 13 14 14

> 13 13 13 14 14 15

> > 13 14 14 15 15

13

13 14

14

16 16

14

14

17

2 2 21/2 2¹/2

CAST SPROCKETS - (Cont'd.)

Cast Split Hubs – For Cast to Order Tooth Sprockets and Traction Wheels (*Hub sizes are based on use with commercial, cold finished, steel shafting and keys.*^①)

Use of Tables. After having determined torque and knowing the required bore, refer to Table No. 1, below, to obtain the hub identification number.

Hub dimensions are listed in Table No. 2, below. The hub over-all length (F) – see drawing to the right – is definitely fixed for a given sprocket or wheel pattern and bore. It is determined by standard fixed hub pattern projections (D) and pattern body thickness (E) the latter depending on the sprocket or traction wheel pattern involved.
When length F must be maintained or known, refer to the factory for certified dimensions.
These hubs are furnished central and of fixed length only.

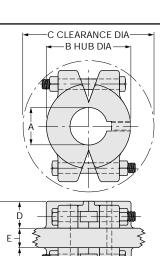


Table No. 1 – Hub Number for Given Class and Bore

Dimensions are in inches. Strengths are in pounds.

Bore	¹⁵ /16	1 ³ /16	17/16	1 ^{11/} 16	1 ^{15/} 16	2 ³ /16	2 ⁷ /16	2 ¹¹ / ₁₆	2 ¹⁵ /16	3 ³ /16	37/16	3 ^{11/} 16	3 ¹⁵ /16	4 ⁷ /16	4 ¹⁵ / ₁₆	5 ⁷ /16	5 ¹⁵ /16	
Sq. Key Size In.	¹ /4	¹ /4	³ /8	³ /8	¹ /2	¹ /2	⁵ /8	⁵ /8	³ /4	³ /4	⁷ /8	7/8	1	1	1 ¹ /4	1 ¹ /4	1 ¹ /2	
Allow Torque 2								Hi	ub Numb	er	•							
500	L2-015	L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303			When torque and bore intersect in one of these blank spaces, it indicates that the shaft is larger					
1,000	L2-015	L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307		than required to transmit the torque produced the chain operating at its working load. Use the first hub diameter below in the same column for				se the umn for	
2,000		L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	the bore required. The correct hub torque this hub will safely transmi same row as the hub diameter use			smit is fou	it is found in the	
3,500			L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315					
5,600				L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407				
8,500					L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415			
12,500		L2-203					L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507		
17,000							H2-207	H2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515	
23,000							H2-211	H2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515		
30,000									H2-215	H2-303	H2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515	
38,000										H2-303	H2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515	
47,000					ersect in						H2-307	H2-311	L2-315	L2-407	L2-415	L2-507	L2-515	
60,000					cates tha than 6,00							H2-311	H2-315	H2-407	L2-415	L2-507	L2-515	
70,000			l shear s		0,00	50 p.51							H2-315	H2-407	L2-415	L2-507	L2-515	
100,000														H2-407	H2-415	L2-507	L2-515	
140,000															H2-415	H2-507	H2-515	
190,000																H2-507	H2-515	
245,000																	H2-515	
				Maximur	n Pitch D	iameter	(Inches)	of Sproc	kets or V	Vheels fo	or Use Wi	thout Rin	m-Lugs					
	15	16	17	18	20	21	22	23	24	26	26	27	28	30	33	37	39	

Table No. 2 – Standard Split Hubs – Dimensions In Inches

Hub No.	A Bore	В	С	D	E Max.	Wt. Ea. W/Bolts	Hub No.	A Bore	В	С	D	E Max.	Wt. Ea. W/Bolts	Hub No.	A Bore	В	С	D	E Max.	Wt. Ea. W/Bolts
L2-015	¹⁵ /16	2.00	4.31	1.38	1.13	1	L2-215	2 ¹⁵ /16	5.25	8.06	1.69	2.00	7	H2-315	3 ¹⁵ /16	7.25	11.94	2.50	2.50	-
L2-103	1 ³ /16	2.25	4.56	1.38	1.13	1	H2-215	2 ¹⁵ /16	6.00	10.31	2.13	2.00	16	L2-407	47/16	7.50	11.50	2.31	2.50	17
L2-107	1 ⁷ /16	3.00	5.75	1.56	1.25	4	L2-303	3 ³ /16	6.00	9.44	1.81	2.00	10	H2-407	47/16	8.00	13.88	2.94	2.50	33
L2-111	1 ¹¹ /16	3.50	6.38	1.69	1.25	5	H2-303	3 ³ /16	6.50	10.31	2.13	2.00	16	L2-415	4 ¹⁵ /16	8.50	12.88	2.56	2.50	28
L2-115	1 ¹⁵ /16	3.75	6.63	1.69	1.50	5	L2-307	37/16	6.25	9.63	1.81	2.00	10	H2-415	4 ¹⁵ /16	9.00	14.25	2.94	2.50	37
L2-203	2 ³ /16	4.25	7.25	1.69	1.50	7	H2-307	3 ⁷ /16	6.75	10.63	2.13	2.00	17	L2-507	5 ⁷ /16	9.50	14.63	1.75	2.50	37
L2-207	2 ⁷ /16	4.50	7.38	1.69	1.75	7	L2-311	3 ¹¹ /16	6.75	10.63	2.13	2.00	17	H2-507	5 ⁷ /16	10.00	17.00	3.50	2.50	65
H2-207	27/16	5.00	8.63	1.81	1.75	9	H2-311	3 ¹¹ /16	7.00	11.63	2.38	2.00	18	L2-515	5 ¹⁵ /16	10.00	15.00	1.75	3.00	34
L2-211	211/16	4.75	7.88	1.69	2.00	7	L2-315	3 ¹⁵ /16	7.25	11.13	2.25	2.50	25	H2-515	5 ¹⁵ /16	11.00	17.50	3.44	3.00	65
H2-211	2 ¹¹ /16	5.50	8.88	1.81	2.00	15														

Rim Lugs. Sprockets and traction wheels with plate (web) body, or small-diameter arm body, require split rim-lugs projecting on each side. When the arm body is sufficiently large, single split rim-lugs are used between the arms. Some chain attachments (as G19) will interfere with projecting split rim-lugs, thus making special construction necessary; refer to factory.

Design shear stress = 6,000 psi
 Inch-Pounds

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

CAST TOOTH SPROCKETS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Teeth Dia. Hub Dla. Hub Length Max. Bore Bore With Bore 6 1.80 .62 .5 .5 .62 .5 7 2.08 .62 .5 .62 .5 7 2.08 .94 .88 .6 .8 .6 8 2.64 1.18 1.4 1.5 .1.68 1.6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .2 .4 .2 .6 .2 .4 .2 .2
Dial Length Bore Bore Bore Bore 25 CAST – PITCH 0.902 Tooth Face at Pitch Line .375 Inches 6 1.80 .62 .55 7 2.08 .88 .66 8 2.36 .94 .88 9 2.64 1.06 1.1 10 2.92 1.18 1.44 11 3.49 1.68 1.6 13 3.77 1.68 1.7 14 4.50 1.68 1.7 15 4.34 1.94 2.5 16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.7 24 6.91 3.44 5.8 26 7
25 CAST – PITCH 0.902 Tooth Face at Pitch Line .375 Inches 6 1.80 .62 .55 7 2.08 .88 .66 8 2.36 .94 .88 9 2.64 1.06 1.1 10 2.92 1.18 1.44 11 3.49 1.68 1.6 13 3.77 1.68 1.7 14 4.50 1.68 1.7 14 4.50 1.68 1.7 14 4.50 1.68 1.7 15 4.34 1.94 2.5 16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 29 8.34 </th
Tooth Face at Pitch Line .375 Inches61.80.62.5572.08.88.6682.36.94.892.641.061.1102.921.181.4113.491.441.5123.491.681.6133.771.681.7144.501.681.7154.341.942.5164.622.182.94174.912.443.1185.192.443.2195.482.943.4216.052.944.2226.343.184.7246.913.445.2257.203.445.8267.483.946.3288.063.947.2308.634.447.5329.204.949.03610.334.9410.33710.634.9410.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 2.36 $$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11 3.49 1.44 1.5 12 3.49 1.681.613 3.77 1.681.714 4.50 1.681.715 4.34 1.942.516 4.62 2.182.917 4.91 2.443.118 5.19 2.443.119 5.48 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 28 8.06 3.94 4.24 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3
12 3.49 1.68 1.68 13 3.77 1.68 1.7 14 4.50 1.68 1.7 15 4.34 1.94 2.5 16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.44 5.2 25 7.20 3.44 5.2 26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3
13 3.77 1.68 1.7 14 4.50 1.68 1.9 15 4.34 1.94 2.5 16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.8 26 7.48 3.94 7.2 29 8.34 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
15 4.34 1.94 2.5 16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 7.5 28 8.06 3.94 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
16 4.62 2.18 2.9 17 4.91 2.44 3.1 18 5.19 2.44 3.2 19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 7.2 29 8.06 3.94 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
19 5.48 2.94 3.4 21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 29 8.34 4.44 7.2 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
21 6.05 2.94 4.2 22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
22 6.34 3.18 4.4 23 6.62 3.18 4.7 24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
24 6.91 3.44 5.2 25 7.20 3.44 5.8 26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
25 7.20 3.44 5.8 26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
26 7.48 3.94 6.3 28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
28 8.06 3.94 7.2 29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
29 8.34 4.44 7.5 30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10. 37 10.63 4.94 10.
30 8.63 4.44 8.3 32 9.20 4.94 9.0 36 10.33 4.94 10. 37 10.63 4.94 10.
32 9.20 4.94 9.0 36 10.33 4.94 10.3 37 10.63 4.94 10.3
36 10.33 4.94 10. 37 10.63 4.94 10.
37 10.63 4.94 10.3
52 14.94 4.94 14.
32 CAST – PITCH 1.154
Tooth Face at Pitch Line .500 Inches
6 2.31 .94 1.0
7 2.66 .94 1.2
8 3.02 1.18 1.3 9 3.37 1.18 1.5
10 3.73 1.44 1.7 11 4.10 1.94 2.0
12 4.46 2.18 2.5
13 4.82 2.18 2.9
14 5.19 2.44 3.4
15 5.55 2,94 4.0
16 5.92 3.18 4.2
17 6.28 3.18 4.7
18 6.65 3.44 5.2
19 7.01 3.94 5.8
20 7.38 3.94 6.3 22 8.11 4.44 7.5
22 8.11 4.44 7.5 24 8.84 4.94 9.0
25 9.21 5.44 10.0
26 9.57 ③ 11. 28 10.31 12.0
20 7.37
28 10.31 12. 32 11.77 15. 34 12.51 17.
28 10.31 12. 32 11.77 15. 34 12.51 17./ 38 13.97 17./
28 10.31 12. 32 11.77 15. 34 12.51 17.

No. of	Pitch	<u> </u>			Cast to Order	Avg. Wt.
Teeth	Dia.	Hub Dia.	Hub Length	Max. Bore	Max.	Hub
	1		T – PIT		Bore	Dla.
T					25 Inche	S
6	2.75				.94	1.3
7	3.17 3.59				1.18 1.18	1.7 2.8
9	4.02				1.68	3.2
10	4.45				1.94	3.5
11 12 ^①	4.88 5.31				2.18 2.68	5.5 4.9
13	5.75				2.00	5.5
14	6.18				3.18	6.0
15	6.66				3.44	6.5
16 18	7.03				3.94 4.44	7.5 9.5
19	8.34				3	10.5
20	8.77					11.5
21	9.21 9.65					12.5 13.5
24	10.51					16.0
27	11.82					17.5
28 32	12.25 14.03					18.0 23.0
41	17.97					31.0
		5 CAS	T – PIT	CH 1.6	30	
T					37 Inche	es
5	AIS 2.77	o avai	lable in	polym	eric. .94	1.3
61	3.26	2.00	1.50	1.25	1.18	2.3
71	3.76	2.50	1.50	1.62	1.68	2.6
8S ^① 8L	4.26 4.26	3.00 3.00	1.50 2.00	1.82 2.25	1.94 2.18	4.0 5.5
91	4.77	2.50	1.50	1.62	2.18	3.8
101	5.27	2.50	1.50	1.62	2.18	7.0
11 12S	5.79 6.30	4.00 2.50	3.00 2.00	2.50 1.62	2.68 2.94	10.3 6.3
12U	6.30	4.00	3.00	2.50	2.94	10.5
13	6.81	4.00	3.00	2.50	3.68	11.5
14 15	7.33	3.50	2.00	2.25	3.94 4.44	10.1 12.9
16	8.36	3.50	2.00	2.25	4.44	12.9
17	8.87				4.44	12.0
18 19	9.39	2.50	2.00	1.18	5.44 5.44	14.5 13.8
20	9.90	4.00	3.00	2.50	5.44	15.8
21	10.93				6.50	16.3
22 23	11.45 11.97				7.00 7.50	18.6 20.8
23	12.49	4.00	3.00	2.50	8.00	20.8
25	13.01					23.4
26	13.53					24.6
27	14.07 14.54					25.8 27.0
30	15.60					29.0
31	16.11					30.0
32 34	16.64 17.68					31.0 32.0
35	18.18					33.0
36	18.68					34.0
38 39	19.75 20.26					36.0 37.0
40	20.20					38.0
42	21.81					40.0
44 45	22.85 23.37					42.0 43.0
43	24.94					43.0
58	30.11					57.0

		Stocke	d Sproc	kets ②	Cast to	
No. of Teeth	Pitch Dia.	Hub	Hub	Max.	Order Max.	Avg. Wt.
	-		Length	Bore	Bore	
т			T – PIT			
12	00th Fa	ice at	PITCH L	ine .50	52 Inche	es 3.5
15	5.46				2.44	5.0
18	6.58				3.18	6.0
			T – PIT			
					52 Inche 51 (Stee	
6	2.31		,		.94	1.2
7	2.65 3.02				.94 .94	2.0 2.4
9	3.37				.94	2.4 3.0
10	3.75				1.44	3.4
11	4.10				1.44	3.8
12 13	4.46				1.94 2.18	4.0 4.5
14	5.19				2.18	5.5
15	5.54				2.44	6.0
16 17	5.90 6.19				2.94 3.18	6.8 7.4
17	6.63				3.18	7.4
19	7.02				3.44	8.0
20 21	7.35				3.94 4.44	8.4 9.0
21	8.12				4.44	9.0 9.5
24	8.85				4.94	11.0
25	9.19				3	12.5
26 27	9.58 9.95					13.0 13.8
28	10.32					14.5
30	11.05					16.0
31 32	11.42 11.75					16.5 17.0
33	12.15					17.8
34	12.52					18.0
36 40	13.25 14.66					19.0 23.0
55	20.23					38.0
			T – PIT			
5	ooth Fa 2.56	ice at	Pitch L	ine .62	25 Inche	es 2.3
6	3.01				.94	3.5
7	3.47				.94	4.0
8 91	3.94 4.40	2 00	1.50	1.82	1.68 1.94	4.4 3.3
10	4.40	3.00 3.00	2.00	1.82	2.18	3.3
11	5.34				2.68	4.3
12 13	5.82	3.00	2.00	1.82	2.68	5.4
13	6.29 6.77	4.00	3.00	2.50	2.94 3.18	5.8 11.1
15	7.24		0.00	2.00	3.68	7.4
16	7.72	4.00	3.00	2.50	3.94	12.0
17 18	8.20 8.67				4.44 4.44	9.0 14.0
19	9.15				3	12.0
20	9.60					14.0
21 22	10.10 10.56					15.0 17.0
23	11.06					18.0
24	11.54	4.00	3.00	2.50		21.0
25 26	12.00 12.49				3	22.0 23.0
20	12.49				0	23.0 19.0
28	13.45					19.0
52 Cast	continu	ed on I	next pag	е		

CAST TOOTH SPROCKETS - (Cont'd.)

Order

Avg. Wt.

Stocked Sprockets 2 Cast to

Hub Hub Max. Max.

2
Η.
$\mathbf{\mathbf{x}}$
C
Ō
R
Р

No. of Pitch

Teeth Dia.

eeth	Dia.		Hub Length		Max. Bore	Wt.
					Cont'd.)	
		ice at	Pitch L	ine .62	25 Inche	
32	15.33					22
34	16.32					32
35	16.80					27
36	17.28					31
37	17.72					30
38	18.24					32
40	19.15					34
42	20.16					35
44	21.11					39
48	23.03					45
50	23.98					48
60	28.78					58
75	39.95					78
Т			T – PIT Pitch I		31 87 Inche	20
5	2.77	ice al	TICHL		.94	2
6	3.26				.94	3
70	3.76	2.50	1.50	1.62	.94 1.68	2
80	4.26	2.50	1.50	1.62	1.68	2
9	4.20	2.50	2.00	1.94	1.00	3
9 10	5.28	3.50	2.00	2.18	2.18	4
10	5.79	4.50	2.00	2.10	2.10	9
12	6.30	4.50	3.00	2.88	2.94	11
12	6.82	4.50	3.00	2.00	2.94 3.18	10
13 14	7.33	1 50	3.00	200	3.68	17
14 15	7.84	4.50	3.00	2.88	3.68 3.94	17
15 16	8.36	4.50	3.00	2.88	3.94 4.44	16
10 17		4.50	3.00	2.00	4.44	17
17 18	8.88 9.39	4.50	3.00	200	4.44	17
		4.30	3.00	2.88		-
19 20	9.90	1 50	2.00	200	5.44	20
	10.43	4.50	3.00	2.88	5.44	22
21	10.94				5.94	23
22	11.43				5.94	24
23	11.97	F 00	4.00	2.05	6.50	26
24	12.50	5.00	4.00	3.25	6.50	33
26	13.53					31
27	14.07					24
28	14.54					25
29	15.08					26
30	15.60					27
31	16.11					23.5
32	16.64					29
34	17.68					31
35	18.20					32
36	18.68					33
38	19.75					35
40	20.79					37
41	21.31					36
48	24.94					45
50	25.98					47
54	28.00					50
—			ST – PIT			
		ice at	Pitch L	ine .93	38 Inche	
6	4.61				0.40	4
7	5.32				2.68	8
8	6.03				2.88	8.4
9	6.75				2.94	13
10	7.46				3.18	14
13	9.64					27

All dimensions given in inches and weight in Lbs. ⁽¹⁾ Hub one side. All other hubs are long central. ⁽²⁾ If no hub data is listed, sprocket is cast to order. ⁽³⁾ Consult Rexnord for max. bore information. ⁽⁴⁾ For 962 chain, use unit no. 62 sprocket from 6 to 23

teeth, over 23 teeth, consult Rexnord,

Cast to Stocked Sprockets 2 Pitch No. of Order Avg. Wt. Hub Hub Max. Teeth Dia. Max. DIa. Length Bore Bore 62 CAST - PITCH 1.654 (With Hardened Teeth) Tooth Face at Pitch Line .812 Inches 5 2.81 1.56 3.32 94 2.50 2.00 7 1.62 3.82 1.68 2 8 4.32 3.00 2.00 1.82 1.94 4 9 4.84 3.00 2.00 1.82 1.94 5 2.50 5.35 10 4.00 3.00 2.68 9 2.50 11 5.87 4.00 3.00 2.68 9 2.00 1.82 2.94 7 12 6.39 3.00 13 6.91 4.00 3.00 2.50 3.18 14 14 7.43 5.00 3.00 3.25 3.68 24 15 7.96 5.50 4.00 3.62 3.94 26 16 8.48 4.44 25 17 9.00 4.44 26 18 9.53 5.50 4.00 3.62 4.94 28 19 10.05 4.00 3.00 2.50 5.44 22 4.00 20 10.57 5.50 3.62 5.44 32 21 11.10 5.94 39 22 5.94 11.63 27 23 12.15 5.94 30 24 12.67 5.00 3.00 3.25 6.50 36 25 13.20 6.50 36 26 13.72 7.00 36 27 14.25 7.00 58 7.50 28 14.77 60 29 15.30 31.6 30 15.83 7.50 44 32 16.88 8.00 48 33 17.44 8.00 50 34 17.93 8.00 77 36 18.98 90 3 38 20.03 6.00 4.00 4.00 93 39 20.55 61 40 21.07 40.2 41 21.61 65 42 22.13 72 22.66 23.71 43 74 77 45 46 24.24 80 47 24.77 48.6 48 25.29 83 49 25.82 84 54 28.45 93 60 31.60 71 67 CAST – PITCH 2308 (With Hardened Teeth) Tooth Face at Pitch Line .687 Inches 5 3.93 1.18 4 6 4.62 3.00 2.00 1.82 1.94 4 7 5.32 3.50 3.00 2.18 2.18 8 8 4.00 3.00 2.50 6.03 2.68 11 9 6.75 4.50 3.00 2.88 2.94 13 10 4.50 2.88 7.47 3.00 3.18 15 2.88 11 8.19 4.50 3.00 3.94 16 12 8.92 3.00 2.88 4.50 4.44 18 13 9.64 4.44 18 14 10.37 5.00 3.00 5.44 3.25 28 15 11.10 5.44 27 16 11.83 5.00 3.00 3.25 6.50 30 12.56 17 7.00 31 18 13.29 7.00 34 19 14.02 7.50 37 3.25 20 14.75 5.00 4.00 7.50 47 21 15.49 3 43 22 16.22 24 16.95 23 48

		Stocke	d Sproc	kets ②	Cast to	
No. of Teeth	Pitch Dia.	Hub	Hub	Max.	Order Max.	Avg. Wt.
	67 CA		Length PITCH 2	Bore	Bore	
			lardene			
T	ooth Fa	ice at	Pitch L	ine .68	37 Inche	es
25	Als 18.41	o avai	lable in	polym	ieric.	53
26	19.14					54
27	19.89					59
28 30	20.61 22.07				3	34 67
32	23.54				-	23
33	24.27					75
34 35	25.00 25.74					78 80
36	26.47					84
38	27.94					88
40	29.40 32.34					94
44 45	32.34					120 125
48	35.27					115
60	44.08					148
T.			T – PIT Pitch I		. 09 37 Inch€	20
			lable in			5
5	4.44	2.00	2.00	1 4 4	1.18	5
6 7	5.22 6.00	3.00 4.00	2.00 3.00	1.44 2.44	1.94 2.94	6 11
8	6.82	4.50	3.00	2.50	2.94	15
9	7.63	4.50	3.00	2.50	3.18	24
10 11	8.44 9.26	4.50 5.00	3.00 4.00	2.75 3.25	3.94 4.44	19 29
12	10.08	6.00	4.00	4.00	5.44	40
13	10.90	5.00	4.00	3.25	5.44	36
14 15	11.72 12.55	5.00 6.00	4.00 4.00	3.25 4.00	6.50 7.00	39 44
16	13.37	6.00	5.00	4.00	7.00	55
17	14.20	5.00	4.00	3.25	7.50	53
18 19	15.02 15.85	6.00	4.00	4.00	7.50 ③	61 64
20	16.68	6.00	5.00	4.00	-	89
21	17.50					90
22 23	18.33 19.16	6.00	5.00	4.00		87 95
23	19.10	7.00	5.00	4.56		111
25	20.77					99
26	21.64					107
27 28	22.42 23.31					112 114
29	24.13					116
30 31	24.96 25.79					119 123
32	26.62					85
33	27.38					136
34 35	28.28 29.11					141 146
35	29.11					146
38	31.60					162
39 40	32.42 33.25	8.00	6.00	5.50		176 267
40	34.08	0.00	0.00	5.50		180
42	34.91					193
43 44	35.65					197
44 45	36.57 37.31					202 190
46	38.18					212
48 54	39.89 44.87					221
54 55	44.87 45.70					249 253
58	48.19					267

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

24

17.60

50

CAST TOOTH SPROCKETS - (Cont'd.)

	Stocked Sprockets @ Cast to								
No. of	Pitch				Order	Avg.			
Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wť.			
H10	2 DRUN	/ FLA	NGED C	AST –	PITCH 5	.000			
					250 Inch				
8	13.07				6.50	160			
10	16.18				7.00	175			
			ST – Pľ						
To	oth Fa	ce at	Pitch Li	ine 6.2	250 Inch				
6	10.00				3.94	70			
7	11.52				4.94	80			
8	13.07 14.62				6.50 7.00	100 120			
10	14.02				3	120			
12	19.32				٢	165			
13	20.89					180			
		2B CA	st – pľ	TCH 4.	000	100			
	(With H	lardene	ed Teet	:h)				
		ce at	Pitch Li	ine 1.8	75 Inch				
6	8.00				3.94	31			
7	9.22				3.94	44			
8	10.45 11.70	7.00	5.00	4.56	4.44 5.44	57 64			
10	12.94	7.00	5.00	4.56	7.00	74			
11	14.20	7.00	5.00	4.56	7.50	87			
12	15.45	7.00	5.00	4.56	8.00	90			
13	16.71	1100	0100		8.00	116			
14	17.98	7.00	5.00	4.56	8.50	124			
15	19.24	7.00	5.00	4.56		122			
16	20.50	7.00	5.00	4.56		128			
17	21.76					111			
18	23.04	7 00	F 00	4.50		155			
19	24.30	7.00	5.00	4.50		165			
20 21	25.57 26.84					175 185			
22	28.11					103			
24	30.65					214			
		¹ /2 C/	AST – P	ITCH 4	.040				
			lardene						
		ce at	Pitch Li	ine 1.8	75 Inch				
6	8.08				3.94	30			
8	10.56 11.81				4.44 5.44	55 62			
10	13.07				5.44	62 64			
10	14.34				6.50	70			
12	15.61				7.00	78			
13	16.88				7.50	85			
14	18.16					94			
15	19.43					105			
16	20.71					112			
17	21.98					122			
19	24.55					140			
20	25.83					150			
22 24	28.39					175 190			
24	30.95 32.23					210			
25	32.23 33.33					210			
20	55.55			I	I	230			

	Cont'd.) Stocked Sprockets [®] Cast to											
ļ	No. of	Pitch		· ·		Order	Avg.					
ļ	Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wť.					
		1(ST – PIT								
	(With Hardened Teeth) Tooth Face at Pitch Line 1.125 Inches.											
	To			Pitch Li lable in			es.					
ļ	6	6.15			PolyII	1.94	20					
	7	7.09				2.68	23					
	8	8.04	5.50	4.00	3.62	2.94	31					
	9	8.99	5.50	4.00	3.62	3.68	42					
	10 11	9.95 10.91	6.00 6.00	4.00 4.00	4.00 4.00	4.44 4.94	41 45					
	12	11.88	6.50	4.00	4.00	4.94 5.44	45 57					
	13	12.85	0.00	4.00	4.00	0.44	59					
	14	13.82					63					
	15	14.79				7.00	75					
	16	15.76					76					
	17	16.74				8.00	100					
	18	17.71	6.50	4.00	4.50	8.00	93					
ļ	19 20	18.68 19.66	7.00 7.00	5.00 5.00	4.56 4.56	8.50 ③	114 98					
ļ	20	20.63	7.00	5.00	4.50	Ű	98 114					
	22	20.03					122					
	23	22.58					131					
	24	23.56					128					
	25	24.54					144					
	26	25.51					151					
	27	26.49					157					
	28	27.49					164					
	29 30	28.44 29.42					170 177					
	31	30.39					184					
	32	31.37					132					
	33	32.35					197					
	34	33.33					142					
	35	34.30					210					
	36	35.28					216					
	38	37.24					230					
	40	39.19					243					
	42 44	41.15 43.11					256 269					
	44	47.02					209					
ļ	49	48.00					301					
ļ			04 CA	ST – Pľ	TCH 6.	000						
ļ	То	oth Fac	ce at l	Pitch Li	ne 4.0	00 Inche	es.					
	5	10.21					52					
	6	12.00					64					
	7	13.83 15.68				7.00	70 100					
	9	17.54				3	112					
	10	19.42					126					
	11	21.30					130					
	12	23.18					149					
ļ	13	25.07					185					
ļ						PITCH 6						
ļ			ce at l	Pitch Li	ne 4.0	00 Inche						
	9 10	17.54 19.42					240 290					
	10	17.42					290					

r		Stocke	d Sproc	kets ②	Cast to				
No. of Teeth	Pitch Dia.	Hub	Hub	Max.	Order Max.	Avg. Wt.			
Teeur	Dia.		Length		Bore	VVI.			
			ST – PIT						
To	· · ·		lardene Pitch Li		n) 75 Inche	29			
6	12.00		Iton Ei		3.94	63			
7	13.84					68			
8	15.68	7.00	5.00	4.56	4.94	121			
9 9.5	17.54 18.45	7.00	5.00	4.56	5.44	98 120			
10	19.42	7.00	5.00	4.56	5.94	123			
11	21.30				7.00	143			
11.5	23.00				3	126			
12 12.5	23.18 24.12					256 124			
12.5	24.12	7.00	5.00	4.50		124			
14	26.96	1100	0.00	1100		107			
16	30.76					181			
18 19	34.55 36.46					206 214			
19		10 CA	ST – Pľ	ГСН 6	000	214			
			lardene						
Tooth \		t Pitch	Line N	latches	s Barrel I				
5	10.15					120			
6	12.00 15.68				5.44 ③	100 150			
9	17.54				-	180			
10	19.42					217			
11	21.30					225			
12	23.18					296			
15 H11	28.86 1 DRIIN	I FLAN	IGED C	AST –	PITCH 6	610 000			
	(With H	lardene	d Teet	h)				
		ce at l	Pitch Li	ne 8.8	75 Inche				
8	15.68 17.54				3	310			
9 10	17.54 19.42					360 410			
11	21.30					450			
	11	1 CAS	ST – PIT	CH 4.	760				
- T			lardene						
6	oth Fac 9.52	ce at I	Pitch Li	ne 2.3	75 Inche	es. 47			
7	10.99					54			
8	12.44	7.50	6.00	5.06	5.94	98			
9	13.92	7.54	(5.6.1	5.94	107			
10	15.40 16.90	7.50	6.00	5.06	3	122 136			
12	18.39	6.00	5.00	3.44		130			
13	19.89					170			
14	21.39					175			
15	22.89	7 50	6.00	4.02		134			
16 17	24.40 25.90	7.50	6.00	4.82		189 218			
18	27.41					185			
20	30.43					510			
22	33.44					230			
24	36.47		DITCU	DITCI	1 1 760-	351			
111SP CAST DOUBLE PITCH – PITCH 4.760 & 7.240 (With Hardened Teeth)									
	oth Fac				75 Inche				
8	15.74					90			
10	19.40					107			

SPROCKETS

No. of Teeth Pitch Dia. Stocked Sprockets Cast of Order Max. Bore Avg. Wt. H112 CAST – PITCH 8:000 Tooth Face at Pitch Line 9.000 Inches. 7 18.44 400 8 20.90 6.94 230 0 0 0 0 267 H116 CAST – PITCH 8:000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 6.94 325 H119 CAST – PITCH 6:000 Tooth Face at Pitch Line 8.750 Inches. 6 12:00 5.44 130 Tooth Face at Pitch Line 8.750 Inches. 6 12:00 5.44 190 10 19.42 210 215 H121 CAST – PITCH 9:000 Tooth Face at Pitch Line 8:025 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 9:000 Tooth Face at Pitch Line 8	CAST TOOTH SPROCKETS -									
No. of Teeth Pitch Dia. Hub La. Hub Length Max. Bore Avg. Max. Bore Avg. Max. Bore Tooth Face at Pitch Line 9.000 Inches. 7 18.44 6.94 230 7 18.44 6.94 230 8 20.90 9 9 267 H116 CAST - PITCH 8.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 4.44 95 H120 CAST - PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 H120 CAST - PITCH 9.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 215 H121 CAST - PITCH 9.000 Tooth Face at Pitch Line 8.025 Inches. 8 23.52 9.50 6.44 10 H121 CAST - PITCH 9.000 <td col<="" td=""><td>CAS</td><td></td><td></td><td></td><td></td><td></td><td>-13-</td></td>	<td>CAS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-13-</td>	CAS						-13-		
Itel Dia. Length Bore Bore Bore Bore H112 CAST – PITCH 3.000 Tooth Face at Pitch Line 9.000 Inches. 7 18.44 6.94 230 Bore $@$ 267 H116 CAST – PITCH 3.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 460 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 Tooth Face at Pitch Line 8.025 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.025 Inches. 7 18.44 210 215 H120 CAST – PITCH 9.000 Tooth Face at P						Order				
Tooth Face at Pitch Line 9.000 Inches. 7 18.44 6.94 230 8 20.90 9 267 H116 CAST – PITCH 8.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 460 H110 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 7.54 190 10 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 1124 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 Inches. <td>Teeth</td> <td>Dia.</td> <td></td> <td></td> <td></td> <td>-</td> <td>WVť.</td>	Teeth	Dia.				-	WVť.			
7 18.44 6.94 230 8 20.90 $\textcircled{3}$ 267 H116 CAST – PITCH 8.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 460 H110 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 10 19.42 215 190 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 190 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 110 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 18.44 210 100 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches.		H1 ⁻	12 CA	ST – Pl	ГСН 8	.000				
8 20.90 (3) 267 H116 CAST – PITCH 8.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 4400 H119 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 5.44 95 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 215 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 100 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11			ce at l	Pitch Li	ne 9.0					
H116 CAST – PITCH 8.000 Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 4600 H119 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 100 19.42 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 1200 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.020 inches. 7 18.44 210 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 With Hardened										
Tooth Face at Pitch Line 12.750 Inches. 7 18.44 400 8 20.90 6.94 325 9 23.39 4600 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 190 10 19.42 215 190 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 190 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 100 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22	0		16 CA	ST – Pľ	ГСН 8	-	207			
8 20.90 6.94 325 9 23.39 460 H119 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 100 19.42 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 190 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 210 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 100 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 8 23.52 9.50 6.44 100 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 9.22	To						ies.			
9 23.39 460 H119 CAST – PITCH 6.000 Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 215 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 14 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 14 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 11 14.20 5.4										
The product of the sector of	-					6.94				
Tooth Face at Pitch Line 3.625 Inches. 6 12.00 4.44 95 H120 CAST – PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 100 Intel CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 100 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 5.44 62 <td>,</td> <td></td> <td>19 CA</td> <td>ST – Plī</td> <td>ГСН 6</td> <td>.000</td> <td>400</td>	,		19 CA	ST – Plī	ГСН 6	.000	400			
H120 CAST - PITCH 6.000 Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 19.42 215 H121 CAST - PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 210 H122 CAST - PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 210 H122 CAST - PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 210 H122 CAST - PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12	To						es.			
Tooth Face at Pitch Line 8.750 Inches. 6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 190 10 19.42 215 190 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 210 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>95</td>	6						95			
6 12.00 5.44 130 8 15.68 6.94 250 9 17.54 190 10 10 19.42 215 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 10 H122 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 11 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 10 12.94 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 39 9 100 16 20.50 122 136 1417 19 2	T									
8 15.68 6.94 250 9 17.54 190 10 19.42 215 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 190 H122 CAST – PITCH 8.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 190 H124 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 191 Tooth Face at Pitch Line 1.000 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 100 16 12 15.45 6.50 82 14 17.98 290 37			ce at l	Pitch Li	ne 8.7					
10 19.42 215 H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 8.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® ® 9 15 19.24 100 100 16 16 20.50 122 17 136 18 23.04 147 147 19 24										
H121 CAST – PITCH 9.000 Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 8.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 4 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® ® 9 15 19.24 100 100 16 16 20.50 122 17 136 18 23.04 147 19 24.30 240	-						-			
Tooth Face at Pitch Line 8.625 Inches. 8 23.52 9.50 6.44 H122 CAST – PITCH 8.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 69 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® 9 98 15 19.24 100 100 16 20.50 122 17 21.77 136 147 19 24.30 1477 19 24.30 24.0 100 240 240 27 34.46 240 250	10		21_04	ST DI		000	215			
8 23.52 9.50 6.44 H122 CAST – PITCH 3.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.94 69 12 15.45 6.50 82 14 17.98 $@$ $@$ 98 15 19.24 100 16 20.50 122 17 21.77 136 147 19 24.30 147 19 24.30 147 19 24.30 147 19 24.30 240 240 240 27 34.46 240 250 30 38.27	To						20			
H122 CAST – PITCH 8.000 Tooth Face at Pitch Line 8.000 inches. 7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® ® 98 15 19.24 100 100 16 20.50 1222 17 21.77 136 147 19 24.30 147 19 24.30 147 147 19 24.30 147 19 24.30 24.0 240 250 30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>53.</td></t<>							53.			
7 18.44 210 H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 69 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® ® 98 15 19.24 100 16 20.50 122 17 21.77 136 147 19 24.30 147 19 24.30 147 147 19 24.30 1447 19 24.30 25.7 161 240 240 27 34.46 240 240 250 30 38.27 250 30 38.27 28 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>.000</td><td></td></td<>						.000				
H123 CAST – PITCH 9.000 Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 H124 CAST – PITCH 4.000 With Hardened Teeth) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 ® ® 98 15 19.24 100 100 16 20.50 1222 17 21.77 19 24.30 14177 136 1477 19 24.30 154 240 28 27 34.46 240 250 30 38.27 250 30 38.27 290 37 47.18 410 Tooth Face	То		ce at l	Pitch Li	ne 8.0	00 inche	es.			
Tooth Face at Pitch Line 6.250 inches. 8 23.52 9.50 6.44 Image: colspan="2">Image: colspan="2" 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 98 98 100 16 20.50 122 17 136 18 23.04 14 17.98 100 16 20.50 122 136 147 19 24.30 14 177 136 18 23.04 14 177 136 27 34.46 240 240 240 28 35.73 250 250 30 38.27 161 <	7			CT DI		000	210			
8 23.52 9.50 6.44 Image: constraint of the sec at a constraint o	To						26			
H124 CAST – PITCH 4.000 (With Hardened Teeth)) Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 3 98 15 19.24 100 16222 17 21.77 136 122 17 21.77 136 1477 19 24.30 1477 136 18 23.04 1477 147 19 24.30 2400 2400 28 35.73 250 290 37 47.18 410 410 Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 4.94 4 9 11.70 5.00 4.00							35.			
Tooth Face at Pitch Line 1.500 inches. 7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 $③$ 98 15 19.24 100 122 17 21.77 136 147 19 24.30 1477 136 18 23.04 1477 19 24.30 20 25.57 161 154 20 25.57 161 240 28 35.73 250 200 30 38.27 290 37 47.18 Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 410 130 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches	0	H1	24 CA	ST – PI	TCH 4	.000				
7 9.22 3.94 38 8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 $③$ 98 15 19.24 100 122 17 21.77 136 122 17 21.77 136 147 19 24.30 147 154 20 25.57 161 154 20 25.57 161 154 20 25.57 161 176 27 34.46 240 28 28 35.73 250 290 37 47.18 410 101 Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 21 7 9.22 3.94 25	То						26			
8 10.45 4.94 46 9 11.70 5.44 58 10 12.94 5.44 58 10 12.94 5.94 69 12 15.45 6.50 82 14 17.98 98 98 15 19.24 100 122 16 20.50 121 122 17 21.77 136 147 19 24.30 147 147 19 24.30 14176 154 20 25.57 161 161 22 28.11 176 240 28 35.73 250 250 30 38.27 250 290 37 47.18 410 130 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 21 7 9.22 3.94 25 8 10.45 4.94 32 9 11.70 5.0					16 1.5					
10 12.94 5.44 62 11 14.20 5.94 69 12 15.45 6.50 82 14 17.98 $③$ 98 15 19.24 100 16 20.50 122 17 21.77 136 18 23.04 1417 19 24.30 154 20 25.57 161 22 28.11 176 23 35.73 250 30 38.27 250 30 38.27 290 37 47.18 410 Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 29 11.70 5.00 4.00 10 12.94 48 10 12.94 52 12 15.45 59 13 16.71 58 14 17.95 58 <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	8									
1114.205.94691215.456.50821417.98 $③$ 981519.241001620.501221721.771221721.771361823.041471924.301542025.571612228.111762334.462402835.732503038.272503038.272903747.18410Tooth Face at Pitch Line 1.000 Inches56.771868.002179.223.94911.705.004.003.25310.454.9432911.705.004.003.25316.711215.451316.711417.95										
1215.456.50821417.98 $③$ 981519.241001620.501221721.771361823.041471924.301542025.571612228.111612228.112402835.732402835.732903747.18410Tooth Face at Pitch Line 1.000 Inches56.771868.002179.223.94253.942911.705.004.003.25 $③$ 441012.94481114.2012.945521316.711417.951417.95	-									
14 19.24 100 15 19.24 100 16 20.50 122 17 21.77 136 18 23.04 147 19 24.30 154 20 25.57 161 22 28.11 176 28 35.73 250 30 38.27 290 37 47.18 410 Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 410 12.94 3.94 25 3.94 25 8 10.45 4.94 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>6.50</td><td>-</td></t<>						6.50	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
20 25.57 161 22 28.11 176 27 34.46 240 28 35.73 250 30 38.27 290 37 47.18 410 130 CAST - PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 8 10.45 4.94 9 11.70 5.00 4.00 10 12.94 48 11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 61	18	23.04					147			
22 28.11 176 27 34.46 240 28 35.73 250 30 38.27 290 37 47.18 410 130 CAST - PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 8 10.45 4.94 9 11.70 5.00 4.00 3.25 9 11.70 5.00 4.00 3.25 11 14.20 52 12 15.45 12 15.45 59 53 14 17.95 61 61										
27 34.46 240 28 35.73 250 30 38.27 290 37 47.18 410 130 CAST - PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 8 10.45 4.94 9 11.70 5.00 4.00 11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 58										
30 38.27 290 37 47.18 410 130 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 9 11.70 5.00 4.00 10 12.94 48 11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 61										
37 47.18 410 130 CAST – PITCH 4.000 (With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 9 11.70 5.00 4.00 10 12.94 48 11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 61										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
(With Hardened Teeth) Tooth Face at Pitch Line 1.000 Inches 5 6.77 18 6 8.00 21 7 9.22 3.94 25 8 10.45 4.94 32 9 11.70 5.00 4.00 3.25 3 44 10 12.94 52 52 12 15.45 59 13 16.71 58 58 61	57		30 CA	ST – Pli	CH_4_0	000	410			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	(With I	Hardene	d Teet	h)				
			ce at	Pitch Li	ne 1.0	00 Inch				
7 9.22										
9 11.70 5.00 4.00 3.25 3 44 10 12.94 48 48 11 14.20 52 52 12 15.45 59 59 13 16.71 58 58 14 17.95 5 61	7	9.22					25			
10 12.94 48 11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 61			5.00	4.00	2 25					
11 14.20 52 12 15.45 59 13 16.71 58 14 17.95 61			5.00	4.00	3.20	J				
13 16.71 58 14 17.95 61	11						52			
14 17.95 61										

- (Con	t'd.)					
No. of	Pitch	Stocke	ed Sproc	kets 2	Cast to Order	Avg.
Teeth	Dia.		Hub Length		Max. Bore	Wt.
			ST - PIT			
To			lardene Pitch Li		n) 50 inche	es.
5	10.29				2.94	102
6	12.10					92
7						
8	15.81	7.50	6.00	4.62	5.44	190
9 10	17.69	7.50	6.00	4.44	5.94 5.94	269 210
11	21.47	7.50	6.00	4.25	5.94	232
12	23.38	7.50	6.00	4.00	6.50	251
13	25.28				6.50	317
14	27.19 29.10				3	352 372
16	31.01					302
18	34.84					445
19	36.76					486
20	38.67					495
					PITCH 6.0	
10	ioth Fac	ce at i	Pitch Li	ne 3.0	00 inch	es.
11						
12						
	18	33 CAS	ST - PI1	СН 3.0	000	
T	```		lardene		,	
6	6.00	ce at 4.00		_	2 inche	
					2.68	
7		4.00	3.00	2.50	2.68 2.68	11 14
	6.91 7.84	4.00	3.00	2.50		14 16
7 8 9	6.91 7.84 8.77	4.00	3.00	2.50	2.68 2.68 2.94	14 16 22
7 8 9 10	6.91 7.84 8.77 9.71	4.00	3.00	2.50	2.68 2.68 2.94 2.94	14 16 22 25
7 8 9 10 11	6.91 7.84 8.77 9.71 10.65	4.00	3.00	2.50	2.68 2.68 2.94 2.94 2.94	14 16 22 25 30
7 8 9 10 11 12	6.91 7.84 8.77 9.71 10.65 11.59				2.68 2.68 2.94 2.94 2.94 3.18	14 16 22 25 30 32
7 8 9 10 11	6.91 7.84 8.77 9.71 10.65	5.00	4.00	3.25	2.68 2.68 2.94 2.94 2.94	14 16 22 25 30
7 8 9 10 11 12 13 14 15	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43				2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44	14 16 22 25 30 32 38 40 45
7 8 9 10 11 12 13 14 15 16	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38				2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94	14 16 22 25 30 32 38 40 45 47
7 8 9 10 11 12 13 14 15 16 18	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28				2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94	14 16 22 25 30 32 38 40 45 47 55
7 8 9 10 11 12 13 14 15 16 18 19	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23				2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44	14 16 22 25 30 32 38 40 45 47 55 58
7 8 9 10 11 12 13 14 15 16 18	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28				2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94	14 16 22 25 30 32 38 40 45 47 55
7 8 9 10 11 12 13 14 15 16 18 19 20	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	5.00	4.00	3.25	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94	14 16 22 25 30 32 38 40 45 47 55 58 65
7 8 9 10 11 12 13 14 15 16 18 19 20 25	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	5.00 38 CAS	4.00 GT – PIT	3.25 TCH 4.	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3	14 16 22 25 30 32 38 40 45 47 55 58 65 85
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 (3)	14 16 22 5 30 32 38 40 45 47 55 58 65 85 140
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3	14 16 22 5 30 32 38 40 45 47 55 58 65 85 140
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33 19.18 (coth Factoria) 6.78 8.00	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 37 inche 3.44	14 16 22 25 30 32 38 40 45 47 55 58 65 85 140
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 18.23 19.18 23.94 36.33 18 18 23.94 36.33 18 18 23.94 36.33 18 18 18 18 18 18 18 18 18 18 18 18 18	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 37 inche 3.44 3.68	14 16 22 25 30 32 38 40 45 47 55 58 65 85 140
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 36.33 18 23.94 10.65 10.65 11.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 10.45 10.45 10.45 10.45 10.45 10.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 18.22 19.18 18.23 19.14 19.1	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 37 incho 37 incho 3.44 3.68 3.94	14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es. 14 25 27 36
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8 9	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33 19.18 23.94 36.33 19.18 23.94 36.33 10.45 8.00 9.22 10.45 11.70	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3.94 37 incho 3.44 3.68 3.94 3.94	14 16 22 30 32 38 40 45 47 55 58 65 85 140 es. 14 25 27 36 32
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 36.33 18 23.94 10.65 10.65 11.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 10.45 10.45 10.45 10.45 10.45 10.59 12.54 13.48 14.43 15.38 18.23 19.18 23.94 36.33 18 23.94 18.22 19.18 18.23 19.14 19.1	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 37 incho 37 incho 3.44 3.68 3.94	14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es. 14 25 27 36
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8 9 10 12 13	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33 19.18 19.19 19.18 19.18 19.19 19.18 19.19 19.18 19.19 19.18 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.1	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 3 7 inch 3.44 3.68 3.94 3.94 3.94 4.44 4.44	14 16 22 25 30 32 38 40 45 55 58 65 85 140 25 140 25 27 36 32 33 36 36
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8 9 10 12 13 15	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33 19 18 23.94 36.33 19 18 23.94 36.33 19 18 23.94 36.33 19 10 545 11.70 9.22 10.45 11.70 12.94 15.45 16.71 19.24	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 37 inche 3.44 3.68 3.94 3.94 3.94 3.94 4.44	14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 27 36 32 33 36 36 39
7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 Tc 5 6 7 8 9 10 12 13	6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33 19.18 19.19 19.18 19.18 19.19 19.18 19.19 19.18 19.19 19.18 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.19 19.18 19.19 19.1	5.00 38 CAS	4.00 ST – PIT lardene	3.25 7CH 4.0	2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 3 7 inch 3.44 3.68 3.94 3.94 3.94 4.44 4.44	14 16 22 25 30 32 38 40 45 55 58 65 85 140 25 140 25 27 36 32 33 36 36

	-	C1 1 -	10		Cost to	1
No. of	Pitch		ed Sproc		Cast to Order	Avg.
Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wť.
	19	-	ST – PII			
	(With H	lardene	d Teet	h)	
To 7	oth Fac 9.22	ce at f	Pitch Li	ne 1.0	31 inch 3.18	es. 30
8	10.45	5.50	4.00	3.62	3.68	38
9	11.70	5.50	4.00	3.62	3.94	46
10 11	12.94 14.20	5.50	4.00	3.62	4.44 4.44	55 62
12	15.45	5.50	4.00	3.62	4.44	70
14	17.98				5.44	90
15 19	19.24 24.30				3	72 100
17		6 CAS	ST – PIT	CH 6.0	000	100
	(With H	lardene	d Teet	h)	
10 5	oth Fac 10.21	ce at I	Pitch Li	ne 1.0	31 inch	es.
6	12.00	6.00	4.00	4.00	3.94	33
7	13.82	4.50	3.00	2.75	4.44	49
8	15.68 17.54	7.00	5.00	4.56	4.94 5.44	84 93
10	19.42	7.00	5.00	4.56	4.44	93 114
12	23.18				6.50 ③	148
13 14	25.07 26.96				9	119 128
16	30.75					160
18	34.55					195
19 25	36.45 47.87					210 304
20	19		ST – PIT			001
Ta			lardene			
6	oth Fac 12.00		5.00	ne 1.1 4.75	25 inch 4.44	es. 56
7	13.83	0.00	0.00	1.70		61
8	15.68	6.50	5.00	4.56	4.94 5.44	90
9 10	17.54 19.42				5.44 5.94	80 95
12	23.18				3	115
15	28.86	10 0 40	ST – PIT		121	178
			lardene			
To		ce at	Pitch L	ine .68	37 inche	
4	7.92 9.81				1.94 1.94	15
5	9.81 11.59				2.18	23 24
7	13.48				2.44	43
9 10	17.28 19.18				3	56 68
11	21.03					75
12	22.98					83
16 19	30.60 36.33					120 159
	45		ST – PIT			,
			lardene			
Т			lardene Pitch L		tn) 75 inche	S.
3	7.95					20
4 5	10.53 13.04	7.50	5.00	5.06	3.18 5.06	44 54
6	15.57	7.50	5.00	5.06	5.06	81
7	18.12				5.06	71
8	20.66 23.13				5.06 ③	95 130
10	25.77					145
11	28.33					193
12 14	30.68 35.87					200 228
19	48.63					345

All dimensions given in inches and weight in Lbs. ⁽¹⁾ Hub one side. All other hubs are long central. ⁽²⁾ If no hub data is listed, sprocket is cast to order. ⁽³⁾ Consult Rexnord for max. bore information. 86 Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

■ SPROCKETS

CAST TOOTH SPROCKETS - (Co . . .

