MOTION & CONTROL^M

SUPER PRECISION BEARINGS

Introduction

As technologies evolve, all manufacturers share a global responsibility to respect and protect the environment.

NSK Motion and Control products reflect our corporate commitment to being environmentally responsible. While our products improve the performance of machines in a variety of industries, they also save energy and conserve resources because of our superior precision machining technologies.

In order to meet the needs of the highly specialized machine tool industry,
we have enhanced every and all aspects of our R & D capability at our Technology Centers.

As a result, NSK's precision bearings are also used in a wide variety of industries,
such as semiconductor production and industrial robots, and have
earned a reputation for excellent performance.

NSK's purchase of RHP (Europe) allowed us to combine our collective experience and expertise, and to unify our strengths in design. As a result, our bearings are known for their exceptional accuracy and reliability.

This catalog explains technical materials including our latest research and experimental data, various applications, the types of precision bearings available, and the proper utilization of each specific type of bearing.

Table of Contents

Part 1. NSK Super Precision BearingsP4-9
Global Network ·····P4
Research and DevelopmentP6
Quality and ProductionP8
Part 2. Features of Precision BearingsP10-29
Metallurgical Technology to Extend Bearing Life ······P12
Ceramic Rolling Elements P14
CagesP16
Product Range ·····P18
Performance of Each Bearing TypeP20-29
Part 3. Selection of Precision BearingsP30-41
Part 4. Bearing Types ·····P42-117
1. Angular Contact Ball Bearings (ACBB) ······ P42-74
2. Cylindrical Roller Bearings (CRB)
3. Angular Contact Thrust Ball Bearings ····· P86-95
Angular Contact Thrust Ball Bearings for Ball Screw Support
5. Precision Deep Groove Ball Bearings ·····P104–109
6. Gauges and Oil-Air LubricatorsP110-117
Part 5. Technical Guide ·····P118–175
Part 6. Bearing Handling P176-197
Part 7. Appendices

Global Network

NSK's global network is the key to our ability to develop innovative products that incorporate the latest technologies.

The network connects each sales branch, distribution center, production facility, and technology center and enables us to gather the latest information from each location. Data is instantly accessible to every part of the network, resulting in products of the highest quality.

Our global system also includes activities such as receiving and processing orders, shipping products, and supplying technical support.