	'		~			~	<u> </u>
		Stock	ed Sproc	kets ②	Cast to		
No. of		Hub	Hub	Max.	Order	Avg.	
Teeth	Dia.		Length	Bore	Max. Bore	Wť.	
	1		ST-PIT				
То					75 inch		
4	10.53	Je al			3.44	es. 36	
5	13.05				3.44	65	
6	15.57				5.94	100	
7	18.12				5.94	92	
8	20.66					⁹ ∠ 118	
9	23.21					148	
7 10	25.77					140	
12	30.88					240	
12		80 CA	ST – PIT	СН 8	000	240	
			Hardene				
To					250 inch	nes.	Г
6	16.00				7.00	250	
7	18.44				7.50	295	
8	20.90				3	330	
9	23.39					385	
, 10	25.89					440	
	480) DRU	M FLAN	GED C	AST		
	(With I	Hardene	d Tee	th)		
То	oth Fac	e at F	Pitch Lir	ne 11.	250 incł	nes.	(
6	16.00				3	490	8
7	18.44					560	
8	20.90					654	9
9	23.39					750	
10	25.89					840	1
			ST – PIT				1
		ce at	Pitch L	ine .87	75 inche		1:
8	10.45					30	
9	11.70					35	Ē
12	15.45					65 70	
13 19	16.72 24.30					124	
19			I St – Pit	сц э	549	124	Г
			Hardene				
Τc					75 inche	20	6
10	8.29			30	6.00	.3.	
12	9.90	-	_	40	6.50	5	8
18	14.76					65	
24	19.64	-	_	84		10	9
30	24.52					100	1
40	32.67					165	1
10		1 CA	ST – PIT	CH 4.	000	100	1
To	oth Fa	ce at	Pitch I i	ne 1.1	87 inch	es	T
.0	2		hain No			- 0.	1 1:
6	8.00				2.94	34	
8	10.45				3.44	43	1 1
10	12.94				3.94	49	1
12	15.46				4.44	85	1
14	17.98					80	2
15	19.24					85	2
16	20.50					94	
17	21.77					107	
19	24.30					120	9
	-						1
							1:

(Cont'	d.)												
<u>È</u>	L Ó	Stocke	ed Sproc	kets 2	Cast to			D ¹¹ 1	Stocke	ed Sproc	kets 2	Cast to	
No. of Teeth	Pitch Dia.	Hub Dia.	Hub Length	Max. Bore	Order Max. Bore	Avg. Wt.	No. of Teeth	Pitch Dia.	Hub Dia.	Hub Length	Max. Bore	Order Max. Bore	Avg. Wt.
		CAST	– PITCH	6.031					CAST	– PITCI	16.00		
Tootk			dened T ch Line	'	inchos	`	Tooth			dened T ch Line		inchos	-
3	12.06			1.107		5. 50	6P-6T	12.00			1.123	3	s. 47.9
4	15.72				5.44	75	8P-8T	15.68					71.3
5	19.52				3	115	9P-9T	17.54					85.5
6	23.24					148		18.48					107.3
7	27.03					190	10P-20T	19.42					115.4
8	30.83					240		21.30 22.24					105.0 104.5
10	698	CAST	– PITCH	6 031	1			23.14					110.8
			dened				1	24.12					117.9
Tooth	n Face	at Pito	ch Line	1.375	inches	S.	13P-13T	25.07					125.1
5	19.52				6.94	122	13.5P-27T						132.5
6	23.24				3	162		26.96					153.7
7	26.96 30.92					200 275		28.86 30.75					170.0 187.2
0		S C A S	T – PIT		00	273		34.55					225.2
			dened		00			45.79					363.5
Tooth	•		ch Line) inches	S.		823	CAST	– PITCH	4.000)	
6.5-13T	12.89			Ī		65.0				dened			
	16.59				3	98.2			at Pite	ch Line	1.125		
9-9T	17.51					80.0	8 10	10.45 12.95				2.44 3.18	25 45
9.5P-19T	18.48					115.3	10	14.20				3.68	43 54
10-10T 10.5-21T	19.42					95.0 110.0	12	15.46				3.94	56
11-11T	21.30					105.0	13	16.71				4.44	60
11.5P-23T						127.7	14	17.98				4.94	65
12.5P-25T						141.3	16	20.51				5.44	81
	25.07					130.0	17 18	21.77 23.04				5.94 5.94	86 91
16-16T	30.75	0.1.OT	DITO			180.0	19	23.04				0.94	91
			- PITCI		0		24	30.65				3	138
Tooth			ch Line) inches	S.				– PITCH)	
6P-6T	12.00				3	47.9	T a a th			dened	'		
	12.91					53.1	1001	1 Face 12.94	at Pite	ch Line	1.250	6.44	s. 58
8P-8T 8.5P-17T	15.68					71.3	12	15.45				0.44	78
9P-9T	17.54					92.2 99.5	13	16.71					82
	18.48					107.3	14	17.98					94
10P-10T	19.42					115.4	15	19.24					112
10.5-21T						110.0	16	20.50					115
11P-11T						98.3	19	24.30		– PITCH	6 000		140
11.5P-23T 12P-12T						118.2 120.0				dened)	
12.5P-25T						131.5	Tooth			ch Line	· · · ·	inches	5.
13P-13T						138.7	6	12.00					58.5
15P-15T	28.86					155.0	8	15.68				6.44	79
16P-16T						180.0	9	17.54				3	88
19P-19T						245.9	10	19.42					102
20P-20T			i – Pitc	Ц <u>6</u> 00	0	267.8	11 11.5-23T	21.20 22.21					105 125
			dened				12	22.21					125
Tooth	-		ch Line		inches	S.		25.07					142
9.5P-19T						114.8	15	28.86					168
11.5P-23T						113.5	16	30.75					180
12.5P-25T						127.9							
18P-18T 27P-27T	34.55					207.0							

27P-27T

SPROCKETS

■ SPROCKETS CAST TOOTH SPROCKETS – (Cont'd.)

No. of	Pitch	Stock	ed Sproc	kets ^②	Cast to Order	Avg.			
Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wt.			
844 CAST – PITCH 6.000 (With Hardened Teeth)									
To					25 inche	es.			
6									
8	15.88				6.44	94			
9	17.54					112			
10	19.42					125			
11	21.30					140			
12	23.18					160			
13	25.07					171			
15	28.86					200			
16	30.75					217			
19	36.45					275			
			ST – Pľ Hardene						
To	oth Fac	ce at	Pitch Li	ne 1.1	25 inche	es.			
6	18.00				5.94	74			
8	23.52				3	150			
9	26.31					160			
10	29.12					175			
			ST – Pľ Hardene						
To					50 inche	es.			
6	18.00				5.94	93			
7	20.74				3	120			
8	23.52					152			
	95 (51 CA: With I	ST – PIT Hardene	CH 6.0	000 h)				
To					62 inche	es.			
6	12.00				5.44	62			
8	15.68				5.44	81			
			ST – PIT Hardene						
To					75 inche	es.			
4	23.53				6.44	195			
					3	258			
5	29.14								

Cont'd.) Stocked Sprockets ⁽²⁾ Cast to										
No. of	Pitch		· ·		Order	Avg.				
Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wť.				
	11	13 CA	ST – Pľ	TCH 4.	040					
(With Hardened Teeth) Tooth Face at Pitch Line 1.062 inches.										
		te at i	PIICH LI	ne I.U						
6 8	8.08 10.56				2.44 2.94	24 38				
0 9	11.81				2.94	30 40				
10	13.07				3.18	40				
10	14.34				3.94	40 50				
12	15.61				3.94	60				
12	16.88				4.44	68				
14	18.16				3	85				
16	20.71				-	95				
17	21.99					104				
18	23.67					110				
24	30.95					178				
		20 CA	ST – Pľ	TCH 4.	000					
	(With I	Hardene	d Teet	h)					
		ce at	Pitch L	ine .68	37 inche					
5	6.81				2.18	12				
6	8.00				2.44	23				
7	9.22				3.68	72				
8	10.45				3.68	29				
9	11.70				3.94	38				
10	12.94				3.94	40				
11	14.19				3	50				
12	15.45					65				
14	17.98					77				
15	19.24					86				
16 18	20.50 23.04					97 115				
-						115				
19	24.30					125 165				
22 24	28.11 30.65					105				
	39.54					244				
31 35	44.62					322				
30		21 CA	ST – Pľ	тсн 6	000	322				
	(With	Hardene	d Teet	:h)					
To	oth Fac	ce at l	Pitch Li	ne 1.2	50 inch	es.				
6	12.00				3.94	62				
8	15.68				3.94	78				
9	17.54				3.95	120				
12	23.18				4.44	153				
13	25.03					175				
14	26.96				3	190				
16	30.75					225				
25	47.87					350				
	F12	22 CA	ST – Pľ	TCH 12	2.000					
Ŧ	```		Hardene		,					
		e at l	PITCh LI	ne 1.0	00 inch					
6	24.00 31.36				5.94	157				
8	31.30					210				

		Stock	d Sproc	kets ②	Cast to	
No. of	Pitch				Order	Avg.
Teeth	Dia.	Hub Dla.	Hub Length	Max. Bore	Max. Bore	Wť.
	21	24 CA	ST – Pl	TCH 6.	000	
To	oth Fac	ce at l	lardene Pitch Li	ne 1.3	75 inche	25
6	12.00					50
8	15.68				6.44	62
10	19.42				3	95
12	23.18					133
13	25.07					150
15	28.86					186
16	30.76					220
24	45.97					250
			ST – Pl lardene			
To					25 inche	20
6	12.00				4.94	50
8	15.68				7.00	90
16	30.76				7.00	200
20	38.36					260
20		50 CA	ST – Pľ	TCH 2.	500	200
			lardene			
To					50 inche	S.
6	AIS 5.00	o avai	lable in	ровул	enc.	5
7	5.76					9
8	6.53					9 10
10	8.09	4.00	3.00	2.50	2.68	13
11	8.87	4.00	3.00	2.50	2.68	16
12	9.66	4.00	3.00	2.50	3.18	18
14	11.24					23
15	12.03				3.94	28
16	12.81					30

All dimensions given in inches and weight in Lbs. ^① Hub one side. All other hubs are long central. ^② If no hub data is listed, sprocket is cast to order. ^③ Consult Rexnord for max. bore information.

SPROCKETS **CAST TRACTION WHEELS AND DRUM** FLANGED TRACTION WHEELS

Traction Wheels are used primarily on the headshafts of bucket elevators and elevating conveyors to protect the system from obstructions. Providing the frictional grip between the chain and the traction wheel is sufficient to transmit the power under normal load. In the case of obstruction, the chain will slip on the wheel, and avoid damaging some machinery or part of the system.

Drum Flanged Traction Wheels are used on drag chain conveyors where discharge is over the head wheel.

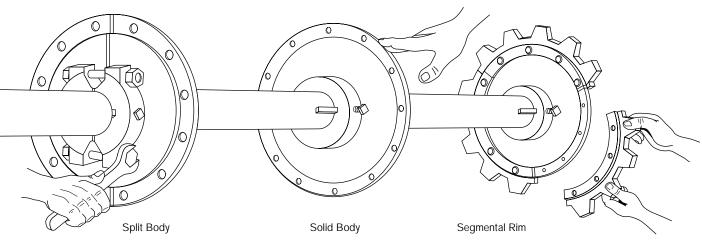
Materials. Traction wheels are furnished cast and fabricated steel. Segmental rim traction wheels are available with fabricated bodies. See pages 90-93.

Standard Sprocket Bore Tolerances; Keyseat and Set-screws; and Hubs. See page 140 for key and set screw sizes. The corresponding paragraphs on page 90 applies to traction wheels.

To determine a shaft's pitch diameter, add to its outside diameter, the barrel diameter of the chain to be used.

NOTE: For Replaceable Segmental-Rim Traction Wheels, see pages 90-93.

	All dimensions given in inches and weight in Lbs.											
Wt.		Unit No.	0. D.	x = HDN	Face Width	Drum Width	Wt.					
175.0			10.50	х	1.25	-	45.0					
250.0			14	х	1.25	-	60.0					
290.0			15.50	х	1.25	-	68.0					
335.0			16	х	1.25	-	72.0					
365.0			17	х	1.25	-	79.0					
50.0		S825	18.25	х	1.25	-	86.0					
85.0			20	х	1.25	-	95.0					
91.0			22	х	1.25	-	105.0					
105.0			24	х	1.25	-	120.0					
135.0			27.75	х	1.25	-	140.0					
143.0			31	х	1.25	-	160.0					
146.0			12	х	2.13	-	65.0					
149.0			16	х	2.13	-	90.0					
165.0			19.75	х	2.13	-	109.0					
198.0		844	22.25	х	2.13	-	130.0					
210.0			23.75	х	2.13	-	148.0					
200.0			27.75	х	2.13	-	172.0					
230.0			29	х	2.13	-	190.0					
395.0			15	х	1	-	62.0					
485.0		720	15.50	х	1	-	65.0					
550.0			18.25	х	1	-	85.0					
495.0			29	Х	2.75	-	170.0					
560.0			21.50	х	2.75	-	187.0					
120.0		COF 4	26	х	2.75	-	200.0					
124.0		S856	27.75	х	2.75	-	218.0					
128.0			29.50	х	2.75	-	225.0					
510.0			30	х	2.75	-	236.0					
138.0		955	8	х	.69	-	24.0					
147.0		900	18.75	Х	.69	-	65.0					
570.0												
620.0												


Unit No.	0. D.	x = HDN	Face Width	Drum Width	Wt.	1 [Unit No.	0. D.	x = HDN	Face Width	Drum Width	Wt.	Unit No.	0. D.	x = HDN	Face Width	I V
	10	х	.94	-	30.0	1 Г		10.25		8.88	16.38	175.0		10.50	Х	1.25	Γ
	12	х	.94	-	45.0			14		8.88	16.38	250.0		14	х	1.25	
	12.50	х	.94	-	50.0]	H110	15.88		8.88	16.38	290.0		15.50	х	1.25	
	13.25	х	.94	-	58.0			17.75		8.88	16.38	335.0		16	х	1.25	
	14	х	.94	-	62.0	ΙL		19.63		8.88	16.38	365.0		17	х	1.25	
78	15	Х	.94	-	65.0			9.50	х	2.25	-	50.0	S825	18.25	х	1.25	
	15.50	х	.94	-	68.0			14.56	х	2.25	-	85.0		20	х	1.25	
	16	Х	.94	-	70.0			15.50	х	2.25	-	91.0		22	х	1.25	
	18	х	.94	-	75.0			18	х		-	105.0		24	х	1.25	
	19	Х	.94	-	80.0			20	х	2.25	-	135.0		27.75	х	1.25	
	20	х	.94	-	85.0		111	22	х	2.25	-	143.0		31	х	1.25	
	12	Х	1.88	-	50.0			23	х	2.25	-	146.0		12	х	2.13	
	13.50	х	1.88	-	60.0			23.75	х	2.25	-	149.0		16	х	2.13	
	14	х	1.88	-	63.0			26	х	2.25	-	165.0		19.75	х	2.13	
	14.63	х	1.88	-	68.0			29.50	Х	2.25	-	198.0	844	22.25	х	2.13	
	15.75	х	1.88	-	78.0	L		30.75	х	2.25	_	210.0		23.75	х	2.13	
	16.75	Х	1.88	-	89.0		H112	16.75		9	16.50	200.0		27.75	х	2.13	
	17	х	1.88	-	92.0	L	11112	19.25		9	16.50	230.0		29	х	2.13	
102B	18	х	1.88	-	100.0			16.88		13	20.50	395.0		15	х	1	Τ
1020	19.75	х	1.88	-	108.0		H116	19		13	20.50	485.0	720	15.50	х	1	
	21	х	1.88	-	117.0			21.75		13	20.50	550.0		18.25	х	1	
	22	х	1.88	-	127.0	1 [H118	13.88		13	20	495.0		29	Х	2.75	Г
	23	х	1.88	-	139.0	Ľ	ппо	16.50		13	20	560.0		21.50	х	2.75	
	23.75	х	1.88	_	143.0	1 [13	х	2.75	-	120.0	C0E4	26	х	2.75	
	27.63	х	1.88	-	160.0			13.75	х	2.75	-	124.0	S856	27.75	х	2.75	
	29.63	х	1.88	-	166.0			16	х	2.75	-	128.0		29.50	х	2.75	
	33	х	1.88	-	175.0			16.25		2.75	14	510.0		30	х	2.75	
H102	11.50		6.25	11.50	185.0			17	х	2.75	-	138.0	055	8	х	.69	Τ
	14.63		6.25	11.50	230.0			18	х	2.75	-	147.0	955	18.75	х	.69	
	7	Х	1.13	-	25.0	1	132	18.25		2.75	14	570.0		-			
	9.63	Х	1.13	-	38.0		152	20.25		2.75	14	620.0					
	14.63	х	1.13	-	49.0			21.63	х	2.75	-	186.0					
	16	х	1.13	-	60.0			22	х	2.75	-	190.0					
	17	х	1.13	-	70.0			24	х	2.75	-	205.0					
103	18	х	1.13	-	75.0			26.19	х	2.75	-	210.0					
	20	х	1.13	-	90.0			27.75	х	2.75	-	225.0					
	22	х	1.13	-	115.0	ΙL		30	х	2.75	-	280.0					
	22.50	х	1.13	-	125.0			13.88		11.13	22	440.0					
	24	х	1.13	-	135.0			16.25		11.13	22	510.0					
	29.38	х	1.13	-	170.0	ין ן	H480	18.75		11.13	22	540.0					
	10.50		4	12	125.0			21.13		11.13	22	600.0					
	12.38		4	12	145.0	ΙL		23.75		11.13	22	630.0					
	14		4	12	170.0												
H104	16		4	12	205.0												
	17.75		4	12	250.0												
	19.75		4	12	305.0												
	20.13		4	12	345.0												
	N	ote: Dir	nensior	ns are s	ubject	to ch	ange.	Certifie	d dime	nsions	of orde	red mat	terial are	furnishe	d upon	reques	t.
							-										

	10.25		8.88	16.38	175.0
	14		8.88	16.38	250.0
H110	15.88		8.88	16.38	290.0
	17.75		8.88	16.38	335.0
	19.63		8.88	16.38	365.0
	9.50	х	2.25	-	50.0
	14.56	х	2.25	-	85.0
	15.50	х	2.25	-	91.0
	18	х		-	105.0
	20	х	2.25	-	135.0
111	22	х	2.25	-	143.0
	23	х	2.25	-	146.0
	23.75	х	2.25	-	149.0
	26	х	2.25	-	165.0
	29.50	х	2.25	-	198.0
	30.75	х	2.25	_	210.0
H112	16.75		9	16.50	200.0
пп	19.25		9	16.50	230.0
	16.88		13	20.50	395.0
H116	19		13	20.50	485.0
	21.75		13	20.50	550.0
11440	13.88		13	20	495.0
H118	16.50		13	20	560.0
	13	х	2.75	-	120.0
	13.75	х	2.75	_	124.0
	16	х	2.75	-	128.0
	16.25		2.75	14	510.0
	17	х	2.75	-	138.0
	18	х	2.75	-	147.0
132	18.25		2.75	14	570.0
132	20.25		2.75	14	620.0
	21.63	х	2.75	_	186.0
	22	х	2.75	-	190.0
	24	х	2.75	_	205.0
	26.19	х	2.75	-	210.0
	27.75	х	2.75	-	225.0
	30	х	2.75	_	280.0
	13.88		11.13	22	440.0
	16.25		11.13	22	510.0
H480	18.75		11.13	22	540.0
	21.13		11.13	22	600.0
	23.75		11.13	22	630.0

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS

Segmental sprockets and traction wheels significantly reduce the labor and down time associated with replacing worn standard type units. Worn segments can be replaced one at a time without removing the chain, disassembling shaft and/or bearing assemblies or realigning hub placement.

Sprockets and traction wheel rims are made of hardened steel and may be furnished with split or solid hub bodies.

Solid Hub Bodies

Solid hub bodies are recommended for new installations. They are accurately machined of close-grained cast iron. The bodies can be made of steel, but dimensions will differ.

Split Hub Bodies

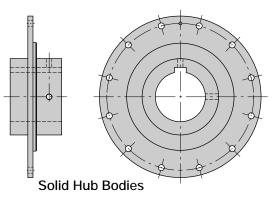
Split hub bodies can be easily installed on existing installations without removing the shaft, bearings, or chain. They are accurately machined of close-grained cast iron. A complete set of hub bolts and nuts included. The bodies can be made of steel, but dimensions will differ.

Traction Wheels vs. Sprockets at the Head Shaft

When properly applied, the use of a traction wheel at the head end of a centrifugal elevator will result in an increase in both chain and wheel life. In addition, the traction wheel will minimize peak chain tensions under impact or starting conditions.

Successful application of a traction wheel is dependent upon a frictional force between the traction wheel and the chain bushing which is great enough to handle the applied chain load without excessive slippage. Factors which can detract from the effectiveness of a traction wheel are:

- 1. Handling material with lubricating qualities.
- 2. Heavy digging loads.
- 3. Handling very dense material.


Dry and abrasive materials, on the other hand, have the desirable effect of increasing the coefficient of friction. Traction wheels have been used very successfully in the cement mill industry. Chain with rollers should not be used with a traction wheel.

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS – (Cont'd.)

Solid Hub Bodies

Solid hub bodies are recommended for new or existing installation where it is expedient to install a solid hub to save added cost and weight of a split hub.

Solid hub bodies can be made of cast iron or fabricated steel. The outer rim of both cast and fabricated steel hub bodies is machined to exact concentricity and the flange base is machined to provide a mating surface for the rim. This insures correct fit and proper installation of segmental traction wheel and sprocket rims. Hubs are central with the center line of rims. Fabricated steel bodies are recommended for use in severe applications, such as cement mill, to provide maximum fatigue and wear life.

CAST SOLID BODIES^①

Body No. ²	Bore Size	Hub Length	Wt.
	1.94	4.25	43
	2.44	4.25	42
10	2.94	4.25	41
10	3.44	6.00	63
	3.94	6.00	60
	4.44	6.00	56
	1.94	4.25	62
	2.44	4.25	60
	2.94	4.25	58
12	3.44	6.00	90
	3.94	6.00	85
	4.44	6.00	80
	4.94	6.50	96
	1.94	3.25	80
	2.44	5.00	86
	2.94	5.00	97
	3.44	5.00	94
	3.94	6.50	139
16	4.44	6.50	134
	4.94	6.50	127
	5.44	7.75	189
	5.94	7.75	180
	6.44	8.50	225
	6.94	8.50	272
	2.44	5.00	140
	2.94	5.00	138
	3.44	5.00	134
	3.94	6.50	180
20	4.44	6.50	174
20	4.94	6.50	168
	5.44	7.75	229
	5.94	7.75	220
	6.44	9.50	323
	6.94	9.50	310

FABRICATED SOLID BODIES

Body No. ²	Bore Size	Hub Length	Wt.	
	1.94	3.75	44	
	2.44	3.75	44	
	2.94	3.75	43	
10	3.44	3.75	41	
	3.94	3.75	38	
	4.44	6.50	61	
	4.94	6.50	55	
	1.94	4.25	65	
	2.44	4.25	63	
	2.94	4.25	61	
	3.44	4.25	58	
12	3.94	4.25	54	
	4.44	6.00	87	
	4.94	6.00	79	
	5.44	7.75	110	
	5.94	7.75	100	
	1.94	5.00	105	
	2.44	5.00	103	
	2.94	5.00	100	
	3.44	5.00	96	
	3.94	5.00	92	
	4.44	7.00	116	
16	4.94	7.00	108	
	5.44	7.00	136	
	5.94	7.00	127	
	6.44	8.50	178	
	6.94	8.50	165	
	7.44	8.50	186	
	7.94	8.50	172	
	8.44 1.94	10.50 5.50	259	
	2.44	5.50	157 154	
	2.44		154	
	2.94	5.50 5.50	151	
	3.94	5.50	147	
	4.44	7.75	169	
	4.44	7.75	169	
20	5.44	7.75	193	
20	5.94	7.75	193	
	6.44	8.50	225	
	6.94	8.50	213	
	7.44	8.50	234	
	7.94	8.50	234	
	8.44	8.50	247	
	9.94	11.50	300	
L	,,,,	11.00	000	

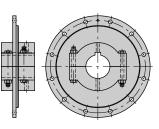
FABRICATED SOLID BODIES (Cont'd.)

Body No. ²	Bore Size	Hub Length	Wt.
	1.94	5.50	250
	2.44	5.50	289
	2.94	5.50	244
	3.44	5.50	240
	3.94	5.50	235
	4.44	7.75	262
25	4.94	7.75	254
25	5.44	7.75	286
	5.94	7.75	276
	6.44	8.50	314
	6.94	8.50	301
	7.44	8.50	322
	7.94	8.50	308
	8.44	11.50	414
	1.94	5.50	325
	2.44	5.50	375
	2.94	5.50	448
	3.44	5.50	444
	3.94	5.50	440
	4.44	8.50	459
35	4.94	8.50	452
- 55	5.44	8.50	478
	5.94	8.50	469
	6.44	8.50	518
	6.94	8.50	506
	7.44	8.50	526
	7.94	8.50	512
	8.44	11.50	619

All dimensions given in inches and weight in Lbs.

© Steel bodies are recommended for use with RS856, ER956, ER857, ER859, ER864, SBX856, SBX2857, SBX2859 and SBX2864 rims used in severe service such as cement mill elevators.

 $^{\textcircled{0}}$ Body no. represents bolt circle diameter. See page 93 for bolting information.


SEGMENTAL RIM SPROCKETS AND **TRACTION WHEELS** – (Cont'd.)

Split Hub Bodies

Split hub bodies can be easily installed in existing applications without removing the shaft, bearing or chain. Split hub bodies can be furnished in cast iron or fabricated steel. Complete set of hub bolts and nuts included.

The outer rim of both cast and fabricated steel hub bodies is machined to precise concentricity and the flange base is machined to provide a mating surface for

the rim. This insures correct fit and proper installation of segmental traction wheels and sprocket rims. Hubs are central with the center line of rims.

Fabricated steel bodies

are recommended for use in severe applications, such as cement mill, to provide maximum fatigue and wear life.

CAST SPLIT BODIES^①

FABRICATED SPLIT BODIES

Body No. ²	Bore Size	Hub Length	Wt.
10	1.94	5.63	53
10	2.44	5.63	51
	1.94	5.63	75
	2.44	5.63	72
12	2.94	7.00	125
	3.44	7.00	120
	3.94	7.00	115
	1.94	6.50	97
	2.44	6.50	125
	2.94	7.25	168
16	3.44	7.25	164
	3.94	7.25	158
	4.44	8.25	237
	4.94	8.25	229
	1.94	4.38	126
	2.44	5.00	163
	2.94	5.00	160
	3.44	5.00	157
	3.94	6.50	235
20	4.44	6.50	229
20	4.94	6.50	223
	5.44	7.63	328
	5.94	7.63	319
	6.44	11.13	641
	6.94	11.13	626
	7.44	11.13	610

All dimensions given in inches and weight in Lbs. Steel bodies are recommended for use with RS856, ER956, ER857, ER859, ER864, SBX856, SBX2857, SBX2859 and SBX2864 rims used in severe service

such as cement mill elevators.

FABRICATED SPLIT BODIES							
Body No. ²	Bore Size	Hub Length	Wt.				
	1.94	6.75	109				
	2.44	6.75	105				
10	2.94	6.75	101				
12	3.44	6.75	97				
	3.94 4.44	6.75	91 134				
	4.44	7.75	134				
	4.94 1.94	7.75 6.75	120				
	2.44	6.75	142				
	2.94	6.75	138				
	3.44	6.75	133				
16	3.94	6.75	127				
	4.44	7.75	169				
	4.94	7.75	161				
	5.44	7.75	212				
	5.94 1.94	7.75	202 198				
	2.44	6.75 6.75	198				
	2.44	6.75	195				
	3.44	6.75	186				
	3.94	6.75	181				
	4.44	7.75	217				
20	4.94	7.75	209				
20	5.44	7.75	271				
	5.94	7.75	261				
	6.44	9.50	361				
	6.94 7.44	9.50 8.75	347 367				
	7.94	8.75	352				
	8.44	8.75	430				
	1.94	6.75	289				
	2.44	6.75	286				
	2.94	6.75	282				
	3.44	6.75	277				
	3.94	6.75	272				
	4.44	7.75	307				
25	4.94 5.44	7.75 7.75	299 359				
	5.44 5.94	7.75	359				
	6.44	8.75	447				
	6.94	8.75	433				
	7.44	8.75	453				
	7.94	8.75	438				
	7.44	8.75	513				
	1.94	6.75	375				
	2.44	6.75	372				
	2.94 3.44	6.75 6.75	487 482				
	3.44	6.75	482				
	4.44	7.75	511				
<u></u>	4.94	7.75	503				
35	5.44	7.75	564				
	5.94	7.75	554				
	6.44	8.75	652				
	6.94	8.75	638				
	7.44	8.75	657				
	7.94	8.75	642				
	8.44	8.75	717				

BODY BOLTING

Body No.	Bolt Quantity	Bolt Size	Bolt Torque Ft./Lbs.
10	12	5/8	180
12	12	5/8	180
16	12	³ /4	320
20	24	3/4	320
25	24	1	710
35	24	1	710

Torque values based on dry conditions.

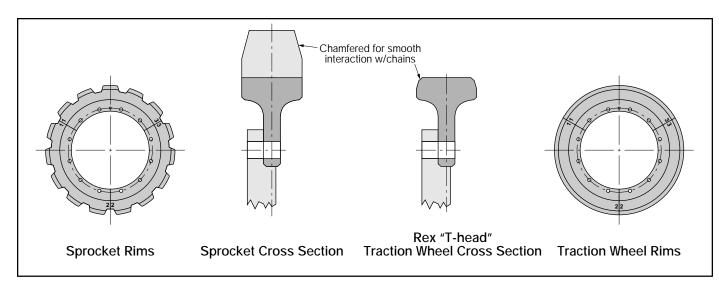
1 Ft. Lb. Torque = 1 Lb. Force With 1 Ft. Lever Arm.

SPROCKETS

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS – (Cont'd.)

Cast Rims

Each traction wheel rim and sprocket rim is induction case-hardened to the highest practical hardness around the entire circumference. The hardness depth is controlled to give the longest wear life, yet leaving the interior tough and ductile – perfect qualities for absorbing the impact and shock loads encountered in "elevator-conveyor" service.


Segmental sprocket rims can be reversed (back side of tooth becomes the working face), in order to maximize wear life.

Segmental traction wheel rims can be easily installed, no need to even remove the chain in order to replace worn out rims. No burning or cutting is necessary. Our "T" head traction wheel design moves the center of the chain load more closely over the body flange, thus reducing the possibility of hub fatigue problems.

Segmental rim traction wheels are split with cuts in the rims that are made diagonally. These diagonal cuts eliminate the possibility of the segments spalling or chipping at the line of split as a result of chain bushing or barrel line impact.

The sides of the segmental traction wheel & sprocket rims are chamfered to allow the chain to "enter" and "leave" smoothly without damaging the chain components.

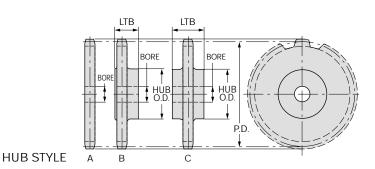
All rims are furnished with high strength UNC thread nuts and bolts as standard.

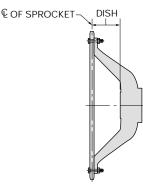
Available Cast Traction Wheel Rims
(with Bolts, Washers and Nuts)

Rex Chain No.	Link-Belt Chain No.	No. of Teeth	Use Body No.①	Pitch Dia. In.	Wt. Each Lbs.
S110 A102B S102B A102 ¹ / ₂ S102 ¹ / ₂	SBS110 C102B SBS102B C102 ¹ / ₂ SBS102 ¹ / ₂	24	16	115	1.75
ES111 A111	SBS111 C111	22 24 26 30	16 16 20 20	110 130 140 165	2.25
RS856 ER857 ER956	SBX856 SBX2857	20 22 24 26 28 30	12 16 20 20 20	90 115 145 155 170 185	2.75
ER859 ER864	SBX2859 SBX2864	24 26 30 36 42 49	16 20 20 35 35	165 175 235	3.50

NOTE: Fabricated steel rims are readily available for most every chain. Consult Rexnord. ^① Body No. represents bolt circle diameter in inches.

■ SPROCKETS POLYMERIC SPROCKET AND IDLER WHEELS


Cast Body Segmental Polymeric Sprocket


Split Polymeric Sprocket

All Polymeric Dished Sprocket

POLYMERIC SPROCKET AND IDLER WHEELS

Polymeric chains will provide the ultimate in service when operated with properly designed sprockets. Just like polymeric chains differ from metal chains, so do polymeric sprockets differ vastly from metal sprockets.

The polymeric sprocket must be designed for the particular chain, considering the chain's special capability and intended use. Many factors are taken into account when designing these sprockets: Tooth pressure angle, pitch line clearance, bottom diameter, pocket and topping radii and tooth working face, to name a few. A poor design in any of these areas may cause chain failure.

Rex[®] Polymeric chain run better on Rex Polymeric sprockets. Polymeric sprockets resist corrosion and reduce friction, maximizing both chain and sprocket life. These quiet running, shock absorbing sprockets also improve system reliability.

The American Chain Association recommends that "Sprockets normally be obtained from the manufacturer of the chain involved." The Association further cautions that "worn sprockets should always be replaced when new chain is installed... "

Features

- **Designed specifically for use with polymeric chains** for greatest chain and sprocket life.
- Made from super tough urethane. Rex sprockets resist particle embedment (and the rapid chain wear that can result), a common problem with other plastic materials.
- **One-piece design** Rex polymeric sprockets are all polymeric, or available with a steel insert cast integral with the body.
- Absorbs vibration and large shock loads better than steel sprockets, thus protecting the chain and providing quieter operation.
- **Reduces friction,** which improves chain life.
- **Split sprockets** most sprockets are available in split design for ease of installation.

■ SPROCKETS

POLYMERIC SPROCKET AND IDLER WHEELS – (Cont'd.)

							Dimensions a Bore Capaci	re in inches. Weig	hts are in pounds
	Number of			Hub [®]			Weight [®]		
	Teeth	P. D.				W/O Ke	y Wi	With Key [®]	
	recui		0. D.	L. T	. В.	Max.	Min.	Max.	1
	7	3.76	2.50	1.	75	1.50	.88	1.25	.6
	8	4.26	3.00	1.	75	2.00	.88	1.25	.9
NAE Dolymoria Sprockat	9	4.77	3.00	1.	75	2.00	1.00	1.25	1.0
N45 Polymeric Sprocket Pitch 1.630	10	5.27	3.75	1.	75	2.75	1.13	2.63	2.0
Tooth Face at Pitch Line .75	11	5.79	3.75	1.	75	2.75	1.13	2.63	2.1
Hub Style B	12	6.30	3.75	1.	75	2.75	1.25	2.63	2.3
Mandrel Bore .44	13	6.81	4.75	1.	75	3.75	1.25	2.88	2.9
	14	7.33	4.75	1.	75	3.75	1.25	2.88	3.1
	15	7.84	4.75	1.	75	3.75	1.25	2.88	3.3
	16	8.36	4.75	1.	75	3.75	1.38	2.88	3.5
	17	8.87	4.75	1.	75	3.75	1.50	2.88	3.7
	18	9.39	4.75	1.	75	3.75	1.50	2.88	4.0
	7	5.32	3.75	2.0	0C	2.75	1.25	2.25	1.1
	8	6.03	3.75	2.0	00	2.75	1.25	2.25	1.3
N77 Polymeric Sprocket	9	6.75	4.75	4.75 2.		3.75	1.25	2.88	1.2
Pitch 2.308	10	7.47	4.75	2.0	0C	3.75	1.50	2.88	1.5
Tooth Face at Pitch Line .75	11	8.19	4.75	2.0	0C	3.75	1.50	2.88	1.7
Hub Style B	12	8.92	4.75	2.0	00	3.75	1.50	2.88	2.0
Mandrel Bore .44	13	9.64	4.75	2.0	0C	3.75	1.50	2.88	2.3
	14	10.37	4.75	2.0	00	3.75	1.63	2.88	2.7
	15	11.10	4.75	2.0	00	3.75	1.75	2.88	3.0
N77 Polymeric Sprocket	1					I			[
Tooth sprocket with Cast Iron Body Pitch 2.308	Number of Teeth	P. D.	Hub Di	ameter	L. '	Т. В.	Bolt Circle	Max. Bore	Weight [®]
Tooth Face at Pitch Line .75 Hub Style C Deep or Shallow Dished	39	28.68	G	2	٢		25	٢	0

^① Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 ^② Contact factory for hub sizes and weights.
 ^③ Data without steel hub inserts.
 IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.

■ SPROCKETS

POLYMERIC SPROCKET AND IDLER WHEELS – (Cont'd.)

Dimensions are in inches. Weights are in pounds.

							Bore Capaci	ties	
	Number of	P. D.	ŀ	lub3		W/O Key		th Key ^①	Weight ³
	Teeth		0. D.	L. T. B.		Max.	Min.	Max.	5
	7	6.01	3.75	2.	25	2.75	1.25	2.25	2.4
	8	6.82	3.75	2.	25	2.75	1.50	2.25	3.1
	9	7.63	4.75	2.	25	3.75	1.50	2.75	4.7
	10	8.44	4.75	2.	25	3.75	1.50	2.75	5.0
	11	9.26	4.75	2.	25	3.75	1.63	2.75	5.7
	12	10.08	4.75	2.	25	3.75	1.75	2.75	6.2
	13	10.90	4.75	2.	25	3.75	1.88	2.75	6.7
	14	11.73	4.75	2.	25	3.75	1.88	2.75	7.3
N78 Polymeric Sprocket	15	12.55	4.75	2.	25	3.75	1.88	2.75	8.0
Pitch 2.609	16	13.37	7.00	4.	00	6.00	1.50	4.00	15.8
Tooth Face at Pitch Line .94	17	14.20	7.00	4.	00	6.00	1.63	4.00	16.7
Hub Style B 7-15 Teeth	18	15.03	7.00	4.	00	6.00	1.63	4.00	17.4
Hub Style C 16-31 Teeth	19	15.85	7.00		00	6.00	1.63	4.00	18.2
Mandrel Bore .94	20	16.68	7.00		00	6.00	1.75	4.00	19.3
	21	17.51	7.00		00	6.00	1.88	4.00	20.2
	22	18.33	7.00	4.	00	6.00	1.88	4.00	21.4
	23	19.16	7.00	4.00		6.00	1.88	4.00	22.3
	24	19.99	7.00	4.00		6.00 1.88		4.00	22.5
	25	20.82	7.00	4.00		6.00	1.88	4.00	24.6
	26	21.64	7.00 4.0			6.00	1.88	4.00	26.1
	27	22.47	7.00		4.00		1.88	4.00	27.1
	28	23.30	7.00	4	00	6.00	1.88	4.00	28.6
	29	24.13	7.00		00	6.00	1.88	4.00	30.3
	30	24.96	7.00		00	6.00	1.88	4.00	31.4
	31	25.79	7.00		00	6.00	1.88	4.00	33.0
N78 Polymeric Sprocket			1			<u> </u>		• 	
Segmental Tooth Sprocket with Cast Iron Body Pitch 2.609	Number of Teeth	P. D.	Hub Di	ameter	L. 1	г. в.	Bolt Circle	Max. Bore	Weight [®]
Tooth Face at Pitch Line .94	40	33.25	(2)	(2	30	2	2
Hub Style C	43	35.65					30		
Deep or Shallow Dished Contact Factory For Hub	48	39.89					30		
Sizes and Weights	54	44.87					30		
N78 All Polymeric									
Dished Sprocket with Segmental Tooth Pitch 2.609	Number of Teeth	P. D.	Max. Dian	neter	L. 1	Г. В.	Bolt Circle	Max. Bore	Weight [®]
Tooth Face at Pitch Line .94	40	33.25	8.0	SD	7.	31	30	5.44	81
Hub Style C	40	33.25	10.0)SD	5.	00	30	4.94	93
Shallow or Deep Dished	43	35.65		SD		31	30	5.44	92
 Shallow Dished (SD) 	43	35.65)SD		00	30	4.94	101
1.5", 1.75", 2"									
Deep Dished (DD)	48	39.89		SD		31	30	5.44	112
6.25", 6.5"	48	39.89	10.0	JSD	5.	00	30	4.94	122

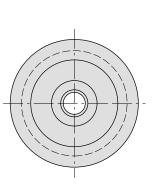
D Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 Contact factory for hub sizes and weights.
 Data without steel hub inserts.

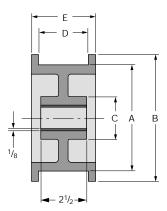
IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.

POLYMERIC SPROCKET AND IDLER WHEELS - (Cont'd.)

	Number of			lub ³		W/O Key	Bore Capacit	e in inches. Weig ies h Key®	
	Teeth	P. D.	0. D.	L. T	D	Max.	Min.	n key⊍ Max.	Weight [®]
N82 Polymeric Sprocket Pitch 3.075	7	7.09	4.75	2.7		3.75	1.25	2.50	4.6
	8	8.04	4.75	2.7		3.75	1.23	2.50	5.2
	9	8.99	6.00	4.0	-	5.00	1.50	4.25	6.0
	10	9.95	7.00	4.0		5.00	1.50	4.25	6.8
ooth Face at Pitch Line 1.13	10	9.95 10.91	7.00	4.0		5.00	1.63	4.25	7.6
lub Style B 7-8 Teeth	12	11.88	7.00	4.0		5.00	1.03	4.25	8.6
lub Style C 9-18 Teeth Iandrel Bore .94	12	12.85	7.00	4.0		6.00	1.75	5.00	9.7
	14	13.82	7.00	4.0		6.00	1.88	5.00	10.8
	15	14.79	7.00	4.0		6.00	1.88	5.00	11.9
	16	15.76	7.00	4.0		6.00	1.88	5.00	13.0
	17	16.73	7.00	4.0		6.00	1.88	5.00	14.1
	18	17.71	7.00	4.0	00	6.00	1.88	5.00	15.2
I82 Segmental Sprocket Tooth sprocket with Cast Iron Body Pitch 3.075	Number of Teeth	Р. D.	Hub Di	ameter	L. T. B.		Bolt Circle	Max. Bore	Weight [®]
ooth Face at Pitch Line 1.13 Hub Style C Deep or Shallow Dished	36	35.28	(0	0	D	25	٢	0
V82 Polymeric Dished Sprocket with Segmental Teeth Pitch 3.075	Number of Teeth	P. D.	Max.Hub Diameter		L. 1	. В.	Bolt Circle	Max. Bore	Weight [®]
ooth Face at Pitch Line 1.3 Hub Style C Shallow or Deep Dished Shallow Dished (SD)	36	35.28	8.0SD		7.31		30 5.44		88
1.5", 1.75", 2" Deep Dished (DD) 6.25", 6.5"	36 35.2		35.28 10.0		DDD 5.00		30	4.94	100
	Number		Hub [®]		Bore Capaci W/O Key Wi		ties		
250 All Polymeric	Number of Teeth	P. D.	D.		HUD		With Key [®]		Weight ³
Pitch 2.500	reeur		0. D.	L. T	. B.	Max.	Min.	Max.	
ooth Face at Pitch Line .63	11	8.87	4.75	2.2	25	3.75	1.50	3.00	3.5
	1 11 1								4.1
lub Style B				2	25	3.75	1.50	3.00	
lub Style B	12 14	9.66 11.24	4.75 4.75	2.1 2.1		3.75 5.00	1.50 1.75	3.00 2.75	4.5
lub Style B /landrel Bore .94	12	9.66	4.75 4.75	2.2			1.75	2.75	4.5
lub Style B landrel Bore .94 325 Polymeric Sprocket	12 14	9.66 11.24	4.75 4.75			5.00	1.75 Bore Capaci	2.75	
lub Style B landrel Bore .94 325 Polymeric Sprocket itch 3.268	12	9.66	4.75 4.75	2.2	25	5.00 W/O Key	1.75 Bore Capaci	2.75 ties th Key®	4.5 Weight®
Aub Style B Mandrel Bore .94 I325 Polymeric Sprocket Pitch 3.268 Tooth Face at Pitch Line .81 Aub Style C	12 14 Number of	9.66 11.24 P. D.	4.75 4.75	2.2	25	5.00	1.75 Bore Capaci	2.75	Weight®
Aub Style B Mandrel Bore .94 I325 Polymeric Sprocket Pitch 3.268 Tooth Face at Pitch Line .81 Aub Style C	12 14 Number of	9.66 11.24	4.75 4.75	2.2	25 . B .	5.00 W/O Key	1.75 Bore Capaci	2.75 ties th Key®	
Aub Style B Mandrel Bore .94 1325 Polymeric Sprocket Pitch 3.268 Tooth Face at Pitch Line .81 Aub Style C Mandrel Bore .94	12 14 Number of Teeth 10	9.66 11.24 P. D.	4.75 4.75 0. D. 4.75	2.: Hub [®] L. T 3.(25 . B .	5.00 W/O Key Max.	Bore Capaci Wit	2.75 ties th Key® Max. 3.00	Weight®
Hub Style B Mandrel Bore .94 J325 Polymeric Sprocket Pitch 3.268 Tooth Face at Pitch Line .81 Hub Style C Mandrel Bore .94 J9350 Polymeric Sprocket Pitch 3.50	12 14 Number of Teeth 10 Number of	9.66 11.24 P. D.	4.75 4.75 0. D. 4.75	2.2 Hub [®] L. T	25 . B .	5.00 W/O Key Max.	1.75 Bore Capaci Win Min. 1.50 Bore Capaci	2.75 ties th Key® Max. 3.00	Weight®
Hub Style B Mandrel Bore .94 V325 Polymeric Sprocket Pitch 3.268 Footh Face at Pitch Line .81 Hub Style C Mandrel Bore .94 V9350 Polymeric Sprocket Pitch 3.50 Footh Face at Pitch Line .81 Hub Style C	12 14 Number of Teeth 10	9.66 11.24 P. D. 10.58	4.75 4.75 0. D. 4.75	2.: Hub [®] L. T 3.(25 . B . 00	5.00 W/0 Key Max. 3.75	1.75 Bore Capaci Win Min. 1.50 Bore Capaci	2.75 tites th Key® Max. 3.00 tites	Weight® 5.7

⁰ Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 ⁽²⁾ Contact factory for hub sizes and weights.
 ⁽³⁾ Data without steel hub inserts.
 ⁽³⁾ IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.


DOUBLE-FLANGED POLYMERIC IDLERS


Corrosion resistant Polymeric Double-Flanged Idlers are designed for use with polymeric chains to insure longer system life and quieter operation. The six inch (DF6) and eight inch (DF8) diameter double-flanged idler wheels are manufactured from high-strength, wear-resistant polymeric material with a bronze bushing assembled into each idler. Some of the chains used on these wheels: NH45, NH77, NH78*, NHT78*, N250, N250WS, N325, N348, N9350, N9350WS. DF8 – NH45, NH77, NH78, NHT78, WH78, NH82, WH82, WH260, WH784, WHT78, WHT130, WHT138.

Features

- Made from polymeric and bronze materials that will not rust.
- Bronze bushed so that it can be used on nonrotating shafts as tail wheels, return support rollers, or drive take-up idlers.
- Double tapered flanges to effectively guide the chain into the center of the idler without unnecessary noise and chain wear.
- Engineered polymer reduces noise.
- Simple design means the idler is shaft ready and no machining is required.
- Designed so that two set collars will easily hold the idler in place.
- * Must machine "D" Dimension to 3 inches.

NOTE: For chains with extended rivets, single-flanged Polymeric idlers are available upon request.

Dimensions are in inches. Weights are in pounds.

Diameter				Length Thru	l l	Nidth		
Double Flanged Idler Wheels	Inside	Outside	Hub	Bore	Inside	Outside	Max. Bore	Weight [®]
	А	В	C	(L. T. B.)	D	E		
6 D.F. Wheel	6	7.25	3.25	2.50	2.69	3.50	1.44	2.8
8 D.F. Wheel	8	9.50	4.25	3.00	3.63	4.50	2.44	4.5

① Approx. – Not Bushed Wheels are normally stocked.

BUCKETS **ELEVATOR BUCKETS**

Rexnord combined three styles of elevator buckets into one series designated "Mill Duty". The section thickness of the cast bucket has been increased to accommodate those applications requiring old style AA-RB buckets. Rex[®] CAST and POLYMERIC buckets are available in two configurations, Mill Duty and AC Style.

Rex buckets were designed with over sixty years of experience in the design and manufacturing of bucket elevators. Rex buckets are designed to fill, carry and discharge material efficiently without trouble.

POLYMERIC BUCKETS

The Rex light-weight, corrosion resistant, non-metallic bucket was designed, developed and tested to meet industry's demands. There are numerous advantages and benefits in the use of these buckets; some are noted here:

- 1. Increases Belt (Chain) Life by double or better. The polymeric weighs one-fourth as much as a cast bucket, significantly reducing belt (chain) tension. For example, an 80-foot high elevator uses about 110-16 x 8 buckets weighing a total of 2,722 pounds. The use of polymeric buckets reduces this dead weight to 650 pounds, resulting in greater belt (chain) life.
- 2. Excellent Wear Resistance. After many years on the market and tens of thousands of buckets sold, the Rex polymeric bucket has proven itself highly wear resistant. Also, the heavy front lip will help give the longest possible wear life.
- 3. Corrosion Resistant. It won't "rust away" your profits. Rex polymeric buckets are produced from a very stable material that will not break down under most operating conditions and materials.
- Good Discharge. A clean, smooth, low friction 4. surface allows bulk materials to discharge efficiently - less backlegging, more capacity, less recycled material, less elevator boot flooding.

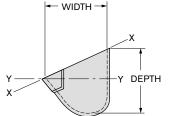
Guide to Selection Scale: 1 – Excellent; 2 – Very Good; 3 – Good							
Property		Bucket Material					
rioperty	Cast	Polymeric	Fabricated				
Strength	1	3	2				
Weight	3	1	2				
Corrosion Resistance	2	1	3				
Clean Discharge	3	1	2				
Abrasion Resistance	1	3	2				
Cost	2	3	1				

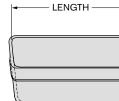
- 5. Strength has been designed into the bucket at strategic locations for the best impact resistance, resulting in fewer broken buckets. Yet, if there is a major obstruction in the elevator, the bucket will give way, rather than destroying the belt or chain.
- 6. Food Service Buckets are available and made from material approved by the USDA and FDA for direct contact with meat and food products prepared under federal inspection. Food service buckets are colored white.
- 7. Temperature Range from -40° to $+250^{\circ}$ F allows this bucket to be used in most applications.
- 8. Designed by elevator manufacturer for elevator user. This bucket was designed by Rexnord - the bucket manufacturer with over half a century of bucket elevator experience. The bucket is designed to fill, carry and discharge material efficiently without trouble.
- 9. Applications: Foundry sand, limestone, barite ore, granulated triple phosphate, glass cullet, soda ash, clay bauxite ore, potash, fertilizer, sand, gravel and cement products are only a few of the hundreds of applications in which Rex polymeric buckets are currently being used.
- 10. Dimensionally Interchangeable with cast buckets so that the polymeric bucket will fit into the attachment hole punching presently used.
- 11. Samples: Request samples of this economical, durable bucket for your elevator - it will prove itself in all respects.

CAUTION **POLYMERIC BUCKETS**

Because of an inherent ability to retain a static charge, an electrical spark may be produced by this bucket. Therefore, it should not be used in a combustible environment.

BUCKETS **ELEVATOR BUCKETS**


Cast - Mill Duty



Polymeric - Mill Duty

Cast - AC Style

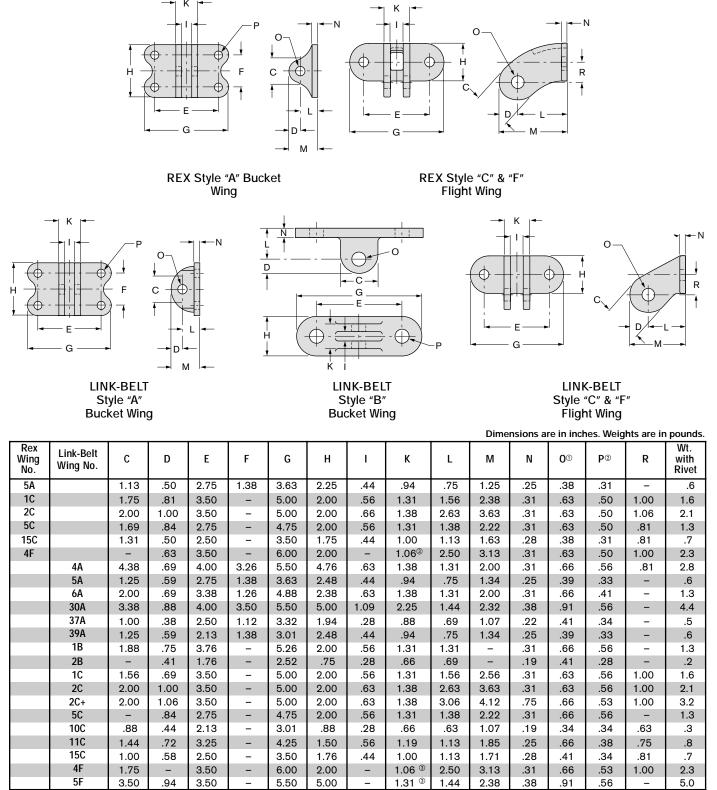
NOTE: AC style buckets include vent holes to allow air to escape (cast and polymeric).

Polymeric – AC Style

						Dimensions a	re in inches. Weig	hts are in pounds	
Longth	Width	Donth	Back Th	ickness	Capacity	– Cu. Ft.	Weight		
Length	Length Width	Depth	Cast	Polymeric	(X-X)	(Y-Y)	Cast	Polymeric ¹	
				MILL DUTY					
4	2.75	3.00	.10	-	.011	.007	1.3	-	
5	3.50	3.75	.20	-	.020	.013	3.2	-	
6	4.00	4.25	.20	.28	.029	.021	4.0	.6	
7	4.50	5.00	.20	_	.050	.030	5.5	-	
8	5.00	5.50	.20	.28	.07	.044	7.1	1.2	
10	6.00	6.25	.20	.38	.12	.081	10	1.8	
12	6.00	6.25	.30	_	.14	.087	20	-	
12	7.00	7.25	.30	.41	.19	.12	17	2.4	
14	7.00	7.25	.30	.41	.23	.14	18	2.8	
14	8.00	8.50	.32	-	.30	.16	24	-	
16	7.00	7.25	.32	-	.27	.16	28	-	
16	8.00	8.50	.32	.41	.34	.21	30	4.2	
18	8.00	8.50	.32	.41	.39	.23	39	5.1	
18	10.00	10.50	.36	.50	.53	.40	43	6.7	
20	8.00	8.50	.32	_	.42	.28	48	-	
24	8.00	8.50	.38	-	-	-	-	-	
				AC STYLE					
12	8.00	8.50	.38	.59	.28	.21	25	4.6	
16	8.00	8.50	.38	.59	.38	.28	35	7.0	
18	10.00	10.50	.44	.50	.62	.49	58	10.5	
24	10.00	10.50	.44	.50	.85	.68	78	13.8	

^① Mill Duty polymeric buckets are made out of impact - modified nylon. AC style polymeric buckets are made out of polyurethane.

For FABRICATED STEEL **BUCKETS** please contact Rexnord's Conveying Equipment Division.

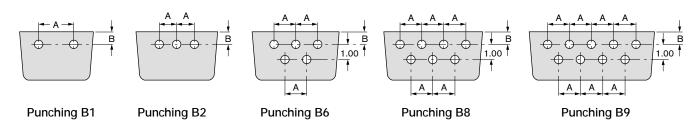

CAUTION **POLYMERIC BUCKETS**

Because of an inherent ability to retain a static charge, an electrical spark may be produced by this bucket. Therefore, it should not be used in a combustible environment.

BUCKETS

BUCKET AND FLIGHT WINGS

These wings are usually used with an "A" attachment.


^① Swivel-rivet diameters.

² Bucket-or-flight-bolt diameters.

³ This wing has solid lug - no clevis.

101

BUCKETS **PUNCHING FOR USE WITH BELTS**

The bucket punching dimensions shown are Manufacturers' Standard for mill duty style and continuous style buckets.

Belt width should exceed bucket length by one inch for buckets up to 16 inches, and by two inches for buckets 16 inches or over.

Bolt diameters for all buckets are 1/4 inch for buckets up to 10 inches, 5/16 inch for buckets 10 inches or over.

Minimum length of bolts, of attaching buckets to belts, is determined as follows: Add (1) thickness of belt body (all ¹/₆ inch per ply), (2) total thickness of rubber covers, (3) thickness of rubber washer (allow 1/4 inch), (4) thickness of bucket back, and (5) thickness of nut (assumed equal to bolt diameter).

A rubber washer is used one each bolt, between bucket and belt, to act as a cushion when bucket passes around the pulleys, and to provide open spaces which prevent fine material from accumulating or packing between bucket and belt. Tight-fitting bolts prevent moisture from working into belt.

Bucket Length	A	BD	Bucket Length	A	B	Bucket Length	Α	B①	Bucket Length	А	B①	Bucket Length	А	B①
P	UNCHING E	31	P	UNCHING E	32	P	UNCHING E	36	Pl	JNCHING I	38	P	UNCHING	B9
4	2 ⁵ /16	3/4	7	2 ¹ / ₂	1	8	3	7/ ₈	14	4	7/8	20	4	7/8
5	3 ³ /16	1	8	3	1	9	3	7/8	16	41/2	7/8	22	4 ¹ /2	7/8
6	43/8	1				10	3 ¹ / ₂	7/8	18	5	7/8	24	5	7/8
						11	4	⁷ /8						
						12	4 ¹ /2	⁷ /8	1.00	1.13	1.63	.28	.38	.31

¹ For continuous style buckets, centerline for single row of holes, or centerline between double row, will be at mid-depth of bucket.

SELECTION OF CHAINS

The following sections of this catalog are devoted to presenting comprehensive selection procedures for drive, conveyor, and elevator chains. The information included provides economical selections, yet assures the correct choice of components which can withstand the rigors of the application. Because there is an almost unlimited variety of component applications, these selections are meant only to serve as a guide when designing new systems. On existing installations, the selection guides will prove helpful in determining whether a component in use is the most economical choice. They will also serve to guide the upgrading of present installations where service life is not satisfactory.

Rexnord Selection Services

Rexnord application engineers are available to assist in the selection of chains and components. Gather all pertinent technical information regarding the application, and call us at (414) 643-3000 or fax us at (414) 643-2609.

Chain Ratings

As a result of extensive testing and field experience, load ratings have been established for **drive** chains based on **wear durability** and **fatigue strength** to provide 15,000 hours chain life under the ideal conditions of clean environment, proper installation, maintenance, and lubrication. Drive chains are selected in the tables by horsepower and speed.

All other types of metal chains should be selected based on working load and chain speed limitations, with due regard for experience in similar application environments. A chain's working load is the maximum load (chain pull) a chain can withstand without a shortened life due to accelerated wear or breakage. Polymeric (non-metallic) chains have unique selection considerations which are covered in the Polymeric section of this catalog.

Rex[®] and Link-Belt[®] chains are also rated according to the Standards and Policies and Procedure Recordings of the American Chain Association. Most notably, we publish a **minimum ultimate tensile strength (MUTS)**. This represents the minimum force at which an unused, undamaged chain could fail when subjected to a single tensile loading test.

It should be noted that chains **should not** be selected based on ultimate strength ratings. Design considerations chosen to maximize ultimate strengths frequently are not consistent with obtaining the best possible resistance to the modes of failure that most often limit a chain's life (e.g. low-cycle fatigue, corrosion induced embrittlement, etc.). Chains that sacrifice some degree of tensile strength to obtain greater ductility, toughness, and resistance to embrittling conditions are far better suited to most application environments.

DRIVE CHAIN SELECTION

Rex and Link-Belt drive chains of all steel construction are ruggedly built, dependable chains for service in the **slow to moderate speed ranges and heavy loads**. Since they operate over cast sprockets with hardened teeth or fabricated steel sprockets, and are long in pitch compared to ANSI roller chain, **they are a more economical choice than other chains**.

Under exposed conditions, or where dust and dirt are present, the designed, built-in clearance between the working parts of our drive chains make them very suitable for service. Conveyor and elevator drives are ideal for Rex and Link-Belt drive chains since they withstand heavy shock loads and exposed operating conditions.

Rexnord's 3100 Series of steel chain is designed to have advantages and features of our other steel chains and to be a replacement for ANSI roller chains.

Rex and Link-Belt drive chains are not designed for attachments. See pages 10 to 29 for chains with attachments. **GENERAL DESIGN CONSIDERATIONS Basis for Selection**

Selections are based on laboratory tested and field proven horsepower capacity and speed data rather than "working loads." The horsepower capacity ratings have been developed on the basis of fatigue strength and wear capacity of the chain components. Under ideal conditions of clean environment, proper installation, maintenance, and lubrication, the selections listed are intended to provide 15,000 hours chain life for 100 pitch strands.

More economical chain selections are available. For applications where a a chain life of less than 15,000 hours is acceptable, contact your Rexnord representative.

Economy

When selecting a chain drive, consider all elements, but use only those that are required for the safe and successful operation of the drive application.

In evaluating the economy of a chain-sprocket drive system, consider the overall cost of the chain and sprockets in the system and not merely the cost per foot of chain.

Chain

The best chain and sprocket combination is selected in the **12-tooth** column. Occasionally, the same chain will appear under the three sprocket selections; that is 9T, 12T, and 15T. This same chain is the most **economical** choice of all the other chains that were considered.

Selection for 9-tooth sprockets are limited, in some cases, by commercial steel shafting. Where alloy shafting is required, see Rexnord for recommendations.

SPROCKETS

Rex[®] sprockets are designed with full attention to the requirements for proper chain-sprocket interaction. For each size and type of sprocket, Rexnord Engineers have selected the proper tooth pressure angle, pitch-line-clearance, bottom diameter and tooth pocket radius for maximum service.

Fabricated steel sprockets are recommended as the preferred choice for all chain drives. Cast sprockets with hardened teeth are also available for use on slower drives.

Largest Keyseated Bore

The "largest keyseated bore" shown in the drive chain selection tables (pages 110-118), indicates the largest shaft that may be used with the sprocket hub selected. Sprocket hubs will deliver the HP and RPM used for the selection but are not designed for the torque that could be delivered by the largest keyseated shaft shown in the table.

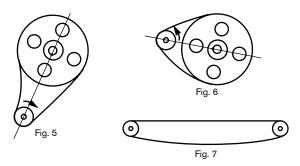
If a larger bore than shown is required, select a larger sprocket. The largest bore is selected from the hub size table for the material shown, either Cast Sprockets with hardened teeth or Fabricated Steel, and defines the largest hub diameter which will fit without interfering with the chain.

Chain Slack

For best operating service, allow a sag in the slack strand equal to 3% of sprocket centers.

DRIVE ARRANGEMENTS

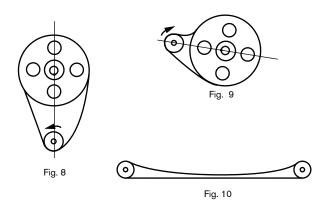
Relative position of sprockets in drives should receive careful consideration. Satisfactory operation can be secured with the centerline of the drive at any angle to the horizontal, if proper consideration is given. Certain arrangements require less attention and care than others are, therefore, less apt to cause trouble. Various arrangements are illustrated in the diagrams. The direction of rotation of the drive sprocket is indicated.


Best Arrangements

Arrangements considered good practice are illustrated in Figs. 1, 2, 3, and 4. The direction of rotation of the drive sprockets in Figs. 1 and 4 can be reversed.

Other Acceptable Arrangements

If none of the above arrangements can be followed, an attempt should be made to use an arrangement as illustrated in Figs. 5, 6, and 7.


When the large sprocket is directly above the small sprocket, Fig. 8, a drive cannot operate with much chain slack. As the chain wears, shaft-center distance must be adjusted or an idler be placed against the outside of the slack strand (near the small sprocket) to adjust slack and keep the chain in proper contact with the small sprocket.

With the drive slightly inclined, Fig. 5, less care will be required, because the weight of the slack chain strand helps to maintain better contact between the chain and the sprockets.

Where center distances are short, or drives nearly horizontal, the slack should be in the bottom strand, especially where take-up adjustment is limited, Fig. 6 rather than Fig. 9. An accumulation of slack in the top strand may allow the chain to be pinched between the sprockets, Fig. 9.

When small sprockets are used on horizontal drives, it is better to have the slack strand on the bottom, Fig. 7, rather than on the top, Fig. 10. Otherwise, with the appreciable amount of slack, the strands may strike each other.

Least Recommended Arrangements

DRIVE CHAIN SELECTION

Selecting a Chain Using Selection Tables

- Step 1. Determine Horsepower... Motor or actual.
- Step 2. Select Service Factor (SF)... See Table 1, pages 108-109.
- **Step 3. Calculate Design Horsepower (DHP).** DHP = SF x HP.
- Step 4. Determine Speed... DriveR Shaft RPM.
- Step 5. Select the chains in the 12T. column from Table 2, pages 110-118. *Example: 20 HP; 70 RPM; 1.25 SF: (DHP = HP)*

RPM		25 DHP								
Driver	Drive	er Sproc	ket – No.	of Teet	h – Hub	Size Le	tter	Type of		
Sprocket	9T		9T 12T		15T		Hub Letter	Lub		
80-90	R1037	23/14	1030	5 ¹⁵ /16	R3112	4 ¹⁵ /16	1	٣		
00-70	1037	3-710	3160	3 ³ /16	3160	4 ⁷ / ₁₆				
70-80	R1037	23/14	1030	5 ¹⁵ /16	R514	5 ¹⁵ /16				
70-80	K1037	3-/16	3180	3 ¹¹ /16	3160	4 ⁷ /16		(
60-70	R1037	215/14	R1033	5 ¹⁵ /16	1030	7	1	<u>Aleccell</u>		
00-70	R1037	R1037	J 110	3180	3 ¹¹ /16	3160	4 ⁷ /16	5		

Note: If the RPM appears in two rows in the RPM column of the Selection Table (i.e. 70 RPM appears in 60-70 and 70-80 RPM rows) use the faster speed range for greatest economy. Also, see Step 6 for alternate selection.

12-Tooth Sprocket Selection Advantages

- 1. Most economical "Power Package" of chain and sprockets.
- 2. Quiet operation.
- 3. Increased wear life approximately 70% greater chain wear life than a 9-tooth selection.
- 4. Best for space available and system economy.
- 5. Offers large speed ratio possibilities.
- **Step 6. Choose the proper drive...** When an alternative is listed for a given selection (i.e. 3100 Series Chain is listed) choose the better drive based on the following considerations:
 - **a.** Cost Evaluate the total cost of each drive package: chain and sprockets.
 - **b. Space Limitations** The smaller pitch chain (usually 3100 Series) should provide the drive requirements in less space.
 - **c. Availability** If delivery is crucial, consult Rexnord to see which of the two chains is more readily available.
 - d. ANSI Replacement The 3100 Series Chains replace corresponding ANSI roller chains up to 350 RPM. This series chain operates over the same sprockets.
 - e. Shaft Size The larger pitch chain of the

two will probably have to be used when the driver shaft size exceeds the maximum bore listed for the smaller chain.

- **f.** Noise Smaller pitch chain operating over cut tooth sprockets will provide quieter and smoother operation.
- **Step 7.** For alternates to the 12-Tooth Sprocket Selection, see the 9- or 15-Tooth Sprocket Selections.

Check:

Space – Will sprocket and chain fit in the allowable space? For pitch diameter, see table on page 139.

Generally minimum space required for chain and sprocket = 1.2 x Pitch Diameter.

Speed Ratio = <u>DriveR Shaft RPM</u> DriveN Shaft RPM

Availability – Is DriveN sprocket available for required speed ratio?

Select a 9T Sprocket where greater **speed ratios** and **minimum space** are required. The majority of 9-tooth selections will result in a space advantage.

9-Tooth Sprocket Selection						
Advantages	Limitations					
1. Greater Speed Ratios 2.	 Generally higher cost Greater noise Maximum wear Less smooth running, more pulsations. (See Chordal Action Table on 					
Generally, require less space that the 12T sprocket selection	next page.)					

Select a 15T Sprocket where **long centers** are necessary and space is not a limiting factor...

where maximum **speed ratios** are not required... or where **quiet operation** is desired.

15-Tooth Sprocket Selection								
Advantages	Limitations							
 Most economical for long centers. Least wear – approximately 150% greater chain wear life than the 9T. selection. Least noise 	 More space required. Fewer speed ratio possibilities. More costly than minimum center distances. More chain required in the system. 							

Step 8. Determine number of teeth on the DriveN sprocket, minimum center distance and chain length.

a. Multiply number of teeth on DriveR by desired speed ratio (Step 7) to determine number of teeth on DriveN sprocket.b. Refer to pages 140-141 for minimum center distance and chain length calculations.

Step 9. Select DriveR and DriveN Sprocket Hubs and Material.

a. DriveR Sprocket and Hub

The sprocket hub size letter in the selection table identifies the minimum "Torque Rated" hub that will transmit the desired horsepower. Refer to the example shown in Step 5 on page 105. For this example, the hub is specified as letter I. The table on page 81 recommends a hub size of 4.5" by 2.0" (for a solid sprocket). The table also identifies the torque being transmitted, in this case up to 23,000 in-lbs. The hub size and bore diameter listed are recommended based on the limitations of the typical **shaft** material having a maximum torsion shear stress of 6,000 psi. If the shaft has already been determined, use the bore size column to select the appropriate hub dimensions.

Note: Fabricated steel sprockets with induction hardened teeth are the recommended first choice for drive applications but, if a cast sprocket is desired, be sure to check availability of the cast pattern as listed beginning on page 83. If the sprocket unit number is not listed, a pattern is not available. The table gives stocked hub dimensions. **Cast to order** sprocket hubs would be sized per page 81.

b. DriveN Sprocket and Hub

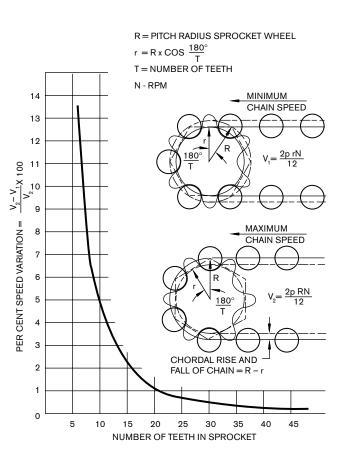
The proper DriveN sprocket hub can be determined from the following:

Driven Hub Torque = Speed Ratio x Driver Hub Torque

The speed ratio and driver torque were determined in Step 8b and Step 9a. The DriveN sprocket hub is selected based on the driven hub torque and using the tables on page 81.

Referring to the example above, the driver hub was size I and the torque transmitted was 23,000 in-lbs. If the speed ratio were 2 to 1, we would be transmitting 46,000 in.-lbs. and would require a size L hub, (5.25 by 3) or larger.

c. Largest Keyseated Bore


The "Largest Keyseated Bore" next to each chain selection indicates the largest shaft that can be used with the sprocket, sprocket material, and hub size letter selected.

- **Step 10.** Use the recommended lubrication method as shown in Table 2, pages 110-118. For the recommended lubricant, see page 135.
 - Note: For example of selection, see page 107.

Chordal Action

The rise and fall of each pitch of chain as it engages a sprocket is termed "chordal action" and causes repeated chain speed variations (pulsations). As illustrated by the chart below, chordal action and speed variation decreases as the number of teeth in the small sprocket is increased, and becomes negligible when 21 or more teeth are used. For example, the variation between minimum and maximum chain speed due to chordal action is 13% for a 6-tooth sprocket, 4% for an 11-tooth sprocket, and 1% for a 21-tooth sprocket. Where smooth operation is essential, use as many teeth as possible in the small sprocket.

Variation in Chain Speed Due to Chordal Action

DRIVE CHAIN SELECTION

Selecting a Chain Using Selection Tables Drive Chain Selection Example:

A single roll rock crusher is to be operated at 44 RPM driven by a 50 HP engine. The speed reducer has an output shaft of 3.94", operating at 90 RPM. The crusher shaft is 5.94". The crusher will operate 8 hours per day. DriveR sprocket space restriction is 16".

Step 1. Horsepower

Motor or actual: 50 HP

Step 2. Service Factor

Type of Application: Crusher Service Factor: (See Table 1 and "Converted Service Factor" chart on page 108.) 10 HR, Motor drive = 1.75 SF 10 HR, Engine driven = 2.0 SF

Step 3. Design Horsepower

 $DHP = 50 HP \ge 2.0 SF = 100 DHP$

Step 4. Speed and Shaft Size

Speed and diameter of DriveR shaft: 90 RPM; 3.94" Speed and diameter of DriveN shaft: 44 RPM; 6.94"

Step 5. Drive Chain and Driver Sprocket

A chain is selected for a 12-tooth DriveR sprocket at 100 DHP, 90 RPM (see Table 2 for selection).

RX238 Chain; 12-tooth DriveR Sprocket

Step 6. Choice of Drives

A choice must be made between two drives when both appear. However, at this rating, there is only one chain available – RX238.

Step 7. Space and Speed Ratio

Check space available for DriveR sprocket: Using the pitch diameter table on page 140 –

- a. A 12-tooth sprocket has a pitch diameter equivalent to 3.8637 pitches. The diameter in inches would be 3.8637 x the pitch (3.5" for RX238) = 13.52".
- b. The minimum space required = 1.2 x 13.52" = 16.23" which is larger than the space available. Repeat steps 5 and 6 using the 9-tooth column in the selection tables.

c. For a 9-tooth sprocket R0635 would be selected. The minimum space would be 1.2 x 13.16" = 15.79" which meets the space restriction.

Determine Speed Ratio:

Ratio = $\frac{\text{DriveR Shaft RPM}}{\text{DriveN Shaft RPM}} = \frac{90 \text{ RPM}}{44 \text{ RPM}} = 2.05 \text{ to } 1$

Step 8. Drive Sprocket and Center Distance and

Change Length

The nearest ratio to 2.05 to 1 is 2.00, with an 18-tooth DriveN sprocket. The minimum center distance is 2.06 feet and 9.38 feet of chain is required.

Determine the minimum center distance per the formula on page 140:

Min. CDp (18+9)/6 + 1 = 5.5 pitches $\frac{18+9+1}{6} = 55$

Min. CD" $\frac{5.5 \ge 4.5"}{12} = 2.06$ feet

Determine the approximate chain length per the formula on page 141:

LP = 2(5.5) + (18 + 9)/2 + (0.0258 x (18-9)² /5.5) = 24.9 pitches 25 pitches is the minimum (rounded up) L" = $\frac{25 x 4.5}{12}$ = 9.38 feet

Step 9. Drive and Drive Sprocket Material and Hub Selection

For the selection table used in Step 7, the required hub letter is N. Per the table on page 79 an N style hub is rated for 70,000 inch pounds and has a diameter of 6" and a length of 3". The plate thickness is 1.75". The total length through bore is 4.75" (3" + 1.75"). Since the sprocket is to be mounted on a reducer, it is recommended that the hub style is offset hubs, one side flush. This would need to be specified as such on the order.

The drive hub will need to handle 140,000 inch pounds since the speed ratio is 2 to 1. Per the table on page 79 a size P hub is required. This hub would be 8.75" in diameter and the length through bore would be 10.50".

Step 10.Lubrication

The type of lubrication for this drive selection, as shown in Selection Table 2, is oil bath.

Service Factors

Use the table to find the application or the closest similar application. Note whether the operating time will be up to 10 hours a day or from 10 hours to 24 hours a day. In the column to the right of the application, select the Service Factor. This Service Factor determines the Design Horsepower for use in the Chain Selection Table.

Occasional and Intermittent Service or Engine Driven Applications

The Service Factors listed in Table 1 are for electric motor drives and normal conditions. For multi-cylinder engine driven applications and all applications operating intermittently up to 3 hours per day, use the values shown in the Converted Service Factors table. First, find the Service Factor of the same application operating 10 hours per day in Table 1. Next, in the first column of the chart below, find this same service factor in bold face type. Then, to the right under the desired hours service and prime mover locate the Converted Service Factor. For example, in the segment of Table 1 showing service factors by application on page 109, the Service Factor for a uniformly loaded belt conveyor at 10 hours a day is 1.00. From the chart, for the same application, the following are the service factors for various conditions:

- 1. Engine driven 10 hours per day; use 1.25 Service Factor.
- 2. Engine driven 3 hours intermittently; use 1.00 Service Factor.
- 3. Motor driven 3 hours intermittently; use .80 Service Factor.

	Co	onverted Se	rvice Factors											
10 Hrs. I	10 Hrs. Per Day 24 Hrs. Per Day 3 Hrs Per Day ^D													
Motor	Engine Motor Engine Motor Engine													
1.00	1.25	1.25	1.50	.80	1.00									
1.25	1.50	1.50	1.75	1.00	1.25									
1.75	2.00	2.00	2.25	1.50	1.75									

 $^{\textcircled{0}}$ For applications operating less than 3 hours per day and applications driven by single cylinder engines, refer to Factory for other service factors.

⁽²⁾ These service factors are based on the assumption that the system is free from serious critical and torsional vibrations and that maximum momentary or starting loads do not exceed 200% of the normal load.

Note: For extremely wet or abrasive environments add 0.25 to the applicable service factor.

TABLE 1 SERVICE FACTORS LISTED BY INDUSTRY AGMA Recommendations... Factors are minimum and normal conditions are assumed

	Ser Fac				vice ctor		Ser Fa	vice ctor			rvice Ictor
Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours
Brewing & Distilling			Lumber Industry			Paper Mills			Rubber Industry		
Bottling Machinery	1.00	1.25	Barkers-Hydraulic Mechanical	1.25	1.50	Agitators (Mixers)	1.25	1.50	Calender	1.25	1.50
Brew Kettles Continuous	1.00	1.25	Burner Conveyor	1.25	1.50	Barket Auxiliaries, Hydraulic	1.25	1.50	Mixer	-	2.00
Can Filling Machinery	1.00	1.25	Chain & Drag Saw	1.50	1.75	Barker Mechanical	1.25	1.50	Mill (2 or more)	-	1.50
Cookers Continuous	1.00	1.25	Chain & Craneway Transfer	1.50	1.75	Barking Drum	1.75	2.00	Sheeter	-	1.50
Mash Tub Continuous	1.00	1.25	Debarking Drum	1.75	2.00	Beater & Pulper	1.25	1.50	Tire Building Machine	1	1
Scale Hopper Frequent Start	1.25	1.50	Edger & Gang Feed	1.25	1.50	Bleacher	1.00	1.25	Tire & Tube Press Opener	1	1
Clay Working Industry			Green Chain	1.50	1.75	Calendars	1.25	1.50	Tubers & Strainers	-	1.50
Brick Press	1.75	2.00	Line Rolls, Log Deck, Log Haul			Calendars, Super	1.75	2.00	Sewage Disposal		
Briquette Machine	1.75	2.00	(Incline & Well Type)	1.75	2.00	Converting Machine (Except			Bar Screws	1.00	1.25
Clay Working Machinery	1.25	1.50	Log Turning Device	1.75	2.00	Cutters, Platters)	1.25	1.50	Chemical Feeders	1.00	1.25
Pug Mill	1.25	1.50	Main Log Čonveyor	1.75	2.00	Conveyor	1.00	1.25	Collectors	1.00	1.25
Distilling (See Brewing)			Off Bearing Rolls	1.75	2.00	Couch	1.25	1.50	Dewatering Screens	1.25	1.50
Dredges			Planer Feed & Floor Chains	1.25	2.50	Cutters, Platters	1.75	2.00	Grit Collectors	1.00	1.25
Cable Reels	1.25	1.50	Planer Tilting Hoist	1.50	1.50	Cylinder	1.25	1.50	Scum Breakers	1.25	1.50
Conveyors	1.25	1.50	Re-Saw Merry-Go-Round Conv	1.25	1.50	Dryer	1.25	1.50	Slow or Rapid Mixer	1.25	1.50
Cutter Head Drives	1.75	2.00	Roll Cases, Slab Conveyor	1.75	2.00	Felt Stretcher	1.25	1.50	Sludge Collectors	1.00	1.25
Jig Drives	1.75	2.00	Small Waste Conveyor - Belt	1.00	1.25	Felt Whipper	1.75	2.00	Thickeners	1.25	1.50
Maneuvering Winches	1.25	1.50	Small Waste Conveyor - Chain	1.25	1.50	Jordan	1.75	2.00	Vacuum Filters	1.25	1.50
Pumps	1.25	1.50	Sorting Table	1.25	1.50	Log Haul	1.75	2.00	Textile Industry		
Screen Drive	1.75	2.00	Tipple Hoist Conv. & Drive	1.25	1.50	Press	1.00	1.25	Batcher, Calendar	1.25	1.50
Stackers	1.25	1.50	Transfer Conveyor & Rolls	1.25	1.50	Pulp Machine	1.25	1.50	Card Machine	1.25	1.50
Utility Winches	1.25	1.50	Tray Drive, Trimmer Feed & Waste			Reel	1.25	1.50	Cloth Finishing Machine	1.25	1.50
Food Industry			Conveyor	1.25	1.50	Stock Chest	1.25	1.50	Dry Cans, Dryers	1.25	1.50
Beet Slicer	1.25	1.50	Oil Industry			Suction Roll	1.00	1.25	Dyeing Machinery	1.25	1.50
Bottling Machine, Can Filling	1.25	1.25	Chiller	1.25	1.50	Washer & Thickeners	1.25	1.50	Knitting Machine	1	1
Cooker	1.00	1.25	Oil Well Pumping	1	1	Winders	1.00	1.25	Loom, Mangle, Napper Pads	1.25	1.50
Dough Mixer, Meat Grinder	1.25	1.50	Paraffin Filter Pass	1.25	1.50				Range Drives	1	1
5			Rotary Kiln	1.25	1.50				Slashers, Soapers	1.25	1.50
									Spinners	1.25	1.50
				1					Tenter Frames, Washers	1.25	1.50
	1	1							Winders (Except Batchers)	1.25	1.50

Refer to Factory.

Table 1 extracted from AGMA Standard Application Classification for Gearmotors (AGMA 150.02) with the permission of the American Gear Manufacturers Association, One Thomas Circle, Washington 5, D.C.

IGN AND SELECT

TABLE 1

SERVICE FACTORS LISTED BY INDUSTRY

AGMA Recommendations... Factors are minimum and normal conditions are assumed.

A	Serv Fac	vice ctor	Annalise Maria		vice ctor	A		vice ctor	Annelline March		vice ctor
Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours
Agitators			or Fed: Apron, Assembly, Belt		1	Generator (Not Welding)	1.00	1.25	Proportioning	1.25	1.50
Paper Mills (Mixers)	1.25	1.50	Bucket, Chain, Flight, Oven or	1 00	1.05	Welding	① 1.00	1 05	Single Acting, 3 or more Cyl.	1.25	1.50
Pure Liquid (Blade or Prop.) Liquids & Solids	1.00 1.25	1.25 1.50	Screw Conveyors – Heavy Duty, Not	1.00	1.25	Gravity Discharge Elevator Grit Collector (Sewage)	1.00	1.25 1.25	Double Acting, 2 or more Cyl Rotary Gear, Lobe or Vane	1.25 1.00	1.50 1.25
Variable Density Liquids	1.25	1.50	Uniformly Fed: Apron			Hammer Mills	1.00	2.00	Punch Press – Gear Driven	1.75	2.00
Apron Conveyor	1.20	1.50	Assembly, Belt, Bucket, Chain,			Induced Draft Fan	1.25	1.50	Reciprocating Compressor	1.75	2.00
Uniform	1.00	1.25	Flight, Oven or Screw	1.25	1.50	Jordans (Paper)	1.75	2.00	Single Cylinder	1.25	1.50
Heavy Duty	1.25	1.50	Conveyors - Severe Duty:			Kilns (Rotary)	1.25	1.50	Multi-Cylinder	1.75	2.00
Apron Feeder	1.25	1.50	Reciprocating, Shaker	1.75	2.00	Laundry Washers & Tumblers	1.25	1.50	Reciprocating		
Assembly Conveyor			Conveyors Live Rolls	1	1	Line Shafts			Conveyor, Feeder	1.75	2.00
Uniform	1.00	1.25	Cookers (Brewing and Distilling)			Heavy Shock Load	1.75	2.00	Pump, 3 or more Cyl	1.25	1.50
Heavy Duty	1.25	1.50	Food	1.00	1.25	Moderate Shock Load	1.25	1.50	Reel (Paper)	1.25	1.50
Ball Mills	-	1.50	Cooling Tower Fans	1		Uniform Load	1.00	1.25	Rod Mills	-	1.50
	1.75	2.00	Forced Draft		0	Live Roll Conveyors	0	0	Rotary Pumps	1.00	1.25
Barking Drum	1.75	2.00	Induced Draft	1.25	1.50	Lobe Blowers or Compressors	1.25	1.50	Rotary Screen	1.25 ②	1.50 ②
Hydraulic Auxiliaries	1.2	1.50	Couch (Paper)	1.25	1.50	Log Haul (Paper)	1.75	2.00	Rubber Industry		
Mechanical Bar Screen (Sewage)	1.25 1.00	1.50 1.25	Cranes & Hoists Heavy Duty	1.75	2.00	Looms (Textile) Lumber Industry	1.25 ②	1.50 ②	Scale Hopper (Brewing) Screens	1.25	1.50
Batchers (Textile)	1.25	1.25	Cranes & Hoists – Medium	1.75	2.00	Machine Tools		Ĭ	Air Washing	1.00	1.25
Beater & Pulper (Paper)	1.25	1.50	Duty: Reversing, Skip, Travel	1	1	Auxiliary Drives	1.00	1.25	Dewatering	1.00	1.50
Belt Conveyor	1.20	l	or Trolley Motion	1.25	1.50	Bending Roll	1.25	1.50	Rotary Stone or Gravel	1.25	1.50
Uniform	1.00	1.25	Crushers – Ore or Stone	1.75	2.00	Main Drives	1.25	1.50	Traveling Water Intake	1.00	1.25
Heavy Duty	1.25	1.50	Cutters (Paper)	1.75	2.00	Notching Press (Belted)	1	1	Screw Conveyor		
Belt Feeder	1.25	1.50	Cylinder (Paper)	1.25	1.50	Plate Planer	1.75	2.00	Uniform	1.00	1.25
Bending Roll (Mach.)	1.25	1.50	Dewatering Screen			Punch Press (Gear)	1.75	2.00	Heavy Duty or Feeder	1.25	1.50
Bleacher (Paper)	1.00	1.25	(Sewage)	1.25	1.50	Tapping Machines	1.75	2.00	Scum Breaker (Sewage)	1.25	1.50
Blowers			Disc Feeder	1.00	1.25	Mangle (Textile)	1.25	1.50	Service Elevator Hand Lift	1.75	-
Centrifugal	1.00	1.25	Distilling	2	2	Man Lifts (Elevator)	1	1	Sewage Disposal	2	2
Lobe	1.25	1.50	Double Action Pump			Mash Tubs (Brewing)	1.00	1.25	Shaker Conveyor	1.75	2.00
Vane	1.00	1.25	2 or more Cylinders	1.25	1.50	Meat Grinder (Food)	1.25	1.50	Sheeter (Rubber)	-	1.50
Bottling Machinery	1.00	1.25	Single Cylinder	1	1	Metal Mills			Single Action Pump	1	
Brewing	2	2	Dough Mixer (Food)	1.25	1.50	Draw Bench Carriage	1.25	1.50	1 or 2 Cylinder		0
Brick Press (Clay Working)	1.75	2.00	Draw Bench	1.05	1 50	Draw Bench Main Drive	1.25	1.50	3 or More	1.25 ①	1.50 ①
Briquette Machine (Clay Working)	1.75	2.00	Carriage Main Drive	1.25 1.25	1.50 1.50	Forming Machine Slitters	1.75 1.25	2.00 1.50	Single Cylinder Pump Skip Hoist	1.25	1.50
Bucket	1.75	2.00	Dredges	2	2	Table Conveyors Non-Rev.	1.25	1.50	Slab Pusher	1.25	1.50
Conveyor Uniform	1.00	1.25	Dyeing Machine (Textile)	1.25	1.50	Wire Drawing of Flattening	1.25	1.50	Slitters	1.25	1.50
Conveyor Heavy Duty	1.25	1.50	Dryers (Paper)	1.25	1.50	Wire Winding	1.25	1.50	Sludge Collector	1.20	1.00
Elevator Continuous	1.00	1.25	Dryers & coolers			Mills Rotary			(Sewage)	1.00	1.25
Elevator Uniform Load	1.00	1.25	(Mills Rotary)	-	1.50	Ball	1.75	2.00	Soapers (Textile)	1.25	1.50
Elevator Heavy Duty	1.25	1.50	Elevators			Cement Kilns	1	1	Spinners (Textile)	1.25	1.50
Calenders			Bucket Uniform Load	1.00	1.25	Coolers, Dryers, Kilns	1.25	1.50	Steering Gear	1.25	1.50
(Paper)	1.25	1.50	Bucket Heavy Load	1.25	1.50	Pebble, Rod, Tumbling Barrels	1.75	2.00	Stock Chest (Paper)	1.25	1.50
Super (Paper)	1.75	2.00	Bucket Continuous	1.00	1.25	Mine Fan	1.25	1.50	Stokers	1.00	1.25
(Rubber) (Textile)	1.25	1.50	Centrifugal Discharge	1.00	1.25	Mixers			Stone Crushers	1.75	2.00
Cane Knives	-	1.50	Escalators	1.00	1.25	Concrete (Cont)	1.25	1.50	Suction Roll (Paper)	1.00	1.25
Can Filling Machines	1.00	1.25	Freight	1.25	1.50	Concrete (Inter)	1.25	1.50	Table Conveyor	4.05	4.50
Card Machine (Textile) Car Dumpers	1.25 1.75	1.50 2.00	Gravity Discharge Man Lift, Passenger	1.00 ①	1.25 ①	Constant Density	1.00	1.25 1.50	Non-Reversing Tapping Machines	1.25 -	1.50 2.00
Car Dumpers	1.75	1.50	Service Hand Lift	1.75	_	Variable Density Rubber	1.25	2.00	Tapping Machines	1	2.00
Cement Kilns	1.20	1.50	Escalators	1.00	1.25	Sewage	- 1.25	1.50	(Textile)	1.25	1.50
Centrifugal		1 [·]	Fans	1	1	Nappers (Textile)	1.25	1.50	Textile Industry	2	2
Blowers, Compressors,		I	Centrifugal	1.00	1.25	Notching Press	1		Thickeners (Sewage)	1.25	1.50
Discharge Elevators, Fans		I	Cooling Tower Induced Dr	1.25	1.50	Belt Driven	1.00	1.25	Tire Building Machine	1	1
or Pumps	1.00	1.25	Cooling Tower - Forced Dr	1	1	Oil Industry	2	2	Tire & Tube Press Opener	1	1
Chain Conveyor		I	Induced Draft	1.25	1.50	Ore Crusher	1.75	2.00	Travel Motion (Crane)	1.25	1.50
	1.00	1.25	Large Industrial	1.25	1.50		1.00	1.25	Trolley Motion (Crane)	1.25	1.50
Heavy Duty	1.25	1.50	Large (Mine, etc.)	1.25	1.50	Heavy	1.25	1.50	Tumbling Barrels	1.75	2.00
Chemical Feeder (Sewage)	1.00	1.25	Light (Small Diameter)	1.00	1.25	Paper Mill	2	2	Vacuum Filters		
Clarifiers	1.00	1.25	Feeders	1.05	1.50	Passenger Elevator	1	1 50	(Sewage)	1.25	1.50
Classifiers	1.25 ②	1.50 ②	Apron or Belt	1.25	1.50	Pebble Mills	-	1.50	Vane Blower	1.00	1.25
Clay Working Collectors (Sewage)	1.00	1.25	Disc Reciprocating	1.00 1.75	1.25 2.00	Planer (Reversing) Presses (Paper)	1.75 1.00	2.00 1.25	Washers and Thickeners (Paper)	1.25	1.50
Compressors	1.00	1.20	Reciprocating	1.75	1.50	(Printing)	1.00	1.25	Winches, Maneuvering	1.20	1.50
Centrifugal	1.00	1.25	Felt	1.20	1.00	Propeller Type Agitator	1.00	1.20	(Dredge)	1.25	1.50
Lobe, Recipr. Multi-Cylinder	1.25	1.20	Stretcher (Paper)	1.25	1.50	(Pure Liquid)	1.00	1.25	Winders	1.20	1.50
Recipr. Single-Cylinder	1.75	2.00	Whipper (Paper)	1.75	2.00	Proportioning Pump	1.25	1.50	(Paper)	1.00	1.25
Concrete Mixers			Flight	1	1	Pug Mills (Clay)	1.25	1.50	(Textile)	1.25	1.50
Continuous	1.25	1.50	Conveyor Uniform	1.00	1.25	Pullers (Barge Haul)	1.75	2.00	Windlass	1.25	1.50
Intermittent	1.25	1.50	Conveyor Heavy	1.25	1.50	Pulp Machines (Paper)	1.25	1.50	Wire		
Converting Machine			Food Industry	2	2	Pulverizers (Hammermill)	1.75	2.00	Drawing Machine	1.25	1.50
(Paper)	1.25	1.50	Forming Machine	1	1	Pumps			Winding Machine	1.25	1.50
Conveyors – Uniformly Loaded		I	(Metal Mills)	1.75	2.00	Centrifugal	1.00	1.25			
			Freight Elevator	1.25	1.50						

^① Refer to Factory. ^② Page 108.

TABLE 2 **DRIVE CHAIN SELECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

Priver Sproket DESIGN HORSEPOWER (MP) = HP x SF For (ST) see pages 108-109 Type of The Construction of TETH LARGEST KYSEATED BORE Type of The Construction of TATA STATEST AND ALL A						Та	ble 2								
Driver Sprocket DRIVE SPECUCK I – NU, 0F IELH LARCEST KEYSLITE DOWN 11/1/6 Utber Sprocket DRIVE SPECUCE Sprocket DRIVE Sprocket Sprocket DRIVE Sprocket Sprocket DRIVE Sprocket Sprocket DRIVE Sprocket Sprocket DRIVE Sprocket Sprocket DRIVE Sprocket Sprocket <					F			[
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Driver						Driver								Type of Lubrication
$ \begin{array}{c} 171/_{2-20} & 1422 & 1^{31/16} & R362 & 2^{11/16} & R362 & 3^{11/16} & E \\ 15-171/_2 & 1440 & 1^{11/16} & R362 & 2^{11/16} & R362 & 3^{11/16} & E \\ 121/_{2-15} & R778 & 3^{11/16} & 1^{11/16} & R362 & 2^{11/16} & R362 & 3^{11/16} & E \\ 121/_{2-15} & R778 & 3^{11/16} & R778 & 4^{15/16} & R322 & 3^{11/16} & E \\ 10-121/_2 & R778 & 3^{11/16} & R778 & 4^{15/16} & R432 & 3^{11/16} & E \\ 3160 & 3^{11/16} & 8^{11/16} & 8^{11/16} & 8^{11/16} & 8^{17/16} & R^{11/16} & R778 & 4^{15/16} & R^{11/16} & R^{17/16} & R^{11/16} & R^{11/16} & R^{17/16} & R^{11/16} & R^{11/16} & R^{17/16} & R^{11/16} & R$	Sprocket	9T	12T	15T			Эргоскет	91	-	12	Г	15	Τ		
$ \begin{array}{ c c c c c c c c c $						1	DHP								
$ \begin{array}{ $	17 ¹ /2-20	3140 1 ¹¹ /16	R362 2 ^{11/} 16	R362 3 ¹¹ / ₁₆	E		4–5	3180	1	3180	3 ¹¹ /16	3140	3 ¹⁵ /16	н	
$ \begin{array}{c} 12!/2-15 \\ 3140 & 11'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 15'/16 \\ 3160 & 25'/$	15– 17 ^{1/} 2	3140 1 ¹¹ /16		R362 3 ¹¹ / ₁₆	E		3–4			3180	3 ¹¹ /16	3140	3 ¹⁵ /16		0
$ \begin{array}{c} 1^{-1} 2^{-1} 2^{-1} 3_{150} 1^{-1} 1^{-1} 1^{-1} 8_{1} 3^{-1} 3_{1} 1^{-1} 8_{1} 3^{-1}$	12 ¹ /2–15	3140 1 ¹¹ /16	3120 2 ³ / ₁₆	R362 3 ¹¹ / ₁₆	E	State State	2–3	1030	4 ⁷ /16			3160	4 ⁷ /16	к	State State
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10- 12 ¹ /2	3160 1 ¹⁵ /16	3120 2 ³ /16		F	Manual	1–2	R1248	5 ^{7/} 16	R1037	5 ⁷ /16	3180	4 ¹⁵ /16	N	Manual
$ \frac{3-7}{12} 3180 2^{3}/16 3140 3^{3}/16 312 3^{3}/16 C = \frac{7}{12} \frac{7}{2} $	7 ¹ /2-10	3160 1 ¹⁵ /16	3140 2 ¹¹ /16	3120 3 ³ /16	F							3180	4 ¹⁵ /16	-	
$\frac{2 \text{ DHP}}{35-40} = \frac{2 \text{ DHP}}{340 11^{11}/_{16}} = \frac{2 \text{ Bisso}}{160 2} = \frac{2 \text{ Disso}}{11} = \frac{2 \text{ DHP}}{11} = \frac{2 \text{ DHP}}{110} = \frac{2 \text{ DHP}}{110} = \frac{2 \text{ DHP}}{110} = \frac{2 \text{ DHP}}{100 2 \text{ DHO}} = \frac{2 \text{ DHO}}{100 3 \frac{2 \text{ DHO}}{10 1 11}} = \frac{2 \text{ DHO}}{100 3 \frac{2 \text{ DHO}}{11}} = \frac{2 \text{ DHO}}{110 0 \frac{2 \text{ DHO}}{11}} = \frac{2 \text{ DHO}}{110 0 \frac{2 \text{ DHO}}{11}} = \frac{2 \text{ DHO}}{110 0 \frac{2 \text{ DHO}}{11}} = \frac{2 \text{ DHO}}{11 \text{ DHO}}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 \text{ DHO}}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 \text{ DHO}}} = \frac{2 \text{ DHO}}{11 \text{ DHO}} = \frac{2 \text{ DHO}}{11 $	5-7 ¹ /2				G								-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3160 2716	3100 3716	3120 3 716				R01306	9	RX238	7	RX238	10	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35–40		R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	2								н	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30–35	R432 1 ¹⁵ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		5-7 ¹ /2		-	R514	4 ⁷ /16	R3112	4 ¹⁵ /16		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	25–30	R778 3 ¹¹ /16	R432 2 ^{11/} 16	R362 3 ¹¹ / ₁₆	E		4–5	R1037	3 ¹⁵ /16	1030	5 ¹⁵ /16	R514	515/16	к	~
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20–25	R778 3 ⁷ /16 3160 1 ¹⁵ /16		R432 3 ¹¹ / ₁₆	F	A CONTRACT	3–4	R1037	3 ¹⁵ /16					L	Selection of the select
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	171/2-20	R588 3 ⁷ /16	R778 4 ¹⁵ /16	R432 3 ¹¹ / ₁₆	F		2–3	R1248	5 ⁷ /16			R1037		N	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 171/0	R588 3 ⁷ /16		R778 4 ¹⁵ /16	Е	Manual	1–2	R1248	5 ⁷ /16	RX238	7	AX1568	8 ¹ / ₂	Р	Manual
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-17 72				1		³ /4 –1	RO635	5 ⁷ /16	R1248	71/2	RX238	10	Q	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12 ¹ /2–15	3180 2 ³ /16	3120 2 ³ /16	3120 3 ³ /16	G		1/2-3/4	RO1306	9	R1248	9	RX238	10	s	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-12 ¹ /2				G		¹ /4 ^{_1} /2	X1307	10	RX1207	1	RO635	1	U	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	3	DHP	-						-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45–50	3140 1 ¹¹ /16	R362 2 ^{11/} 16	R362 3 ¹¹ / ₁₆	E		10-121/2			3160	3 ³ /16	3140	3 ¹⁵ / ₁₆		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40–45	3140 1 ¹¹ /16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E		7 ¹ /2–10	R1033	3⁷/ 16	3160	3 ³ /16	3140	3 ¹⁵ /16	J	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35–40	3140 1 ¹¹ /16	B	R362 3 ¹¹ /16	E	de n	5-7 ¹ /2			3180	3 ¹¹ /16	3160	4 ⁷ /16	к	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30–35	3160 1 ¹⁵ /16	3120 2 ³ /16	R432 3 ¹¹ / ₁₆	F		4–5	R1037	3 ¹⁵ /16	R1037 3180	5 ^{7/16} 3 ^{11/16}	R1037 3160	8 4 ⁷ / ₁₆	L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25–30	3160 1 ¹⁵ /16	3140 2 ³ /16		F	Man Cash	3–4					R1037	8	N	A Car
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20–25	3180 2 ³ / ₁₆	3120 2 ³ / ₁₆	3120 3 ³ / ₁₆	G	Manual	2–3	R1248	5 ⁷ /16	RX238	7	AX1568	8 ¹ / ₂	0	Manual
$\frac{15-1772}{12} 3180 \ 2^{3}/16 \ 3140 \ 2^{11}/16 \ 3120 \ 3^{3}/16 \ G \\ \frac{1}{2} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} - \frac{3}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} \ X1307 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \\ \frac{1}{4} \ X1307 \ 10 \ RO635 \ 9^{1}/2 \ RO635 \ 0 \ T \ 0 \ RO635 \ 0 \ T \ 0 \ RO635 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	17 ¹ /2-20	3180 2 ³ /16	3120 2 ³ /16	3120 3 ³ /16	G										
$\frac{121}{2-15} R514 2^{15}/16 R3112 3^{7}/16 R3112 4^{15}/16 H = 1/a-1/a R = 1$	15–17 ¹ /2				G				-				-		
			R3112 3 ⁷ /16	R3112 4 ¹⁵ /16	н				-						

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ⁽¹⁾ Consult Rexnord ⁽²⁾ Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SÉLECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

					Table 2	- (Cont'd.)								
		HORSEPOWER or (SF) see page		F			Ċ				(DHP) = HP es 108-109	Р х SF		
RPM Driver	DRIVE	R SPROCKET -	NO. OF TEETH		Type of	RPM Driver		DRIV	ER SPRO	CKET -	NO. OF TE	ETH		Type of
Sprocket		ARGEST KEYSEA	TED BORE	Hub	Lubrication	Sprocket			ARGEST	(EYSEA	TED BORE		Hub	Lubrication
	9T	12T	15T	Letter ²			9T	•	12	Т	15T		Letter ²	
					4	DHP		- 11 -		. 7 .		15.		i
80 – 90	R362 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ^{11/} 16	D		15 – 17½	1030 3180	3 ¹¹ /16	3160	4 ⁷ /16 3 ³ /16		3 ¹⁵ /16	Н	
70 – 80	R432 1 ¹⁵ / ₁₆ 3140 1 ¹¹ / ₁₆	R362 2 ^{11/} 16	R362 3 ¹¹ /16	Е		12 ¹ /2–15	R1035	3 ⁷ /16	1030 3160	5 ¹⁵ /16 3 ³ /16	3140 3	3 ^{15/16} 3 ^{15/16}	I	
60 – 70	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	Е		10 – 12 ¹ /2	R1037	3 ¹⁵ /16	R1033 3160	5 ¹⁵ /16 3 ³ /16		7 4 ⁷ /16	J	
50 – 60	R778 3 ¹¹ / ₁₆ 3140 1 ¹¹ / ₁₆	R432 2 ¹¹ /16	R362 3 ¹¹ /16	Е		7 ¹ /2 –10	R1037	3 ¹⁵ /16	R1037 3180	5 ^{7/} 16 3 ^{11/} 16	3160 4	71/2 4 ^{7/} 16	К	
45 – 50	R778 3 ¹¹ / ₁₆ 3140 1 ¹¹ / ₁₆	R432 2 ¹¹ / ₁₆ 3120 2 ³ / ₁₆	R362 3 ¹¹ /16	E	and the for	5 – 7 ¹ /2	R1037	3 ¹⁵ /16	R1037 3180	5 ^{7/} 16 3 ^{11/} 16	R1037 3160 4	8 4 ^{7/} 16	М	
40 – 45	R778 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ /16	F		4 – 5	R1248	5 ⁷ /16	AX1568	5 ⁷ /16		8 ¹⁵ /16	Ν	
35 – 40	R778 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F	Manual	3 – 4	R1248	5 ⁷ /16	RX238	7	AX1568 3180 4	8 ^{1/2} 1 ^{15/16}	Ο	Manual
30 – 35	R588 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R778 4 ¹⁵ /16 3120 3 ³ /16	F		2 – 3	R1248	5 ⁷ /16	RX238	7	RX238	10	Ρ	
25 – 30	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 5 ⁷ /16 3120 3 ³ /16	G		1 – 2	RO1306	9	RX1245	9	R1248	10	S	
20 – 25	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R588 5 ⁷ /16 3120 3 ³ /16	G	-	³ /4 – 1	RO1306	9	RX1207	1	RO635	1	Т	
17 ¹ /2 – 20	R514 2 ¹⁵ /16 3180 ①	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R588 5 ¹⁵ /16 3140 3 ¹⁵ /16	Н		$\frac{1}{2} - \frac{3}{4}$ $\frac{1}{4} - \frac{1}{2}$	X1307	10	RX1207 RO1306	1	RO635 RX1207	1	U G	
					5	DHP								
100 – 125	R362 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D	1	17 ¹ /2–20	1030 3180	3 ⁷ /16	R514 3160	4 ⁷ /16 3 ³ /16	R3112 4 3140 3	1 ¹⁵ /16 1 ¹⁵ /16	I	
90 – 100	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		15 – 17½	R1037	3 ³ /16	1030 3160	5 ¹⁵ / ₁₆ 3 ³ / ₁₆		5 ^{15/16} 4 ^{7/} 16	I	
80 – 90	R432 1 ¹⁵ /16 3120 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		12 ¹ /2–15	R1037	3 ¹⁵ /16	R1033 3160	5 ¹⁵ /16 3 ³ /16	1030 3160 4	7 4 ⁷ /16	J	
70 – 80	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	Flow	10 – 12 ¹ /2	R1037	3 ¹⁵ /16	R1035 3180	5 ^{7/} 16 3 ^{11/} 16		71/2 4 ^{7/} 16	К	
60 – 70	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E	TIOW	7 ¹ /2-10	AX1568	3 ¹¹ /16	R1037 3180	5 ^{7/} 16 3 ^{11/} 16	R1037 3180 4	8 1 ¹⁵ /16	L	
50 – 60	R778 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R788 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ /16	F		5 – 7 ¹ /2	R1248	5 ⁷ /16	AX1568	5 ⁷ /16	R1037 3180 4	8 1 ¹⁵ /16	Ν	CERTIFICATION OF
45 – 50	R588 3 ^{7/16} 3160 1 ^{15/16}	R788 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ /16	F		4 – 5	R1248	57/16	RX238	7	AX1568	8 ¹ /2	0	
40 – 45	R588 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R778 4 ¹⁵ /16 3120 3 ³ /16	F		3 – 4	R1248	5 ⁷ /16	RX238	7	RX238	10	Р	Manual
35 – 40	R514 2 ⁷ /16	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 5 ⁷ /16	G	-	2 – 3	RO635	5 ⁷ /16	R1248	7 ¹ /2	RX238	10	Q	
30 – 35	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R588 4 ¹⁵ /16	R778 5 ⁷ /16	G		1 – 2	RO1306	9	RO635	9 ¹ / ₂	RX1245	10	S	
25 – 30	R514 2 ⁷ /16	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R588 5 ⁷ /16	G	Manual	³ /4 – 1	X1307	10	RX1207	1	RO635	1	U	
20 – 25	R514 215/16	R3112 3 ⁷ /16	R3112 4 ¹⁵ /16	ц Ц		X1307		RX1207	1	RX1207	1	W		
	3180 ①	$3160 3^{3/16}$	3140 3 ¹⁵ /16			1/4-1/2	0		RO1306	1	RO1306	1	Z	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ^① Consult Rexnord ^③ Hub size letter – See page 79.

TABLE 2 (Cont'd.) DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

		HORSEPOWER or (SF) see page		F		- (Cont'd.)	DESIGN	HORSEPOWER or (SF) see page	(DHP) = HP x SF es 108-109		
RPM Driver Sprocket		R SPROCKET – ARGEST KEYSEA			Type of Lubrication	RPM Driver Sprocket	DRIVI	ER SPROCKET – Argest keysea	NO. OF TEETH	-	Type of Lubrication
	9T	12T	15T	Hub Letter©			9T	12T	15T	Hub Letter 2	
	11.				71/2		- 15.	7.	15.		
300 – 350	R362 1 ¹¹ / ₁₆ 3120 1 ⁷ / ₁₆	R362 2 ^{15/} 16	R362 3 ^{11/} 16	С		35 – 40	3180 ^①	$\begin{array}{ccc} R3112 & 3^7/_{16} \\ 3160 & 3^3/_{16} \end{array}$	R588 5 ¹⁵ /16 3140 3 ¹⁵ /16		
250 – 300	R362 1 ¹¹ / ₁₆ 3120 1 ⁷ / ₁₆	R362 2 ¹⁵ / ₁₆	R362 3 ^{11/} 16	С		30 – 35	R514 2 ¹⁵ /16 3180 ^①	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	Н	
200 – 250	R362 1 ¹⁵ / ₁₆ 3120 1 ⁷ / ₁₆	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D	Oil Bath	25 – 30	R1033 3 ¹¹ / ₁₆ 3180 ^①	3160 3 ³ /16	R3112 4 ¹⁵ / ₁₆ 3160 4 ⁷ / ₁₆	I	
175 – 200	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ / ₁₆	R362 3 ^{11/16}	D		20 – 25	R1037 3 ³ /16	1030 5 ¹⁵ /16 3160 3 ³ /16	R514 5 ¹⁵ /16 3160 4 ⁷ /16	I	
150 – 175	R432 1 ¹⁵ / ₁₆ 3120 1 ⁷ / ₁₆	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		171/2-20	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		J	
125 – 150	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		15 –17 ¹ /2	R1037 3 ¹⁵ /16	R1035 57/16 3180 3 ¹¹ /16	R1033 7 ¹ /2 3160 4 ⁷ /16	К	
100 – 125	R778 3 ¹¹ / ₁₆ 3140 1 ¹¹ / ₁₆	R362 2 ¹¹ /16 3120 2 ³ /16	R362 3 ¹¹ /16	E	n l	12 ¹ /2 –15	AX1568 3 ¹¹ /16	R1037 57/16 3180 3 ¹¹ /16	R1037 7 ¹ /2	к	-
90 – 100	R778 3 ¹¹ / ₁₆ 3140 1 ¹¹ / ₁₆	R432 2 ¹¹ /16 3120 2 ³ /16	R362 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	E		10 – 12 ¹ /2	RX238 4 ⁷ /16	AX1568 5 ⁷ / ₁₆ 3180 3 ¹¹ / ₁₆	R1037 8	L	
80 – 90	R778 3 ⁷ /16 3160 1 ¹⁵ /16	R432 2 ⁷ /16 3120 2 ³ /16	R432 3 ¹¹ /16 3120 3 ⁷ /16	F	<u>AB</u>	7 ¹ /2–10	RX238 4 ⁷ /16	RX238 7	AX1568 8 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	N	Manual
70 – 80	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R432 3 ¹¹ /16	F	Flow	5 – 7 ¹ /2	R1248 57/16	RX238 7	RX238 10	0	
60 – 70	R588 3 ⁷ /16	R778 4 ¹⁵ /16	R778 4 ¹⁵ /16	F		4 – 5	RX1245 57/16	RX1248 8	RX238 10	Р	
50 – 60	3160 1 ¹⁵ / ₁₆ R588 3 ³ / ₁₆	3140 2 ¹¹ / ₁₆ R588 4 ¹⁵ / ₁₆	3140 3 ¹⁵ / ₁₆ R778 5 ⁷ / ₁₆	G		3 – 4	RO635 57/16	RX1245 9	R1248 10	Q	
30 - 00	3180 2 ³ / ₁₆	3140 211/16	3140 3 ¹⁵ / ₁₆	0		2 – 3	RO1306 9	RO635 9 ¹ / ₂	RX1245 10	R	
45 – 50	R514 2 ¹⁵ /16 3180 2 ³ /16	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 5 ⁷ /16 3140 3 ¹⁵ /16	G		1-2 3/4-1	X1307 10 X1307 9 ¹ / ₂	RX1207 ① RO1306 ①	RX1207 ① RX1207 ①	U W	-
	R514 2 ¹⁵ /16	R588 4 ¹⁵ /16	R588 5 ⁷ /16			$\frac{3}{4} = 1$ $\frac{1}{2} = \frac{3}{4}$	1307 912	RO1306 0	RO1306 ①	Y	
40 – 45	3180 2 ³ /16	3160 3 ³ / ₁₆	3140 315/16	G		1/4 - 1/2	0	1	X1307 ①	1	
					10	DHP			•		
300 – 350	R423 1 ¹⁵ / ₁₆ 3120 1 ⁷ / ₁₆	R362 2 ¹⁵ /16	R362 3 ^{11/} 16	D	~~~	40 – 45	1030 3 ¹¹ / ₁₆ 3180 ^①	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ / ₁₆ 3160 4 ⁷ / ₁₆	Н	
250 – 300	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		35 – 40	1030 3 ⁷ / ₁₆ 3180 ^①	R514 4 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ¹⁵ / ₁₆ 3160 4 ⁷ / ₁₆	1	Flow
200 – 250	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D	C. C.	30 – 35	R1035 3 ⁷ /16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I	
175 – 200	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	Oil Bath	25 – 30	R1037 3 ¹⁵ /16	1020 E15/4	R514 5 ¹⁵ /16	J	
150 – 175	R432 1 ¹⁵ /16	R362 211/16	R362 3 ¹¹ /16	E		20 – 25	R1037 3 ¹⁵ /16	R1037 5 ⁷ /16	1030 7 ¹ /2	к	
125 – 150	3140 1 ¹¹ / ₁₆ R778 3 ¹¹ / ₁₆	R432 2 ^{11/} 16	R362 3 ^{11/16}	E			AX1568 3 ¹¹ /16	R1037 57/16	R1035 7 ¹ /2	к	
100 - 125	3140 1 ¹¹ / ₁₆ R588 3 ⁷ / ₁₆	R778 4 ¹⁵ /16	3120 3 ³ / ₁₆ R432 3 ¹¹ / ₁₆		~		RX238 4 ⁷ /16	R1037 57/16	R1037 8	L	6
90 – 100	3160 1 ¹⁵ / ₁₆ R588 3 ⁷ / ₁₆	R778 4 ¹⁵ /16	3120 3 ³ /16 R432 3 ¹¹ /16		H		RX238 47/16	3180 3 ¹¹ /16	3180 4 ¹⁵ / ₁₆ R1037 8		State State
	3160 1 ¹⁵ / ₁₆ R588 3 ⁷ / ₁₆	3140 2 ¹¹ /16	3120 3 ³ /16 R778 4 ¹⁵ /16						3180 4 ¹⁵ / ₁₆	M	
80 - 90	3160 1 ¹⁵ / ₁₆ R514 2 ⁷ / ₁₆			F	() lleccell l		RX238 47/16		AX1568 8 ¹ /2	N	Manual
70 – 80 60 – 70	3180 2 ³ /16 R514 2 ⁷ /16	$\frac{3140}{8588} \frac{2^{11}}{4^{15}}$	3140 3 ¹⁵ / ₁₆ R778 5 ⁷ / ₁₆	G	Flow		R1248 5 ⁷ / ₁₆ RX1245 5 ⁷ / ₁₆		RX238 10 RX238 10	O P	
00 – 70	3180 2 ³ /16	3140 211/16	3140 3 ¹⁵ / ₁₆	G		4 – 5	RO635 57/16	RO635 91/2	R1248 10	Q	
50 – 60	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ /16 3160 3 ³ /16	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G			RX1207 6 ¹ /2 RO1306 9	RO635 9 ¹ /2 RX1207 ①	RX1245 10 RO635 ①	R S	
45 – 50		R3112 3 ⁷ /16	R588 5 ¹⁵ /16			1 – 2	X1307 9 ¹ /2	RO1306 ^①	RX1207 ①	W	
40 - 50	3180	3160 3 ³ /16	3140 3 ¹⁵ /16			³ /4 – 1	0	RO1306 ^①	RO1306 ^①	Х	

Note: 1. 3100 Series chain operates over roller chain ct 2. Fabricated steel sprockets are recommended. © Consult Rexnord [®] Hub size letter – See page 79. cut tooth sprockets.

TABLE 2 (Cont'd.) **DRIVE CHAIN SELECTION TABLES**

 $\text{Rex}^{\$}$ drive chain selections are displayed in the tables. To interchange Link-Belt^{\\$} and Rex chain numbers see pages 34-35. Note:

	DESIGN	HORSEPOWER	(DHP) = HP x S	F		– (Cont'd.)	DESIGN	HORSEPOWER	(DHP) = HP x SF		
RPM		or (SF) see page				RPM		or (SF) see page			
Driver Sprocket		ER SPROCKET – Argest keysea			Type of Lubrication	Driver Sprocket		ER SPROCKET – ARGEST KEYSEA			Type of Lubrication
Sprocket	9T	12T	15T	Hub Letter@		эргоскет	9T	12T	15T	Hub Letter@	
					15	DHP					
300 – 350	3140 11/16	R432 2 ¹⁵ / ₁₆	R362 3 ¹¹ / ₁₆	D	\square	40 – 45	R1037 3 ¹⁵ /16	1030 5 ¹⁵ /16 3160 3 ³ /16	R514 5 ¹⁵ /16 3160 4 ⁷ /16	J	
250 – 300	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R432 2 ¹¹ / ₁₆	R362 3 ¹¹ /16	E		35 – 40	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16	1030 7 3160 4 ⁷ / ₁₆	J	1900000
200 – 250	R778 3 ¹¹ / ₁₆ 3140 1 ¹¹ / ₁₆	R432 2 ¹¹ / ₁₆ 3120 2 ³ / ₁₆	R362 3 ¹¹ /16	E	Oil Bath	30 – 35	R1037 315/16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1003 7 ¹ / ₂ 3160 4 ⁷ / ₁₆	К	Flow
175 – 200	R588 3 ¹¹ / ₁₆ 3160 1 ¹⁵ / ₁₆	R432 2 ^{11/} 16 3120 2 ³ /16	R432 3 ¹¹ / ₁₆	E		25 – 30	AX1568 3 ^{11/} 16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1037 7 ¹ /2 3180 4 ¹⁵ /16	К	11000
150 – 175	R588 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		20 – 25	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	
125 – 150	R3112 2 ³ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		17 ¹ /2–20	RX238 4 ⁷ /16	RX238 7	R1037 8	Μ	
100 – 125	R514 2 ⁷ / ₁₆ 3160 2 ³ / ₁₆	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R788 5 ⁷ /16 3120 3 ³ /16	G	Д	15 – 17 ¹ /2	R1248 4 ⁷ / ₁₆	RX238 7	AX1568 8 ¹ /2	Ν	1
90 – 100	R514 2 ⁷ /16 3180 2 ³ /16	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R788 5 ⁷ /16 3140 3 ¹⁵ /16	G		12 ¹ /2–15	R1248 57/16	RX238 7	RX238 10	0	l se.
80 – 90	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G		10 <i>−</i> 12½	RX1245 57/16	R1248 8	RX238 10	0	
70 – 80	R514 2 ¹⁵ / ₁₆ 3180 ①	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R588 5 ¹⁵ / ₁₆ 3140 3 ¹⁵ / ₁₆	Н	Flow		RO635 57/16	RX1245 8	R1248 10	Р	Manual
	$1030 \ 3^{11}/_{16}$	R3112 37/16	R3112 4 ¹⁵ /16		11000	$5 - 7^{1/2}$ 4 - 5	RX1207 6 ¹ /2 RO1306 9	RO635 9 ¹ / ₂ RO635 9 ¹ / ₂	RX1245 10 RO635 ①	Q R	Manual
60 – 70	3180 0	3160 37/16	3140 3 ¹⁵ /16	Н				RX1207 ①	RO635 ①	S	
50 – 60	R1033 3 ¹¹ /16	R514 4 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I		2-3 1-2	X1307 10	RO1306 ① RO1306 ①	RX1207 ^① RO1306 ^①	U Y	
45 50	D1007 03/	1030 5 ¹⁵ /16	R514 5 ¹⁵ /16			3/4-1	1	RO1306 0	RO1306 ^①	Z	1
45 – 50	R1037 3 ³ /16	3160 3 ³ / ₁₆	3160 4 ⁷ / ₁₆	I		1/2 - 3/4	0	0	X1307 ①	1	1
	R514 2 ¹⁵ /16	R432 2 ¹⁵ /16			20	DHP		R035 5 ⁷ /16	1030 7		i
300 – 350	3160 1 ¹⁵ /16	3120 2 ³ /16	R432 3 ¹¹ /16	E		40 – 50	R1037 3 ¹⁵ /16	3180 3 ¹¹ /16	3160 4 ⁷ / ₁₆	J	
250 – 300	R514 2 ¹⁵ / ₁₆ 3160 1 ¹⁵ / ₁₆	R432 2 ¹¹ / ₁₆ 3120 2 ³ / ₁₆	R342 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	E	\square	40 – 45	R1037 3 ¹⁵ /16	R1037 5 ⁷ / ₁₆ 3180 3 ¹¹ / ₁₆	R1033 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К	A
200 – 250	R514 2 ¹¹ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		35 – 40	AX1568 3 ¹¹ /16	R1037 5 ⁷ / ₁₆ 3180 3 ¹¹ / ₁₆	R1035 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К	
175 – 200	R514 2 ¹¹ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F	Oil Bath	30 – 35	RX236 4 ⁷ / ₁₆	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	(1995) Lander
150 – 175	R514 2 ¹¹ / ₁₆ 3180 2 ³ / ₁₆	R778 4 ^{15/} 16 3140 2 ^{11/} 16	R778 4 ¹⁵ /16 3120 3 ³ /16	F		25 – 30	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8	М	Flow
125 – 150	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ /16 3140 1 ¹¹ /16	R778 5 ⁷ /16 3140 3 ¹⁵ /16	G		20 – 25	R1248 47/16	RX238 7	AX1568 81/2	Ν	
100 – 125	R514 2 ⁷ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R588 5 ⁷ /16	G		17 ¹ /2-20	R1248 57/16	RX238 7	RX238 10	0	
90 – 100	R514 2 ¹⁵ /16 3180 ^①	R3112 3 ⁷ /16 3160 3 ³ /16	R588 5 ¹⁵ /16 3140 3 ¹⁵ /16	Н	A	15 – 17½	RX1245 5 ^{7/} 16	R1248 8	RX238 10	0	
80 – 90	1030 3 ¹¹ / ₁₆		R3112 4 ¹⁵ /16 3160 4 ⁷ /16	Н	B		RO635 5 ⁷ /16 RO635 5 ⁷ /16		RX238 10 RX1248 10	0	
70 – 80	R1033 3 ¹¹ /16	1030 5 ¹⁵ /16	R3112 4 ¹⁵ /16	1	Reccell	7 ¹ /2–10	RX1207 6 ¹ /2	RO635 91/2	RO635 ①	Q	ALL STREET
		3160 3 ³ /16	3160 4 ⁷ / ₁₆		Flow	$5 - 7^{1/2}$ 4 - 5		RO635 9 ¹ / ₂ RX1207 ①	RO635 ① RX1207 ①	S S	
60 – 70	R1037 3 ³ /16	1030 5 ¹⁵ / ₁₆ 3160 3 ³ / ₁₆	R514 5 ¹⁵ / ₁₆ 3160 4 ⁷ / ₁₆	T	FIOW	4 - 5 3 - 4		RX1207 0 RO1306 0	RX1207 ①	5 U	Manual
50 – 60	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16	1030 7 3160 4 ⁷ / ₁₆	J		2-3 1-2	X1307 9 ¹ /2	RO1306 ① X1307 ①	RO1306 ① RO1307 ①	W Z	
		5100 0 /10	0100 4710					X1307 U		4	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ^① Consult Rexnord ^③ Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SELECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

					Table 2	– (Cont'd.)					
		HORSEPOWER or (SF) see page		F				HORSEPOWER or (SF) see page			
RPM Driver Sprocket	DRIVE	R SPROCKET – ARGEST KEYSEA	NO. OF TEETH	-	Type of Lubrication	RPM Driver Sprocket	DRIV	ER SPROCKET – ARGEST KEYSEA	NO. OF TEETH		Type of Lubrication
Sprocket	9T	12T	15T	Hub Letter②		эргоскег	9T	12T	15T	Hub Letter 2	
					25	DHP	-				
300 – 350	R3112 2 ³ / ₁₆ 3160 1 ¹⁵ / ₁₆	R432 2 ¹¹ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆	E		50 – 60	R1037 3 ¹⁵ /16	R1037 5 ⁷ / ₁₆ 3180 3 ¹¹ / ₁₆		К	~
250 – 300	R3112 2 ³ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ /16 3120 3 ³ /16	F		45 – 50	AX1568 3 ^{11/} 16	R1037 5 ⁷ / ₁₆ 3180 3 ¹¹ / ₁₆	R1035 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К	L A
200 – 250	R3112 2 ³ /16 3180 2 ³ /16	R588 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R788 4 ¹⁵ /16 3120 3 ³ /16	F		40 – 45	RX238 4 ⁷ / ₁₆	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	<u>AB-5559</u> 2
175 – 200	$\begin{array}{ccc} R514 & 2^{7}/_{16} \\ 3180 & 2^{3}/_{16} \end{array}$	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 $5^{7}/_{16}$ 3120 $3^{3}/_{16}$	G		35 – 40	RX238 47/16	R1037 57/16	R1037 8	L	() laccal l
150 – 175	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 5 ⁷ /16 3140 3 ¹⁵ /16	G	Oil Bath	30 – 35	RX238 47/16	AX1568 57/16	R1037 8	М	Flow
125 – 150	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G		25 – 30	R1248 4 ⁷ / ₁₆		AX1568 8 ¹ /2	N	
100 – 125	1030 311/16	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 3 ⁷ /16 3140 3 ¹⁵ /16	н			RX1245 5 ⁷ /16	RX238 7	RX238 10	0	-
					~	17'/2-20 15-17½	RO635 5 ⁷ /16 RO635 5 ⁷ /16	R1248 8 R1248 8	RX238 10 R1238 10	O P	
90 – 100	R1030 3 ¹⁵ /16	R514 4 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I.	I H		RO635 57/16	RO635 9 ¹ /2	R1238 10	P	
			R3112 4 ¹⁵ /16			$12^{72} = 13$ $10 - 12^{1/2}$		RO635 9 ¹ /2	RO635 ^①	Q	AND -
80 – 90	R1037 3 ³ /16	$3160 \ 3^{3}/16$	$3160 4^7/16$	I.	100000	$7^{1}/_{2} - 10$		RO635 9 ¹ /2	RO635 ^①	R	
		1030 5 ¹⁵ /16	R514 5 ¹⁵ /16		RECCER	$5 - 7^{1/2}$	RO1306 9		RX1207 ^①	S	
70 – 80	R1037 33/16	3180 3 ¹¹ /16	3160 4 ⁷ /16		Flow	4 - 5	X1307 10		RX1207 ^①	T	Manual
(0 70	D1007.015/	R1033 5 ¹⁵ /16	1030 7			3 – 4	X1307 9 ¹ /2		RO1306 ^①	V	
60 – 70	R1037 3 ¹⁵ /16	3180 3 ¹¹ /16		J		2 – 3	1	X1037 ^①	RO1306 ^①	Х	
					30	DHP					
300 – 350	R3112 2 ³ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		50 – 60	AX1568 3 ¹¹ / ₁₆	R1037 5 ⁷ / ₁₆	R1037 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К	
250 – 300	R3112 2 ³ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		45 – 50	RX238 4 ⁷ / ₁₆	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	A
200 – 250	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R788 5 ⁷ / ₁₆ 3140 3 ¹⁵ / ₁₆	G		40 – 45	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8	L	BREEZER
175 – 200	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G		35 – 40	RX238 4 ⁷ /16	RX238 7	R1037 8	М	<u>Aleccell</u>
150 – 175	R415 27/16	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G	Oil Bath	30 – 35	R1248 47/16	RX238 7	AX1568 8 ¹ /2	N	Flow
125 – 150	1030 311/16	3160 3 ³ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	Н		25 – 30	R1248 57/16	RX238 7	RX238 10	0	
100 – 125	R1035 3 ⁷ / ₁₆	1030 5 ¹⁵ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I			RO635 57/16 RO635 57/16		RX238 10 R1248 10	O P	
90 – 100	R1037 3 ³ /16	1030 5 ¹⁵ / ₁₆ 3180 3 ¹¹ / ₁₆	R514 5 ¹⁵ /16 3160 4 ⁷ /16	I			RO635 5 ⁷ / ₁₆ RX1207 6 ¹ / ₂		R1248 10 RX1245 10	P Q	
		1030 5 ¹⁵ /16						RO635 9 ¹ /2	RO635 ①	Q	A STREET OF
80 – 90	R1037 3 ¹⁵ /16	3180 3 ¹¹ /16		J		$7^{1/2} - 10^{-12/2}$		RX1207 ①	RO635 0	S	
	15.	R1035 57/16			100000	$5 - 7^{1/2}$			RX1207 ①	T	Carter of the second
70 – 80	R1037 3 ¹⁵ /16	3180 311/16	3160 47/16	J	()	4 – 5			RO1306 ^①	U	Manual
(0.70	D1007 015/	R1037 5 ⁷ /16	R1033 7 ¹ /2		Reccell	3 – 4		RO1306 ^①	RX1306 ①	W	
60 – 70	R1037 3 ¹⁵ /16	3180 311/16	3180 415/16	K	Flow	2 – 3	0	X1307 ①	RO1306 ①	Y	1

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

¹ Consult Rexnord
 ² Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SELECTION TABLES**

 $\text{Rex}^{\$}$ drive chain selections are displayed in the tables. To interchange Link-Belt^{\\$} and Rex chain numbers see pages 34-35. Note:

250 - 350	Fo DRIVE L/ 9T	HORSEPOWER or (SF) see page ER SPROCKET – ARGEST KEYSEA 12T	es 108-109 NO. OF TEETH		Type of	RPM					(DHP) = H es 108-104			
Driver Sprocket	9T R514 2 ¹¹ /16 3180 2 ³ /16	ARGEST KEYSEA T	ATED BORE		Type of									
200 - 350 250 - 300	R514 2 ¹¹ /16 3180 2 ³ /16	12T	15T		Lubrication	Driver					NO. OF TH			Type of Lubricatio
250 - 350	3180 2 ³ / ₁₆		1	Hub Letter@		Sprocket	9T		12	Т	15	Г	Hub Letter 2	
50 - 300 50 - 250	3180 2 ³ / ₁₆				35	DHP								
200 - 300	R514 2 ⁷ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R432 3 ¹¹ /16 3120 3 ³ /16	F		50 – 60	RX238	4 ^{7/} 16	R1037	5 ⁷ / ₁₆	R1037 3180	8 4 ⁵ / ₁₆	L	~
10 - 2501	3180 2 ³ / ₁₆	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ⁵ / ₁₆ 3140 3 ⁵ / ₁₆	G		45 – 50	RX238	47/16	AX1568	5 ^{7/} 16	R1037	8	М	
	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ / ₁₆ 3140 3 ⁵ / ₁₆	G		40 – 45	RX238	4 ⁷ /16	RX238	7	R1037	8	М	Recealty
75 – 200	R514 2 ⁷ / ₁₆	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ /16 3140 3 ⁵ /16	G	\square	35 – 40	R1248	4 ⁷ /16	RX238	7	AX1568	8 ¹ /2	Ν	प्रिस्टरसी
50 – 175	1030 311/16	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ / ₁₆ 3140 3 ⁵ / ₁₆	н		30 – 35	R1248	5 ^{7/} 16	RX238	7	RX238	10	0	Flow
25 – 150 F	R1035 3 ⁷ / ₁₆	1030 5 ⁵ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ⁵ / ₁₆ 3160 4 ⁷ / ₁₆	I	Oil Bath	25 – 30	RX1245	5 ⁷ /16	R1248	8	RX238	10	0	
00 – 125 F	R1037 3 ³ /16	1030 5 ⁵ /16 3180 3 ¹¹ /16	R514 5 ⁵ / ₁₆ 3160 4 ⁷ / ₁₆	I		20 – 25 17 ¹ /2– 20	RO635 RO635	5 ⁷ /16 5 ⁷ /16	R1248 RO635	8 9 ¹ /2	R1248 R1248	10 10	P P	
PO - 100 F	R1037 3 ⁵ /16	R1033 5 ⁵ /16 3180 3 ¹¹ /16	1030 7 3160 $4^{7}/_{16}$	J		$15 - 17^{1/2}$ $12^{1/2} - 15$	RX1207	$6^{1/2}$ $6^{1/2}$	RO635 RO635	$9^{1}/_{2}$ $9^{1}/_{2}$	RO635 RO635	1	Q	
80 – 90 F	R1037 3 ⁵ /16	R1035 5 ⁷ /16	1030 7	J	-	10 – 12 ¹ /2	RO1306	9	RX1207	1	RO635	1	R	and the second second
70 – 80 F	R1037 3 ⁵ /16	3180 3 ¹¹ / ₁₆ R1037 5 ⁷ / ₁₆	R1033 7 ¹ /2	к	Д	7 ¹ /2 – 10 5 – 7 ¹ /2	RO1306 X1307	9 10	RX1207 RO1306	0	RX1207 RO1306	1	S U	Č.
		3180 3 ¹¹ / ₁₆	3180 4 ⁵ / ₁₆ R1035 7 ¹ / ₂	ĸ		4 – 5 3 – 4	X1307	9 ¹ / ₂	RO1306 RO1306	1	RO1306 RO1306	1	V X	Manua
60 – 70 F	RX238 4 ⁷ /16	R1037 5 ⁷ / ₁₆	3180 45/16	K	Flow	2 – 3	1		1		X1307	1	Z	
				-	40	DHP								
00 – 350	R514 2 ¹¹ /16 3180 2 ³ /16	3140 211/16		F		60 – 70	RX238	4 ⁷ /16	R1037	5 ⁷ /16	R1037 3180	8 4 ¹⁵ /16	L	
LU 2001	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ / ₁₆ 3140 3 ⁵ / ₁₆	G		50 – 60	RX238	4 ⁷ /16	AX1568	5 ⁷ /16	R1037	8	М	Ä
00 – 250	R514 27/16	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ /16 3140 3 ⁵ /16	G		45 – 50	RX238	47/16	RX238	7	R1037	8	М	
75 – 200	R514 2 ⁵ / ₁₆	1030 5 ⁵ /16 3160 3 ³ /16		Н		40 – 45		47/16	RX238	7	AX1568	8 ¹ /2	N	() Recel
50 – 175 F	R1033 3 ⁵ /16	1030 5 ⁵ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ⁵ / ₁₆ 3160 4 ⁷ / ₁₆	Н		35 – 40 30 – 35	R1248 RX1245	5 ⁷ / ₁₆	RX238 R1248	7 8	RX238 RX238	10 10	0	Flow
25 – 150 F	R1037 3 ⁷ /16	1030 5 ⁵ / ₁₆ 3180 3 ¹¹ / ₁₆	R3112 4 ⁵ / ₁₆ 3160 4 ⁷ / ₁₆	Ι	Oil Bath	25 – 30 20 – 25	RO635 RO635		R1248 RO635	8 9 ¹ /2	RX238 R1248	10 10	O P	
00 – 125 F	R1037 3 ⁵ /16	R1033 5 ⁵ /16 3180 3 ¹¹ /16	1030 7	J	1	17 ¹ /2 – 20 15 – 17 ¹ /2	RX1207	6 ¹ /2			RX1245 RO635	10 ①	Q	
0 – 100 F	R1037 3 ⁵ /16	R1035 57/16	1030 7	J		12 ¹ /2–15	RX1207	6 ¹ /2	RX1207	1	RO635	1	R	
		3180 3 ¹¹ / ₁₆ R1037 5 ⁷ / ₁₆	R1033 7 ¹ /2	к	-	10 – 12½ 7½ – 10	RO1306	9	RX1207 RX1306	1	RX1207 RX1207	1	S T	State States
_		R1037 5 ⁷ /16	3180 4 ⁵ / ₁₆ R1035 8	L	Flow	5 – 7 ¹ / ₂ 4 – 5	X1307	9 ¹ / ₂	RO1306 RO1306	1	RO1306 RO1306	1	U W	Manua
, 0 – 00 A	VIJUU J /16	1037 3716	3180 4 ⁵ / ₁₆			2 – 3	0		RO1306	1	RO1306	1	Х	ivialiua
	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ / ₁₆ 3160 3 ³ / ₁₆	R3112 4 ⁵ / ₁₆ 3140 3 ⁵ / ₁₆	G	45	DHP 175–200	R1033	3 ⁵ /16	1033 3160	5 ^{5/16} 3 ^{3/} 16	R3112 3140	4 ⁵ / ₁₆ 3 ⁵ / ₁₆	Н	
	R514 2 ⁷ /16	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ⁵ /16	G		150 – 175	R1037	3 ³ /16	1030 3180	5 ⁵ /16	R3112		1	
	R1033 3 ⁵ /16		R3112 4 ⁵ /16	Н	Oil Bath				R1033 3180 3180	55/16	1030	4 ⁷ /16 6 ¹ /2 4 ⁷ /16		Oil Bath

DESIGN AND SELECTION

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ⁽¹⁾ Consult Rexnord ⁽²⁾ Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SELECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

		HORSEPOWER		F	Table 2	– (Cont'd.)					(DHP) = H			
RPM		or (SF) see page				RPM				1 0	es 108-10			Turno of
Driver		ER SPROCKET – ARGEST KEYSE/			Type of Lubrication	Driver	U D				NO. OF TI TED BORI			Type of Lubricatior
Sprocket	9T	12T	15T	Hub Letter ²	-	Sprocket	9T		121	Г	15	Г	Hub Letter@	
					45 DHF	P – Cont'd								
100 – 125	R1037 3 ^{15/16}	R1035 5 ⁷ /16 3180 3 ¹¹ /16		J	\square	30 – 35	RO635 57	7/ ₁₆	R1248	8	RX238	10	0	A
90 – 100	AX1568 3 ^{11/} 16	R1037 57/16	R1033 7 ¹ /2 3180 4 ¹⁵ /16	к		35 – 30 20 – 25	RO635 5 ⁷ RX1207 6	_	RX1245 RO635	8 9 ¹ /2	RX1248 RX1245	10 10	P Q	BASSAR
80 – 90	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1035 7 ¹ /2 3180 4 ¹⁵ /16	к	Oil Bath	17 ¹ /2–20 15–17 ¹ /2			RO635 RO635	9 ¹ / ₂ 9 ¹ / ₂	RO635 RO635	1	Q Q	Flow
70 – 80	RX238 47/16	R1037 57/16	1037 8	L	- m	$13^{-17/2}$ $12^{1/2}$ - 15			RX1207	1	RO635	1	R	TIOW
60 – 70	RX238 47/16	AX1568 57/16	1037 8		1 <u>–</u>	10-121/2			RX1207	1	RX1027	1	S	a
	R1248 4 ⁷ /16	RX238 7	1037 8	M		$7^{1/2} - 10$			RO1306	1	RX1027	1	T	- Aller C
	R1248 47/16	RX238 7	AX1568 8 ¹ /2	N	(10-5-5-5-5-10)	5 - 71/2			RO1306	1	RO1306	1	V	
40 – 45	R1248 47/16	RX238 7	RX238 10	N	UKCCCAR	4 – 5	0	F	RO1306	1	RO1306	1	W	Manual
35 – 40	RX1245 57/16	R1248 8	RX238 10	0	Flow	3 – 4	0		1		RO1306	1	Y	Manual
	•		15		50	DHP								
300 – 350	R514 2 ⁷ / ₁₆	3160 3 ³ /16		G		60 – 70	RX238 47	⁷ /16	RX238	7	R1037	8	М	
250 – 300	R1035 3 ¹⁵ /16	3160 33/16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	G		50 – 60	R1248 47	⁷ /16	RX238	7	AX1568	8 ¹ /2	N	Д
200 – 250	R1035 3 ¹¹ /16	3160 33/16	R3112 4 ¹⁵ / ₁₆ 3140 3 ¹⁵ / ₁₆	H		45 – 50	R1248 4		RX238	7	RX238	9	N	
175 – 200	R1037 37/16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I.		40 – 45 35 – 40	RX1245 5 ⁴ RO635 5 ⁷	-	RX238 R1248	7 8	RX238 RX238	$9^{1}/_{2}$ $9^{1}/_{2}$	0	
150 – 175	R1037 37/16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16	1033 $6^{1/2}$ 3160 $4^{7/16}$	I		30 – 35 25 – 30			RX1245 RO635	8 9 ¹ /2	R1248 R1248	10 10	P P	Flow
125 _ 150	R1037 3 ^{15/16}	R1033 5 ¹⁵ /16	1030 7	J		20 - 25			RO635	9 ¹ /2	RO635	1	P Q	
125 - 150	K1037 3 - 718	3180 3 ¹¹ /16	3160 4 ⁷ / ₁₆	5	Oil Bath	17 ¹ /2-20			RO635	9 ¹ /2	RO635	1	Q	
100 – 125	R1037 3 ¹⁵ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1033 7 ¹ /2 3180 4 ¹⁵ /16	к		15 – 17 ¹ /2 12 ¹ /2 – 15	-		RX1207 RX1207	1)	RO635 RX1207	0	R S	
			R1035 7 ¹ /2		1	$10 - 12^{1/2}$			RO1036	1	RX1207	1	S	0
90 – 100	AX1568 3 ¹¹ /16	R1037 5//16	3180 4 ¹⁵ /16	K					RO1036	1	RO1306	1	U	. AND DE
80 – 90	RX238 47/16	R1037 57/16	1037 8 3180 4 ¹⁵ /16	L	1	$5 - 7^{1/2}$	X1307 9		RO1036	1	RO1306	1	W	C.
70 – 80	RX238 4 ⁷ /16	D1027 57/1	1037 8		4	4-5 3-4	0		X1307	0	RO1306 X1307	0	X Z	Manual
70 - 80	KAZ30 4 /16	R1037 3716	1037 8		60	DHP	Ű				X1307		Z	
300 – 350	R1035 3 ^{15/16}	R514 4 ⁷ / ₁₆	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	G		1	RX238 4	7/ ₁₆	RX238	7	R1037	8	М	
250 – 300	R1037 3 ^{11/} 16	R514 4 ⁷ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	L	1	60 – 70	R1248 4	⁷ /16	RX238	7	AX1568	8 ¹ /2	N	Oil Bath
200 – 250	R1037 3 ⁷ /16	R1033 515/16	1030 61/2	1	1		RX1245 5			7	RX238	9 ¹ / ₂	0	
		3180 3 ¹¹ /16		<u> </u>	1 /7		RO635 5			8	RX238	9 ¹ / ₂	0	I A
175 – 200	R1037 3 ⁷ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		I			RO635 57 RO635 57			8 8	RX238 R1248	9 ¹ / ₂ 10	O P	
150 – 175	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		J	N State	30 – 35	RO635 5 ⁷ RX1207 6	⁷ /16	RO635	9 ¹ / ₂ 9 ¹ / ₂	R1248 RO635	10	P Q	
125 – 150	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16	R1033 7		Oil Bath	20 – 25	RX1207 6	5 ¹ /2	RO635	9 ¹ / ₂	RO635	1	Q	Flow
			3180 4 ¹⁵ /16		4	$17^{1/2} - 20$			RX1207	0	RO635	0	R	
100 – 125	RX238 4 ⁷ /16	R1037 5 ⁷ /16	1037 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	к		15 – 17½ 12½ – 15			RX1207 RO1306	1	RX1207 RX1207	1	S S	
90 – 100	RX238 47/16	R1037 57/16	1037 8	L]	10–121/2	RO1306	9 F	RO1306	1	RX1207	1	Т	Manual
80 – 90	RX238 47/16	AX1568 5 ⁷ /16	1037 8	L		7 ¹ /2-10	X1307 1	10 F	RO1306	1	RO1306	1	U	Manual

 Note:
 1. 3100 Series chain operates over roller chain cut tooth sprockets.

 2. Fabricated steel sprockets are recommended.

 ⁽⁰⁾ Consult Rexnord

 ⁽⁰⁾ Hub size letter – See page 79.

DESIGN AND SELECTION

TABLE 2 (Cont'd.) **DRIVE CHAIN SELECTION TABLES**

 $Rex^{\$}$ drive chain selections are displayed in the tables. To interchange Link-Belt^{\\$} and Rex chain numbers see pages 34-35. Note:

Fc	HORSEPOWE	r (DHP) = HP x S	5F										
		165 108-109				'				(DHP) = H es 108-10			
	. , , ,	- NO. OF TEETH		Type of	RPM			<u> </u>	1 3	NO. OF T			Type of
	ARGEST KEYSI			Lubrication	Driver Sprocket					TED BOR			Lubrication
9T	12T	15T	Hub	1	Sprocker	91	r	12	г	15	т	Hub	
		_	Letter [®]									Letter ²	
	D514 47/1	DE14 E15/1		70	-								
	3180 3 ¹¹ /1	6 3160 4 ⁷ /16	п		60 – 70	RX1245	57/16	RX238	7	RX238	9 ¹ / ₂	0	Oil Bath
R1037 37/16			I.		50 – 60	RO635	57/16	R1248	8	RX238	9 ¹ / ₂	0	
R1037 3 ⁷ /16	R1033 515/1	6 R1033 6 ¹ /2	1		45 – 50			R1248	8	RX238	9 ¹ / ₂	0	
				\sim					-		-		
R1037 3 ¹⁵ /16			J	15-8						1	-		
	3100 3 71											-	100000
AX1568 3 ^{11/16}	R1037 57/10		J									-	1()
		R1035 71/2		Oil Bath			9	RX1207	0		0	S	Alteccell
RX238 4 ⁷ /16	R1037 5 ⁷ /10		K				9	RO1306	1	RX1027	1	S	Flow
RX238 4 ⁷ /16	R1037 5 ⁷ /10	R1037 8	L	1	12 ¹ /2–15	RO1306	9	RO1306	1	RX1027	1	Т	
RX238 4 ⁷ /16	AX1568 5 ⁷ /10	R1037 8	М	1	$10 - 12^{1/2}$	X1307	10	RO1306	1	RO1306	1	U	1
R1248 4 ⁷ /16	RX238 7	R1027 8	М	1	7 ¹ /2 – 10	1	1	RO1306	1	RO1306	1	V	
R1248 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2	N	1	5 – 7 ¹ /2	1		X1307	1	X1307	1	Y	Manual
				80	DHP								
			Н		50 – 60	RO635	5 ⁷ /16	R1248	8	RX238	9 ¹ / ₂	0	
AX1568 2 ¹⁵ /16					45 – 50	RO635	5 ⁷ /16	RO635	9 ¹ /2	R1248	10	Р	Oil Bath
AX1568 3 ¹¹ /16	R1035 57/10	R1033 7			40 – 45	RX1207	6 ¹ /2	RO635	9 ¹ /2	R1248	10	Р	1
		D1022 7		\sim	35 - 40	RX1207	61/2	RO635	Q 1/2	R0635	(1)	0	~
AX1568 3 ¹¹ /16	R1037 5 ⁷ /10		J	(53)			6 ¹ /2		9 ¹ /2		0	-	1 🛛
	D4007 57/	R1035 7 ¹ /2					9	RX1207	1	RO635	1	R	
RX238 47/16	R1037 57/10		K		20 – 25	RO1306	9	RX1207	1	RX1207	1	S	filessent
RX238 47/16	R1037 57/10	R1037 8	L	Oil Bath	17 ¹ /2–20	RO1306	9	RO1306	1	RX1207	1	S] (1 14444 1)
RX238 47/16	AX1568 57/10	R1037 8	М	1	15 – 17½	RO1306	9	RO1306	1	RX1207	1	Т	
R1248 47/16	RX238 7	AX1568 8 ¹ /2	М]	12 ¹ /2-15	RO1306	8 ¹ /2	RO1306	1	RO1306	1	U	Flow
RX1245 47/16	RX238 7	AX1568 8 ¹ /2	Ν		10–12 ¹ /2	1		RO1036	1	RO1306	1	U	
RO635 57/16	RX238 7	RX238 91/2	0		7 ¹ /2 – 10	1	1	X1307	1	RO1306	1	W	
RO635 5 ⁷ /16	R1248 8	RX238 9 ¹ / ₂	0		5 – 7 ¹ /2	1		1		X1307	1	Y	Manual
		-		90	DHP								
					60 – 70	RO635	5 ⁷ /16	R1248	8	RX238	9 ¹ / ₂	0	\square
AX1568 2 ¹⁵ /16					50 – 60	RO635	5 ⁷ /16	RO635	9 ¹ / ₂	R1248	10	Р	
		DE14 E15/4			45 – 50	RX1207	61/2	RO635	9 ¹ / ₂	R1248	10	Р	
AX1568 3 ¹¹ /16	R1037 5 ⁷ /10										1	Q	Oil Bath
RX238 4 ⁷ /16	R1037 5 ⁷ /10	R1033 7 ¹ /2	к		35 – 40	RX1207	6 ¹ /2	RO635			0	Q	- 19
		3100 4 9716							-				
			1	Oil Bath					-	1			<u>ABSSER</u>
		_		4								_	
				1									L Reccell
				1									Flow
RO635 5 ⁷ /16		RX238 91/2	0	1	12.72 - 13 10 - 121/2			RO1306		RO1306	0	V	-
	RX238 47/16 RX238 47/16 RX238 47/16 R1248 47/16 R1248 47/16 R1248 47/16 AX1568 2 ¹⁵ /16 AX1568 3 ¹¹ /16 RX238 47/16 RX238 47/16 RX238 47/16 RX1245 47/16 RO635 57/16 RO635 57/16 RX1568 2 ¹⁵ /16 RX1568 3 ¹¹ /16 RX238 47/16 RX238 47/16 RX238 47/16 RX238 47/16 RX238 47/16 RX238 47/16	3180 311/1 R1037 37/16 1030 515/1 R1037 37/16 R1033 515/1 R1037 37/16 R1033 515/1 R1037 315/16 R1033 515/1 R1037 315/16 R1033 515/1 R1037 315/16 R1033 515/1 R1037 315/16 R1037 57/16 RX238 47/16 R1037 57/16 RX238 47/16 RX238 7 R1248 47/16 RX238 7 R1035 57/16 R1035 57/16 R1248 47/16 RX238 7 R1035 57/16 3180 311/1 AX1568 311/16 R1035 57/16 RX238 47/16 RX238 7 RX238 47/16 RX238 7 RX238 47/16 RX238 7 RX238 47/16 RX238 7 <t< td=""><td>3180$3^{11}/16$3160$4^{7}/16$R1037$3^{7}/16$1030$5^{15}/16$R514$5^{15}/16$R1037$3^{7}/16$R1033$5^{15}/16$R1033$6^{1}/2$R1037$3^{15}/16$R1033$5^{15}/16$R1033$7$3180$3^{11}/16$R1037$5^{7}/16$R1033$7$AX1568$3^{11}/16$R1037$5^{7}/16$R1037$7$RX238$4^{7}/16$R1037$5^{7}/16$R1037$8$RX238$4^{7}/16$RX238$7$R1037$8$R1248$4^{7}/16$RX238$7$R1037$8$R1248$4^{7}/16$RX238$7$R1037$8$R1248$4^{7}/16$RX238$7$AX1568$8^{1}/2$AX1568$2^{15}/16$R1035$5^{7}/16$R514$5^{15}/16$AX1568$3^{11}/16$R1035$5^{7}/16$R514$5^{15}/16$AX1568$3^{11}/16$R1035$5^{7}/16$R1033$7$AX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$AX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$AX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$AX1568$3^{11}/16$R1037$5^{7}/16$R1037$8$RX238$4^{7}/16$RX238$7$AX1568$8^{1}/2$RX238$4^{7}/16$RX238$7$AX1568$8^{1}/2$RX1245</td><td>3180$31^{11}/16$3160$4^{7}/16$HR1037$3^{7}/16$1030$5^{15}/16$R514$5^{15}/16$1R1037$3^{7}/16$R1033$5^{15}/16$R1033$6^{1}/2$1R1037$3^{15}/16$R1033$5^{15}/16$R1033$7$1AX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$1AX1568$3^{11}/16$R1037$5^{7}/16$R1037$7^{11/2}$XRX238$4^{7}/16$R1037$5^{7}/16$R1037$8$LRX238$4^{7}/16$R1037$5^{7}/16$R1037$8$MR1248$4^{7}/16$RX238$7$R1037$8$MR1248$4^{7}/16$RX238$7$R1027$8$MR1248$4^{7}/16$RX238$7$RX1568$8^{1}/2$NAX1568$2^{15}/16$R1035$5^{7}/16$R514$5^{15}/16$HAX1568$3^{11}/16$R1035$5^{7}/16$R514$5^{15}/16$HAX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$JAX1568$3^{11}/16$R1037$5^{7}/16$R1033$7$JAX1568$3^{11}/16$R1037$5^{7}/16$R1037$8$LRX238$4^{7}/16$R1037$5^{7}/16$R1037$8$MRX1568$3^{11}/16$R1037$5^{7}/16$R1037$8$LRX238$4^{$</td><td>R514$4^7/_{16}$R514$5^{15}/_{16}$HR1037$3^7/_{16}$$1030$$5^{15}/_{16}$R514$5^{15}/_{16}$IR1037$3^7/_{16}$R1033$5^{15}/_{16}$R1033$6^{1/2}$IR1037$3^{17}/_{16}$R1033$5^{15}/_{16}$R10337JR1037$3^{15}/_{16}$R1037$5^{7}/_{16}$R10377JAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R10377JRX238$4^7/_{16}$R1037$5^7/_{16}$R10378MRX238$4^7/_{16}$RX2387R10278MR1248$4^7/_{16}$RX2387RX1568$8^{1/2}$NNR1035$5^7/_{16}$R514$5^{15}/_{16}$HAX1568$2^{15}/_{16}$R1035$5^7/_{16}$R514$5^{15}/_{16}$HR1035$5^7/_{16}$R514$5^{15}/_{16}$HAX1568$2^{15}/_{16}$R1035$5^7/_{16}$R514$5^{15}/_{16}$HAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R514$5^{15}/_{16}$JAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R514$5^{15}/_{16}$JAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R1033TJAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R1033TJAX1568$3^{11}/_{16}$R1037$5^7/_{16}$R1037R</td><td>3180$3^{11}/_{16}$$3^{16}0$$4^{7}/_{16}$HR1037$3^{7}/_{16}$R1033$5^{15}/_{16}$R1033$6^{12}/_{16}$1R1037$3^{7}/_{16}$R1033$5^{15}/_{16}$R1033$6^{12}/_{16}$1R1037$3^{15}/_{16}$R1033$5^{15}/_{16}$R1033$7^{7}/_{16}$JR1037$3^{15}/_{16}$R1033$7^{7}/_{16}$JJR1037$3^{15}/_{16}$R1037$5^{7}/_{16}$R1033$7^{7}/_{12}$JRX238$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037$8$LRX238$4^{7}/_{16}$RX238$7$R1027$8$MR1248$4^{7}/_{16}$RX238$7$R1033$7^{7}/_{12}$NR1248$4^{7}/_{16}$RX238$7$R1033$7^{7}/_{12}$NR1035$5^{7}/_{16}$R514$5^{15}/_{16}I45 - 50$AX1568$3^{11}/_{16}$R514$5^{15}/_{16}I40 - 45$AX1568$3^{11}/_{16}$R1037$7^{7}/_{16}N50 - 60$AX1568$3^{11}/_{16}$R1037$7^{7}/_{16}N50 - 60$AX1568$3^{11}/_{16}$R1037$5^{7}/_{16}$R1033$7^{7}/_{16}$AX1568$3^{11}/_{16}$R1037$5^{7}/_{16}$R1037$7^{7}/_{16}$RX238$4^{7}/_{16}$RX238$7$AX1568$8^{1/}_{16}$JRX238$4^{7}/_{16}$RX238$7$<td< td=""><td>R514$4^7/_{16}$R514$5^{15}/_{16}HH3180$$3^{11}/_{16}$$3160$$4^7/_{16}$IR1037$3^7/_{16}$R1033$5^{15}/_{16}$R1033$6^{1/}_{2}$IR1037$3^7/_{16}$R1033$5^{15}/_{16}$R1033$7^{1}/_{16}$JR1037$3^{15}/_{16}$R1033$5^{15}/_{16}$R1033$7^{1}/_{16}$JR1037$3^{15}/_{16}$R1033$5^{1}/_{16}$R1033$7^{1}/_{2}$JAX1568$3^{11}/_{16}$R1037$5^{7}/_{16}$R1033$7^{1}/_{2}$JR1238$4^{7}/_{16}$R1037$5^{7}/_{16}$R10378LR1248$4^{7}/_{16}$R1237$7$R10378LR1248$4^{7}/_{16}$R1238$7$R10278MR1248$4^{7}/_{16}$R1238$7$R10378LR1035$5^{7}/_{16}$R514$5^{15}/_{16}I7^{1}/_{2}-10$0R1035$5^{7}/_{16}$R514$5^{15}/_{16}I7^{1}/_{2}-10$0R1035$5^{7}/_{16}$R514$5^{15}/_{16}I3^{1}/_{16}$$3^{1}/_{16}$1AX1568$3^{1}/_{16}$R1037$7^{1}/_{2}$NN0I Bath0I BathR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLR1248$4$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>R514$47/_{16}$R514$5^{15}/_{16}$HR1037$37/_{16}$$1303$$5^{15}/_{16}$R103$5^{15}/_{16}$R103R1037$37/_{16}$R1033$5^{15}/_{16}$R1033$6^{1/2}$1R1037$3^{15}/_{16}$R1033$5^{15}/_{16}$R1033$7$JR1037$3^{15}/_{16}$R1033$5^{1}/_{16}$R1033$7$JR1037$3^{15}/_{16}$R1033$7^{1}/_{16}J40 - 45$R0635$5^{7}/_{16}$R1248AV1568$311/_{16}$R1037$7^{1}/_{16}JJ3180$$415/_{16}$JJJR1238$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLJJJR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ<td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>R514 47/16 R514 517/16 H R1037 37/16 3180 317/16 3160 47/16 I R1037 37/16 1030 517/16 1130 517/16 I S0 S0 R123 S17/16 R1033 517/16 R1248 RX238 R1037 371/16 R1033 517/16 R1033 7 S180 417/16 I R1037 3160 317/16 R1033 7 S180 417/16 I R238 417/16 R1248 R1237 S71/6 R1337 S71/6 R1337 S71/6 R1303 R1248 R1237 T R1037 R1037<</td><td>R51447/16R514515/16HHR103737/16316047/16IR103737/167103515/16R514515/16IR103737/16R1033515/16R1033617/16IR10373170R1033515/16R10337I3180317/163180417/16IIR1037315/16R1037773180415/16IR1037317/16R10377/12R103377IR103757/16R103777/12R103777/12R103577/12R103757/16R10378LIIR124847/16RX2387RX126897/2R063597/2R124817/16R103757/16R10378LIR124847/16RX2387RX56887/2NIR124847/16RX2387RX56887/2NIR124817/16R103757/16R10378LIR124817/16R103757/16R10377IIR124817/16R10377/16R10377IIR124817/16R10377R10377IIR124817/16R10377/16R10377IIR124817/16R10377/16R10377I<</td><td>R5144/1/aR5145/1/aH318031/1/a31604/1/aHR103731/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103351/1aR10337J318031/1a31804/1/aJR103351/1aR10337J318031/1a31804/1/aJRX2384/1aR10375/1/aR10377318031804/1/aLRX2384/1aR10375/1/aR10378RX2384/1aR10375/1/aR10378RX2387RX15688/1/aNR12484/1aRX2387RX15688/1aS1/1aS1/1aS1/1a1R124810RX1568S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1148R1037S1/1aR1</td></td<></td></td<></td></t<>	3180 $3^{11}/16$ 3160 $4^{7}/16$ R1037 $3^{7}/16$ 1030 $5^{15}/16$ R514 $5^{15}/16$ R1037 $3^{7}/16$ R1033 $5^{15}/16$ R1033 $6^{1}/2$ R1037 $3^{15}/16$ R1033 $5^{15}/16$ R1033 7 3180 $3^{11}/16$ R1037 $5^{7}/16$ R1033 7 AX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1037 7 RX238 $4^{7}/16$ R1037 $5^{7}/16$ R1037 8 RX238 $4^{7}/16$ RX238 7 R1037 8 R1248 $4^{7}/16$ RX238 7 R1037 8 R1248 $4^{7}/16$ RX238 7 R1037 8 R1248 $4^{7}/16$ RX238 7 AX1568 $8^{1}/2$ AX1568 $2^{15}/16$ R1035 $5^{7}/16$ R514 $5^{15}/16$ AX1568 $3^{11}/16$ R1035 $5^{7}/16$ R514 $5^{15}/16$ AX1568 $3^{11}/16$ R1035 $5^{7}/16$ R1033 7 AX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1037 8 RX238 $4^{7}/16$ RX238 7 AX1568 $8^{1}/2$ RX238 $4^{7}/16$ RX238 7 AX1568 $8^{1}/2$ RX1245	3180 $31^{11}/16$ 3160 $4^{7}/16$ HR1037 $3^{7}/16$ 1030 $5^{15}/16$ R514 $5^{15}/16$ 1R1037 $3^{7}/16$ R1033 $5^{15}/16$ R1033 $6^{1}/2$ 1R1037 $3^{15}/16$ R1033 $5^{15}/16$ R1033 7 1AX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1033 7 1AX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1037 $7^{11/2}$ XRX238 $4^{7}/16$ R1037 $5^{7}/16$ R1037 8 LRX238 $4^{7}/16$ R1037 $5^{7}/16$ R1037 8 MR1248 $4^{7}/16$ RX238 7 R1037 8 MR1248 $4^{7}/16$ RX238 7 R1027 8 MR1248 $4^{7}/16$ RX238 7 RX1568 $8^{1}/2$ NAX1568 $2^{15}/16$ R1035 $5^{7}/16$ R514 $5^{15}/16$ HAX1568 $3^{11}/16$ R1035 $5^{7}/16$ R514 $5^{15}/16$ HAX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1033 7 JAX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1033 7 JAX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1037 8 LRX238 $4^{7}/16$ R1037 $5^{7}/16$ R1037 8 MRX1568 $3^{11}/16$ R1037 $5^{7}/16$ R1037 8 LRX238 $4^{$	R514 $4^7/_{16}$ R514 $5^{15}/_{16}$ HR1037 $3^7/_{16}$ 1030 $5^{15}/_{16}$ R514 $5^{15}/_{16}$ IR1037 $3^7/_{16}$ R1033 $5^{15}/_{16}$ R1033 $6^{1/2}$ IR1037 $3^{17}/_{16}$ R1033 $5^{15}/_{16}$ R10337JR1037 $3^{15}/_{16}$ R1037 $5^{7}/_{16}$ R10377JAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R10377JRX238 $4^7/_{16}$ R1037 $5^7/_{16}$ R10378MRX238 $4^7/_{16}$ RX2387R10278MR1248 $4^7/_{16}$ RX2387RX1568 $8^{1/2}$ NNR1035 $5^7/_{16}$ R514 $5^{15}/_{16}$ HAX1568 $2^{15}/_{16}$ R1035 $5^7/_{16}$ R514 $5^{15}/_{16}$ HR1035 $5^7/_{16}$ R514 $5^{15}/_{16}$ HAX1568 $2^{15}/_{16}$ R1035 $5^7/_{16}$ R514 $5^{15}/_{16}$ HAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R514 $5^{15}/_{16}$ JAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R514 $5^{15}/_{16}$ JAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R1033TJAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R1033TJAX1568 $3^{11}/_{16}$ R1037 $5^7/_{16}$ R1037R	3180 $3^{11}/_{16}$ $3^{16}0$ $4^{7}/_{16}$ HR1037 $3^{7}/_{16}$ R1033 $5^{15}/_{16}$ R1033 $6^{12}/_{16}$ 1R1037 $3^{7}/_{16}$ R1033 $5^{15}/_{16}$ R1033 $6^{12}/_{16}$ 1R1037 $3^{15}/_{16}$ R1033 $5^{15}/_{16}$ R1033 $7^{7}/_{16}$ JR1037 $3^{15}/_{16}$ R1033 $7^{7}/_{16}$ JJR1037 $3^{15}/_{16}$ R1037 $5^{7}/_{16}$ R1033 $7^{7}/_{12}$ JRX238 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R1037 8 LRX238 $4^{7}/_{16}$ RX238 7 R1027 8 MR1248 $4^{7}/_{16}$ RX238 7 R1033 $7^{7}/_{12}$ NR1248 $4^{7}/_{16}$ RX238 7 R1033 $7^{7}/_{12}$ NR1035 $5^{7}/_{16}$ R514 $5^{15}/_{16}$ I $45 - 50$ AX1568 $3^{11}/_{16}$ R514 $5^{15}/_{16}$ I $40 - 45$ AX1568 $3^{11}/_{16}$ R1037 $7^{7}/_{16}$ N $50 - 60$ AX1568 $3^{11}/_{16}$ R1037 $7^{7}/_{16}$ N $50 - 60$ AX1568 $3^{11}/_{16}$ R1037 $5^{7}/_{16}$ R1033 $7^{7}/_{16}$ AX1568 $3^{11}/_{16}$ R1037 $5^{7}/_{16}$ R1037 $7^{7}/_{16}$ RX238 $4^{7}/_{16}$ RX238 7 AX1568 $8^{1/}_{16}$ JRX238 $4^{7}/_{16}$ RX238 7 <td< td=""><td>R514$4^7/_{16}$R514$5^{15}/_{16}$HH$3180$$3^{11}/_{16}$$3160$$4^7/_{16}$IR1037$3^7/_{16}$R1033$5^{15}/_{16}$R1033$6^{1/}_{2}$IR1037$3^7/_{16}$R1033$5^{15}/_{16}$R1033$7^{1}/_{16}$JR1037$3^{15}/_{16}$R1033$5^{15}/_{16}$R1033$7^{1}/_{16}$JR1037$3^{15}/_{16}$R1033$5^{1}/_{16}$R1033$7^{1}/_{2}$JAX1568$3^{11}/_{16}$R1037$5^{7}/_{16}$R1033$7^{1}/_{2}$JR1238$4^{7}/_{16}$R1037$5^{7}/_{16}$R10378LR1248$4^{7}/_{16}$R1237$7$R10378LR1248$4^{7}/_{16}$R1238$7$R10278MR1248$4^{7}/_{16}$R1238$7$R10378LR1035$5^{7}/_{16}$R514$5^{15}/_{16}I7^{1}/_{2}-10$0R1035$5^{7}/_{16}$R514$5^{15}/_{16}I7^{1}/_{2}-10$0R1035$5^{7}/_{16}$R514$5^{15}/_{16}I3^{1}/_{16}$$3^{1}/_{16}$1AX1568$3^{1}/_{16}$R1037$7^{1}/_{2}$NN0I Bath0I BathR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLR1248$4$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>R514$47/_{16}$R514$5^{15}/_{16}$HR1037$37/_{16}$$1303$$5^{15}/_{16}$R103$5^{15}/_{16}$R103R1037$37/_{16}$R1033$5^{15}/_{16}$R1033$6^{1/2}$1R1037$3^{15}/_{16}$R1033$5^{15}/_{16}$R1033$7$JR1037$3^{15}/_{16}$R1033$5^{1}/_{16}$R1033$7$JR1037$3^{15}/_{16}$R1033$7^{1}/_{16}J40 - 45$R0635$5^{7}/_{16}$R1248AV1568$311/_{16}$R1037$7^{1}/_{16}JJ3180$$415/_{16}$JJJR1238$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLJJJR1248$4^{7}/_{16}$R1037$5^{7}/_{16}$R1037RLJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ<td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>R514 47/16 R514 517/16 H R1037 37/16 3180 317/16 3160 47/16 I R1037 37/16 1030 517/16 1130 517/16 I S0 S0 R123 S17/16 R1033 517/16 R1248 RX238 R1037 371/16 R1033 517/16 R1033 7 S180 417/16 I R1037 3160 317/16 R1033 7 S180 417/16 I R238 417/16 R1248 R1237 S71/6 R1337 S71/6 R1337 S71/6 R1303 R1248 R1237 T R1037 R1037<</td><td>R51447/16R514515/16HHR103737/16316047/16IR103737/167103515/16R514515/16IR103737/16R1033515/16R1033617/16IR10373170R1033515/16R10337I3180317/163180417/16IIR1037315/16R1037773180415/16IR1037317/16R10377/12R103377IR103757/16R103777/12R103777/12R103577/12R103757/16R10378LIIR124847/16RX2387RX126897/2R063597/2R124817/16R103757/16R10378LIR124847/16RX2387RX56887/2NIR124847/16RX2387RX56887/2NIR124817/16R103757/16R10378LIR124817/16R103757/16R10377IIR124817/16R10377/16R10377IIR124817/16R10377R10377IIR124817/16R10377/16R10377IIR124817/16R10377/16R10377I<</td><td>R5144/1/aR5145/1/aH318031/1/a31604/1/aHR103731/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103351/1aR10337J318031/1a31804/1/aJR103351/1aR10337J318031/1a31804/1/aJRX2384/1aR10375/1/aR10377318031804/1/aLRX2384/1aR10375/1/aR10378RX2384/1aR10375/1/aR10378RX2387RX15688/1/aNR12484/1aRX2387RX15688/1aS1/1aS1/1aS1/1a1R124810RX1568S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1148R1037S1/1aR1</td></td<></td></td<>	R514 $4^7/_{16}$ R514 $5^{15}/_{16}$ HH 3180 $3^{11}/_{16}$ 3160 $4^7/_{16}$ IR1037 $3^7/_{16}$ R1033 $5^{15}/_{16}$ R1033 $6^{1/}_{2}$ IR1037 $3^7/_{16}$ R1033 $5^{15}/_{16}$ R1033 $7^{1}/_{16}$ JR1037 $3^{15}/_{16}$ R1033 $5^{15}/_{16}$ R1033 $7^{1}/_{16}$ JR1037 $3^{15}/_{16}$ R1033 $5^{1}/_{16}$ R1033 $7^{1}/_{2}$ JAX1568 $3^{11}/_{16}$ R1037 $5^{7}/_{16}$ R1033 $7^{1}/_{2}$ JR1238 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R10378LR1248 $4^{7}/_{16}$ R1237 7 R10378LR1248 $4^{7}/_{16}$ R1238 7 R10278MR1248 $4^{7}/_{16}$ R1238 7 R10378LR1035 $5^{7}/_{16}$ R514 $5^{15}/_{16}$ I $7^{1}/_{2}-10$ 0R1035 $5^{7}/_{16}$ R514 $5^{15}/_{16}$ I $7^{1}/_{2}-10$ 0R1035 $5^{7}/_{16}$ R514 $5^{15}/_{16}$ I $3^{1}/_{16}$ $3^{1}/_{16}$ 1AX1568 $3^{1}/_{16}$ R1037 $7^{1}/_{2}$ NN0I Bath0I BathR1248 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R1037RLR1248 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R1037RLR1248 4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R514 $47/_{16}$ R514 $5^{15}/_{16}$ HR1037 $37/_{16}$ 1303 $5^{15}/_{16}$ R103 $5^{15}/_{16}$ R103R1037 $37/_{16}$ R1033 $5^{15}/_{16}$ R1033 $6^{1/2}$ 1R1037 $3^{15}/_{16}$ R1033 $5^{15}/_{16}$ R1033 7 JR1037 $3^{15}/_{16}$ R1033 $5^{1}/_{16}$ R1033 7 JR1037 $3^{15}/_{16}$ R1033 $7^{1}/_{16}$ J $40 - 45$ R0635 $5^{7}/_{16}$ R1248AV1568 $311/_{16}$ R1037 $7^{1}/_{16}$ JJ 3180 $415/_{16}$ JJJR1238 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R1037RLJJJR1248 $4^{7}/_{16}$ R1037 $5^{7}/_{16}$ R1037RLJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ <td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>R514 47/16 R514 517/16 H R1037 37/16 3180 317/16 3160 47/16 I R1037 37/16 1030 517/16 1130 517/16 I S0 S0 R123 S17/16 R1033 517/16 R1248 RX238 R1037 371/16 R1033 517/16 R1033 7 S180 417/16 I R1037 3160 317/16 R1033 7 S180 417/16 I R238 417/16 R1248 R1237 S71/6 R1337 S71/6 R1337 S71/6 R1303 R1248 R1237 T R1037 R1037<</td><td>R51447/16R514515/16HHR103737/16316047/16IR103737/167103515/16R514515/16IR103737/16R1033515/16R1033617/16IR10373170R1033515/16R10337I3180317/163180417/16IIR1037315/16R1037773180415/16IR1037317/16R10377/12R103377IR103757/16R103777/12R103777/12R103577/12R103757/16R10378LIIR124847/16RX2387RX126897/2R063597/2R124817/16R103757/16R10378LIR124847/16RX2387RX56887/2NIR124847/16RX2387RX56887/2NIR124817/16R103757/16R10378LIR124817/16R103757/16R10377IIR124817/16R10377/16R10377IIR124817/16R10377R10377IIR124817/16R10377/16R10377IIR124817/16R10377/16R10377I<</td><td>R5144/1/aR5145/1/aH318031/1/a31604/1/aHR103731/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103351/1aR10337J318031/1a31804/1/aJR103351/1aR10337J318031/1a31804/1/aJRX2384/1aR10375/1/aR10377318031804/1/aLRX2384/1aR10375/1/aR10378RX2384/1aR10375/1/aR10378RX2387RX15688/1/aNR12484/1aRX2387RX15688/1aS1/1aS1/1aS1/1a1R124810RX1568S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1148R1037S1/1aR1</td></td<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R514 47/16 R514 517/16 H R1037 37/16 3180 317/16 3160 47/16 I R1037 37/16 1030 517/16 1130 517/16 I S0 S0 R123 S17/16 R1033 517/16 R1248 RX238 R1037 371/16 R1033 517/16 R1033 7 S180 417/16 I R1037 3160 317/16 R1033 7 S180 417/16 I R238 417/16 R1248 R1237 S71/6 R1337 S71/6 R1337 S71/6 R1303 R1248 R1237 T R1037 R1037<	R51447/16R514515/16HHR103737/16316047/16IR103737/167103515/16R514515/16IR103737/16R1033515/16R1033617/16IR10373170R1033515/16R10337I3180317/163180417/16IIR1037315/16R1037773180415/16IR1037317/16R10377/12R103377IR103757/16R103777/12R103777/12R103577/12R103757/16R10378LIIR124847/16RX2387RX126897/2R063597/2R124817/16R103757/16R10378LIR124847/16RX2387RX56887/2NIR124847/16RX2387RX56887/2NIR124817/16R103757/16R10378LIR124817/16R103757/16R10377IIR124817/16R10377/16R10377IIR124817/16R10377R10377IIR124817/16R10377/16R10377IIR124817/16R10377/16R10377I<	R5144/1/aR5145/1/aH318031/1/a31604/1/aHR103731/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103331/1a31604/1/aIR103351/1aR10337J318031/1a31804/1/aJR103351/1aR10337J318031/1a31804/1/aJRX2384/1aR10375/1/aR10377318031804/1/aLRX2384/1aR10375/1/aR10378RX2384/1aR10375/1/aR10378RX2387RX15688/1/aNR12484/1aRX2387RX15688/1aS1/1aS1/1aS1/1a1R124810RX1568S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR10355/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1035S1/1aR114S1/1aR1148R1037S1/1aR1

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

Description of the steel sprock
Consult Rexnord
Hub size letter – See page 79.

TABLE 2 (Cont'd.)DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

	DESIGN	HORSEPOWER		F	Table 2	– (Cont'd.)		N HORSEPOWER		5	
RPM	Fo	r (SF) see page	ès 108-109		Type of	RPM		For (SF) see pag	ès 108-109	F	Type of
Driver Sprocket		RGEST KEYSEA			Lubrication	Driver Sprocket	DRI	LARGEST KEYSE			Lubrication
Sprocker	9T	12T	15T	Hub Letter [@]		Spiucket	9T	12T	15T	Hub Letter ²	
I			1		100	DHP		- !			
300 – 350		3180 3 ¹¹ / ₁₆	R514 5 ¹⁵ / ₁₆ 3180 4 ¹⁵ / ₁₆	Ι		50 – 60	RX1207 6 ¹ /.	2 RO635 9 ¹ /2	R1248 10	Ρ	\nearrow
250 – 300		R1037 5 ⁷ / ₁₆	R1035 7 3180 4 ¹⁵ /16	J			RX1207 6 ¹ /:		RX1245 10	Р	
200 – 250		R1037 57/16	R1035 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К	\square	40 – 45 35 – 40	RX1207 6 ¹ /. R1035 9	2 RO635 9 ¹ /2 RO635 9 ¹ /2	RO635 ^① RO635 ^①	Q R	Oil Bath
175 – 200		R1037 5 ⁷ /16	R1037 7 ¹ /2	К		30 – 35	RO1306 9	RX1207 ^①	RO635 ^①	R	
150 – 175	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8	L		25 – 30	RO1306 9	RX1207 ^①	RX1207 ^①	S	m
125 – 150	R1248 4 ⁷ /16	RX238 7	R1037 8	М	Oil Bath	20 – 25	RO1306 9	RO1306 ^①	RX1207 ^①	S	
	RX1245 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2	Ν	On Duin	17 ¹ /2–20		RO1306 ^①	RX1207 ^①	Т	
		RX238 7	RX238 9	N		15 – 17 ¹ /2	0	RO1036 ^①	RO1036 ^①	U	<i>AB</i>
		R1248 8	RX238 9 ¹ /2	0		12 ¹ /2–15	0	RO1036 ^①	RO1036 ^①	U	THEFT
		R1248 8	R238 9 ¹ /2	0		$10 - 12^{1/2}$	0	X1307 ^①	RO1036 ^①	W	
60 – 70	RX1245 5 ⁷ / ₁₆	RX1245 8	R1248 10	Р	105	$7^{1/2} - 10$	1)	0	X1307 ^①	Х	Flow
200 – 250		AX1568 5 ⁷ /16	i		125	DHP	i	1	1		
200 – 250 175 – 200			R1037 8	L	-	45 – 50		RO635 91/2	RO635 ①	Q	\sim
175 - 200 150 - 175			R1037 8	M		40 – 45		RX1207 ^①	RO635 ^①	R	\langle / \rangle
125 – 150		_	AX1568 7 ¹ /2	N		40 – 40 35 – 40		RX1207 ^①	RO635 ^①	R	
100 – 125			RX238 $9^{1/2}$	0	(β)	30 - 35		RX1207 ^①	RX1207 ^①	S	
90 – 100		R1248 8	RX238 9 ¹ /2	0	K Som	25 – 30		RO1306 ^①	RX1207 ^①	S	Oil Bath
80 – 90		R1248 8	RX238 9 ¹ /2	0	Oil Bath	20 – 25		RO1306 ^①	RO1306 ^①	Т	1
70 – 80		RO635 9 ¹ /2	R1248 10	Р		17 ¹ /2–20		RO1306 ^①	RO1306 ^①	U	
60 – 70		RO635 9 ¹ /2	R1248 10	Р		15 – 17 ¹ /2	_	RO1306 ^①	RO1306 ^①	V	Flow
50 – 60		RO635 91/2	RO635 ①	Q		12 ¹ /2–15		0	RO1306 ①	W	
					150	DHP		•	•	-	<u>.</u>
175 – 200			R1037 8	М		45 – 50			RO635 ①	R	\sim
150 – 175			AX1568 7 ¹ /2	Ν		40 – 45			RX1207 ①	R	
125 – 150			RX238 9 ¹ /2	0	$/\Lambda$	35 – 40			RX1207 ①	S	(β)
100 – 100			RX238 9 ¹ /2	0	(β)	30 – 35			RX1207 ①	S	
90 – 100			R1248 10	Р		25 – 30		RO1306 ①	RO1306 ①	Т	Oil Bath
80 – 90			R1248 10	Р	Oil Bath	20 – 25		RO1306 ①	RO1306 ①	U	
70 – 80			RX1245 10	Р		17 ¹ /2–20		0	RO1306 ①	V	
60 – 70			RO635 ①	Q		15 – 17½		0	RO1306 ①	W	Flow
50 – 60			RO635 ^①	Q		12 ¹ /2–15		0	RO1306 ①	Х	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. 0. Consult Perport

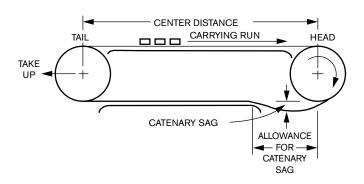
① Consult Rexnord
② Hub size letter – See page 79.

118

CONVEYOR CHAIN SELECTION PROCEDURES

Conveyor Classes

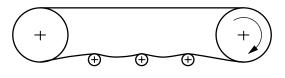
A second consideration closely related to the type of conveyor is the conveyor class. Six conveyor classes have been established on the basis of friction factors involved with the movement of the chain (sliding or rolling) and the movement of the material (sliding or carried). These six classes are described in terms of chain and material movement in the following table:

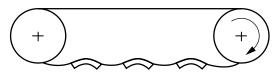

Conveyor Classes			
Class	Chain	Material	
1	Sliding, with flights	Sliding	
1A	Sliding, without flights	Sliding	
2	Rolling	Sliding	
3	Sliding	Carried	
4	Rolling	Carried	
4A	Supplemental Roller	Carried	

Basic Conveyor Arrangements

There are several basic conveyor arrangements. The recommended arrangement (see illustration) is with the drive at the head end and with the carrying and return runs well supported. Note the catenary sag in the return run at the head end. In general, the catenary sag should be at least equal to 3% of the span over which the chain is hanging. The illustrated arrangement offers two advantages:

- The catenary force tends to keep the chain engaged on the drive sprocket.
- Wear at the chain joints is minimal because the return run is under minimum tension and flexture at the chain joints is reduced by the well-supported return line.

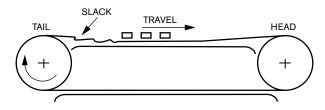

If a take-up is used to adjust the center distance and maintain the correct catenary sag, be extremely cautious not to impose excessive loads on the chain.


Other Arrangements

Other methods of supporting the return run are shown in the following illustrations.

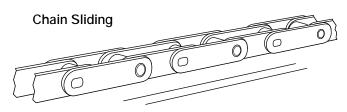
These methods of support will result in faster chain wear because of the additional flexure at the joints in the return line and the higher pressure between the chain and the return support because of the small area of support.

Return Strand Supported by Rollers

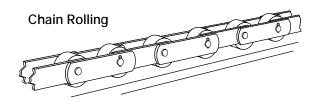


Return Strand Supported by Shoes

Conveyors sometimes are driven from the tail end as shown in the following illustration.


This arrangement is not recommended for two main reasons:

- Chain wear at the joints is greater because chain is flexing under load at both the head and tail sprockets.
- Excess chain tends to accumulate on the carrying run just after the tail sprocket and the resulting wedging action can cause the chain to jump the sprocket.

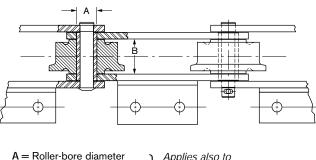


Method of Chain Travel

Another basic consideration is whether the chain will slide or roll. In deciding on the method of chain travel, the following points should be evaluated:

- Simple in construction, fewer moving parts and usually the lowest in cost for a given load.
- Most effective in "dirty" applications.
- Greater horsepower required. •

- Smoother operation, less pulsation.
- Lower friction which permits longer centers, smaller motors, and lower operating costs.
- Not suited to "dirty" applications, foreign matter • jams rollers.
- Less horsepower required.


Conveyor Pulsation

Another consideration is the amount of pulsation that can be tolerated in the conveyor. This will vary from one installation to another and the permissible amount is a matter of judgement. When pulsation must be minimized, consider the possible causes and remedies listed in the following table:

Possible Cause	Remedy
Excessive friction	Clean and lubricate moving parts.
Conveyor too long	Use shorter conveyor sections.
Conveyor speed too low (10 fpm or less)	Increase conveyor speed, or use non-metallic- bushed chain.
Velocity fluctuation caused by chordal action	Use drive sprocket with 12 or more teeth, or – Use compensating sprocket. (Consult your Rexnord representative.)

Carrying Loads of Rollers

A basic consideration on conveyors using chain with rollers is the load imposed on the chain. This load includes the weight of the slats or flights, and the weight of the material being carried. This load must be limited so that the pressure of the bushing on the roller is kept within permissible limits.

Applies also to outboard rollers B = Roller hub lengthRoller-bearing area = $A \times B$ The roller carrying pressure, per roller, is distributed over the roller-bearing area.

The table below lists allowable bearing pressures between bushings and roller. Note the method of determining the roller bearing area. The listed bearing pressures are for "ideal conditions", i.e. slow speeds in non-gritty service with lubricated bearings. As any of these conditions become more severe, the allowable pressures must be reduced accordingly.

The allowable working bearing pressures, in pounds per square inch between rollers and bushings, are approximately as follows:

Roller and Bushing Materials in Contact	Allowable Bearing Pressure P.S.I.
Casehardened steel against casehardened steel	1400
Casehardened steel against white iron	1400
Casehardened steel against untreated steel	1200
Casehardened steel against cast iron	1000 ①
Casehardened steel against malleable iron	1000
Casehardened steel against bronze	400
Gray iron against malleable iron	800
Malleable iron against malleable iron	800
Gray iron against bronze	800
Non-metallic against carburized steel or heat treated stainless steel (LF bushed rollers)	100

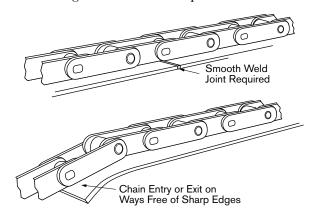
^① Applies also to chill iron.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Wear Strips and Ways

Generally, it is desirable that the chain wear slower than the wear strips or liner since it is the more critical and expensive part of the conveyor components. Therefore, the most compatible wear strip should be considered after the proper chain has been selected. Conveyor may wear for chains rolling is not a critical consideration but cold finished steel is used for best operation.

The subject of wear is extremely complicated and influenced by many factors. It is impossible to predict with accuracy the wear life of various chain - liner combinations. This is due to the effect of many variable and uncontrollable factors such as abrasion, corrosion, lubrication, load, speed, and break-in period. Thus, prior experience of a successful chain - liner combination for a specific application is the best guide to predict performance.


For new installations, where no previous experience can be applied as a guide, the chain should be slightly harder than a metal liner to protect it and insure that the liner wears first. The material should be at least comparable to the chain in surface finish or smoother.

Non-metallic materials such as, wood and plastic, are occasionally used as liner materials. These may result in wear strip economy, but should not be used where severe impacting loads exist or under extremely dirty conditions.

If wear is a problem, neglecting the effect of corrosion, experience has shown that generally by increasing the hardness of either the chain or the metallic wear strip in an abrasive environment should decrease the wear on both. Lubrication, even if only water will reduce wear.

Some general comments to insure proper installation of liners in the conveyor and things to do before start-up are:

- See that the joints on the liners and frame are 1. smooth so that no sharp edges protrude.
- 2. Take reasonable care in eliminating welding slag, weld spatter, metal filings and/or mill scale from the conveyor.
- 3. Break in chain and liner by operating the conveyor without load, and with plenty of lubricant, for a short period of time (generally 8-24 hours) or until the mating wear surfaces are polished smooth.

Note: The above comments are guidelines that normally will increase or improve chain - liner compatibility.

Newse	Deciliaria	Producer Code [®] Condition		Mechanical Properties			
Name	Producer Coo			Yield 1000 PSI	Tensile 1000 PSI		
SSS-321 SSS-360 SSS-400 Sheffield AR	ARM ARM ARM ARM	0&T 0&T 0&T HR	321 360 400 225		- - - -		
AR-No. 235	В	HR	(235)	70	100		
Abrasion Resisting, Med. Hard. Abrasion Resisting, Full Hard.	IN IN	HR HR	235 270				
Jalloy AR-280 Jalloy AR-320 Jalloy AR-360 Jalloy AR-400 Jalloy S-340 Jalloy S (AR)]L]L]L]L]L]L	0 & T 0 & T 0 & T 0 & T 0 & T HR	260 300 340 400 320 (225)	110 135 160 184 149 90	117 142 166 190 157 104		
T-1-A-360	L	Q&T	360	(145)	(180)		
XAR-15 XAR-30	N N	Q & T Q & T	360 360	165 165	180 180		
USS-AR	US	HR	(235)	-	100		
T-1 T-1-A T-1-A-321 T-1-B-321 T-1-321 T-1-360	US/L US/L US/L US/L US/L US/L	0&T 0&T 0&T 0&T 0&T 0&T 0&T	321 321 321 321 321 321 321 360	(100) (100) (137) (137) (141) (145)	(115) (115) (171) (171) (175) (180)		
Astrallov	V	N	440	(141)	(228)		

^① Presented as a guide only. If additional information is required, contact the designated steel company.
 ^② Producer Code: ARM = Armco Steel Corp.; B = Bethlehem Steel Corp.; IN = Inland Steel Co.; JL = Jones & Laughlin Steel Corp.; L = Lukens Steel Co.; N = National Steel Corp.; US = United States Steel Corp.; V = Vulcan Steel Corp.
 Note: Q & T = quenched and tempered; HR = hot rolled; N = normalized. Typical values are enclosed in parentheses. Mechanical properties are those of sheet or hot rolled plate up to 1/2" thick and are minimums unless typical is indicated by parentheses.

This procedure is intended to serve primarily as a guide for selecting a general type, or class, of chain when a new conveyor is designed. When following the step-by-step instruction outlined, the user may find that more than one type of chain will fit the particular conveyor requirement. In such a case the final selection of the chain may be affected by such factors as allowable sprocket diameters, space limitations for chain, chain pitch, and many other environmental and design factors peculiar to the particular conveyor being designed. Consult your Rexnord representative for assistance in selecting the best chain when a choice of more than one class is indicated.

Parts of this section will prove useful in determining whether the chain on existing installations is the most economical choice, and will also serve as a guide to upgrading existing installations where service life is not satisfactory.

Procedure

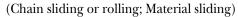
There are six basic steps in selecting the proper type of chain for a conveyor installation.

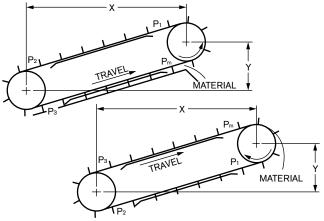
- 1. Determine the class of conveyor.
- 2. Estimate the total chain pull.
- 3. Determine the design working load.
- 4. Make a tentative chain selection.
- 5. Make tentative selection of attachment links.
- 6. Verify chain selection and re-check design working load.

Step 1. Determine the Class of Conveyor

Check the sections on Conveyor Types, Conveyor Classes, and Method of Chain Travel in relation to your conveying problem.

Make a tentative selection of a conveyor class required from the table on page 119.

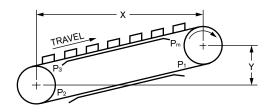

Step 2. Estimate the Total Chain Pull (Pm).


Use the formula which applies to the conveyor class tentatively selected and calculate total chain pull (Pm) which is total conveyor chain pull.

For conveyors that are partly horizontal and partly inclined, calculate the chain pull for each section, and add to obtain total chain pull.

Note: Calculations assume properly adjusted takeup equipment. If take-up force is adjusted to exceed the calculated value (P₂ + P₃), excessive chain loading may result.

Class 1, 1A and 2 Conveyors



Formulas for Calculating Total Chain Pull (Pm)

Horizontal:
$$\begin{pmatrix} \underline{Y} \text{ is less than } f_1 \end{pmatrix}$$

 $P_m = X (2f_1W + f_2M + \underline{h}^2) + MY$
Inclined: $\begin{pmatrix} \underline{Y} \text{ is greater than } f_1 \\ X \end{pmatrix}$
 $P_m = X (f_1W + f_2M + \underline{h}^2) + Y (W + M)$

Class 3, 4 and 4A Conveyors

(Chain sliding, rolling or in tension; Material carried)

Formulas for Calculating Total Chain Pull (Pm)

Horizontal:
$$\left(\frac{Y}{X} \text{ is less than } f_1\right)$$

 $P_m = f_1 X (2W + M) + MY + \frac{h^2}{c} X$
Inclined: $\left(\frac{Y}{X} \text{ is greater than } f_1\right)$
 $P_m = (M + W) (f_1 X + Y) + \frac{h^2}{c} X$

Formulas for Calculating Horsepower (HP)

Horizontal: Inclined:
HP =
$$\frac{1.15 \text{ (S)} (P_m)}{33,000}$$
 HP = $\frac{1.15 \text{ (S)} (P_m - P_1)}{33,000}$
P₁ = W (Y - f₁X)
P₂ = P₃ = 0

Note: Symbol identification given on page 152.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Symbols

f1 = Coefficient of Friction – chain sliding or rolling on runway. See next column for specific value of the coefficient.

If chain is supported by flights, etc., f1 should be coefficient for flights sliding on conveyor ways.

- **f**² = Coefficient of Friction material sliding on trough. (See Table in next column).
- **M** = Wt. of material handled per foot of conveyor (lb./ft.)

 $M = (\underline{\text{TPH}})(33.3)$ S $M = (\underline{\text{CFH}}) (Mat'l. \text{ Density in } LB/FT^3)$ 60(S)

W = Weight of moving conveyor parts – chains, flights, slats, etc., per foot of chain (lbs/ft). Depending on the method of chain travel, use the following factors for estimating approximate chain weight (lbs/ft) if actual chain weight is unknown.

Material or chain sliding – .0015 x Total weight of material on conveyor at any time (lbs.). (Classes 1, 1A, 2 or 3) Material carried and Chain rolling – .0005 x Total weight of material on conveyor at any time (lbs.). (Classes 4 and 4A)

For example: If a Class 4 Conveyor is used and the total material weight is 40,000 pounds, then 40,000 x .0005 = 20.0

Use 20.0 Lbs/Ft. as an estimated chain weight for "W" in the above equation. Add the estimated Weight/Ft. on the flights or slats that will be used.

- h = Height of material rubbing against side of conveyor trough (inches).
- c = Trough side friction constant (see Table in next column).

 $\mathbf{P}_{\mathbf{m}}$ = Total Maximum Chain pull (lbs)

P1

P2 = **Chain pull at point indicated (lbs)**

P₃

HP = Required horsepower at headshaft

S = Conveyor Speed (ft/min)

TPH = Capacity in Tons per Hour = MS

CFH = Capacity in cubic feet per hour = TPH x 2000

(Mat'l. Density in lb/ft³)

X = Horizontal center distance (ft.)

 \mathbf{Y} = Vertical rise (ft.)

Chain Friction Factors (f1)

Chain Sliding

Chain Sliding on Steel Track – unlubricated35
Chain Sliding on Steel Track – lubricated
Chain Sliding on Hard Wood
Chain Sliding on Non-Metallic Wear Strips:
Chain Sliding on Ultra-High Molecular
Weight Polyethylene154

Chain Rolling

$$\mathbf{f}_1 = \operatorname{fr} \frac{\mathrm{da}}{\mathrm{dr}}$$

Where: da = axle diameter (inches) (usually bushing O.D.) dr = roller outside diameter (inches)

(Fr) For Metal Rollers				
Cast	Rollers	Steel Rollers		
Dry	.5	Dry	.4	
Lubricated	.4	Lubricated	.3	

For LF (Low Friction material) Bushed Rollers, fr = .25

Material Friction Factors

Materials	Friction Factor Mat'l Sliding on Steel Trough (f2)	Trough Side Friction Fadctor (c)
Aluminum	.40	27
Ashes, Coal, Dry	.50	36
Ashed, Coal, Wet	.60	55
Bagasse	.40	200
Cement, Portland	.65	12
Cement Clinker	.70	12
Coal, Anthracite, Sized	.40	25
Coal, Anthracite, Run of Mine	.45	20
Coal, Bituminous, Sized	.50	21
Coal, Bituminous, Run of Mine	.55	20
Coke, Mixed	.55	42
Coke, Breeze	.65	36
Grains	.40	23
Gravel, Dry	.45	12
Gravel, Run of Bank	.60	11
Ice, Crushed	.15	34
Lime, Pebble	.50	28
Sand, Dry	.60	7
Sand, Damp	.85	6
Stone, Screened	.60	9
Wood Chips, Pulp Logs	.40	48

DESIGN AND SELECTI

Step 3. Determine the Design Working Load

The determination of chain pull (Pm) is for static conditions and does not include consideration of the following dynamic conditions:

- a. Loading fluctuations that may exceed the static load condition. These fluctuations are provided for by the Service Factor. (See table below.)
- b. The conveyor chain speed and the number of teeth in the sprockets used. These items are provided for by the Speed Factor (Fs). (See table below.)

Calculate the Design Working load by modifying $\mathbf{P}_{\mathbf{M}}$ as follows:

For single strand conveyor:

Design Working Load = Pm x Service Factor x Speed Factor

For multiple strand conveyor:

Design Working Load = $P_m x$ Service Factor x Speed Factor x 1.2

No. of Strands

The multiplier (1.2) is used to provide for possible overloads in one of the strands caused by unequal load sharing distribution.

Speed Factors (Fs)

No. of	5	60	1	00	1	50	2	00	3	00	4	00
Teeth on Sprocket	Cast Chain	Engineered and Welded Steel Chain		Engineered and Welded Steel Chain		Engineered and Welded Steel Chain	Cast Chain	Engineered and Welded Steel Chain	Cast Chain	Engineered and Welded Steel Chain		Engineered and Welded Steel Chain
6	1.6	1.4	2.3	2.0	2.3	2.9	5.0	4.4	-	-	-	-
7	1.3	1.1	1.6	1.4	2.0	1.8	2.6	2.3	4.5	4.0	-	-
8	1.2	1.0	1.4	1.3	1.7	1.5	2.0	1.8	2.9	2.5	4.2	3.6
9	1.1	1.0	1.3	1.2	1.6	1.4	1.8	1.6	2.3	2.0	2.9	2.6
10	1.0	0.9	1.3	1.1	1.4	1.2	1.6	1.4	1.9	1.7	2.3	2.0
11	1.0	0.9	1.2	1.0	1.3	1.2	1.5	1.3	1.7	1.5	2.1	1.8
12	1.0	0.9	1.1	1.0	1.3	1.1	1.4	1.2	1.6	1.4	1.9	1.6
14	1.0	0.8	1.1	0.9	1.2	1.0	1.3	1.1	1.5	1.3	1.7	1.4
16	0.9	0.8	1.0	0.9	1.1	1.0	1.2	1.0	1.4	1.2	1.5	1.3
18	0.9	0.8	1.0	0.9	1.0	0.9	1.2	1.0	1.3	1.1	1.5	1.3
20	0.9	0.8	1.0	0.9	1.0	0.9	1.1	1.0	1.3	1.1	1.5	1.2
24	0.9	0.8	0.9	0.8	1.0	0.9	1.1	0.9	1.2	1.0	1.3	1.2

Note: If sprocket size has not yet been determined, use a speed factor for a 12-tooth sprocket. Refer to sprocket selection beginning on page 75.

Determination of Speed Factor for Traction Wheels

- 1. Determine effective pitch diameter (PDeff): (PDeff) = Traction wheel O.D. + barrel O.D. (chain)
- 2. Compare (PDeff) to pitch diameters of standard engineering sprockets. If (PDeff) falls between two standard pitch diameters, go to the lower value.
- 3. The standard pitch diameter chosen from No. 2 above will give number of teeth.
- 4. Knowing number of teeth and chain speed, speed factor (Fs) can be determined.

Service Facto	r			
	Operating C	Daily Operated Period		
Type of Load	Start Stop Frequency Under Load	% Load Added At a Time	8-10 Hrs.	24 Hrs.
Uniform	Less Than 5/Day	Less Than 5%	1.0	1.2
Moderate Peaks	5/Day to 2/Hr.	5-20%	1.2	1.4
High Peaks	2/Hr. to 10/Hr.	20% to 40%	1.5	1.8
	Operating	Conditions	Service Factors	
	Up to 200)°F (93°C)	1	.0
Temperature	Temperature 200°F to 350°F (1.1	
	350°F to 500°F (177°C to 260°C)	1	.2
	Above 500	°F (260°C)	Contact	Rexnord

 $^{\odot}$ Reversing under load can be damaging and requires special consideration. Consult Rexnord for selection assistance.

The "Start-Stop" and "% loaded" parameters are intended to guide you in classifying the severity of loading for your conveyor. If these two parameters fall into different categories (ex. start-stop less than 5/Day, % loaded at a time 5-20%) use the more severe classification (moderate).

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Step 4. Make Tentative Chain Selection

To aid in making the selection, consider the following:

- a. The wear life and relative cost of each type.
- b. Short conveyor centers and high chain speeds produce rapid joint wear and chain elongation. These conditions suggest a chain with a high (A or B) wear rating.
- c. Heavy loads produce rapid sliding and rolling wear. These conditions suggest a chain with a high (A or B) sliding or rolling wear rating.
- d. Conveyors operating in highly abrasive surroundings require hard bearing surfaces. This condition would suggest a steel chain.
- e. Mildly abrasive or moderately corrosive conditions may indicate that a cast chain is the economical choice.
- f. Corrosive atmospheres reduce the fatigue strength of component parts. In this case, chain with armor cased pins are recommended.
- g. The chain pitch may be dictated by the required spacing of attachment links. A longer pitch is more economical while a shorter pitch requires less room for sprockets. In many cases a 4" to 6" pitch chain is considered a good compromise.
- h. The selection procedure outlined is applicable only if temperatures of the chain will remain within -40°F and +350°F. Special lubricants may be needed above 250°F. If these temperature limits will be exceeded, consult your Rexnord representative.

Additional factors such as sprocket availability and price, chain delivery lead time and chain price should also be considered in making the final choice.

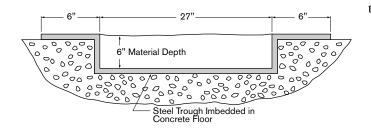
In making the final selection reliability should be a primary consideration. Cast chains, in general, do a good job in sliding applications and have excellent corrosion resistance. However, in critical applications where overloads may be encountered, Engineered Steel and Welded Steel chains will usually provide longer and more dependable service. It is recommended, therefore, that the final selection be made from the listings of Engineered Steel and Welded Steel Chains. Refer to the detail listings for the type of chain selected and select a specific chain that has a working load at least equal to the design working load and meets the pitch and space requirements.

REXNORD DOES NOT RECOMMEND CAST, CAST COMBINATION NOR WELDED STEEL CHAINS FOR ELEVATOR SERVICE.

Step 5. Make Tentative Selection of Attachment Links

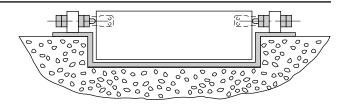
Refer to the section on attachments. On the basis of the information here and on the basis of the chain selected, tentatively select the desired attachment links.

Step 6. Verify Chain Selection and Re-Check Design Working Load


Recalculate total chain pull (Pm) and design working load using the exact chain and attachment weight as given in the listings to verify that the selected chain will meet the requirements.

Selection Procedure for Double Flex Chains

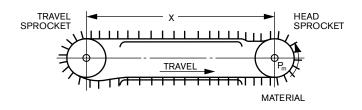
This procedure is the same as that for standard chains except that the "Chain Pull" as determined must be modified. The modification is necessary because the chain is flexing around curves and additional tension is developed because of the friction between the **sides** of the chain and curves. The chain pull must be calculated on a **cumulative** basis, with the "Turn Factor" for each curve taken into account. Consult Rexnord for assistance in applying the proper "Turn Factor" for your conveyor.


Conveyor Chain Selection

A horizontal scraper flight conveyor has been tentatively designed to handle Bituminous coals, and will feed an incinerator from a coal storage hopper. The coal is to be conveyed in an existing trough which is approximately 100 feet long and has a cross section as shown in the sketch below.



Conveyor Data


Material Handled:	Bituminous Coal (¹ /2" maximum lump size)
Material Density:	50 Lbs. per cubic foot
Conveyor Centers:	100 Feet
Conveyor Capacity:	170 Tons per hour
Conveyor Speed:	100 Feet per minute

The unit becomes a scraper flight conveyor, similar to that indicated as a basic type of conveyor.

Step 2. Estimate Total Chain Pull

$$\textbf{Pm} = X \ (2f_1W + f_2M + \frac{h^2}{c} \) + MY$$

Where:

- P_m = Maximum chain pull (Lbs.)
- **X** = Conveyor centers (100 Ft.)
- **f**1 = Coefficient of friction chain rolling on runway
- $\mathbf{f_1} = \operatorname{fr} \frac{\mathbf{d_a}}{\mathbf{dr}}$ (See Table, page 123)
- f1 = 0.20 (This factor will range from 0.10 to 0.20, depending upon the chain roller-bushing proportions. Since the chain pull is only being estimated at this point, use the highest range 0.20 in the first calculation.)
- **M** = Weight of material handled per foot of conveyor

$$\mathbf{M} = \frac{\text{TPH x 33.3}}{\text{S}} = \frac{170 \text{ x 33.3}}{100} = 56.6 \text{ Lbs./Ft.}$$

- **W** = Weight per foot of moving conveyor parts
- **S** = Conveyor speed (feet/minute)

Other Considerations

- Approximately 100 steel plates (¹/4" x 10" x 27"; Weight 10 Lbs.) are left over from another project, complete with attachment wings. It is desired to use these as flights if possible. Attachment wings are available to suit chain.
- 2. No space restrictions.
- 3. Conveyor to operate 16 hours per day. 5 days per week.
- 4. Drive will be selected to suit conveyor.

Select Suitable Chain

Step 1. Determine Conveyor Class

In the basic considerations section of this procedure, it was pointed out that a conveyor using a chain that rolled would result in smoother operation. Since a rolling chain also has less friction, smaller drive units could be used, at lower operating costs. Therefore, tentatively pick a chain with rollers to run on the existing trough. Also tentatively figure on using the available 10" x 27" steel flights and attachment wings. The basic conveyor cross section might become a two-chain conveyor with scraper flights connected between the chains as shown in the following sketch.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Since the weight of the chain and attachment links has not yet been determined, use the empirical factor given on page 123 to establish chain weight.

- W = .0015 x 56.6 Lbs./Ft. x 100 Ft. = 8.49 Lbs./Ft.
 Add to this the weight of the flights.
 (There are approximately 100 flights available; assume a flight spacing of every 2 feet)
 10 Lbs./ Flight x 1 Flight/2 Ft. = 5 Lbs./Ft.
- W = 8.49 Lbs./Ft. + 5 Lbs./Ft. = 13.49 Lbs./Ft.
- **f**₂ = Coefficient of friction of material
- **f**₂ = 0.50 (Material friction factor table, page 123)
- **h** = Height of material (see sketch of trough)
- $\mathbf{h} = 6$ inches
- **c** = Trough side friction factor
- **c** = 21 (Material friction factor table, page 123)

y = Vertical rise = 0 (Horizontal Conveyor)
Substitute Values in Formula:

$$\mathbf{Pm} = X \ (2f_1W + f_2M + \frac{h_2}{c}) + MY$$

= 100 [2 (.20) (13.49) + .50 (56.6) + $\frac{6^2}{21}$] + 56.6 x 0
= 100 (5.4 + 28.3 + 1.7)

P_m = 3540 Lbs.

Step 3. Determine Design Working Load

Design W.L. = Pm x Service Factor x
Speed Factor x
$$\frac{1.2}{\text{No. of Strands}}$$

= 3540 x 1.2 x 1.0 x $\frac{1.2}{2}$
= 2545 Lbs.

The Service Factor was picked from the table on page 153 for uniform loading since the conveyor is being fed from a hopper. A factor of 1.2 was selected because the conveyor will be in operation for more than 10 hours per day.

The speed factor was picked for a 12 tooth sprocket, although final sprocket selection has not been made. As indicated in the drive chain selection section (pages 94-95), a 12 tooth sprocket is a good first choice.

Step 4. Make Tentative Chain Selection

Refer to the chain selection chart and note that an engineered steel roller type chain is recommended for a Class 2 Conveyor. Refer to pages 10-15 of the chain listing section and note that these chains all have rollers. For the conveyor arrangement tentatively selected, a Style "R" chain, whose rollers are larger than the sidebars, should be used. As indicated in the selection procedure, Step 4-g. (Page 125), a 4- to 6-inch pitch chain is good first choice. Also, from the calculation of Design Working Load, a chain having a working load rating of 2548 pounds or greater will be required.

Checking the chain listings, you will note a number of Style "R" chains in the desired pitch range. SR196 would be selected as the chain that most closely matches the desired working load. Chains such as 2188 and 1604 have working loads substantially higher and would not be economical choices. SR196 would be the tentative selection.

Step 5. Make Tentative Selection of Attachment Links

From the basic conveyor arrangement decided upon, an attachment lug which projects on one side of the chain only is required. Also, it is desired to select an attachment link to which the available flight wings can be adapted, if possible. This suggests a singleattachment lug such as the "A" attachment. The A1 (single hole) attachment is available for the SR196 Chain. Make this the tentative selection.

Step 6. Verify Chain Selection & Recheck Design Working Load

The exact chain and attachment link weight/ft. can now be used to calculate the Design Working Load. Also, the chain roller and bushing diameters can be used to determine the chain friction factor (f1).

Chain Weight

SR196 Plain Chain	= 5.0 Lbs./Ft.
SR196 A1 Attachment Link	= 6.6 Lbs./Ft.

The weight per foot for the attachment link is based on a link interspersed every pitch. For the conveyor arrangement to be used, an attachment link will be required every 2 feet, or every 4th pitch (6 inch pitch chain).

3 plain links at 5.0 Lbs./Ft.	= 15.0 Lbs.
1 Attachment link at 6.6 Lbs./Ft.	= 6.6 Lbs.
	21.6 Lbs.
$21.6 \div 4 = 5.4$ Lbs./Ft.	
SR196 A1 every 4th link	= 5.4 Lbs./Ft.
2 strands of chain x 5.4 Lbs./Ft.	= 10.8 Lbs./Ft.
Flight Weight	= 5.0 Lbs./Ft.
	15.011 (5

15.8 Lbs./Ft.

15.8 Lbs./Ft. = W = Total weight of moving conveyor parts.

Chain Friction Factors

f₁ = fr $\frac{d_a}{d_r}$ f_r = 0.4 (from table, page 154 for steel roller) d_a = Bushing diameter (⁵/s" from chain listing, page 11) d_r = Roller O.D. (2" from chain listing, page 11) f₁ = $\begin{bmatrix} 0.4 (\frac{5}{8}) \\ 2 \end{bmatrix}$ f₁ = 0.125 Use the final values of chain weight (W) and chain factor (f₁) in the chain pull formula Use the same values for all other factors as in Step 2. P_m = X (2f₁W + f₂M + $\frac{h^2}{c}$) + MY = 100 [(2 x .125 x 15.8) + (.50 x 56.6) + $\frac{6^2}{21}$] + (56.6 x 0) = 100 [(3.95) + (28.3) + (1.7)] P_m = 3395 Lbs. total conveyor chain pull Design Working Load = P_m x Service Factor x Speed Factor x <u>1.2</u> No. of Strands

Design W.L. = $3395 \ge 1.2 \ge 1.0 \ge \frac{1.2}{9}$

= 2444 Lbs. chain pull per strand

Since the final design working load of 2444 pounds does not exceed the maximum recommended working load of 2600 as given in the chain specifications (pages 11), the SR196 chain selection is acceptable.

ELEVATOR CHAIN PULL CALCULATION PROCEDURE

Bucket Elevator Formulas

To Determine Chain Pull (P_m):

 $Pm = 0.5 P_t + MKD + Y (M + W)$

Knowing the chain pull, determine the design working load and select chain service and speed factors found on page 126.

To Determine Horsepower (HP):

HP = 1.15 (S) (MDK + MY)

Where: 33000

M = Weight of material handled per foot of elevator (lb./ft.)

M = Mat'l. Density (Lb./Ft.³) x Bucket Cap. (Ft.³)

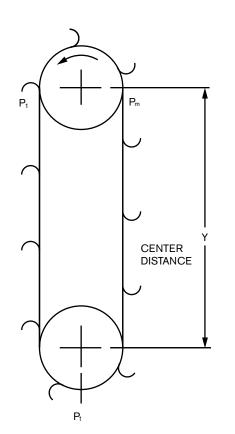
Bucket Spacing (Ft.)

W = Weight of chain and buckets per foot of elevator (lbs./ft.)

$$W = \frac{\begin{pmatrix} \text{Attach. Spacing} \\ \text{in Pitches} - 1 \end{pmatrix} \times \begin{pmatrix} \text{Wt. of plain chain} \\ (\text{lbs./ft.}) \end{pmatrix} + \begin{pmatrix} \text{Wt. of attach. chain} \\ (\text{lbs./ft.}) \end{pmatrix}}{\text{attachment spacing in pitches}}$$

+ $\frac{\text{Wt. of a bucket (lbs.)}}{\text{bucket spacing (ft.)}}$

 P_t = Take Up Force (Lbs.)


 $P_1 = 1/2 \text{ of } P_t + WY$

- D = Footshaft sprocket pitch diameter (feet)
- K = digging factor (10 for centrifugal, 6 for continuous)

Y = Elevator center distance (feet)

S = Elevator speed (feet/minute)

$$TPH = Tons/Hour = \frac{.75 (S) (M)}{33.3}$$
$$CFH = \frac{TPH \times (2000)}{Mat'l \text{ Density (lbs./ft.}^3)}$$

APPLICATIONS BEYOND SCOPE OF CATALOG SELECTION PROCEDURES

Data Required for Selection

The selection procedures in this catalog were intended to cover the majority of conveyor, elevator and drive applications. However, some installations involve conditions or applications which require special consideration in the selection process. The items listed below will aid in obtaining selection assistance. The items on this page are basic considerations which are necessary, if known, to insure selection of components best suited to the application.

General Information

- 1. Answer Required by (date):____
- 2. Product: Chain Sprockets Other
- 3. Application:
 New Installation
 Replacement Component
- 4. Equipment OperatingTime ____ Hours/Day; ____ Days/Week

Drives

- 1. Horsepower: Maximum _____; Percent of operating time at or above 75% Maximum Horsepower ______
- 2. RPM DriveR _____ DriveN _____; Ratio _____ Permissible Variation + _____
- 3. Center Distance _____
 - \Box Fixed \Box Adjustable Permissible Variation ± ____
- 4. Layout: Please provide sketch. Show Centers, DriveR, Direction of Rotation and Relation to Horizontal.

Conveyor and Elevator Components

- 1. Type:
 Elevator
 Bulk Material Conveyor
 Unit Handling Conveyor
- 2. Chain Speed: _____ Feet/Minute
- 3. Material Handled:
 - (a) If Bulk:
 - Characteristics: □ Dry □ Wet □ Sticky
 - Lump Size: _____ Inches (Maximum)
 - Quantity: ______Tons/Hour;
 - Cubic Feet/Hour
 Density: Lbs./Cubic Foot
 - If material density is not known, refer to material properties table on pages 173 and 174.
 - (b) If Units:
 - Quantity:
 Units/Hour

 Size:
 x
 - Spacing:
 Random
 Regular
 - Weight: ____ Lbs. (each) ____ Lbs. (per foot of conveyor) Total weight on conveyor at one time: _____ Lbs. (Max.)
- 4. Loading (in Cubic Feet/Hour or Units/Hour):
 - Normal _____ Peak _____ Percent of Time at Peak _____
 - Levent Cletch chowing content incli
- 5. Layout: Sketch showing centers, inclines, distance between chains, special attachments.

General

- Desired Equipment Life: Hours/Years
 Environment
 - (a) Temperature: Surrounding ______ °F Component _____ °F If Cycling, Time at Temperature _____
 - (b) Abrasion: Material ______ Particle Size ______ Abrasiveness _____
 - (Refer to tables on pages 143-144).
 (c) Corrosion: Material ______
 Corrosiveness ______
 - (d) Lubrication: Lubricant ______ How Applied ______

Conveyor and Elevator

- Sprockets (or Traction Wheels) No. of Teeth (or Outside Diameter):
- Head______Tail _____
- 2. Shaft Size: Head _____ Tail _____
- 3. Chain Attachments: Type _____ Spacing _____
- 4. Weight of Flights or Slats _____
- 5. Takeup Type:
 Screw
 Gravity Weight
- 6. Elevator Buckets: Style ______ Size _____ x _____ x _____

Drives

- 1. Shaft Diameters: DriveR _____ DriveN _____
- 2. Application Description:

3. Peak Load Factor _____

Ratio of peak tension to mean tension while maximum horsepower is being transmitted.

POLYMERIC CHAINS AND ACCESSORIES – APPLICATION INFORMATION Materials

Standard Materials

Chain links are made from an acetal thermoplastic which which offers several advantages over steel and stainless steel chains. The coefficient of friction for acetal is lower than either steel chains, reducing the horsepower requirement for the conveyor and preventing product damage when the chain slides under products backed up at various points in the conveyor. Acetal chains also reduce noise in a conveying system.

Combined with a stainless steel pin, the chain will not rust and has good resistance to many chemicals.

Special Materials

For applications requiring special chain capabilities, a wide range of materials and processing treatments have been developed. Consult Rexnord for details. (See the listing below for frequently encountered requirements).

FDA/USDA Compliance

Chain materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment and Sanitation Division of USDA.

Environmental Factors

Chemical Resistance

Rex[®] polymeric chains, sprockets and idlers have good resistance to hydrocarbons, most neutral organic and inorganic materials, and to weak acids and bases in a pH range from 4 to 10.

To prolong chain life in the above situations, it is recommended to:

- 1. Avoid high temperatures of questionable liquids and/or solids. The closer to room temperature, the better.
- Clean the chain! Thorough and frequent cleanings can limit prolonged exposure to questionable liquids and/or solids, decreasing the damaging effects of chemical attack.

Temperature Range

The allowable temperature range for Rex polymeric chains is -40°F to +180°F.

Consult Rexnord Corp. for operation beyond these temperatures.

Abrasion Resistance

Care should be taken when operating Rex polymeric chains in abrasive environments. Of particular concern is abrasive particles embedded in wearstrips and sprockets. These particles, once embedded, can work like a file to wear away the chain.

Rex sprockets are manufactured from super tough urethane. This material was selected because it is harder than most other available non-metallic sprocket materials and resists particle embedding. UHMW sprockets are not recommended for any application where dirt or other abrasives are present.

Sprockets

Rex polymeric chains are designed specifically for applications where corrosion resistance is desired. The current line of polymeric sprockets compliments the product line by offering additional corrosion resistance components. There are, however, situations that require metallic sprockets.

If a decision is made to use steel or cast sprockets, it is imperative to carefully inspect the sprocket for any unusual burrs, ridges, or protrusions and remove them before they come in contact with the polymeric chain. Such abrasive components have the capability of severely reducing the expected service life of the chain.

Flammability

Rex polymeric material will burn and support combustion. Acetal thermoplastics will burn with a clear flame and little smoke. Care should be taken to keep chain and accessories away from heat sources. Do not weld around conveyors or machinery without taking care to protect polymeric materials.

Ultra-Violet (UV) Resistance

Exposure to ultra-violet light can degrade polymeric chain materials. UV stabilized materials are available for use in direct sunlight.

Wear Strips Metal Wear Strips

Metal wear strips are harder than non-metallics and, in addition, can be heat treated or work hardened to increase hardness. They are, therefore, suited for applications where abrasive particles are present either from the environment or from the products carried. Abrasive particles are less likely to imbed in metal wear strips.

For non-corrosive environments, plain carbon steel, cold finished, is recommended. For corrosive environments, use stainless steel, one quarter temper minimum (25Rc) cold finish.

POLYMERIC CHAINS AND ACCESSORIES -APPLICATION INFORMATION – (Cont'd) Wear Strips –(Cont'd.)

Steel

Plain carbon, cold rolled steel is recommended. Surface finish should be 32-63 RMS. Use heat treatable grades where available and hardened to 25-30Rc. Surface lubricants used should have rust inhibitors added.

Stainless Steel

Cold rolled finish (32-63 RMS) is recommended. An austenitic grade offers the best corrosion resistance.

The softer annealed grades of austenitic stainless steel are **not recommended**. Interaction between the chain material and the soft stainless steel might develop. When this happens, the resulting wear debris consists almost entirely of finely divided stainless steel particles, nearly black in color, similar to molydisulfide or graphite. The wear of the stainless steel might be rapid while the thermoplastic chain by contrast exhibits only slight wear.

Therefore, one quarter temper minimum austenitic grade stainless is recommended. Martensitic stainless steels can also be use. They offer excellent wear resistance when heat treated to 25-35R_c, but they are not as corrosion resistant as austenitic.

Aluminum

Not recommended due to poor wear resistance.

Non-Metallic Wear Strips

Non-metallic wear strips have a lower coefficient of friction than metals. They are generally easier to install and remove and provide for quieter operation. Nylatron is the preferred material, especially for dry operation at high load or high speed conditions around corners. Ultra high molecular weight polyethylene is also recommended for all well lubricated applications and some dry applications.

Acetal

Not recommended for use with acetal chains. It is best not to run identical plastics together.

Nylatron

Nylatron (nylon with molydisulfide filler) is the preferred material for dry applications because of its low wear state and low friction. It is especially suited for dry operation on double flex chain corners.

Although nylatron is more stable in wet applications than most nylons, it will absorb moisture and expand. Therefore, room for expansion must be provided and fasteners must allow for movement.

Ultra High Molecular Weight Polyethylene (UHMWPE)

UHMW polyethylene (molecular weight of at least 1.0 million) is recommended for both dry and wet applications on straight runs. It is also recommended for all well lubricated corners and non-lubricated corners where chain load and speed are low. It is not recommended for dry operation on corners where the chain load or speed are high. It is also not recommended for operation in environments where particulate matter is present and can embed in the UHMW, subsequently wearing the chain.

UHMWP has a wear rate equivalent to nylon in non-lubricated applications. It is virtually unaffected by moisture and is more resistant to corrosive chemicals than nylon. It is not as rigid as cast nylon and may deflect when subjected to high loads from sideflexing chains.

Teflon

This material has perhaps the lowest coefficient of friction available in a plastic wear strip material. It is soft and tends to flow off the surface and is not practical as a wear strip material except in low load – low speed applications.

Lubricant Impregnated Wood

Suitable for dry applications where self-lubricating properties of the material are best utilized. Not recommended for abrasive conditions where particles may imbed in the surface and wear the chain.

Catenary Sag

Rex[®] polymeric chain conveyors should provide for proper amount of catenary sag to allow proper chain and sprocket interaction. Ample space should be provided for the catenary. If chain sag is excessive or increased due to wear, it should be adjusted to the proper amount of sag by removing links. If space does not permit catenary sag, consult Rexnord.

Rex polymeric chains should never be run tight. Attempting to operate the chain with too little catenary sag can result in excessively high chain tension, leading to rapid chain wear to chain breakage. For this reason, screw take-ups are not recommended.

POLYMERIC CHAINS AND ACCESSORIES -APPLICATION INFORMATION – (Cont'd) General Chain Pull Calculations

CS

Overhead Conveyors

Chain pull = Moving Load + Lift Load^①

Where:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MTW	= Moving Total Weight lbs: (Weight of all
	N348 Chain, Trolleys, Shackle Hangers,
	Carriers and Product Weight in the entire
	conveyor.)
fı	= Friction Factor (see table).
	Select the Friction Factor indicated for
	your trolley wheel diameter.
	Note: A large number of vertical bends
	and horizontal turns will create slightly
	higher friction (consult Rexnord).
TR	= Total Rise: (this is the total of all vertical rises)
	Example: three four-foot rises,
	TR = 3 x 4 = 12 ft.
BW	= Product Weight lbs. (average weight
	product)
CS	= Carrier Spacing (feet)

Friction Factor f1

Operating	Ball Bearing Trolleys Wheel Diameter								
Conditions	2"	3"	4"						
0° to 180°F (clean conditions)	.025	.020	.018						

 $^{\textcircled{0}}$ The worst condition (uncompensated loaded inclines) should be used in determining Lift Load.

Well **lubricated** anti-friction wheel turns and ball bearing trolley wheels are recommended; sliding corners are not recommended.

Rated Allowable Chain Pull

The maximum recommended chain pull/working load of N348 chain is **700 pounds**; if this chain pull is exceeded, additional drives must be used.

For more detailed information on chain pull calculations, refer to CEMA standard No. 601 – 1995 entitled "Overhead Trolley Chain Conveyors." It is available from Conveyor Equipment Manufacturers Association, 9384-D Forestwood Lane, Manassas,

VA 20110.

POLYMERIC CHAINS AND ACCESSORIES – MAINTENANCE INFORMATION

Installation

- 1. When connecting or disconnecting chain:
 - Always lock out the equipment power switch before removing or installing chains.
 - Always use safety glasses to protect your eyes.
 - Support the chain to prevent uncontrolled movement of chain and parts.
 - Tools for assembly or disassembly should be in good condition and properly used.
 - Always sight the pin with the hole before driving it home.

2. The chains operate open end forward!

Generally, it is best to run offset chains with the open end leading. This arrangement provides the smoothest action during sprocket engagement and assures getting the longest service life out of the chain and sprockets.

When chains are operated in this way, the wear from joint articulation is restricted primarily to the bearing surface (pin or bar) which is best able to withstand wear. In addition, sprocket wear is minimized because the motion between the chain and sprocket teeth during engagement is reduced.

3. Any unusual burrs, ridges, or protrusions in the conveyor system that could cut into and destroy the chain, sprockets, or idlers must be removed.

Cleaning

In many applications rapid build-up of grease, dirt, grit, sand and spilled liquid can occur. This can result in:

- 1. Soiling and damage to the conveyed product.
- 2. Increased work demands for the chain and motor.
- 3. Accelerated sprocket tooth wear.
- 4. Conveyor pulsation and wear.
- 5. Excessive chain wear on the flight and in the joint areas.
- 6. Rapid wear of the wear strips.

Frequent cleaning of the chain and conveyor frame is advised. Such agents as steam, warm water, and soap are commonly used. Many times combined "cleaners/lubricants" are applied continuously. Strong caustic agents used with metal chains should not be used with plastic chains. Always rinse cleaning agents completely off of the chain and conveyor frame. When excessive amounts of liquids, broken glass or debris accumulate, cleaning will be required on a regular basis to remove these undesirable materials. It is advisable to have operating personnel keep brushes and cleaning solutions nearby to remove broken glass and excessive spillage.

AND SFI

■ MAINTENANCE INFORMATION CONNECTING AND DISCONNECTING CHAIN

Introduction

Chains are manufactured with connectors, either pins or rivets of various constructions depending upon the chain type, i.e., offset or straight sidebar, Roller Chain, Fabricated Steel Chain, Welded Steel Chain, Cast Chain, Combination Chain, etc. The particular connector link construction dictates the proper method and direction of connector insertion or removal from chain.

The connectors can have uniform diameters, multiple stepped diameters, locking flats, various head styles, riveted ends or various pinlocks (cotters, etc.).

A pin with either a flat on the head end, or a larger stepped diameter will not pass through the smaller cotter-side sidebar hole. Likewise, the round shank of a pin with locking flats on the cotter end will not pass through the slotted cotter-side sidebar hole.

Field Repair

When repairing chains in the field, the repair should be confined to replacement of complete links or sections. Replacement of individual components (bushings, rollers, etc.) is generally not recommended. Therefore, this connect-disconnect discussion has been limited to removal and replacement of connectors.

CAUTION: Rexnord does not recommend altering or rebuilding standard press-fit chains, or sub-assemblies especially the removal of press-fit components and their replacement with others. Such alterations destroys the integrity of the press-fits of the chain assembly.

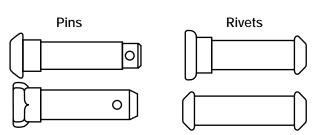


Figure 1 – Type I Connectors

Type I Connectors

The connector construction found in the majority of chains would be of the type shown in Fig. 1.

Head Identification

The head of a connector can usually be identified by a alpha-numeric code stamped on it, or the appropriate sidebar is designated head side.

Type I Connector Removal

Type I connectors are removed by driving on the end opposite the head and supporting the link as shown in Fig.

2. Refer to pages 137-138 for disassembly tools

When Connecting or

Disconnecting Chain

Always lockout equipment power switch before removing or installing

· Always USE SAFETY GLASSES to

Wear protective clothing, gloves and

Support the chain to prevent uncontrolled movement of chain and parts.

Use of pressing equipment is recommended. Tools should be in good

condition and properly used

Do not attempt to connect or discon-

correct direction for pin/rivet removaL

Rexnord

nect chain unless you know the chain construction, including the

chains

or insertion.

protect your eyes.

safety shoes

For Type I single diameter rivets, the method of removal suggested for Type II connectors may be preferred. (See next page).

Connection

The connector is inserted by driving on the head end of the connector and supporting the link similar to the manner shown in Fig. 2.

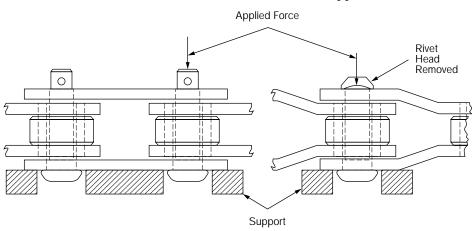


Figure 2 – Type I Connector Removal

CONNECTING AND DISCONNECTING CHAIN – (Cont'd.)

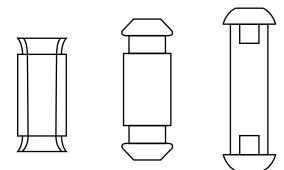
Connection

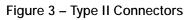
For connection, one sidebar is pushed onto one of the ends of the connectors and the other sidebar is pushed onto the opposite ends of the connectors. Refer to pages 137-138 for assembly tools.

Pinlocks

For cast and roller chains, the pinlocks (cotters, etc.) should be removed before pin removal. Cast chains could be damaged from the pinlock if left in during pin removal. Roller chains normally use hardened pinlocks making cutting or shearing difficult. However, for most other chains, both ends of pinlocks should be cut flush (with chisel or equivalent) with outside diameter of pin to prevent pin collapse during pin removal.

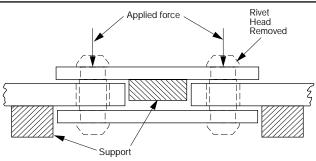
Riveted Ends


For chains of riveted construction, the riveted end should be ground flush with the sidebar before connector removal.


Loose Chain

When disconnecting and connecting loose chain, the chain should always be solidly supported against the floor, or on a bench. When employing method of Fig. 2, enough space should be provided below the end (at least twice the sidebar thickness) to allow the connector end to pass through the sidebar.

TYPE II CONNECTORS


Connectors of Type II construction shown in (Fig. 3) are typically found in hollow rivet, draw bench, double flex and S-Series Chains.

Removal

Type II connectors are moved in the method shown in Fig. 4. They are removed by supporting the top sidebar and pushing the ends of the connectors free of the sidebar. An alternate method is to wedge or pry the sidebars free of the connectors.

To Disconnect Chains on Sprockets

- 1. Decrease chain tension by loosening, take-ups, etc.
- 2. Restrain sprockets from rotating and secure chain on both sides of disassembly point.
- 3. Apply penetrating oil around connectors.
- 4. Remove where chain wraps over the sprockets. Support against removal force with heavy bar or tubing held against opposite side of the chain and sprocket.
- 5. Grind riveted end (if present) of connector flush with the sidebar.
- 6. Remove pinlocks or cut ends flush with outside diameter of pin.
- 7. Use press equipment to remove connectors, e.g., hydraulic press or jack, or arbor press.

IMPORTANT! SAFETY INSTRUCTIONS

- Follow safety guidelines on preceding Caution Tag.
- Don't heat or cut chain with torch unless absolutely necessary. Any links or pins heated by such a process should be replaced during reassembly.

To Connect Chains on Sprockets

- 1. When connecting strand use sprocket for rigid support. Support against assembly force with heavy bar or tubing held against opposite side of chain and sprocket.
- 2. Grease or oil the connector before replacing it.
- 3. Check connectors to assure proper positioning of flats or cotter holes before assembly.
- 4. Use press equipment to insert connectors, e.g., hydraulic press or jack or arbor press.
- 5. Check to see that assembled joint(s) flex freely. If not, a light blow exerted on opposite end of connector(s) should free joint(s).

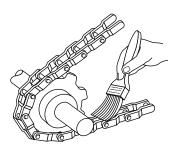
IMPORTANT! SAFETY INSTRUCTIONS

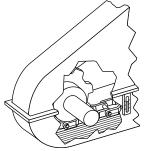
- Follow safety guidelines on preceding Caution Tag.
- Don't grind the circumference of the connector of
- the sidebar hole to ease insertion of the connector.
- Do not heat sidebars to ease pin insertion.

MAINTENANCE INFORMATION

DRIVE CHAINS

The following suggestions are practical methods of increasing chain and sprocket life. The more of them that are followed, the longer the chain and sprocket life will be.


Lubrication


Lubrication is essential for maximum chain and sprocket life. Drive chains can and should be lubricated.

Lubrication effectiveness will vary with the amount of lubricant used and frequency of application. Ideally, a lubricant film should constantly be maintained between working parts.

Chain Operation

If possible, manually lubricate the chain once a week when the chain is not under load. It is important to get the lubrication between the pin and the bushing and between the roller and the bushing. The chain is under the least load after it exits from the driver sprocket. This area will contain a catenary sag and this is the area to which manual lubrication should be applied. Pour or brush on a copious amount of oil in a continuous manner. Allow the chain to travel two complete cycles.

Manual Lubrication

Oil Bath Lubrication

Chains operating at relatively high speeds should be completely enclosed in an oil case. The lower strand of the chain should just dip into the oil when the chain is running. Maintain the proper oil level. Excess oil causes churning and heat.

Type of Lubricant

Oil is recommended as a lubricant using the highest viscosity that will flow at the prevailing temperature:

Temperature (°F) Lubricant

Below 40	SAE 30
40-100	SAE 40
Above 100	SAE 50

Sprockets

Worn or improperly designed sprockets are one of the main causes for premature chain life or chain failure. Here are a few hints on how to get the most out of sprockets.

New Sprockets

- 1. When receiving new sprockets check to see if the sprockets are in pitch by wrapping the chain around sprocket and coupling.
- 2. Make a "Painted Pattern" by holding a piece of wood behind the new sprocket tooth and spray paint the tooth outline onto the wood. As the sprocket wears, a check on what the original shape was and how much wear has taken place can be made by putting the painted pattern behind the tooth.

Tooth Wear

On single direction drives only one side of the tooth wears. Reverse the sprocket on the shaft and put the unworn tooth face to work.

Chain and Sprocket Interaction

Closely inspect the Chain and Sprocket interaction to insure a smooth and noiseless operation. The chain should easily enter and exit the sprocket without a hitch.

Chain Elongation

Wear on the pin outside diameter and bushing inside diameter causes chain elongation. Once the chain has elongated or worn past acceptable limits, jumping of sprocket teeth and/or improper chainsprocket interaction can be expected. Typical allowable elongations are 3 to 5% of chain pitch for drive chains. After the chain has been elongated or worn past acceptable limits, it should be replaced.

How to Dimensionally Identify Chain:

First check chain for any markings!

- 1. Determine if sidebars have straight or offset construction.
- 2. Measure chain pitch.
- 3. Measure pin diameter.
- 4. Measure roller diameter & width.
- 5. Measure sidebar thickness & height.
- 6. Measure bushing length.

FOR BEST RESULTS, CLEAN CHAIN AND SPROCKET PERIODICALLY.

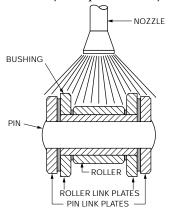
CONVEYOR CHAINS

Wherever possible, lubrication of chain is always recommended to assure maximum chain life and optimum conveyor operation. The reduction in friction and increase in wear life usually justifies the additional cost.

Under normal conditions, chains with roller are selected only when proper lubrication is possible.

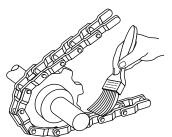
In some applications the presence of a lubricant cannot be tolerated, but it still may be possible to attain satisfactory service with sacrifice to chain and conveyor life.

The following are general guides:


Type of Lubricant

Oil is recommended as a lubricant. Use the same lubricants recommended for drive chains at the same temperature ranges.

Grease can be used if it is applied internally into the joint with lubrication fittings on rivets or bushings.


Method of Lubrication

Oil flow or brush type lubrication is adequate under relatively clean conditions, but they are ineffective with dirty conditions. "Flush" lubrication (flooding the chain) once per day is normally adequate in dirty environments.

When manually lubricating, the oil should be directed between adjacent outer and inner sidebars (for the joint) and between inner sidebar and roller face (for roller-bushing lubrication). **For best results, clean chain and sprocket periodically.**

The effectiveness of any lubrication method will

vary with the amount of lubricant used and the frequency of application. Ideally, a lubricant film should be maintained between working parts.

Chain and Sprocket Storage

Do not store in an "open" area where dust, dirt and water are present. **Sprockets**, especially the tooth face and the inside of the bore, should be painted with a heavy lubricant to prevent corrosion.

Most manufacturers pre-lubricate chain when it is shipped from the manufacturing plant. If you do not re ets,

intend to use the chain when you receive it and it will be stored for a period of time, the chain should be lubricated periodically. If possible, store chain in a fifty gallon drum or other container filled with "Used Drain Oil." This will provide excellent protection for the chain as well as good break-in lubrication for the chain when it is finally used. This pre-lubrication will allow the chain and sprockets to "break in" or "shine-up" properly. If a chain is installed into the application completely dry this will reduce its overall life.

If it is impossible to store in "lubricated" environment, then oil the chain after installation but before any load is applied. Run the chain for 24 hours without any load to allow for good break-in. It is also a good idea to lubricate drag chain conveyor ways with moly-disulfide so that a proper surface will develop between the chain ways and the chain.

Chain Installation

Do not grind the chain pins or the holes in the sidebar in order to assemble the chain. Chain reliability if based upon a good press fit of the pins into the sidebars. If you reduce that press fit you can reduce chain life. Lubricate the pin when installing it, this eases assembly.

Chains on Idle Equipment

If the equipment is to be idle for any length of time, clean the chain and sprockets by brushing or swabbing if possible, or with a steam hose. Then cover the chain and sprockets with a light oil.

Chain Operation

If possible, manually lubricate the chain once a week when the chain is not under load. Try to flow the oil between the pin and bushing and between the roller and the bushing. Usually the chain is under the least load after it exits from the driver sprocket. This area should contain a catenary sag, and this is the area that manual lubrication should be applied. Flow or brush on a predetermined amount of oil in the shortest amount of time possible, but still allowing the chain to travel two complete cycles.

CHAIN ASSEMBLY/DISASSEMBLY TOOLS – DRIVEMASTER[®]

Assemble and disassemble Rex[®] and Link-Belt[®] Drive Chains quickly and safely with these portable tools. Keep the advantages of interference fit, thereby maintaining optimum chain fatigue life. The design of these tools will facilitate assembly or disassembly of catalog listed drive chains, through 7 inch pitch.

Features	Benefits
	Reduces down-time. Eliminates cumbersome assembly/disassembly methods.
2. Maintains Press-Fits	No hammering or back-up required. Insures optimum chain fatigue life.

TO DISASSEMBLE CHAIN:

- 1. READ AND FOLLOW ALL PRE-CAUTIONS LISTED ON CHAIN TOOL.
- 2. Be sure to use the correct chain adapters for the chain being disassembled.
- Remove dust cover from cylinder and connect pump hose to cylinder by finger tightening.
- 4. Be sure cylinder is completely collapsed. If not, open relief valve (counterclockwise) and push ram in.
- 5. Close relief valve on hand pump (clockwise).
- 6. Remove cotters or pinlocks. If this is not possible, tool will shear off without damage to chain or tool, but repinning may be difficult due to the sheared cotter or pinlock that is pressed in the hole. Cover cotter with rag before shearing.
- 7. Place chain link to be disassembled securely in saddle with cotter end of pin facing toward ram.
- 8. For stability it may be helpful to secure pump to steel plate or flat board.
- 9. Apply pressure by pumping hand pump. Be sure ram is squarely on end of pin and that head end will clear discharge slot on opposite end.
- 10. After pin is free of sidebars remove pin from chain link by pulling through discharge slot.
- 11. To remove chain from unit, open relief valve (counterclockwise) and close cylinder by pushing ram in.
- 12. Replace dust cover on cylinder.

	Drivema	aster I*	
No. 3	RO635	RX1207	B3112
RX238	R778	1240	R3112
R362	1030	1244	B3113
R432	R1033	RX1245	3120
R506	R1035	R1248	3125
R514	1037	X1343	3140
A520	A1204	X1345	3160CN
B578	RO1205	AX1568	3180
R588			
	Drivema	ster II*	
RO1306	RX9506	X1311	X1365
ROS1306	1301	X1307	A1309

^① Contact Rexnord for non-listed chains. Rex drive chains are listed. To interchange Link-Belt and Rex chain numbers see pages 34-35.

- Part Identification
- Relief Valve
 Cylinder
- ^③ Ram
- ⁽⁴⁾ Saddle and Support Plate

TO ASSEMBLE CHAIN:

- 1. READ AND FOLLOW ALL PRECAUTIONS LISTED ON CHAIN TOOL.
- 2. Be sure to use the correct chain adapters for the chain being assembled. Adapters are labeled with chain number.
- 3. Remove dust cover from cylinder and connect pump hose to cylinder by finger tightening.
- 4. Place pin in chain joint to be assembled by hand as far as possible. Line up pin locking flats where applicable; tap pin with hammer to "Snug-Up", (improper alignment could shear hole).
- 5. Close relief valve on hand pump (clockwise).
- 6. Place chain joint securely in saddle (4) with pin head facing toward ram.
- 7. For stability it may be helpful to secure pump to steel plate or flat board.
- 8. Apply pressure by pumping hand pump. Be sure that ram is squarely on pin head.
- 9. After pin head is flush with sidebars open relief valve (counterclockwise) and close cylinder by pushing ram down. Remove chain.
- 10. If chain does not flex freely, hit pin cotter end hard with hammer to establish clearance.
- 11. Replace dust cover on cylinder.

- PRECAUTIONS
- 1. Always wear safety glasses.
- 2. Take necessary precautions to secure chain.
- 3. Be sure to use correct chain adapters.
- 4. This tool is not to be used to manufacture chain.
- 5. Do not hammer on this unit when it is under pressure, or at any other time!
- 6. Always use the hand pump supplied with this unit. Drivemaster will not be supplied without hand pump.
- 7. When not in use, be sure dust covers are replaced.
- 8. Use this tool only with the chains recommended by Rexnord Corp.

CHAIN ASSEMBLY/DISASSEMBLY TOOLS – LINKMASTER®

Keep the advantages of interference fit by eliminating pin grinding or heating of sidebars which decreases the fatigue strength of the chain, resulting in premature chain failure.

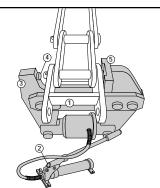
The design of this tool will facilitate assembly or disassembly of larger straight sidebar chains including the Rex[®] ER800 and ER900 Series and Link-Belt[®] SBX800 and SBX2800 Series elevator chains. The outstanding "mobility" of this tool allows usage "in the elevator" as well as on the floor.

Contact Rexnord for chains not mentioned above.

Elevator Chains – Rex ER800 and ER900 Series – Link-Belt SBX800 and SBX2800 Series

For detailed dimensions of these chains, see "Numerical Chain and Sprocket" index for page location.

ASSEMBLY


- 1. Insert pin in joint as far as possible. A light coat of oil may be applied to the pin O.D. and sidebar holes to facilitate assembly. Tap the pin lightly with a hammer to provide a snug fit as improper alignment could damage the holes.
- 2. Place the Linkmaster over the chain joint, and apply pressure squarely on the pin head. Make sure the cotter end clears the recessed contact plate on the opposite end (see View "A").
- 3. Apply pressure until the pin head is almost flush with the sidebar. Check
 2 Relief Valve the Linkmaster periodically so it doesn't slip off of the pin.
- 4. Open the relief valve to reduce pressure.
- 5. Insert the cotter.
- 6. Apply a firm hammer blow on the end of the pin to loosen the joint so it may flex freely.
- 7. Insert spacer gage between the inside surfaces of the outside sidebars to verify the proper width between them has been maintained.
- 8. Replace the dust cover on the cylinder.

VIEW A

Rex Linkmaster tool shown positioned to assemble ER864 chain. Apply pressure to pin head only until it contacts sidebar. Be sure pin end will clear support plates shown in View "A".

PRECAUTIONS

- 1. Always wear safety glasses.
- 2. Take necessary precautions to secure chain.
- 3. Be sure to use correct chain adapters.
- 4. This tool is not to be used to manufacture chain.
- 5. Do not hammer on this unit when it is under pressure, or at any other time!

Part Identification

Spacer Gage (Rectangular ^③ Force Arm Flat Bar) ^④ Ram Relief Valve ^⑤ Support Plate

DISASSEMBLY

Tool shown in chain disassembly position. To reassemble chain, reverse tool so ram (4) contacts pin head.

- 1. Be sure cylinder is completely collapsed.
- 2. Close relief valve on hand pump.
- 3. Remove cotters, if possible. Otherwise, the Linkmaster will shear them off without damage to the chain or itself.
- 4. Apply pressure by pumping hand pump. Be sure ram is squarely on end of pin and that the head end clears the recessed
 - contact plate on the opposite end

(see View "B"). Check this periodically until pin is free of sidebars. Failing to do this could damage pump.

- 5. To remove unit from chain, open relief valve and close cylinder by pushing force arms together. Newer models have automatic spring return cylinders.
- 6. Replace the dust cover on the cylinder.

VIEW B Tool shown positioned to disassemble ER864 chain. Be sure pin head will clear support plate as shown in View "B".

- 6. Always use the hand pump supplied with this unit. Drivemaster will not be supplied without hand pump.
- 7. When not in use, be sure dust covers are replaced.
- 8. Use this tool only with the chains recommended by Rexnord Corp.

ENGINEERING DATA

SPROCKET PITCH DIAMETERS

The following table (based on chordal pitch) shows the correct sprocket pitch diameters for all types of chains having a taut, uniform pitch of one inch. Sprocket pitch diameters for other uniform chain pitches are directly proportional to the chain pitch. To determine sprocket pitch diameters for any other chain pitch, multiply the tabular diameter by the chain pitch used.

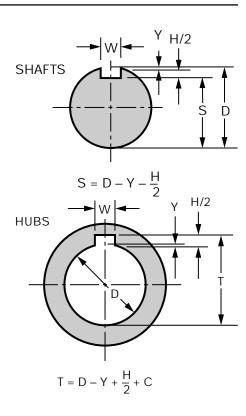
						Dimer	isions are in inche
No. or Teeth "N"	Pitch Diameter	No. or Teeth "N"	Pitch Diameter	No. or Teeth "N"	Pitch Diameter	No. or Teeth "N"	Pitch Diameter
4	1.4142	28	8.9314	52	16.5621	76	24.1985
5	1.7013	29	9.2491	53	16.8802	77	24.5166
6	2.0000	30	9.5668	54	17.1984	78	24.8349
7	2.3048	31	9.8844	55	17.5166	79	25.1532
8	2.6131	32	10.2023	56	17.8349	80	25.4713
9	2.9238	33	10.5201	57	18.1527	81	25.7896
10	3.2361	34	10.8379	58	18.4710	82	26.1079
11	3.5494	35	11.1558	59	18.7891	83	26.4261
12	3.8637	36	11.4737	60	19.1073	84	26.7442
13	4.1786	37	11.7916	61	19.4254	85	27.0626
14	4.4940	38	12.1096	62	19.3737	86	27.3807
15	4.8097	39	12.4276	63	20.0619	87	27.6989
16	5.1258	40	12.7455	64	20.3800	88	28.0170
17	5.4422	41	13.0635	65	20.6981	89	28.3355
18	5.7588	42	13.3815	66	21.0136	90	28.6537
19	6.0755	43	13.6995	67	21.3347	91	28.9724
20	6.3925	44	14.0175	68	21.6528	92	29.2901
21	6.7095	45	14.3356	69	21.9710	93	29.6082
22	7.0276	46	14.6536	70	22.2890	94	29.9268
23	7.3439	47	14.9717	71	22.6073	95	30.2447
24	7.6613	48	15.2898	72	22.9256	96	30.5628
25	7.9787	49	15.6079	73	23.2438	97	30.8811
26	8.2962	50	15.9269	74	23.5620	98	31.1994
27	8.6138	51	16.2441	75	23.8802	99	31.5177
						100	31.8362

CONVERSION TABLE

Fraction	Decimal	Millimeters	Fraction	Decimal	Millimeters		
1/64	.015625	.3969	33/64	.515625	13.0969		
1/32	.03125	.7938	17/32	.53125	13.4938		
3/64	.046875	1.1906	35/64	.546875	13.8907		
¹ / ₁₆	.0625	1.5875	⁹ /16	.5625	14.2876		
⁵ /64	.078125	1.9844	37/64	.578125	14.6844		
3/32	.09375	2.3813	19/32	.59375	15.0813		
7/64	.109375	2.7781	³⁹ /64	.609375	15.4782		
¹ /8	.125	3.1750	⁵ /8	.625	15.8751		
9/64	.140625	3.5719	⁴¹ /64	.640625	16.2719		
⁵ /32	.15625	3.9688	²¹ / ₃₂	.65625	16.6688		
11/64	.171875	4.3656	43/64	.671875	17.0657		
³ / ₁₆	.1875	4.7625	11/16	.6875	17.4626		
13/64	.203125	5.1594	45/64	.703125	17.8594		
7/32	.21875	5.5563	23/32	.71875	18.2563		
15/64	.234375	5.9531	47/64	.734375	18.6532		
1/4	.250	6.3500	3/4	.750	19.0501		
17/64	.265625	6.7469	⁴⁹ /64	.765625	19.4470		
⁹ /32	.28125	7.1438	²⁵ / ₃₂	.78125	19.8438		
¹⁹ /64	.296875	7.5406	⁵¹ /64	.796875	20.2407		
⁵ /16	.3125	7.9375	¹³ /16	.8125	20.6376		
²¹ /64	.328125	8.3344	⁵³ /64	.828125	21.0345		
11/ ₃₂	.34375	8.7313	27/32	.84375	21.4313		
23/64	.359375	9.1282	⁵⁵ /64	.859375	21.8282		
³ /8	.375	9.5250	7/ ₈	.875	22.2251		
25/64	.390625	9.9219	57/64	.890625	22.6220		
13/ ₃₂	.40625	10.3188	29/32	.90625	23.0188		
27/64	.421875	10.7157	⁵⁹ /64	.921875	23.4157		
7/ ₁₆	.4375	11.1125	15/16	.9375	23.8126		
²⁹ /64	.453125	11.5094	⁶¹ /64	.953125	24.2095		
¹⁵ / ₃₂	.46875	11.9063	³¹ /32	.96875	24.6063		
³¹ /64	.484375	12.3032	⁶³ /64	.984375	25.0032		
¹ / ₂	.500	12.7001	1	1.000	25,4001		

ENGINEERING DATA

STANDARD KEY AND SETSCREW SIZES


Keyseats and Keys

Drawings and formulas at right illustrate how the depth and width of standard keyseats in shafts and hubs are determined. Refer to explanation of symbols.

Symbols:

- **C** = Allowance or clearance for key (normally .005" for parallel keys).
- **D** = Nominal shaft or bore diameter, inches
- **H** = Nominal key height, inches
- **W** =Nominal key width, inches
- \mathbf{Y} = Chordal height, inches

$$\mathbf{T} = \frac{\sqrt{D - D2 - W2}}{9}$$

Dimensions are in inches.

STANDARD KEYWAY AND SETSCREW SIZES

Shaft Di	ameters	Кеу	Set	Shaft Di	ameters	Кеу	.,					Set	Shaft Diameters		Кеу	Set
Over	Thru	W x H/2	Screw	Over	Thru	W x H/2	Screw	Over	Screw			Over	Thru	W x H/2	Screw	
⁷ /16	⁹ /16	¹ /8 X ¹ /16	#10	1 ³ /4	2 ¹ /4	¹ /2 X ¹ /4	¹ /2	4 ¹ /2	5 ¹ /2	1 ¹ /4 х ⁵ /8	7/8	11	13	3 x 1	1	
9/16	7/8	³ /16 X ³ /32	1/4	21/4	23/4	⁵ /8 X ⁵ /16	1/2	5 ¹ /2	6 ¹ /2	1 ¹ / ₂ x ³ / ₄	1	13	15	31/2 x 11/4	1	
7/8	1 ¹ /4	1/4 x 1/8	⁵ /16	23/4	31/4	3/4 X 3/8	5/8	6 ¹ /2	71/2	1 ³ /4 x ³ /4	1	15	18	4 x 1 ¹ /2	1	
1 ¹ / ₄	1 ³ /8	⁵ /16 x ⁵ /32	3/8	31/4	33/4	⁷ /8 x ⁷ /16	3/4	71/2	9	2 x 1 ³ /4	1	18	22	5 x 1 ³ /4	1	
1 ³ /8	1 ³ /4	³ /8 x ³ /16	³ /8	3 ³ /4	4 ¹ /2	1 x ¹ /2	³ /4	9	11	2 ¹ /2 x ⁷ /8	1	22	26	6 x 2	1	
												26	30	7 x 2 ¹ / ₂	1	

MINIMUM SHAFT CENTER DISTANCE

At least 120° wrap is desirable. The minimum center distance to assure 120° wrap may be found by using the following equation:

$$\mathbf{CDp} = \frac{\mathbf{N} - \mathbf{n}}{3.1}$$

On ratios of less than 3:1, wrap will always be at least 120° in a two sprocket system. The minimum center distance to avoid interference between the two sprockets is:

$$\mathbf{Min.} \ \mathbf{CDp} = \frac{\mathbf{N} + \mathbf{n}}{6} + 1$$

Where: CDp = center distance in pitches

N = number of teeth on driven sprocket

n = number of teeth on driver sprocket

Use the larger value of CDp for your center distance.

Feet of center distance =

Center Distance (pitches) x Chain Pitch (Ins.) 12

ENGINEERING DATA MINIMUM CHAIN LENGTH

The approximate chain length may be obtained using this formula:

 $\mathbf{Lp} = 2\mathrm{CDp} + \underline{\mathrm{N} + \mathrm{n}}_{2} + \mathrm{K}$

Where: Lp = Length of chain, in Pitches

CDp = Distance between shaft centers, in Pitches

N = Number of teeth on DriveN sprocket

n = Number of teeth on DriveR sprocket

 $\mathbf{K} = .0258 \text{ x } (\underline{\mathbf{N} - \mathbf{n}})^2 \\ \overline{\mathbf{CDp}}$

Feet of chain =

Chain Length (pitches) x Pitch of Chain (Ins.)

12

POWER AND CYCLE CALCULATIONS Horsepower

HP = T (RPM)

63000

 $\mathbf{HP} = \underline{\mathbf{P} \ (\mathrm{FPM})}$

33000

Where: **T** = Torque (Inch-Lb.)

 $\mathbf{P} = \text{Net chain pull (lbs.)}$

RPM = Shaft speed (Rev./Minute)

FPM = Chain speed (Ft./Minute)

Chain Speed (In FPM)

FPM = $\frac{\text{RPM (no. of teeth) (pitch in inches)}}{12}$

Number of Cycles of Chain Operation

A cycle is defined as one complete traverse of a given link around the sprockets and back to its starting point. The number of cycles a chain has been operated can be calculated as follows:

 $Total Cycles = \frac{(no. of teeth) (RPM) (60) (HR)}{(no. of Pitches in Chain)}$

Where: **HR** = Total operating time (hours)

Catenary Tension

The tension in the chain on the slack side, caused by the catenary sag of the unsupported chain, can be calculated from the following formula:

$$\mathbf{\Gamma} = \frac{B^2 \times W}{96 \text{ CS}} + \frac{W \times \text{CS}}{12}$$

Where: \mathbf{T} = Chain tension due to cantenary sag (lbs.)

B = Center Distance (inches)

W = Weight of chain (lbs./ft.)

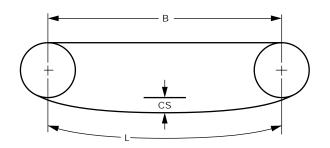
CS= Catenary sag (inches)

Catenary tension for a chain weighing one pound per foot is shown in the accompanying table. To find the tension in a chain weighing "W" pounds per foot, multiply the listed value by "W".

CATENARY TENSION – POUNDS

Center								Amour	nt of Cat	enary Sa	ng							
Distance	.125	.25	.375	.50	.75	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	12.0	14.0	16.0
10	8.3	4.2	2.8	2.1	1.5	1.1	0.7	0.6	0.6	0.6	0.7	0.7	0.8	0.9	0.9	1.1	1.2	1.4
20	33.3	16.7	11.1	8.4	5.6	4.3	2.3	1.6	1.4	1.3	1.2	1.2	1.2	1.2	1.3	1.3	1.5	1.6
30	75.0	37.5	25.0	18.8	12.6	9.5	4.9	3.4	2.7	2.3	2.1	1.9	1.8	1.8	1.8	1.8	1.8	1.9
40	133.3	66.7	44.5	33.4	22.3	16.8	8.5	5.8	4.5	3.8	3.3	3.0	2.8	2.6	2.5	2.4	2.4	2.4
50	208.3	104.2	69.5	52.1	34.8	26.1	13.2	8.9	6.8	5.6	4.8	4.3	3.9	3.6	3.4	3.2	3.0	3.0
60	300.0	150.0	100.0	75.0	50.1	37.6	18.9	12.8	9.7	7.9	6.8	5.9	5.4	4.9	4.6	4.1	3.8	3.7
70	408.3	204.2	136.1	102.1	68.1	51.1	25.7	17.3	13.1	10.6	9.0	7.9	7.0	6.4	5.9	5.3	4.8	4.5
80	533.3	266.7	177.8	133.4	89.0	66.8	33.5	22.5	17.0	13.8	11.6	10.1	9.0	8.2	7.5	6.6	5.9	5.5
90	675.0	337.5	225.0	168.8	112.6	84.5	42.4	28.4	21.4	17.3	14.6	12.6	11.2	10.1	9.3	8.0	7.2	6.6
100	833.3	416.7	277.6	208.4	139.0	104.3	52.3	35.0	26.4	21.3	17.9	15.5	13.7	12.3	11.3	9.7	8.6	7.8
110	1008.0	504.2	336.1	252.1	168.1	126.1	63.2	42.3	31.8	25.6	21.5	18.6	16.4	14.8	13.4	11.5	10.2	9.2
120	1200.0	600.0	400.0	300.0	200.1	150.1	75.2	50.3	37.8	30.4	25.5	22.0	19.4	17.4	15.8	13.5	11.9	10.7
130	1406.0	704.2	469.5	352.1	234.8	176.1	88.2	58.9	44.3	35.6	29.8	25.7	22.7	20.3	18.4	15.7	13.7	12.3
140	1633.0	816.7	544.5	408.4	272.3	204.3	102.3	68.3	51.4	41.3	34.5	29.8	26.2	23.4	21.3	18.0	15.8	14.1
150	1875.0	937.5	625.0	468.8	312.6	234.5	117.4	78.4	58.9	47.3	39.6	34.1	30.0	26.8	24.3	20.5	17.9	16.0
160	2133.0	1067.0	711.1	533.4	355.6	266.8	133.5	89.1	67.0	53.8	44.9	38.7	34.0	30.4	27.5	23.2	20.2	18.0
170	2408.0	1204.0	802.8	602.1	401.5	301.1	150.7	100.6	75.6	60.6	50.7	43.6	38.3	34.2	30.9	26.1	22.7	20.1
180	2700.0	1350.0	900.0	675.0	450.1	337.6	168.9	112.8	84.7	67.9	56.8	48.8	42.9	38.3	34.6	29.1	25.3	22.4
190	3008.0	1504.0	1003.0	752.1	501.5	376.1	188.2	125.6	94.3	75.6	63.2	54.3	47.7	42.5	38.4	32.2	28.0	24.8
200	3333.0	1667.0	1111.0	833.4	555.6	416.8	208.5	139.1	104.5	83.8	69.9	60.1	52.8	47.0	42.5	35.7	30.9	27.4

^① For chain weighing one pound per foot.


Dimensions are in inches.

ENGINEERING DATA

Catenary Sag

The return strand of a chain normally has some slack. This slack results in a sag, called catenary sag, of the chain. This sag must be of the correct amount if the chain is to operate properly. If the return strand is too tight (too little catenary sag), the load and the wear on working parts will be excessive. If the return strand is too loose, vibration and unwanted chain flexure will result. A chain that is properly installed will permit flexing of the return strand by hand. This flexure, measured from a straight line, should not be less than about 3% of the horizontal center distance. The amount of catenary sag that will be present can be calculated as follows:

Depending on the combination of chain pitch, sprocket center distance, and number of teeth in the sprockets, there will always be excess chain in the system. The catenary sag resulting from this excess chain for various sprocket center distances is given in the table below.

- $\mathbf{CS} = \sqrt{.375 \text{ BE}}$
- Where: **CS** = Catenary sag (inches)
 - L = Return strand length (inches)
 - B = Center distance (inches)
 - Ε = Excess chain, L - B (inches)

ΑΤΕΝΙΑΟΥ ςΑΛ

Center									Excess	Chain								
Distance	.063	.125	.188	.250	.313	.375	.438	.500	.625	.750	.875	1.00	1.50	2.00	2.50	3.00	3.50	4.00
10	0.5	0.7	0.8	1.0	1.1	1.2	1.3	1.4	1.5	1.7	1.8	1.00	2.4	2.00	3.1	3.4	3.6	3.9
20	0.7	1.0	1.2	1.4	1.5	1.7	1.8	1.9	2.2	2.4	2.6	2.7	3.4	3.9	4.3	4.7	5.1	5.5
30	0.8	1.0	1.5	1.7	1.9	2.1	2.2	2.4	2.7	2.9	3.1	3.4	4.1	4.7	5.3	5.8	6.3	6.7
40	1.0	1.4	1.7	1.9	2.2	2.4	2.6	2.7	3.1	3.4	3.6	3.9	4.7	5.5	6.1	6.7	7.2	7.7
50	1.1	1.5	1.9	2.2	2.4	2.7	2.9	3.1	3.4	3.8	4.1	4.3	5.3	6.1	6.8	7.5	8.1	8.7
60	1.2	1.7	2.1	2.4	2.7	2.9	3.1	3.4	3.8	4.1	4.4	4.7	5.8	6.7	7.5	8.2	8.9	9.5
70	1.2	1.7	2.2	2.4	2.9	3.1	3.4	3.6	4.1	4.4	4.8	5.1	6.3	7.2	8.1	8.9	9.6	10.2
80	1.4	1.9	2.2	2.0	3.1	3.4	3.6	3.9	4.3	4.7	5.1	5.5	6.7	7.7	8.7	9.5	10.2	11.0
90	1.4	2.1	2.4	2.7	3.2	3.4	3.8	4.1	4.6	5.0	5.4	5.8	7.1	8.2	9.2	10.1	10.2	11.6
100	1.5	2.1	2.7	3.1	3.4	3.8	4.1	4.3	4.8	5.3	5.7	6.1	7.5	8.7	9.2	10.1	11.5	12.2
110	1.5	2.2	2.7	3.1	3.4	3.9	4.1	4.5	4.0 5.1	5.6	6.0	6.4	7.9	9.1	9.7 10.2	11.1	12.0	12.2
120	1.7	2.3	2.8	3.4	3.8	4.1	4.2	4.5	5.3	5.8	6.3	6.7	8.2	9.1	10.2	11.1	12.0	13.4
120	1.7	2.4	3.0	3.4	3.9	4.1	4.4	4.7	5.5	6.0	0.3 6.5	7.0	8.6	9.0	11.0	12.1	13.1	14.0
140	1.7	2.5	3.0	3.6	4.1	4.3	4.0	5.1	5.7	6.3	6.8	7.2	8.9	10.2	11.5	12.1	13.6	14.0
140	1.0	2.0	3.1	3.8	4.1	4.4	4.0 5.0	5.3	5.9	6.5	7.0	7.5	9.2	10.2	11.9	13.0	14.0	14.5
											-							
160	1.9	2.7	3.4	3.9	4.3	4.7	5.1	5.5	6.1	6.7	7.2	7.7	9.5	11.0	12.2	13.4	14.5	15.5
170	2.0	2.8	3.5	4.0	4.5	4.9	5.3	5.6	6.3	6.9	7.5	8.0	9.8	11.3	12.6	13.8	14.9	16.0
180	2.1	2.9	3.6	4.1	4.6	5.0	5.4	5.8	6.5	7.1	7.7	8.2	10.1	11.6	13.0	14.2	15.4	16.4
190	2.1	3.0	3.7	4.2	4.7	5.2	5.6	6.0	6.7	7.3	7.9	8.4	10.3	11.9	13.3	14.6	15.8	16.9
200	2.2	3.1	3.8	4.3	4.8	5.3	5.7	6.1	6.8	7.5	8.1	8.7	10.6	12.2	13.7	15.0	16.2	17.3

NOTE: Values above and to the right of the heavy stepped line represent 3% or greater sag.

■ ENGINEERING DATA WEIGHTS AND CONVEYING CHARACTERISTICS OF MATERIALS

Table (A) lists CEMA material class descriptions and corresponding codes referred to in Table (B). Table (B) lists typical values. Some materials, particularly ores, vary widely. Weight and angle or repose depend largely on the size distribution in a given material. Degree of aeration may be important factor in density of very fine material. Angle of repose may increase with the percentage of fines as well as the angularity of the particles. Fines carry most of the moisture content, which is often the controlling factor. For these reasons, the values given can only be approximate.

TABLE A – CEMA MATERIAL CLASS DESCRIPTION

	Material Characteristics	Code
SIZE	Very fine – 100 mesh and under Fine – 1/8 inch and under Granular – Under 1/2 inch Lumpy – containing lumps over 1/2 inch Irregular – string, interlocking, mats together	A B C D E
FLOWABILITY ANGLE OF REPOSE	Very free flowing – angle of repose less than 20° Free flowing – angle of repose 20 degrees to 30° Average flowing – angle of repose 30° to 45° Sluggish – angle of repose 45° and over	1 2 3 4
ABRASIVENESS	Non-abrasive Abrasive Very abrasive Very sharp – cuts or gouges belt covers	5 6 7 8
MISCELLANEOUS CHARACTERISTICS (Sometimes more than one of these characteristics may apply.)	Very dusty Aerates and develops fluid characteristics Contains explosive dust Contaminable affecting use of saleability Degradable, affecting use of saleability Gives off harmful fumes or dust Highly corrosive Mildly corrosive Hygroscopic Interlocks or mats Oils or chemicals present – may affect rubber products Packs under pressure Very light and fluffy – may be wind swept Elevated temperature	L M N P Q R S T U V W X Y Z

TABLE B – CONVEYING PROPERTIES OF MATERIALS

Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code	Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code
Alfalfa meal	17	45°	-	B46Y	Carbon black, powder	4-7	30-44°	-	*A35Y
Alum, fine	45-50	30-44°	-	B35	Carborundum, 3" and under	100	20-29°	-	D27
Alum, lumpy	50-60	30-44°	-	D35	Casein	36	30-44°	-	B35
Alumina	50-65	22°	10-12°	B27M	Cast iron chips	90-120	45°	_	C46
*Aluminum chips	7-15	45°	-	E46Y	Cement, Portland	72-99	30-44°	20-23°	A36M
Aluminum hydrate	18	34°	20-24°	C35	Cement, Portland, aerated	60-75	-	-	A16M
Aluminum oxide	70-120	29°	-	A27M	Cement, rock (see limestone)	100-110	-	-	D36
Aluminum silicate	49	30-44°	-	B35S	Cement clinker	75-95	30-40°	18-20°	D37
Aluminum sulphate	54	32°	17°	D35	Chalk, lumpy	75-85	45°	-	D46
Ammonium chloride, crystalline	45-52	30-44°	-	B36S	*Charcoal	18-25	35°	20-25°	D36Q
Ammonium nitrate	45	30-44°	-	*C36NUS	Chrome ore (chromite)	125-140	30-44°	-	D37
Ammonium sulphate, granular	45-58	44°	-	*C35TU	Cinders, blast furnace	57	35°	18-20°	*D37T
Asbestos, ore or rock	81	30-44°	-	D37R	Cinders, coal	40	35°	20°	*D37T
Asbestos, shred	20-25	45°	_	E46XY	Clay, calcined	80-100	_	_	B37
Ashes, coal, dry, 3" and under	35-40	45°	_	D46T	Clay, dry, fines	100-120	35°	20-22°	C37
Ashes, coal, wet, 3" and under	45-50	45°	_	D46T	Clay, dry, lumpy	60-75	35°	18-20°	D36
Ashes, fly	40-45	42°	20-25°	A37	Coal, anthracite, sized	55-60	27°	16°	C26
Ashes, gas-producer, wet	78	-	-	D47T	Coal, bituminous, mined 50 mesh and less	50-54	45°	24°	B45T
Asphalt, binder for paving	80-85	-	-	C45	Coal, bituminous, mined and sized	45-55	35°	16°	D35T
Asphalt, crushed, 1/2" and under	45	30-44°	-	C35	Coal, bituminous, mined, run of mine	45-55	38°	18°	D35T
Bagasse	7-10	45°	-	E45Y	Coal, bituminous, stripping, not cleaned	50-60	-	-	D36T
Bakelite and similar plastics, powdered	35-45	45°	-	B45	Coal, lignite	40-45	38°	22°	D36T
Barite	180	30-44°	-	B36	Coke, loose	23-35	30-44°	18°	B37QVT
Barium carbonate	72	45°	-	A45	Coke, petroleum calcined	35-45	30-44°	20°	D36Y
Barium oxide	150-200	-	_	A46	Coke breeze, 1/4" and under	25-35	30-44°	20-22°	C37Y
*Bark, wood, refuse	10-20	45°	27°	E45VY	Compost	30-50	-	-	E45ST
Basalt	80-103	20-28°	-	B26	Concrete, cinder	90-100	-	12-30°	D46
Bauxite, ground, dry	68	20-29°	20°	B26	Copper ore	120-150	30-44°	20°	*D37
Bauxite, mine run	80-90	31°	17°	E37	Copper sulfate	75-85	31°	17°	D36
Bauxite, crushed, 3" and under	75-85	30-44°	20°	D37	Cork, granulated	12-15	-	-	C45
*Bentonite, crude	35-40	42-44°	_	D36X	Corn, shelled	45	21°	10°	C25NW
Bentonite, 100 mesh and under	50-60	42°	20°	A36XY	Cottonseed cake, crushed	40-45	30-44°	_	B35
Boneblack, 100 mesh and under	20-25	20-29°	-	A25Y	Cottonseed cake, lumpy	40-45	30-44°	-	D35W
Bonechar	27-40	30-44°	_	B36	Cottonseed meal	35-40	35°	22°	B35W
Bonemeal	50-60	30-44°	-	B36	Cottonseed meats	40	30-44°	-	B35W
Borate of lime Borax, 1/2" screenings	60 55-60	30-44° 30-44°	-	A35 C36	Cryolite, dust Cryolite, lumpy	75-90 90-100	30-44° 30-44°	-	A36 D36
Borax, 3" and under	60-70	30-44°	_	D35	Cullet	80-120	30-44°	20°	D37Z
Boric acid, fine	55	20-29°	-	B26T	Diatomaceous earth	11-14	30-44°		A36MY
Brewer's grain, spent, dry	25-30	45°	_	C45	Dicalcium phosphate	40-50	45°	_	A45
Brewer's grain, spent, wet	55-60	45°	-	C45T	Disodium phosphate	25-31	30-44°	-	B36QT
Calcium carbide, crushed	70-80	30-44°	_	D36N	Dolomite, lumpy	80-100	30-44°	22°	D36
Carbon, activated, dry, fine	8-20	20-29°	_	B26Y	Earth, as excavated – dry	70-80	35°	20°	B36
Carbon black, pelletized	20-25	25°	_	B25Q	Earth, wet, containing clay	100-110	45°	23°	B46

*May vary considerably. Consult your Rexnord representative.

ENGINEERING DATA TABLE B - CONVEYING PROPERTIES OF MATERIALS - (CONT'D.)

Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code	Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code
Ebonite, crushed 1/2" and under	65-70	30-44°	-	C35	Potassium nitrate	76-80	20-29°	-	C26T
Emery	230	20-29°	-	A27	Potassium sulfate	42-48	45°	-	B36X
Epson salts	40-50	30-44°	100	B35	Pumice, 1/8" and under	40-45	45°	-	B47
Feldspar, ¹ /2" screenings Feldspar, 1 ¹ /2" to 3" lumps	70-85 90-110	38° 34°	18° 17°	B36 D36	Pyrites, iron, 2" to 3" lumps Pyrites, pellets	135-145 120-130	20-29° 30-44°	-	D26T C36T
Ferrous sulfate	50-75	-	-	C36	Quartz, ¹ /2" screenings	80-90	20-29°	-	C27Z
Filter press mud, sugar factory	70	-	-	A15	Quartz, $1^{1}/2^{"}$ to 3" lumps	85-95	20-29°	-	D27Z
Flue dust, boiler house, dry	35-40	20°	-	A17MTY	Rock, crushed	125-145	20-29°	-	D26
Fluorspar, 1/2" screenings	85-105	45°	-	C46	Rock, soft, excavated with shovel	100-110	30-44°	22°	D36
Fluorspar, 1 ¹ /2" to 3" lumps	110-120 70-100	45° 30-44°		D46 D37Z	Rubber, pelletized	50-55 25-30	35° 32°	22° 18°	D35 D35
Foundry refuse, old sand cores, etc. Fuller's earth, dry	30-35	23°	_	B26	Rubber, reclaim Salicylic acid	29	-	10	B25U
Fuller's earth, oily	60-65	20-29°	-	B26	Salt, common dry, coarse	40-55	_		C36TU
Fuller's earth, oil filter, burned	40	20-29	-	B26	Salt, common dry, fine	70-80	25°	11°	D26TUW
Fuller's earth, oil filter, raw	35-40	35°	20°	*B26	Salt cake, dry, coarse	85	36°	21°	B36TW
Glass batch, wool and container	80-100	30-44°	20-22°	D38Z	Salt cake, dry, pulverized	60-85	20-29°	-	B26NT
Glue, pearl Grain, distillary, spont, dry	40 30	25° 30-44°	11°	C25 E35WY	Sand, bank, damp Sand, bank, dry	105-130 90-110	45° 35°	20-22° 16-18°	B47 B37
Grain, distillery, spent, dry Grain, distillery, spent, wet	40-60	45°	_	C45V	Sand, core	65	41°	26°	B35X
Granite, ¹ /2" screenings	80-90	20-29°	-	C27	Sand, foundry, prepared	80-90	30-44°	24°	B37
Granite, 11/2" to 2" lumps	85-90	20-29°	-	D27	Sand, foundry, shakeout	90-100	39°	22°	D37
Granite, broken	95-100	30-44°	-	D37	Sand, silica, dry	90-100	20-29°	10-15°	B27
Graphite, flake	40	30-44°	-	C35	Sandstone, broken	85-90	30-44°	-	D37
Gravel, bank run Gypsum, ¹ /2" screenings	90-100 70-80	38° 40°	20° 21°	C36	Sawdust Sewage sludge, moist	10-13 55	36° 30-44°	22°	*B35 B36
Gypsum, 1 ¹ /2" to 3" lumps	70-80	30°	15°	D36	Shale, broken	90-100	20-29°	_	D26QZ
Guano, dry	70	20-29°	-	B26	Shale, crushed	85-90	39°	22°	C36
Hops, spent, wet	50-55	45°	-	E45T	Shellac	80	45°	-	C45
Ice, crushed	35-45	19°		D16	Shellac, powdered or granulated	31	_	-	B35PY
Ilmenite ore	140-160	30-44°	-	B37	Sinter	100-135	35°	-	*D37
Iron ore	100-200	35° 30-44°	18-20°	*D36 D37Q	Slag, blast furnace, crushed	80-90 60-65	25°	10°	A27 C27
Iron ore pellets Iron sulfide	116-130 120-135	30-44 30-44°	13-15° –	D37Q D36	Slag, furnace, granular, dry Slag, furnace, granular, wet	90-05	25° 45°	13-16° 20-22°	B47
Kaolin clay, 3" and under	63	35°	19°	D36	Slate, crushed, ¹ / ₂ " and under	80-90	28°	15°	C36
Lactose	32	30-44°	-	A35PX	Slate, 11/2" to 3" lumps	85-95	-	-	D26
Lead arsenate	72	45°	-	B45R	Soap beads or granules	15-25	30-44°	-	C35Q
Lead ores	200-270	30°	15°	*B36RT	Soda ash, briquettes	50	22°	7° 19°	C26
Lead oxides Lead oxides, pulverized	60-150 200-250	45° 30-44°	-	B45 A36	Soda ash, heavy Soda ash, light	55-65 20-35	32° 37°	22°	B36 A36Y
Lead sulfide	240-260	30-44°	_	A36	Sodium aluminate, ground	72	30-44°	-	B36
Lignite, air-dried	45-55	30-44°	-	*D35	Sodium aluminum sulfate	75	30-44°	-	A36
Lime, ground, ¹ /8" and under	60-65	43°	23°	B35X	Sodium antimonate, crushed	49	31°	-	C36
*Lime, hydrated, 1/8" and under	40	40°	21°	B35MX	Sodium nitrate	70-80	24°	11°	*D25
Lime, hydrated, pulverized Lime, pebble	32-40 53-56	42° 30°	22° 17°	A35MXY D35	Sodium phosphate Soybeans, whole	50-65 45-50	37° 21-28°	_ 12-16°	B36 C27NW
Lime, people Limestone, agricultural, ¹ /8" and less	68	30-44°	20°	B36	Starch	25-50	21-20 24°	12-10 12°	*B25
Limestone, crushed	85-90	38°	18°	C36X	Steel chips, crushed	100-150	30-44°	-	D37WZ
Magnesium chloride	33	40°	-	C45	Steel trimmings	75-150	35°	18°	E37V
Magnesium sulfate	40-50	30-44°	-		Sugar, raw, cane	55-65	45°	-	B46TX
Malt, dry, whole	27-30	20-29°	-	C25N	Sugar, refined, granulated, dry	50-55	30-44°	-	B35PU
Malt, wet or green	60-65	45°	-	C45	Sugar, refined, granulated, wet	55-65	30-44°	-	C35X
Manganese dioxide Manganese ore	80 125-140		 20°	*D37	Sugar, beet pulp, dry Sugar, beet pulp, wet	12-15 25-45	20-29° 20-29°		C26 C26X
Manganese sulfate	70	30-44°			Sugar cane, knifed	15-18	45°	-	E45V
Marble, crushed 1/2" and under	80-95	30-44°	-	C37 D37	Sulfate, crushed, 1/2" and under	50-60	30-44°	20°	C35NS
Marl	80	30-44°	-	C37	Sulfate, 3" and under	80-85	30-44°	18°	D35NS
Mica, flakes	17-22	19°	-	B16MY	Taconite, pellets	116-130	30-44°	13-15°	D37Q
Mica, ground Milk, malted	13-15	34°	23°	*B36 A45PX	Talc, 1/2" screenings Talc, 11/2" to 3" lumps	80-90 85-95	20-29° 20-29°	-	C25
*Molybdenite, powdered	30-35 107	45° 40°		A45PX B35	Titanium dioxide	140	20-29 30-44°	-	D25 B36
Molybdenum ore	107	40°		B36	Titanium sponge	60-70	45°	-	E47
Nickel-cobalt, sulfate ore	80-150	30-44°	-	*D37T	Tobacco scraps	15-25	45°	-	D45Y
Oil cake	48-50	45°	-	D45W	Tobacco stems	15	45°	-	E45Y
Oxalic acid crystals	60	30-44°	-	B35SU	Traprock, 1/2" screenings	90-100	30-44°	-	C37
Oyster shells, ground, under 1/2" Oyster shells, whole	50-60 80	30-44° 30-44°	-	C36T D36TV	Traprock, 2" to 3" lumps Trisodium phosphate, granular	100-110 60	30-44° 30-44°	_ 11°	D37 B35
Paper pulp stock	40-60	19°	_	*E15MV	Trisodium phosphate, granulai Trisodium phosphate, pulverized	50	40°	25°	B35 B35
Peanuts, in shells	15-24	30-44°	-	D35Q	Vermiculite, expanded	16	45°	-	C45Y
Peanuts, shelled	35-45	30-44°	-	C35Q	Vermiculite ore	70-80	_	20°	D36Y
Phosphate, acid, fertilizer	60	26°	13°	B25T	Walnut shells, crushed	35-45	30-44°	-	B37
Phosphate, triple super, ground fertilizer	50-55	45°	30°	B45T	Wood chips	10-30	45°	27°	E45WY
Phosphate rock, broken, dry	75-85	25-29°		D26	Wood chips, hogged, fuel	15-25	45°	-	D45
Phosphate rock, pulverized Polystyrene pellets	60 35	40° 23°	25°	B36 B25PQ	Zinc concentrates Zinc ore, crushed	75-80 160		22°	B26
Polystyrene pellets Potash salts, sylvite, etc.	35 80	23° 20-29°	-	B25PQ B25T	Zinc ore, crushed Zinc ore, roasted	160	38°	22-	C36
Potassium carbonate	51	20-29°		B26	Zinc oxide, heavy	30-35	45-55°	-	A45X
	120-130	30-44°		C36T	Zinc oxide, light	10-15	45°		A45XY

*May vary considerably. Consult your Rexnord representative.

ENGINEERING DATA ENGINEERING CONSTANTS

28.8 = equivalent mol. wgt. of air 288,000 Btu per 24 hr. = 1 ton of refrigeration 29.921 in. Hg at 32° F = atm. press. 299 792 458 m/s = velocity of light (c) 3 ft. = 1 yard30 in. Hg at 62° F = atmos. press. (very closely) 31 (31.5 for some substances) gallons = 1 barrel $3.1416 = \pi$ (Greek letter "pi") = ratio circumference of circle to diameter = ratio area of circle to square of radius 32 deg. F = freezing point of water = 0° C. 32 =atomic wgt. sulphur (S) 32 = mol. wgt. oxygen gas (O₂) $32.16 \text{ feet/sec}^2 = \text{acceleration of gravity (g)}$ 3.2808 ft. = 1 meter 33,000 ft.-lb. per min. = 1 hp. 33.947 ft. water at 62° F = atm. press. 3,415 Btu = 1 kw-hr. 3.45 lb. steam "f.&a. 212" per sq. ft. of heating surface per hr. = rated boiler evaporation. 34.56 lb. = wgt. air to burn 1 lb. hydrogen (H) 35.314 cu. ft. = 1 cu. meter 3.785 liters = 1 gal. 39.2° F (4° C) water is at greatest density 39.37 in. = 1 meter = 100 cm = 1000 mm 3.9683 Btu = 1 kg calorie 4,000 Btu (4,050) = cal. val. of sulphur (S)4.32 lb. = wgt. air req. to burn 1 lb. sulphur (S) 0.433 lb. per sq. in. = 1 ft. of water at 62° F 43,560 sq. ft. = acre 44 = mol. wgt. carbon dioxide (CO₂)0.45359 kg. = 1 lb. -460° F (459.6°F) = absolute zero. 0.47 Btu per pound per $^{\circ}F$ = approx. specific heat of super-heated steam at atm. press. 0.491 lb. per sq. in. = 1 in. Hg at 62° F 5.196 lb. per sq. ft. = 1 in. water at 62° F 5,280 ft. = 1 mile

53.32 = R, a constant for air, expansion equation: PV = MRT550 ft.-lb. per sec. = 1 hp. $57.296^\circ = 1$ radian (angle) 58.349 grains per gal = 1 gram per liter 59.76 lb. = wgt. 1 cu. ft. water at 212° F 61.023 cu. in. = 1 liter 62,000 Btu = cal. val. (higher) hydrogen (H) 0.62137 miles = 1 kilometer 0.062428 lb. per cu. ft. = 1 kg per cu. meter 62.5 (62.355) lb. = wgt. 1 cu. ft. water at 62° F $645 \text{ mm}^2 = 1 \text{ sq. in.}$ 7,000 grains = 1 lb.0.0735 in. Hg at 62° F = 1 in. water at 62° F 746 (745.7) watts = 1 hp. 7.5 (7.4805) gal. = 1 cu. ft. 760 millimeters Hg = atm. press. at 0° C 0.07608 lb. = wgt. 1 cu. ft. air at 62° F and 14.7 per sq. in. 778 (777.5) ft.-lb. = 1 Btu (work required to raise 1 lb. water 1° F) $0.7854 (= 3.1416 \div 4)$ x diameter squared = area circle 8 = lb. oxygen required to burn 1 lb. hydrogen (H) 8.025 (= square root of 2g) x square root of head (ft.) = theoretical velocity of fluids in ft. per sec. 0.08073 lb. = wgt. 1 cu. ft. air at 32° F and 14.7 lb. per sq. in. $8\frac{1}{3}$ (8.3356) lb. = wgt. 1 gal. water at 62° F 8,760 hr. = 1 year of 365 days 88 ft. per sec. (min.) = 1 mile per min. (hr.)9 sq. ft. = 1 sq. yard 0.0929 sq. meters = 1 sq. ft. 970.4 Btu = Latent heat of evap. of water at 212° F

ENGINEERING DATA

STRENGTH OF MATERIALS HARDNESS AND STRENGTH COMPARISON TABLES

Hardened Steel and Hard Alloys

C 150 kg	A 60 kg	D 100 kg	15-N 15 kg	30-N 30 kg	45-N 45 kg	Diamond Pyramid	Hard-	Hard-		sile ngth rox.
R	OCKWE	LL		PERFIC		Hard-	enss	ness 3000	Ör	ıly
BRALE	BRALE	BRALE	N Brale	N Brale	N Brale	ness 10 kg	500 g & over	3000 kg	ksi	MPa
65	84.0	74.5	92.0	82.0	72.0	820	846	-	-	-
64	83.5	74.0	-	81.0	71.0	789	822	-	-	-
63	83.0	73.0	91.5	80.0	70.0	763	799	-	-	-
62	82.5 81.5	72.5 71.5	91.0 90.5	79.0 78.5	69.0	739 716	776 754	-	-	-
61	81.0	71.0	90.5	77.5	67.5	695	732	614	314	_ 2160
60 59	80.5	70.0	90.0 89.5	76.5	66.5 65.5	675	732	600		2100
59	80.5	69.0	89.5	75.5	64.0	655	690	587		2060
57	79.5	68.5	- 89.0	75.0	63.0	636	670	573		2000
56	79.0	67.5	88.5	74.0	62.0	617	650	560		1960
55	78.5	67.0	88.0	73.0	61.0	598	630	500		1900
54	78.0	66.0	87.5	72.0	59.5	580	612	534		1860
53	77.5	65.5	87.0	71.0	59.5	562	594	522		1815
52	77.0	64.5	86.5	70.5	57.5	545	576	509		1765
51	76.5	64.0	86.0	69.5	56.0	538	558	496		1720
50	76.0	63.0	85.5	68.5	55.0	513	542	484		1675
49	75.5	62.0	85.0	67.5	54.0	498	526	472	236	1630
48	74.5	61.5	84.5	66.5	52.5	485	510	460		1585
47	74.0	60.5	84.0	66.0	51.5	471	495	448		1540
46	73.5	60.0	83.5	65.0	50.0	458	480	437		1500
45	73.0	59.0	83.0	64.0	49.0	446	466	426		1460
44	72.5	58.5	82.5	63.0	48.0	435	452	415	205	1415
43	72.0	57.5	82.0	62.0	46.5	424	438	404		1375
42	71.5	57.0	81.5	61.5	45.5	413	426	393		1335
41	71.0	56.0	81.0	60.5	44.5	403	414	382		1295
40	70.5	55.5	80.5	59.5	43.0	393	402	372	182	1255
39	70.0	54.5	80.0	58.5	42.0	383	391	362	177	1220
38	69.5	54.0	79.5	57.5	41.0	373	380	352	171	1180
37	69.0	53.0	79.0	56.5	39.5	363	370	342	166	1145
36	68.5	52.5	78.5	56.0	38.5	353	360	332	162	1115
35	68.0	51.5	78.0	55.0	37.0	343	351	322	157	1080
34	67.5	50.5	77.0	54.0	36.0	334	342	313	153	1050
33	67.0	50.0	76.5	53.0	35.0	325	334	305		1020
32	66.5	49.0	76.0	52.0	33.5	317	326	297	144	990
31	66.0	48.5	75.5	51.5	32.5	309	318	290	140	965
30	65.5	47.5	75.0	50.5	31.5	301	311	283	136	935
29	65.0	47.0	74.5	49.5	30.0	293	304	276	132	910
28	64.5	46.0	74.0	48.5	29.0	285	297	270	129	885
27	64.0	45.5	73.5	47.5	28.0	278	290	265	126	865
26	63.5	44.5	72.5	47.0	26.5	271	284	260	123	850
25	63.0	44.0	72.0	46.0	25.5	264	278	255	120	830
24	62.5	43.0	71.5	45.0	24.0	257	272	250	117	810
23	62.0	42.5	71.0	44.0	23.0	251	266	245	115	795
22	61.5	41.5	70.5	43.0	22.0	246	261	240	112	775
21	61.0	41.0	70.0	42.5	20.5	241	256	235	110	760
20	60.5	40.0	69.5	41.5	19.5	236	251	230	108	745

B 100 kg	G 150 kg	15-T 15 kg	30-T 30 kg	45-T 45 kg	A 60 kg Rock-	Knoop Hard-		nell ness 0 kg	Stre App	
ROCK	WELL	SUI	PERFIC	İAL	well	ness 500 g	500 kg	3000 kg	10	ıly
^{1/₁₆" Ball}	^{1/₁₆" Ball}	¹ / ₁₆ " Ball	¹ / ₁₆ " Ball	^{1/₁₆" Ball}	BRALE	& over	10 mm Ball	D.P.H. 10 kg	ksi	MPa
100	82.5	93.0	82.0	72.0	61.5	251	201	240	116	790
99	81.0	92.5	81.5	71.0	61.0	246	195	234	112	770
98	79.0	-	81.0	70.0	60.0	241	189	228	109	750
97	77.5	92.0	80.5	69.0	59.5	236	184	222	106	730
96	76.0	-	80.0	68.0	59.0	231	179	216	103	710
95	74.0	91.5	79.0	67.0	58.0	226	175	210	101	695
94	72.5	-	78.5	66.0	57.5	221	171	205	98	675
93	71.0	91.0	78.0	65.5	57.0	216	167	200	96	660
92	69.0	90.5	77.5	64.5	56.5	211	163	195	93	640
91	67.5	-	77.0	63.5	56.0	206	160	190	91	625
90	66.0	90.0	76.0	62.5	55.5	201	157	185	89	615
89	64.0	89.5	75.5	61.5	55.0	196	154	180	87	600
88	62.5	-	75.0	60.5	54.0	192	151	176	85	585
87	61.0	89.0	74.5	59.5	53.5	188	148	172	83	570
86	59.0	88.5	74.0	58.5	53.0	184	145	169	81	560
85	57.5	-	73.5	58.0	52.5	180	142	165	80	550
84	56.0	88.0	73.0	57.0	52.0	176	140	162	78	540
83	54.0	87.5	72.0	56.0	51.0	173	137	159	77	530
82	52.5	-	71.5	55.0	50.5	170	135	156	75	520
81	51.0	87.0	71.0	54.0	50.0	167	133	153	74	510
80	49.0	86.5	70.0	53.0	49.5	164	130	150	72	500
79	47.5	-	69.5	52.0	49.0	161	128	147	71	490
78	46.0	86.0	69.0	51.0	48.5	158	126	144	70	480
77	44.0	85.5	68.0	50.0	48.0	155	124	141	68	470
76	42.5	-	67.5	49.0	47.0	152	122	139	67	460
75	41.0	85.0	67.0	48.5	46.5	150	120	137	66	455
74	39.0	-	66.0	47.5	46.0	147	118	135	-	-
73	37.5	84.5	65.5	46.5	45.5	145	116	132	-	-
72	36.0	84.0	65.0	45.5	45.0	143	114	130	-	-
71	34.5	-	64.0	44.5	44.5	141	112	127	-	-
70	32.5	83.5	63.5	43.5	44.0	139	110	125	-	-
69	31.0	83.0	62.5	42.5	43.5	137	109	123	-	-
68	29.5	-	62.0	41.5	43.0	135	107	121	-	-
67	28.0	82.5	61.5	40.5	42.5	133	106	119	-	-
66	26.5	82.0	60.5	39.5	42.0	131	104	117	-	-
65	25.0	-	60.0	38.5	-	129	102	116	_	_

Soft Steel, Grey and Malleable Cast Iron

TE: Hardness and Strength Comparison Tables can **only** be approximate. They depend on a number of assumptions, such as metal being homogeneous and having certain hardening characteristics. Therefore, these tables are provided only for comparing different hardness scales with each other and with strength in a general way.

Strength of Materials*

			ULTIMATE	STRENGTH			Viold	Point	MODULUS OF	ELASTICITY
MATERIAL	Ten	sion	Compr	ression	Sh	ear	i ieiu	ronn	psi x 106	Pa x 10 ⁹
	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa	(million psi)	(GPa)
Gray Cast Iron (average) Class 20	22	152	90	620	-	-	-	-	14	96
Gray Cast Iron (good) Class 30	32	221	115	790	-	-	-	-	16	110
Gray Cast Iron (high-str) Class 40	43	296	150	1030	-	-	-	_	20	138
Malleable Iron, Grade 32510	55	379	-	-	40	276	36	248	25	172
Malleable Iron, Grade 35018	58	400	-	-	42	290	40	276	25	172
Malleable Iron, Grade 60004	88	606	-	-	62	427	66	455	25	172
Wrought Iron	48	331	46	317	40	276	25	172	27	186
Cast Steel Med. Carbon	70	483	70	483	50	345	38	262	30	207
Steel: Structural A 36	60	413	60	413	45	310	36	248	29	200
1020 cold finished	70	483	70	483	50	345	50	345	29	200
HSLA (Cor-Ten, Tri-Ten, etc.)	80	550	80	550	56	386	55	379	29	200
1035 cold finished	85	586	85	586	63	434	65	448	29	200
4140 cold finished	110	758	110	758	70	483	85	586	29	200
Stressproof	132	910	132	910	79	545	100	690	29	200
Aluminum 30003-0 – annealed	16	110	16	110	11	-	6	-	10	69
Aluminum 5052-0 – annealed	28	193	28	193	18	124	13	90	10.2	70
Aluminum 5052-H34 hard	38	262	38	262	21	145	31	214	10.2	70
Aluminum 6061-0 – annealed	18	124	18	124	12	83	8	55	10	69
Aluminum 6061-T6 hard	42	290	42	290	27	186	37	255	10	69
Brass, Naval, annealed	57	393	57	393	38	262	25	172	15	103
Bronze, commercial	37	255	37	255	28	193	10	69	17	117

*Typical values; minimum or "guaranteed" values would be at least 10% less.

ENGINEERING DATA EXPANSION TEMPERATURE AND COLOR Expansion of Bodies by Heat

The coefficient of linear expansion (ε) is the change in length, per unit of length, for a change of one degree of temperature. The coefficient of surface expansion is approximately two times the linear coefficient, and the coefficient of volume expansion, for solids, is approximately three times the linear coefficient.

A bar, free to move, will increase in length with an increase in temperature and will decrease in length with a decrease in temperature. The change in length will be εtl , where (ε) is the coefficient of linear expansion, (t) the change in temperature, and (l) the length. If the ends of a bar are fixed, a change in temperature (t) will cause a change in the unit stress of $E\varepsilon t$, and in the total (stress of) $AE\varepsilon t$, where A is the cross-sectional area of the bar and (ε) the modulus of elasticity.

The table below gives coefficients of linear expansion for 10,000,000 degrees (or 10^7 times the value indicated above).

Example: A piece of ferritic malleable iron is exactly 40 inches long at 60° Fahrenheit. Find the length at 90° Fahrenheit, assuming the ends are free to move.

Change of length = $\varepsilon t I$ = $\frac{59 \times 30 \times 40}{10^7}$ = 0.0007 inches

The length at 90° Fahrenheit is 40.007 inch.

Example: A piece of ferritic malleable is exactly 40 inches long, ends are fixed.

If the temperature increases 30° Fahrenheit, what is the resulting change in unit stress?

Change in unit stress = $E \epsilon t$ =

 $\frac{29,000,000 \ge 59 \ge 30}{10^7} = 5133 \text{ pounds per square inch}$

Substance	Expa	nsion	Substansa	Expa	nsion
Substance	per 10 ⁷ °F	per 10 ⁷ °C	- Substance	per 10 ⁷ °F	per 10 ⁷ °C
Aluminum	123-134	221-241	Plastics (acetal, acrylic, nylon, etc.)	445-500	800-900
Brass & Bronzes	90-118	162-212		(may be half	these values
Carbides & Ceramets	25-46	45-83		if glass r	einforced)
Cast Iron (gray & ductile)	56-88	102-122	Polyethylene	900-1200	1600-2200
Chromium	34	61	Porcelain	20	36
Concrete	59-79	106-142	Rubber	428	770
Copper	90-98	162-176	Sandstone	55-61	99-110
Glass (plate, crown, flint, soda lime)	44-50	79-90	Silver	108	194
Glass (ferrosilicate, pyrex)	18	32	Slate	48-58	86-104
Granite	40-47	72-85	Solder	134	241
Ice	283	509	Stainless Steel		
Lead & Alloys	157-163	283-293	Ferritic & Martinsitic	52-66	94-119
Limestone	33-50	59-90	Austentic & Cast	83-104	149-187
Magnesium & Alloys	140-180	252-324	Steel, High Carbon & Alloy	73-84	131-151
Malleable Iron, Ferritic	59	106	Steel, Low Carbon	56-67	101-121
Malleable Iron, Pearlitic	75	135	Tin	116	209
Masonry	31-53	56-95	Titanium & Alloys	45-60	81-108
Phenolics	90-180	160-320	Wood	24-36	43-65
Plaster	92	166	Zinc	141	254

COEFFICIENTS OF LINEAR EXPANSION

HIGH TEMPERATURES JUDGED BY COLOR*

Color	Temperature °F	Color	Temperature °F
Dark blood red, black red	990	Orange, free scaling heat	1650
Dark red, blood red, low red	1050	Light orange	1725
Dark cherry red	1175	Yellow	1825
Medium cherry red	1250	Light Yellow	1975
Cherry, full red	1375	White	2200
Light cherry, light red	1550		

*This table associating color and temperature of iron or steel is due to White and Taylor.

■ CHAIN AND SPROCKET INDEX

CI	hain No).	Cat. Page	Chain Pitch	Type of Chain	Sprocket	Ch	ain No).	Cat. Page	Chain Pitch	Type of Chain	Sprocket
CHAMP	3		34	3.075	Drive Chain	1030	WD	120		39	6.000	Welded Steel	H120
	4			4.000	Elevator and Conveyor	1120	WDH	120		39	6.000	Welded Steel	H120
	6	SP	11 11	6.000 6.000	Elevator and Conveyor Elevator and Conveyor	197 1131	CC H	123 124		48 47	9.000 4.000	Cast Steel Drag Cast Drag	H123 H124
ROA	40	51	34	3.075	Drive Chain	1030	C	124	W	54	4.063	Combination	1240
ROA	40	HYPER	34	3.075	Drive Chain	1030	ROA	124		34	4.063	Drive Chain	1240
NH	45		65	1.630	Polymeric	N45	WHX	124		38	4.000	Welded Steel	H124
C	55		54	1.630	Combination	55	WHX	124	HD	38	4.063	Welded Steel	H124
C RS	56 60		54 10	1.630 4.040	Combination Elevator and Conveyor	56 RS60	WSX XHD	124 124		38 52	4.000	Welded Steel Combination	H124 XDH124
H	74		47	2.609	H Mill	78	AID	130	RT	51	4.000	Roof-Top	130
С	77		54	2.308	Combination	67	WHT ⁻			38	4.000	Welded Steel	130
NH	77		65	2.308	Polymeric	N77		131		54	3.075	Combination	103
H	78 78	RT	47 51	2.609	H Mill	78	ER	131 131		14	3.075	Elevator and Conveyor	103
H NH	78	RI	65	2.609 2.609	Roof-Top Polymeric	78 N78	S SBS	131		14 14	3.075	Renamed ER131 Elevator and Conveyor	103
NHT	78		65	2.607	Polymeric	N78		132	WS	54	6.050	Combination	132
WH	78		65	2.609	Welded Steel	78	AZ	132		54	6.050	Combination	132
WHT	78		65	2.609	Welded Steel	78	С	132		54	6.050	Combination	132
WR			65	2.609	Welded Steel	78	C	132		54	6.050	Combination	132
RS	81 81	X X	65 65	2.609 2.609	Elevator and Conveyor Elevator and Conveyor	78 78	C WHX	132 132	W2	54 38	6.050 6.050	Combination Welded Steel	132 132
кэ	81	^ XH	65	2.609	Elevator and Conveyor	78	WSX	132		38	6.050	Welded Steel	132
RS		XH	65	2.609	Elevator and Conveyor	78	XHD	132		52	6.050	Combination	XDH132
	81	XHH	65	2.609	Elevator and Conveyor	78	С	133		54	6.000	Combination	133
RS		XHH	65	2.609	Elevator and Conveyor	78		138		51	4.000	Roof-Top	130
H	82 82		65 65	3.075 3.075	H Mill	103 N82	SBS SBS	150 150		14	6.050	Elevator and Conveyor	132 132
NH WH	82 82		65 38	3.075	Polymeric Welded Steel	103	ER	150	+	14 14	6.050 6.050	Elevator and Conveyor Elevator and Conveyor	132
C	102	В	54	4.000	Combination	103 102B	ERA	150		14	6.050	Elevator and Conveyor	132
ER	102	В	14	4.000	Elevator and Conveyor	102B		150		14		Renamed ER150	-
S		В	14		Renamed ER102B		SXA	150		14		Renamed ERA150	
SBS		В	14	4.000	Elevator and Conveyor	102B	WHX			38	6.050	Welded Steel	132
WD WDH	102 102		39 39	5.000 5.000	Welded Steel Welded Steel	H102 H102	SS WHX	152 155		38 38	1.506 6.050	Elevator and Conveyor Welded Steel	152 132
	102.5		54	4.040	Combination	102.5	WHX	155		38	6.050	Welded Steel	132
	102.5		14	4.040	Elevator and Conveyor	102.5	XHD	157		52	6.050	Combination	XDH157
S	102.5		14		Renamed ER102.5		WHX	159		38	6.125	Welded Steel	132
	102.5		14	4.040	Elevator and Conveyor	102.5	SX	175		14	6.050	Elevator and Conveyor	SX175
H WD	104 104		48 39	6.000 6.000	Cast Drag Welded Steel	H104 H104	SR C	183 188		10 54	3.000 2.609	Elevator and Conveyor	183 78
WDH	104		39	6.000	Welded Steel	H104	S	188		14	2.609	Combination Elevator and Conveyor	78
WHX	104		38	6.000	Welded Steel	106	SBS	188		14	2.607	Elevator and Conveyor	78
WHX	106	SHD	38	6.000	Welded Steel	106	SR	188		10	4.000	Elevator and Conveyor	188
	106	XHD		6.050	Welded Steel	106		194		10	4.000	Elevator and Conveyor	194
C ER	110 110			6.000 6.000	Combination Elevator and Conveyor	110 110	SR SRC	196		11 72	6.000 6.000	Elevator and Conveyor LF Bushed Chains	196 196
H	110		48	6.000	Cast Drag	H110	SRD			72	6.000	SS Bushed Chains	190
			14	0.000	Renamed ER110	11110		238		34	3.500	Drive Chain	238
SBS			14	6.000	Elevator and Conveyor	110		250	WS	70	2.500	Polymeric Double Flex	N250
WD	110			6.000	Welded Steel	H110		270		10	2.609	Elevator and Conveyor	270
	110			6.000	Welded Steel	110		303	MC	10	3.000	Elevator and Conveyor	303
WHD	110 111		39 54	6.000 4.760	Welded Steel Combination	H110 111	N X	325 345	WS	68 35	2.268 3.000	Polymeric Double Flex Drive Chain	N325 X345
C		W2	54	4.760	Combination	111	N	348		59	3.000	Drop Forged	348
ER	111		14	4.760	Elevator and Conveyor	111	S	348		59	3.031	Drop Forged	348
	111				Renamed ER111		Х	348		59	3.015	Drop Forged	348
ER	111	SP	14	4.760*	Elevator and Conveyor	111SP	R	362		34	1.654	Drive Chain	62
FS	111	SD	14	7.420*	Renamed ER111SP		RR	362 432		10 34	1.654 1.654	Elevator and Conveyor Drive Chain	62 62
	111	51	14	4.760	Elevator and Conveyor	111		432		10	1.654	Elevator and Conveyor	62
WHX	111		38	4.760	Welded Steel	111		458		59	4.031	Drop Forged	458
WD	112		39	8.000	Welded Steel	H112		458		59	4.031	Drop Forged	458
WDH				8.000	Welded Steel	H112	<u> </u>	468		59	4.031	Drop Forged	468
	113		39	6.000	Welded Steel	H110		468		59	4.031	Drop Forged Welded Steel	468
WDH WD	113 116		39 39	6.000 8.000	Welded Steel Welded Steel	H110 H116	WD WDH	480 480		39 39	8.000 8.000	Welded Steel Welded Steel	H480 H480
WDH				8.000	Welded Steel	H116		506		39	2.300	Drive Chain	506
WD	118		39	8.000	Welded Steel	WD118	В	508	Н	39	2.620	Drive Chain	508
				8.000	Welded Steel	WD118	R	514		39	2.500	Drive Chain	514
CC	119		48	6.000	Cast Steel Drag	119	A	520		39	2.563	Drive Chain	520
SM	120		71	2.500	Double Flex	9250		531		39	4.000	Elevator and Conveyor	531

Pitch Chain *Two-F 148

CHAIN AND SPROCKET INDEX

CHAIN AND SPROCKET INDEX

RO WDH R SMGL ROA SM SM RO RS SMGL RO RS SMGL RO RS SMGL RO RS SMGL RO RS S SMGL S S SMGL S S S S S S S S S S S S S S S S S S S	578 578 580 588 618 620 621 622 622 622 625 627 628 635 658 678 678 678 678 680 698	39 39 39 39 39 34 10 55 34 10 55 34 10 55 34 10 55 34 10 55 34 59 59 59 59 59 59	6.000 2.609 2.609 2.609 2.609 2.609 2.609 2.609 0.000 1.654 9.000 6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Elevator and Conveyor Drive Chain Drive Chain Welded Steel Drive Chain Elevator and Conveyor Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain Elevator and Conveyor	110 78 78 H480 78 SMGL618 62 SM621 SM622 62 62 62 62 SMGL628 635	ER 956 ER 958 RS 960 977 ER 984 988 RS 996 998 S 998 1030 ROA 1031 ROA 1032 R 1033 R 1035	14 14 11 49 49 49 11 59 59 34 34 34 34	6.000 6.000 2.308 7.000 2.609 6.000 9.031 9.031 3.075 3.075 3.075	Heavy Duty Elevator Heavy Duty Elevator Elevator and Conveyor Pintle Heavy Duty Elevator Pintle Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	856 958 2124 67 984 78 2124 998 998 1030 1030 1030
RO WDH R SMGL ROA SM SM RO RS SMGL RO RS SMGL RO RS SMGL RO RS SMGL RO RS S SMGL S S SMGL S S S S S S S S S S S S S S S S S S S	578 580 588 618 620 621 622 622 622 625 627 628 635 658 678 678 678 680 698	39 39 34 10 55 34 55 34 10 55 34 10 55 34 10 55 34 10 55 34 11 59 59 39	2.609 8.000 2.609 2.609 6.000 1.654 9.000 1.654 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Drive Chain Welded Steel Drive Chain Elevator and Conveyor Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	78 H480 78 SMGL618 62 SM621 SM622 62 62 62 SMGL628	RS 960 977 ER 984 988 RS 996 998 S 998 1030 ROA 1031 ROA 1032 R 1033	11 49 49 11 59 59 34 34 34	6.000 2.308 7.000 2.609 6.000 9.031 9.031 3.075 3.075 3.075	Elevator and Conveyor Pintle Heavy Duty Elevator Pintle Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	2124 67 984 78 2124 998 998 1030 1030
WDH R RR SMGL ROA SM RO RS SMGL RO RS SMGL RO RS SMGL RO RS SMGL RO RS SMGL RO RS S SMGL S S S S S S S S S S S S S S S S S S S	580 588 588 618 620 621 622 622 622 625 627 628 635 658 678 678 678 678 680 698	39 34 10 55 34 55 34 10 10 55 34 11 59 59 39	8.000 2.609 2.609 6.000 1.654 9.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Welded Steel Drive Chain Elevator and Conveyor Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	H480 78 78 SMGL618 62 SM621 SM622 62 62 62 SMGL628	977 ER 984 988 RS 996 998 1030 ROA 1031 ROA 1032 ROA 1033	49 49 49 11 59 59 34 34 34	2.308 7.000 2.609 6.000 9.031 9.031 3.075 3.075 3.075	Pintle Heavy Duty Elevator Pintle Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	67 984 78 2124 998 998 1030 1030
RR SMGL ROA SM RO RS SMGL RO RS SMGL RO RS SMGL RO RS SMGL SMGL S SMGL S SMGL S SMGL S S SMGL S S S S S S S S S S S S S S S S S S S	588 588 618 620 621 622 622 625 627 628 635 658 678 678 678 678 680 698	34 10 55 34 55 55 34 10 10 55 34 11 59 59 39	2.609 2.609 6.000 1.654 9.000 6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Drive Chain Elevator and Conveyor Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	78 78 SMGL618 62 SM621 SM622 62 62 62 SMGL628	ER 984 988 RS 996 998 1030 ROA 1031 ROA 1032 ROA 1033	49 49 11 59 59 34 34 34	7.000 2.609 6.000 9.031 9.031 3.075 3.075 3.075	Heavy Duty Elevator Pintle Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	984 78 2124 998 998 1030 1030
RR S SMGL ROA RO RS SMGL RO RS SMGL RO RS X WDH S S S S S S S S S S S S S S S S S S S	588 618 620 621 622 622 625 627 628 635 635 658 678 678 680 698 698	10 55 34 55 55 34 10 10 55 34 11 59 59 39	2.609 6.000 1.654 9.000 6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Elevator and Conveyor Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	78 SMGL618 62 SM621 SM622 62 62 62 SMGL628	988 RS 996 998 1030 ROA 1031 ROA 1032 R 1033	49 11 59 59 34 34 34 34	2.609 6.000 9.031 9.031 3.075 3.075 3.075	Pintle Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	78 2124 998 998 1030 1030
SMGL ROA SM RO RS SMGL RO RS SMGL RO RS X WDH S S S S S S S S S S S S S S S S S S S	618 620 621 622 622 625 627 628 635 638 678 678 678 680 698 698	55 34 55 34 10 10 55 34 11 59 59 39	6.000 1.654 9.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Combination Drive Chain Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	SMGL618 62 SM621 SM622 62 62 62 SMGL628	RS 996 998 1030 ROA 1031 ROA 1032 R 1033	11 59 59 34 34 34	6.000 9.031 9.031 3.075 3.075 3.075	Elevator and Conveyor Drop Forged Drop Forged Drive Chain Drive Chain	2124 998 998 1030 1030
ROA SM RO RS SMGL RO RS SMGL RO RS X WDH S S S S S S S S S S S S S S S S S S S	620 621 622 622 625 627 628 635 658 678 678 678 680 698 698	34 55 55 34 10 55 34 11 59 59 39	1.654 9.000 6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Drive Chain Combination Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	62 SM621 SM622 62 62 62 SMGL628	998 S 998 1030 ROA 1031 ROA 1032 R 1033	59 59 34 34 34	9.031 9.031 3.075 3.075 3.075	Drop Forged Drop Forged Drive Chain Drive Chain	998 998 1030 1030
SM RO RS SMGL RO RS S X WDH S S S S S S S S S S S S S S S S S S S	621 622 622 625 627 628 638 638 678 678 680 698 698	55 55 34 10 55 34 11 59 59 39	9.000 6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Combination Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	SM621 SM622 62 62 62 SMGL628	S 998 1030 ROA 1031 ROA 1032 R 1033	59 34 34 34	9.031 3.075 3.075 3.075	Drop Forged Drive Chain Drive Chain	998 1030 1030
SM RO RS SMGL RO RS X WDH S S S S S	622 622 625 627 628 635 658 678 678 678 680 698 698	55 34 10 55 34 11 59 59 39	6.000 1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Combination Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	SM622 62 62 62 SMGL628	1030 ROA 1031 ROA 1032 R 1033	34 34 34	3.075 3.075 3.075	Drive Chain Drive Chain	1030 1030
RO RS SMGL RO RS X WDH S S	622 625 627 628 635 658 678 678 680 698 698	34 10 55 34 11 59 59 39	1.654 1.654 1.654 6.000 4.500 6.000 6.031 6.031	Drive Chain Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	62 62 62 SMGL628	ROA 1031 ROA 1032 R 1033	34 34	3.075 3.075	Drive Chain	1030
RS RS SMGL RO RS S X WDH S S	625 627 628 635 658 678 678 680 698 698	10 10 55 34 11 59 59 39	1.654 1.654 6.000 4.500 6.000 6.031 6.031	Elevator and Conveyor Elevator and Conveyor Combination Drive Chain	62 62 SMGL628	ROA 1032 R 1033	34	3.075		
RS SMGL RO RS S WDH S S S	627 628 635 658 678 678 680 698 698	10 55 34 11 59 59 39	1.654 6.000 4.500 6.000 6.031 6.031	Elevator and Conveyor Combination Drive Chain	62 SMGL628	R 1033			Drive Criain	1 11 21 1
SMGL RO RS S WDH S S	628 635 658 678 678 680 698 698	55 34 11 59 59 39	6.000 4.500 6.000 6.031 6.031	Combination Drive Chain	SMGL628			3.075	Drive Chain	1030
RO RS X WDH S S	635 658 678 678 680 698 698	34 11 59 59 39	4.500 6.000 6.031 6.031	Drive Chain			34	3.075	Drive Chain	1030
RS S WDH S S	658 678 678 680 698 698	11 59 59 39	6.000 6.031 6.031			1036	11	6.000	Elevator and Conveyor	1036
S WDH S S	678 678 680 698 698	59 59 39	6.031 6.031	Elevator and Conveyor	1604	R 1037	34	3.075	Drive Chain	1030
X WDH S S	678 680 698 698	59 39	6.031	Drop Forged	678	1039	12	9.000	Elevator and Conveyor	1030
WDH S S	680 698 698	39		Drop Forged	678	SS 1088	10	2.609	Elevator and Conveyor	78
S S	698 698		8.000	Welded Steel	H480	RS 1113	10	4.040	Elevator and Conveyor	1113
S S	698		6.031	Drop Forged	698	RS 1114	11	6.000	Elevator and Conveyor	196
S		59	6.031	Drop Forged	698	SR 1114	11	6.000	Elevator and Conveyor	196
	698 HD	59	6.031	Drop Forged	698	RS 1116	11	6.000	Elevator and Conveyor	196
	720 S	49	6.000	Pintle	720S	RR 1120	10	4.000	Elevator and Conveyor	1120
С	720 5	49	6.000	Pintle	7205	RS 1131	11	6.000	Elevator and Conveyor	1131
	720 S	49	6.000	Pintle	CS720S	A 1204	34	5.000	Drive Chain	1204
	720 CS	38	6.000	Welded Steel	CS720S	RO 1205	34	5.000	Drive Chain	1207
	730	49	6.000	Pintle	A730	RX 1207	34	5.000	Drive Chain	1207
	730	49	6.000	Pintle	CS730	E 1211	13	12.000	Elevator and Conveyor	E1211
	770	34	2.300	Drive Chain	506	RS 1211	13	12.000	Elevator and Conveyor	E1211
	778	34	2.609	Drive Chain	78	ER 1222	13	12.000	Elevator and Conveyor	E1222
	778	10	2.609	Elevator and Conveyor	78	FR 1222	13	12.000	Elevator and Conveyor	F1222
WH	784	38	4.000	Welded Steel	130	SJLR 1037	35	3.075	Drive Chain	1030
S	823	14	4.000	Elevator and Conveyor	823	SS 1222	13	12.000	Elevator and Conveyor	F1222
SR		14	4.000	Elevator and Conveyor	825	SS 1227	13	12.000	Elevator and Conveyor	E1222
SR	830	14	6.000	Elevator and Conveyor	830	SS 1232	13	12.000	Elevator and Conveyor	F1232
ER	833	14	6.000	Elevator and Conveyor	833	ER 1233	13	12.000	Elevator and Conveyor	E1233
ES	833	14		Renamed ER833		FR 1233	13	12.000	Elevator and Conveyor	F1233
SBS	844	14	6.000	Elevator and Conveyor	844	SS 1233	13	12.000	Elevator and Conveyor	F1233
SR	844	14	6.000	Elevator and Conveyor	844	A 1236	34	4.063	Drive Chain	A1236
RO	850	14	6.000	Elevator and Conveyor	RO850	1240	34	4.063	Drive Chain	1240
	850 +	14	6.000	Elevator and Conveyor	RO850	ROA 1242	34	4.063	Drive Chain	1240
	850 +	14	6.000	Elevator and Conveyor	RO850	1244	34	4.063	Drive Chain	1240
ER	856	14	6.000	Elevator and Conveyor	856	ER 1244	34	12.000	Elevator and Conveyor	E1244
	856	14		Renamed ER856		FR 1244	34	12.000	Elevator and Conveyor	F1244
SBX		14	6.000	Elevator and Conveyor	856	RX 1245	34	4.073	Drive Chain	1240
ER			6.000	Heavy Duty Elevator	856	R 1248	34	4.063	Drive Chain	1240
ER		14	6.000	Heavy Duty Elevator	859	SJLR 1245	35	4.073	Drive Chain	1240
ER		14	7.000	Heavy Duty Elevator	864	R 1251	13	12.000	Elevator and Conveyor	2397
	881	34	2.609	Drive Chain	78	C 1288	10	2.609	Elevator and Conveyor	78
	882	34	2.609	Drive Chain	78	1301	34	5.750	Drive Chain	1301
RS		10	2.609	Elevator and Conveyor	78	RO 1306	34	6.000	Drive Chain	1306
	886	14	7.000	Heavy Duty Elevator	SX886	ROS 1306	34	6.000	Drive Chain	1306
RS		10	2.609	Elevator and Conveyor	78	X 1307	34	7.000	Drive Chain	1307
	901	50	3.149	Pintle	901	A 1309	35	7.000	Drive Chain	A1309
	902 907	50 50	2.970	Pintle Pintle	902 907	X 1311	34	6.500	Drive Chain	X1311
ER		12	3.170 9.000		907 E911	RO 1315 AX 1338	34	5.000 3.625	Drive Chain Drive Chain	RO1315 AX1338
		_		Elevator and Conveyor				3.625 4.090		
RS ER	911 922	12 12	9.000 9.000	Elevator and Conveyor Elevator and Conveyor	E911 E922	X 1343 X 1345	34 34	4.090	Drive Chain Drive Chain	X1343 X1345
FR		12	9.000	Elevator and Conveyor	F922	X 1345 X 1351	34	4.090	Drive Chain	X1345 X1351
SS 1		12	9.000	Elevator and Conveyor	F922 F922	X 1351 X 1353	34	4.125	Drive Chain	X1351 X1353
SS S		12	9.000	Elevator and Conveyor	E922	RO 1355	35	5.000	Drive Chain	RO1355
SS		12	9.000	Elevator and Conveyor	SS928	RO 1355 RO 1356	34	5.500	Drive Chain	RO1355
ER 1		12	9.000	Elevator and Conveyor	E933	X 1365	35	6.000	Drive Chain	X1365
FR		12	9.000	Elevator and Conveyor	F933	1535	14	3.075	Elevator and Conveyor	1535
SS		12	9.000	Elevator and Conveyor	F933	1536	14	3.075	Elevator and Conveyor	1536
SS		12	9.000	Elevator and Conveyor	SS942	1530	10	3.075	Elevator and Conveyor	1030
	942 +	11	6.000	Elevator and Conveyor	2111	RS 1539	10	3.075	Elevator and Conveyor	1030
	945	49	1.630	Pintle	45	AX 1568	34	3.067	Drive Chain	1568
RS		11	6.000	Elevator and Conveyor	1131	1578	10	2.609	Elevator and Conveyor	78
	951	11	6.000	Elevator and Conveyor	S951	1604	11	6.000	Elevator and Conveyor	1604
RS		11	6.000	Elevator and Conveyor	953	1617	11	6.000	Elevator and Conveyor	197
	955	49	1.630	Pintle	45	SS 1654	14	6.000	Elevator and Conveyor	1654

CHAIN AND SPROCKET INDEX

CHAIN AND SPROCKET INDEX

Prod Prod <th< th=""><th>Chain No.</th><th>Cat.</th><th>Chain</th><th>Type of Chain</th><th>Sprocket</th><th>Chain No.</th><th>Cat.</th><th>Chain</th><th>Type of Chain</th><th>Sprocket</th></th<>	Chain No.	Cat.	Chain	Type of Chain	Sprocket	Chain No.	Cat.	Chain	Type of Chain	Sprocket
A 1670 T2 6.000 EF Bushed Chains 2180 ROA 3160 35 2.000 Drive Chain A R 1706 13 12.000 Eventor and Conveyor 2452 3180 35 2.200 Drive Chain A R 1822 13 16.000 Eventor and Conveyor F1822 RS 3206 13 F1000 Eventor and Conveyor F1832 13 ROM 3315 34 4000 Elevator and Conveyor F1832 13 ROM 3315 34 4000 Elevator and Conveyor 74 74 4001 F5 F5 77 4101 4.000 Elevator and Conveyor 2664 77 2.000 Elevator and Conveyor 2664 70 5.000 Duuble File 70 70 Duuble File 70 70 Duuble File 70 70 Duuble File 8.000 File 71 7.00 Duuble File 71 7.00 Duuble File 71 7.00 Duuble File 71 7.00 Duuble File 72 70		Page	Pitch	51			Page	Pitch	51	ANSI #160
B 1670 72 6.000 Evaluate Chains 2180 RCA 3160 35 2.005 Drive Chain AM R 1000 Evaluator and Conveyor E1822 R3 12.000 Evaluator and Conveyor F181 12.000 Evaluator and Conveyor F1833 RCA 3150 3 4.000 Evaluator and Conveyor F1833 RCA 3150 3 4.000 Evaluator and Conveyor F1833 RCA 3150 3 4.000 Evaluator and Conveyor F1834 RCA 3130 3 4.000 Evaluator and Conveyor F1834 RCA 3130 72 4.040 Evaluator and Conveyor F18 71 1.750° Duable Flex Evaluator and Conveyor 2.047 3.496 71 1.750° Duable Flex Evaluator and Conveyor 2.111 11 6.000 Evaluator and Conveyor 2.111 RCA 316 3.500 71 2.500° Duable Flex Evaluator Evaluator and Conveyor 712.400 1.750° Duable Flex Evaluator RCA 318 4.000 RCA 318 4.000 RCA 31				,						ANSI #160 ANSI #160
R 1706 13 12000 Elevator and Conveyor 2452 RS 3206 13 12000 Elevator and Conveyor FR 1822 13 18000 Elevator and Conveyor FIB22 RS 32256 13 12000 Elevator and Conveyor FIB23 N2A N3515 34 4003 Elevator and Conveyor FIB24 3320 10 4001 Elevator and Conveyor FIB24 3323 N2A										3112
FF H822 13 18000 Elevator and Conveyor F1833 PCA 23315 34 4 4073 DDresson and Conveyor FR 1844 13 18000 Elevator and Conveyor F1844 3420 10 4.040 Elevator and Conveyor SS 2001 10 2.600 Elevator and Conveyor 70 5420 72 4.040 Elevator and Conveyor RDA 2010 34 2.500 Elveator and Conveyor 70 3420 72 4.040 Elveator and Conveyor RD 2010 34 2.500 Elveator and Conveyor 2064 71 1.750 Double Her SRD 2113 10 4.000 Elveator and Conveyor 2124 X4.004 12 9.000 Elveator and Conveyor 124 X4.004 12 9.000 Elveator and Conveyor 124 X4.004 12 9.000 Elveator and Conveyor 124 X4.004 12 9.000 Elveator and Conveyor 125 R 4001 69 4.000 Elvator and Conveyor <										ANSI #180
F 1833 1000 Elevator and Conveyor F 1833 R 4073 Direc Chain SB 1000 100 2000 Elevator and Conveyor 1536 A 3420 72 4.040 Elevator and Conveyor SS 2004 10 2.050 Elevator and Conveyor 72 B 3420 72 4.040 Elevator and Conveyor 73 3490 71 1750 Double Flex RS 2004 11 6.000 Elevator and Conveyor 2047 3498 71 1750 Double Flex BS 2013 11 6.000 Elevator and Conveyor 11 1800 21500 Double Flex BS 2013 14 3000 Elevator and Conveyor 12 4004 12 9000 Elevator and Conveyor 18 3500 700 Bube Steel 3500 Puble Evator and Conveyor 18 16 0000 Elevator and Conveyor 18 16 0000 Elevator and Conveyor 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>3206</td>									,	3206
FR 1944 19 100 Levator and Conveyor F1844 3420 10 4.040 LF Busted To And SN 2004 10 2.607 Eventor and Conveyor 270 B 3420 72 4.040 LF Busted To And SN 2010 34 2.500 Dive Chain 514 X 333 10 4.000 Elevator and Conveyor 2017 SR 2044 11 6.000 Elevator and Conveyor 2044 71 1750* Double Flex SR 2044 12 9.000 Elevator and Conveyor 2018 311 16.000 Elevator and Conveyor 2113 ROA 3518 34 0500 Divertor 0.001 Elevator and Conveyor 2124 X 4004 12 9000 Elevator and Conveyor 1214 VM+X 355 R 4007 69 4000 Relif Conveyor 1212 11 6000 Elevator and Conveyor 1214 X 4001 69 4000 Relif Conveyor 2126 11 6.000 Elevator and Conveyor 12153 R 4001 69 1										3285
SBS 1972 14 3.075 Elevator and Conveyor 15.36 A 3420 72 4.040 SE Buched Chains ROA 2010 34 2.500 Elevator and Conveyor 2070 B 3420 71 14.040 SS Buched Chains RS 2047 11 6.000 Elevator and Conveyor 2047 3498 71 1.500 Double Flex SB0 2103 144 3.075 Elevator and Conveyor 2111 71 2.500 Double Flex RX 2111 10 6.000 Elevator and Conveyor 113 ROA 3618 34 4.500 Elevator and Conveyor 2126 11 6.000 Elevator and Conveyor 124 R<4007										1240
SS 2004 10 2 600 Direc Nain 270 B 3420 72 4 400 SS bushed Chains ROA 2010 344 2.500 Direc Nain 3433 10 4.000 Elevator and Conveyor Double Flex				, , , , , , , , , , , , , , , , , , ,						1113 1113
Ro. 2010 34 2.500 Drive Chain 514 X 3433 10 4.000 Elevator and Conveyor RS 2064 12 9.000 Elevator and Conveyor 2064 3390 71 7.50 Double Flex RB 2111 11 6.000 Elevator and Conveyor 103 3500 71 2.500 Double Flex RD 2113 10 4.000 Elevator and Conveyor 111 ROA 3618 34 4.500 Drive Chain A 2124 11 6.000 Elevator and Conveyor 124 X 4004 12 9.000 Elevator and Conveyor R SB 2162 14 3.000 Elevator and Conveyor 124 R 4011 69 12000 Elevator and Conveyor R 2183 11 6.000 Elevator and Conveyor 131 RF 4011 69 12000 Elevator and Conveyor R 2183 11 6.000 Elevator and Conveyor 138 R4013 10 4.000 Elevator and Conveyor R										1113
IRS 2047 11 6000 Elevator and Conveyor 2047 3498 71 1, 500 Double Flex SB0 2103 14 3075 Elevator and Conveyor 103 3500 71 2, 500 Double Flex R0 2111 11 6000 Elevator and Conveyor 1113 R0A 3618 34 4500 Dirte Chain A 2124 11 6000 Elevator and Conveyor 1214 X 4004 12 9000 Relation and Conveyor 124 X 4004 12 9000 Relation and Conveyor 1355 R 4007 69 4000 Relation and Conveyor 131 RX 4010 69 12000 Elevator and Conveyor 131 RX 4013 16 4000 Relation and Conveyor 131 RX 4013 10 4000 Relavator and Conveyor				-						3433
SBO 2103 14 3.075 Elevator and Conveyor 103 3500 71 2.500* Double Flax RD 2111 10 6.000 Elevator and Conveyor 1111 ROA 3618 34 4500 Elevator and Conveyor R A 2124 11 6.000 Elevator and Conveyor R A 6.050 Weided Steel C 2124 11 6.000 Elevator and Conveyor R A 10.000 Elevator and Conveyor R A A 10.4 A A 10.4 A	RS 2047	11	6.000				71	1.750*		3498
BR 2111 11 6.000 Elevator and Conveyor 2111 ROA 3618 34 4.500 Drive Chain A 2124 11 6.000 Elevator and Conveyor 2124 WIX 3855 38 6.500 Wielded Steel C 2124 11 6.000 Elevator and Conveyor 124 WIX 3855 38 6.000 Elevator and Conveyor 2126 11 6.000 Elevator and Conveyor 1535 R 4009 69 9.000 Elevator and Conveyor 2180 11 6.000 Elevator and Conveyor 1311 RF 4011 69 12000 Elevator and Conveyor 2183 11 6.000 Elevator and Conveyor 1311 RS 4013 10 4000 Elevator and Conveyor RS 2188 10 4.000 Elevator and Conveyor 188 RS 4038 13 12.000 Elevator and Conveyor RS 2188 10 4.000 Elevator and Conveyor 1731 RS 4056 12 9.000 Elevator and Conveyor RS 2180				,						
RO 2113 10 4.040 Elevator and Conveyor 1113 ROA 3618 34 4.500 Drive Chain A 2124 11 6.000 Elevator and Conveyor 124 WK 4.3855 38 6.050 Elevator and Conveyor R C 2126 11 6.000 Elevator and Conveyor R R 4.000 Relator and Conveyor R SBS 2162 14 3.075 Elevator and Conveyor 1535 R 4.000 6.000 Elevator and Conveyor 2.183 11 6.000 Elevator and Conveyor R 2.000 Elevator and Conveyor F 2.183 10 6.000 Elevator and Conveyor 188 5.4013 10 4.000 Elevator and Conveyor R 2.184 10 4.000 Elevator and Conveyor 188 S.4038 13 12.000 Elevator and Conveyor R 2.184 10 6.000 Elevator and Conveyor 188 S.4038 13 12.000 Elevator and Conveyor R 2.184 11						3500	71		Double Flex	3500
A 2124 11 6.000 Elevator and Conveyor 2124 WHX 3855 38 6.056 Welded Steel 2126 11 6.000 Elevator and Conveyor 196 RF 4007 69 9.000 Elevator and Conveyor A 2178 11 6.000 Elevator and Conveyor 124 R 4009 69 9.000 Elevator and Conveyor 2180 11 6.000 Elevator and Conveyor 131 RF 4011 69 12000 Elevator and Conveyor 2183 11 6.000 Elevator and Conveyor 131 RF 4011 69 1000 Elevator and Conveyor 2188 10 4.000 Elevator and Conveyor 188 RS 4038 13 10000 Elevator and Conveyor RO 2184 11 6.000 Elevator and Conveyor 1731 R5 4056 12 9.000 Elevator and Conveyor RS 2190 11 6.000 Elevator and Conveyor 1731 R5 4218 10 4.000 Elevator and Conveyor RS 2190						DOA 3618	34		Drive Chain	635
C 2124 X 4004 12 9000 Elevator and Conveyor 196 SBS 2162 14 3075 Elevator and Conveyor 1535 R 4009 69 9000 Elevator and Conveyor 2180 11 6000 Elevator and Conveyor 2130 4011 69 12000 Elevator and Conveyor 2181 11 6000 Elevator and Conveyor 1131 RF 4011 69 4000 Elevator and Conveyor FX 2183 10 6000 Elevator and Conveyor 1181 RF 4011 69 4000 Elevator and Conveyor FX 2184 10 6000 Elevator and Conveyor 188 ROA 4020 33 13 6000 Elevator and Conveyor RS 2184 11 6000 Elevator and Conveyor 178 R5 408 10 4000 Elevator and Conveyor RS 2184 11 6000 Elevator and Conveyor 177 R5 403 1000				3						132
2126 11 6.000 Elevator and Conveyor 195 R 4.000 69 9.000 Relation conveyor A 2178 11 6.000 Elevator and Conveyor 1218 R 4.010 69 9.000 Elevator and Conveyor 2180 11 6.000 Elevator and Conveyor 1131 FF 4.011 69 9.000 Elevator and Conveyor F 2183 11 6.000 Elevator and Conveyor 1311 FF 4.011 6.000 Elevator and Conveyor FX 2184 10 4.000 Elevator and Conveyor 188 SS 4.023 31 12.000 Elevator and Conveyor RS 2188 10 4.000 Elevator and Conveyor 188 SS 4.020 Elevator and Conveyor RS 2184 11 6.000 Elevator and Conveyor 197 RS 4.026 12 9.000 Elevator and Conveyor RS 2190 11 6.000 Elevator and Conveyor 177										4004
A 2178 11 6:000 Elevator and Conveyor 2124 R 4010 69 12:000 Elevator and Conveyor 2183 11 6:000 Elevator and Conveyor 18 4011 69 12:000 Elevator and Conveyor F F 2183 11 6:000 Elevator and Conveyor FS 4013 10 4:000 Elevator and Conveyor FS 2184 10 4:000 Elevator and Conveyor 188 RS 4:011 6:000 Elevator and Conveyor 188 SS 4:038 12 9:000 Elevator and Conveyor RC 2:000 Elevator and Conveyor 188 SS 4:038 12 9:000 Elevator and Conveyor RC 2:000 Elevator and Conveyor 197 RS 4:114 40 4:043 Elevator and Conveyor RC 2:824 11 6:000 Elevator and Conveyor 133 A 4:033 Elevator and Conveyor RC 2:824 12 4:04 4:04 4:040 Elevator and Conveyor RC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RF4007</td>										RF4007
2180 11 6:000 Elevator and Conveyor 131 RF 4011 69 12:000 Relevator and Conveyor F 2183 11 6:000 Elevator and Conveyor 1311 RF 4011 69 1:000 Relevator and Conveyor FX 2184 11 6:000 Elevator and Conveyor 118 RX 4:000 Elevator and Conveyor RX 2184 10 4:000 Elevator and Conveyor 188 RX 4:020 34 5:000 Dive Chain RX 2184 10 6:000 Elevator and Conveyor 1131 A065 12 9:000 Elevator and Conveyor Q184 11 6:000 Elevator and Conveyor 1274 4:124 4:12 9:000 Elevator and Conveyor RX 2190 11 6:000 Elevator and Conveyor 131 RX 104 10:000 Elevator and Conveyor RX 2196 11 6:000 Elevator and Conveyor 131 RX 4:0							-			4009
2183 11 6:000 Elevator and Conveyor S5 Alon Alon Rolar Conveyor FX FX 2184 11 6:000 Elevator and Conveyor 188 ROA 4000 Elevator and Conveyor 188 RS 2188 10 4:000 Elevator and Conveyor 188 ROA 4020 Elevator and Conveyor RS 2184 11 6:000 Elevator and Conveyor 188 ROA 4020 12 9:000 Elevator and Conveyor RO 2184 11 6:000 Elevator and Conveyor 177 RS 4005 Elevator and Conveyor RO 2190 11 6:000 Elevator and Conveyor 127 4111 RS 218 10 4:000 Elevator and Conveyor RO 2284 11 6:000 Elevator and Conveyor 131 A 4532 10 4:000 Elevator and Conveyor RO 2284 11 6:000 Elevator and Conveyor 131 R 4532										4010
F 2183 11 6.000 Elevator and Conveyor 131 RS 4013 10 4.000 Elevator and Conveyor 2188 10 4.000 Elevator and Conveyor 1131 RS 418 10 4.000 Elevator and Conveyor RS 2184 11 6.000 Elevator and Conveyor 1188 ROA 4020 129.000 Elevator and Conveyor RS 2190 11 6.000 Elevator and Conveyor 197 RS 4065 12 9.000 Elevator and Conveyor A 2190 11 6.000 Elevator and Conveyor 197 RS 4065 12 9.000 Elevator and Conveyor A 2190 11 6.000 Elevator and Conveyor 121.4 412.4 10.4 4.000 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 113.1 A 4539 10 3.057 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 23.12 8.000 Drive Chain WDH 23.4 6.000 Drive Chain <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>5</td><td>4011 DE4011</td></t<>							-		5	4011 DE4011
FX 2184 11 6:000 Elevator and Conveyor 1131 RS 4019 10 4:000 Elevator and Conveyor RS 2188 10 4:000 Elevator and Conveyor 188 ROA 4020 34 5:000 Drive Chain RO 2184 11 6:000 Elevator and Conveyor 188 SS 4038 13 12:000 Elevator and Conveyor 2190 11 6:000 Elevator and Conveyor 177 RS 4065 12 9:000 Elevator and Conveyor A 2198 11 6:000 Elevator and Conveyor 197 RS 4113 10 4:000 Elevator and Conveyor RO 2284 11 6:000 Elevator and Conveyor 1131 RA 4532 10 4:000 Elevator and Conveyor RO 2284 + 11 6:000 Elevator and Conveyor 1131 RA 4532 10 4:000 Elevator and Conveyor RO 2284 + 11 6:000 Elevator and Conveyor 131 RA 4532 10 4:000 Elevator and Conveyor										RF4011 1120
2188 10 4.000 Elevator and Conveyor 188 ROA 4020 34 5.000 Drive Chain RO 2184 11 6.000 Elevator and Conveyor 1181 4065 12 9.000 Elevator and Conveyor 2190 11 6.000 Elevator and Conveyor 197 RS 4113 10 4.000 Elevator and Conveyor A 2198 11 6.000 Elevator and Conveyor 197 RS 4113 10 4.000 Elevator and Conveyor WDH 2210 40 6.136 Weided Steel Drag 1110 RS 4216 10 4.000 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 1131 ROA 4824 34 6.000 Drive Chain WDH 2316 40 81.26 Weided Steel Drag H116 ROB 4824 34 6.000 Drive Chain R 2342 12 9.000 Elevator and Conveyor 2342 RS 4852 12 9.000 Elevator and Conveyor R 2405 12 <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>1120</td>				3					<u> </u>	1120
RS 2188 10 4.000 Elevator and Conveyor 1181 SS 4038 13 12.000 Elevator and Conveyor RO 2184 11 6.000 Elevator and Conveyor 197 RS 4065 12 9.000 Elevator and Conveyor RS 2190 11 6.000 Elevator and Conveyor 197 RS 4065 12 9.000 Elevator and Conveyor RS 2130 14 6.000 Elevator and Conveyor 124 4124 49 4.043 Pintle WDH 2210 40 6.136 Welded Steel Drag H110 RS 4238 10 4.000 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 131 RA 4539 10 3.075 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 2342 RS 4850 13 12000 Elevator and Conveyor RVDH 2316 40 8.161 Welded Steel Drag H440 RS 4851 12 9.000 Elevator and Conveyor R 2404 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1207</td>										1207
2190 11 6.000 Elevator and Conveyor 197 RS 4065 12 9.000 Elevator and Conveyor A 2198 11 6.000 Elevator and Conveyor 2124 4124 49 4.031 Pinite WDH 2210 40 6.136 Welded Steel Drag H110 RS 4216 10 4.000 Elevator and Conveyor RD 2284 11 6.000 Elevator and Conveyor 1131 RA 4539 10 3.000 Elevator and Conveyor RO 2284 + 11 6.000 Elevator and Conveyor 1131 RA 4529 14 6.000 Drive Chain WDH 2316 40 8.126 Welded Steel Drag H116 RD 4824 34 6.000 Drive Chain R 2342 12 9.000 Elevator and Conveyor 2347 RX 4850 13 12.000 Elevator and Conveyor R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor R 2405								12.000	Elevator and Conveyor	4038
R 2190 11 6.000 Elevator and Conveyor 197 RS 4.113 10 4.000 Elevator and Conveyor WDH 2210 40 6.136 Welded Steel Drag H110 RS 4216 10 4.000 Elevator and Conveyor RD 2284 11 6.000 Elevator and Conveyor 113 RA 4339 10 3.005 Elevator and Conveyor RO 2284 1 6.000 Elevator and Conveyor 113 RA 4339 10 3.005 Elevator and Conveyor RO 2284 + 16 6.000 Elevator and Conveyor 2342 RS 4850 13 12.000 Elevator and Conveyor RZ 2397 13 12.000 Elevator and Conveyor 2342 RS 4851 12 9.000 Elevator and Conveyor RA 2405 12 9.000 Elevator and Conveyor 2342 WHX 4852 12 9.000 Elevator and Conveyor 2600	RO 2184	11	6.000	Elevator and Conveyor			12	9.000		4065
A 2198 11 6.000 Elevator and Conveyor 2124 4124 49 4.043 Pintle WDH 2210 400 6.136 Welded Steel Drag H110 R 4216 10 4.000 Elevator and Conveyor RD 2284 11 6.000 Elevator and Conveyor 1131 RO 4824 34 6.000 Drive Chain RD 2284 11 6.000 Elevator and Conveyor 1131 RO 4824 34 6.000 Drive Chain RD 2284 11 6.000 Elevator and Conveyor 2342 RS 4850 13 12.000 Elevator and Conveyor RR 2387 13 12.000 Elevator and Conveyor 2342 RV HX 4855 38 12.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2414 WHX 4855 38 12.000 Elevator and Conveyor RS 2600 12 8.000 Elevator and Conveyor 2614 WHX 5157 41 9.000 Welded Steel Drag RS										4065
WDH 2210 40 6136 Welded Steel Drag H110 RS 4216 10 4000 Elevator and Conveyor RD 2284 11 6.000 Elevator and Conveyor 1131 A 4539 10 3.005 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 1131 RA 4539 10 3.005 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 1131 RA 4539 10 3.005 Elevator and Conveyor RD 2380 40 8.126 Welded Steel Drag H440 RS 4851 12 9.000 Elevator and Conveyor RA 2397 13 12.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor RA 2405 12 9.000 Elevator and Conveyor 2442 WHX 4855 38 12.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2604 RC 4514 14 9.000 Elevator and Conveyor										188
SBS 2236 14 4.000 Elevator and Conveyor 2236 RS 4238 10 4.000 Elevator and Conveyor RO 2284 11 6.000 Elevator and Conveyor 1131 RA 4539 10 3.075 Elevator and Conveyor RO 2284 + 1 6.000 Elevator and Conveyor 1131 RA 4824 34 6.000 Drive Chain R 2342 12 9.000 Elevator and Conveyor 2342 RS 4850 13 12.000 Elevator and Conveyor R 2342 13 12.000 Elevator and Conveyor 2347 RS 4851 12 9.000 Elevator and Conveyor R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Welded Steel R 2600 11 6.000 Elevator and Conveyor 2614 WHX 5121 41 9.000 Elevator and Conveyor R 2604 12 8.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Elevator and Conveyor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4124 194</td></td<>										4124 194
RO 2284 11 6.000 Elevator and Conveyor 1131 R 4339 10 3.075 Elevator and Conveyor RO 2284 + 11 6.000 Elevator and Conveyor 1131 ROA 4824 34 6.000 Drive Chain WDH 2316 40 8.126 Welded Steel Drag H116 ROB 4824 34 6.000 Drive Chain WDH 2380 40 8.161 Welded Steel Drag H480 RS 4851 12 9.000 Elevator and Conveyor R 2397 13 12.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor RO 2512 34 3.067 Drive Chain 1568 S85 4871 14 9.000 Welded Steel Drag R 2614 13 12.000 Elevator and Conveyor 2800 F208 11 6.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyo				0						531
RO 2284 + 11 6.000 Elevator and Conveyor 1131 ROA 4824 34 6.000 Drive Chain WDH 2316 40 8.126 Welded Steel Drag H116 ROB 4824 34 6.000 Drive Chain R 2342 12 9.000 Elevator and Conveyor 2342 RS 4851 12 9.000 Elevator and Conveyor R 2397 13 12.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2600 ROA 5035 34 5.000 Drive Chain R RS 2600 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor										4539
R 2342 RS 4850 13 12000 Elevator and Conveyor WDH 2380 40 8161 Welded Steel Drag H480 RS 4851 12 9.000 Elevator and Conveyor R 2397 13 12.000 Elevator and Conveyor 2347 RS 4851 12 9.000 Elevator and Conveyor R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2600 ROA 5035 34 5.000 Drive Chain R R 2614 13 12.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Welded Steel Drag R 2800 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5738 34		11	6.000		1131		34	6.000		1306
WDH 2380 40 8.161 Welded Steel Drag H480 RS 4851 12 9.000 Elevator and Conveyor RR 2397 13 12.000 Elevator and Conveyor 2397 RS 4852 12 9.000 Elevator and Conveyor R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Velded Steel ROA 2512 34 3.067 Drive Chain 1568 SBS 4871 14 9.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2614 WHX 5157 41 6.000 Elevator and Conveyor RS 2800 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain R RS 2804 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain R <				0						1306
RR 2397 13 12.000 Elevator and Conveyor 2397 RS 4852 12 9.000 Elevator and Conveyor ROA 2512 34 3.067 Drive Chain 1568 SBS 4811 14 9.000 Elevator and Conveyor 2600 ROA 5035 34 5.000 Drive Chain R R 2614 13 12.000 Elevator and Conveyor 2640 WHX 5157 41 9.000 Elevator and Conveyor 2800 Welded Steel Drag R 2800 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain R RS 2806 12 8.000 Elevator and Conveyor 2823 88 6018 11 6.000 Elevator and Conveyor 2823 14 4.000 Elevator and Conveyor 823 SB 60651 14										4011
R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Welded Steel ROA 2512 34 3.067 Drive Chain 1568 SBS 4871 14 9.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2614 WHX 5157 41 6.000 Dive Chain R A 2800 12 8.000 Elevator and Conveyor 2800 %5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain R ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor				0					5	4009 4004
ROA 2512 34 3.067 Drive Chain 1568 SBS 4871 14 9.000 Elevator and Conveyor RS 2600 11 6.000 Elevator and Conveyor 2600 RA 5035 34 5.000 Drive Chain R R 2614 13 12.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Welded Steel Drag RS 2800 12 8.000 Elevator and Conveyor 2800 S208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain R RS 2806 12 8.000 Elevator and Conveyor 2814 ROO 5542 34 5.000 Drive Chain R R 2823 14 4.000 Elevator and Conveyor 823 SBO 6055 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor				, , , , , , , , , , , , , , , , , , ,					,	4855
RS 2600 11 6.000 Elevator and Conveyor 2600 ROA 5035 34 5.000 Drive Chain R R 2614 13 12.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Welded Steel Drag RS 2800 12 8.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Welded Steel Drag RS 2804 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2806 12 8.000 Elevator and Conveyor 2804 ROS 5542 34 5.500 Drive Chain R ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 823 SB0 6065 14 6.000 Elevator and Conveyor 826 RO 6214 34 4.000 Drive Chain R 285 14<				,						1903
A 2800 12 8.000 Elevator and Conveyor 2800 WHX 5157 41 6.050 Welded Steel Drag RS 2800 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Dirkve Chain R RS 2806 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Dirkve Chain R ROA 2814 34 3.500 Dirkve Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 8248 WHX 6667 41 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag SBX 2857 14 6.000 Elevator and Conveyor 858 RS 6238 11 6.000 Elevator and Conveyor		11		Elevator and Conveyor		ROA 5035	34	5.000		RO1315
RS 2800 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain R RS 2806 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain R ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SB0 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 823 SB0 6065 14 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag SBX 2857 14 6.000 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor RS5										6121
RS 2804 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain R RS 2806 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain R ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SB0 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag 2858 10 4.083 Elevator and Conveyor 856 RC0 6214 34 4.000 Drive Chain R SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain <t< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td>Ŭ</td><td>5157</td></t<>				,					Ŭ	5157
RS 2806 12 8.000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SB0 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag SBX 2857 14 6.000 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain R 2858 10 4.083 Elevator and Conveyor 856 RO 6214 34 7.000 Drive Chain R SBX 2864 14 7.000 Elevator and Conveyor 857 6425 R 5250 Drive Chain R R	RS 2800									5208 RO1356
ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 2823 SBO 6067 41 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6027 41 9.000 Welded Steel Drag 2858 10 4.083 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain R 2858 10 4.083 Elevator and Conveyor 856 RO 6214 34 4.000 Elevator and Conveyor SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain R SBX 2864 14 7.000 Elevator and Conveyor RF3007 RO 6706 34 3.075 Drive Chain R										1301
R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor C 2848 10 4.040 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag SBX 2857 14 6.000 Elevator and Conveyor 856 RO 6214 34 4.000 Elevator and Conveyor SBX 2859 14 6.000 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor SBX 2864 14 7.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain RF 3007 69 3.000 Roller Conveyor RF3007 RO 6555 34 7.000 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor RS 3013 10 3.000 Broller Conveyor RF3011 6826										196
WHX 2855 38 6.050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag SBX 2857 14 6.000 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain R 2858 10 4.083 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain 10 4.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor RF 3007 RO 6706 34 3.075 Drive Chain X X X X X X X X X X X X X X X X										6065
SBX 2857 14 6.000 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain R 2858 10 4.083 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor 2858 SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain Elevator and Conveyor A 2868 10 4.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor RS RS 3013 10 3.000 Boller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor RS RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R 3112 34 2.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6121</td></t<>										6121
2858 10 4.083 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain 11 SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain 7 RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain 4.000 RS 3017 35 3.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor R 3112 34 2.000 Drive Chain 3112 C 9103 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6121</td>										6121
SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain 7.000 RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain 7.000 RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor <td< td=""><td></td><td></td><td></td><td>Elevator and Conveyor</td><td></td><td></td><td></td><td></td><td></td><td>RO6214 197</td></td<>				Elevator and Conveyor						RO6214 197
SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain 7.000 RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor R RS 3013 10 3.000 Elevator and Conveyor RS301 6826 14 6.000 Elevator and Conveyor R RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 SCA 9103 <										645
A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain 7.000 RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor R RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Pintle 3125 1.500 Drive Chain ANSI #120 SCA 9103 49				Elevator and Conveyor						1131
RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor R RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain 1 RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor R 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Welded Steel 10 ROA 3120 35 1.500 Drive Chain 3125 9118 59 9.031 Drop Forged										X1311
RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor A R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B B 3113 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Welded Steel ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 3125-2 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor	RF 3007				RF3007	RO 6706		3.075		RO6706
RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B 3113 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor 3120 CM 35 1.500 Drive Chain 3112 C 9103 49 3.075 Pintle ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor										6826
R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Welded Steel ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125-2 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										A1309
B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Welded Steel ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										7539 270
3120 CM 35 1.500 Drive Chain ANSI #120 WH 9103 HD 38 3.075 Welded Steel ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										103
ROA 3120 35 1.500 Drive Chain ANSI #120 SCA 9103 49 3.075 Pintle 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										103
3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex	ROA 3120		1.500		ANSI #120				Pintle	103
ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										9118
ROA 3125-2 HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex										9118
										9184 9250
	SR 3130	34 11	6.000	Elevator and Conveyor	D31 197	9250 N 9350 WS	68	3.500	Polymeric Double Flex	9250 N9350
										1306
										9856

CHAIN AND SPROCKET INDEX

*Two-Pitch Chain

SUBJECT INDEX

Α	
Amusement ride applications	5
APPENDIX INFORMATION	
Chain and sprocket index	148-150
Engineering information	139-147
Subject index	151-152
В	101 102
Bucket flight wings	101
Buckets, elevator	99-102
С	
Cast and chill iron sprocket hubs	81-82
CAST CHAINS	
Attachments	56-58
Combination chain	53-55
Drag chain	48-49
Mill chain	47
Pintle chain	49-51
Roof-top chain	52
Transfer chain	53
Catenary	141-142
Center distance calculation, minimum	140-141
CHAIN ACCESSORIES	
Elevator buckets	99-102
Polymeric buckets	99-100
General information	99
Bucket and flight wings	101
Bucket listing	100
Segmental rim sprockets & traction wheels	90-93
General information	90
Split hub bodies	92
Solid hub bodies	91
Cast rims	93
Sprockets	75-89
Cast sprocket listing	83-88
Fabricated steel sprockets	79-80
Cast sprocket hubs – solid	81
How to order	78
Cast drum flanged traction wheels	89 76-78
Selection and specification	
Octagonal tail wheels	80 75
Sprocket types	75 79
Fabricated split hubs Sprockets and traction wheels	75
Cast traction wheels	89
Cast sprocket hubs – split	89
Fabricated solid hubs	79
Chain breakers	137-138
Chain interchange	74
Chain length, minimum	141
Chain and sprocket index	148-154
Chordal action	106
Combination chain	53-55
Corrosion-resistant chains	73

D	
Decimal/fraction/metric conversion table	139
DESIGN AND SELECTION	
Applications beyond scope of catalog selection	129
Chain selection procedures	
Conveyor chain selection	119-129
Polymeric chains	130-132
Elevator chain selection	1328
Drive chain selection	103-118
Heat treatment – see HEAT TREATMENT hea	ading
Double flex chains, metal	70-71
Double flex chains, polymeric	67-68
DRAG CHAIN	
Center distance	140
Chain length	141
Cast chains	48-49
Welded chains	41
Drive chain selection, Engineered class	103-118
DRIVE CHAINS	105-110
3100 series – chain listings	35
Drive chain listings	34-35
General information	34-33
Offset sidebar drive chains	30-32
	34 35
Sealed joint drive chains	
Selection procedures – using tables	103-118
Selection tables	110-118
Service factors	108-109
Straight sidebar chains	35
System design considerations	103
Drivemaster	33, 39
DROP FORGED	
Attachments	60-63
Chain listings	59
<u>E</u>	
ELEVATOR AND CONVEYOR CHAINS	
Attachments	15-29
Cast chains	47-58
Chains with rollers	10-13
Chains without rollers	14
Conveyor selection procedures	119-129
Corrosion-resistant chains	73
Double flex chain sprockets	70
Double flex chains, metal	70-71
Double flex chains, polymeric	67-68
Drop forged chains	59-63
Elevator chain pull calculation	128
Live roller conveyor chains	69
Low friction (LF) bushed chains	72
Polymeric chains	64-68
Welded steel chains	36-46
Elevator buckets	99-102

SUBJECT INDEX

SUBJECT INDEX

SUBJECT INDEX

ENGINEERED STEEL CHAIN	
Connecting and Disconnecting	133-134
Conveyor and elevator chain	10-29
Design information – see DESIGN AND SELE	CTION
Expansion temperature and color	147
Lubrication materials and processes	135-136
Engineering constants	145
G	
Guide to welding attachments	42
Н	
Hardness and strength comparison tables	146
HEAT TREATMENT	77
Sprockets	76
Welded steel chain options	36-37
Heavy duty drag chain	41
Hollow pin chain	69 47
H-type mill, cast H-type mill, polymeric	47 65
	00
IDLER WHEELS	
Cast drum flanged	89
Polymeric	98
Interchange – chain	74
K	7 -
Keyways, standard dimensions	140
	1.10
Linkmaster	138
Live roller conveyor chains	69
Low friction (LF) bushed chains	72
M	
MAINTENANCE INFORMATION	
Assembly/disassembly tools	137-138
Connecting and disconnecting chain	133-134
Conveyor chain maintenance	136
Drive chain maintenance	135
Material characteristics, conveyed materials	143-144
Metric/decimal/fraction conversion table	139
Mill chain, cast	47
P Pintle chain	49-51
POLYMERIC CHAINS AND ACCESSORIES	49-01
Application information	130-132
Catenary sag	130-132
Double flex chains	
	67-68
	67-68 98
Double-flanged polymeric idlers	98
	98 130
Double-flanged polymeric idlers Environmental factors	98
Double-flanged polymeric idlers Environmental factors Maintenance information Materials	98 130 132
Double-flanged polymeric idlers Environmental factors Maintenance information Materials Sprockets and idler wheels	98 130 132 130
Double-flanged polymeric idlers Environmental factors Maintenance information Materials Sprockets and idler wheels Sprocket features/benefits	98 130 132 130 94-98
Double-flanged polymeric idlers Environmental factors Maintenance information Materials Sprockets and idler wheels	98 130 132 130 94-98 94
Double-flanged polymeric idlers Environmental factors Maintenance information Materials Sprockets and idler wheels Sprocket features/benefits Straight running chains	98 130 132 130 94-98 94 64-65

Roof-top chain	52
S	5.0
S Series drop forged chain	59
Segmental rim sprockets and traction wheels Selection procedure	90-93
- see DESIGN AND SELECTION heading	
SPECIAL APPLICATION CHAIN	
Amusement rides	5
Bottling and beverage industry	7
Cane sugar and beet processing	8
Distribution and material handling	9
Draw bench and steel industry chains	6
Food processing	8
Grain handling chain High performance elevator chains	4
High sidebar chain	9
In-floor conveying chain	6
Reclaimer and barge/ship unloading chains	7
Sprocket/chain index	148-150
Sprocket pitch diameters	139
Sprockets, see CHAIN ACCESSORIES	
Sprockets traction wheels, see CHAIN ACCESS	
Strength of materials	SORIES 146
Strength of materials	146
Strength of materials T Transfer chains	
Strength of materials	146
Strength of materials T Transfer chains W	146
Strength of materials T Transfer chains W ELDED STEEL CHAIN	146 52
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets	146 52 43-46
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets	146 52 43-46 41 80 80
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets	146 52 43-46 41 80 80 80 80
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information	146 52 43-46 41 80 80 80 36-37
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes	146 52 43-46 41 80 80 80 36-37 36-37
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain	146 52 43-46 41 80 80 80 36-37 36-37 41
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series	146 52 43-46 41 80 80 80 36-37 36-37 41 38
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain	146 52 43-46 41 80 80 80 36-37 36-37 36-37 41 38 40
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions Wide series	146 52 43-46 41 80 80 80 36-37 36-37 36-37 41 38 40
Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42 39

R

World Class Customer Service

For more than 100 years, the dedicated people of Rexnord have delivered excellence in quality and service to our customers around the globe. Rexnord is a trusted name when it comes to providing skillfully engineered products that improve productivity and efficiency for industrial applications worldwide. We are committed to exceeding customer expectations in every area of our business: product design, application engineering, operations, and customer service.

Because of our customer focus, we are able to thoroughly understand the needs of your business and have the resources available to work closely with you to reduce maintenance costs, eliminate redundant inventories and prevent equipment down time.

Rexnord represents the most comprehensive portfolio of power transmission and conveying components in the world with the brands you know and trust.

Rexnord and Link-Belt are registered trademarks of Rexnord Industries, LLC. All rights reserved.

WORLDWIDE CUSTOMER SERVICE

AUSTRALIA

Rexnord Australia Pty. Ltd. Picton, New South Wales Phone: 61-2-4677-3811 Fax: 61-2-4677-3812

BRAZIL

Rexnord Correntes Ltda. Sao Leopoldo - RS Phone: 55-51-579-8022 Fax: 55-51-579-8029

CANADA Rexnord Canada Ltd. Scarborough, Ontario Phone: 1-416-297-6868 Fax: 1-416-297-6873

CHINA Rexnord China

Shanghai, China Phone: 86-21-62701942 Fax: 86-21-62701943

EUROPE Rexnord NV/SA Mechelen, Belgium Phone: 32-15-.443811 Fax: 32-15-443860

Rexnord Kette GmbH Betzdorf, Germany Phone: 49-2741-2840 Fax: 49-2741-284-385

LATIN AMERICA

Rexnord International, Inc. Milwaukee, Wisconsin Phone: 1-414-643-2366 Fax: 1-414-643-3222 E-mail: international2@rexnord.com

MEXICO

Rexnord S.A. de C.V. Queretaro, Qro. Phone: 52-442-218.5000 Fax: 52-.442-218-1090

SINGAPORE

Rexnord International, Inc. Singapore City, Singapore Phone: 65-6338-5622 Fax: 65-6338-5422

UNITED STATES

Customer Service Phone: 1-866-REXNORD (1-866-739-6673) Fax: 1-614-675-1898 E-mail: rexnordcs(state)@rexnord.com Example: rexnordcsohio@rexnord.com

ALL COUNTRIES NOT LISTED

Rexnord International Milwaukee, Wisconsin Phone: 1-414-643-2366 Fax: 1-414-643-3222 E-mail: international1@rexnord.com

Rexnord Industries, LLC, 4800 West Mitchell Street Milwaukee, WI 53214-5408 USA Phone: 414-643-2200 Fax: 414-643-2610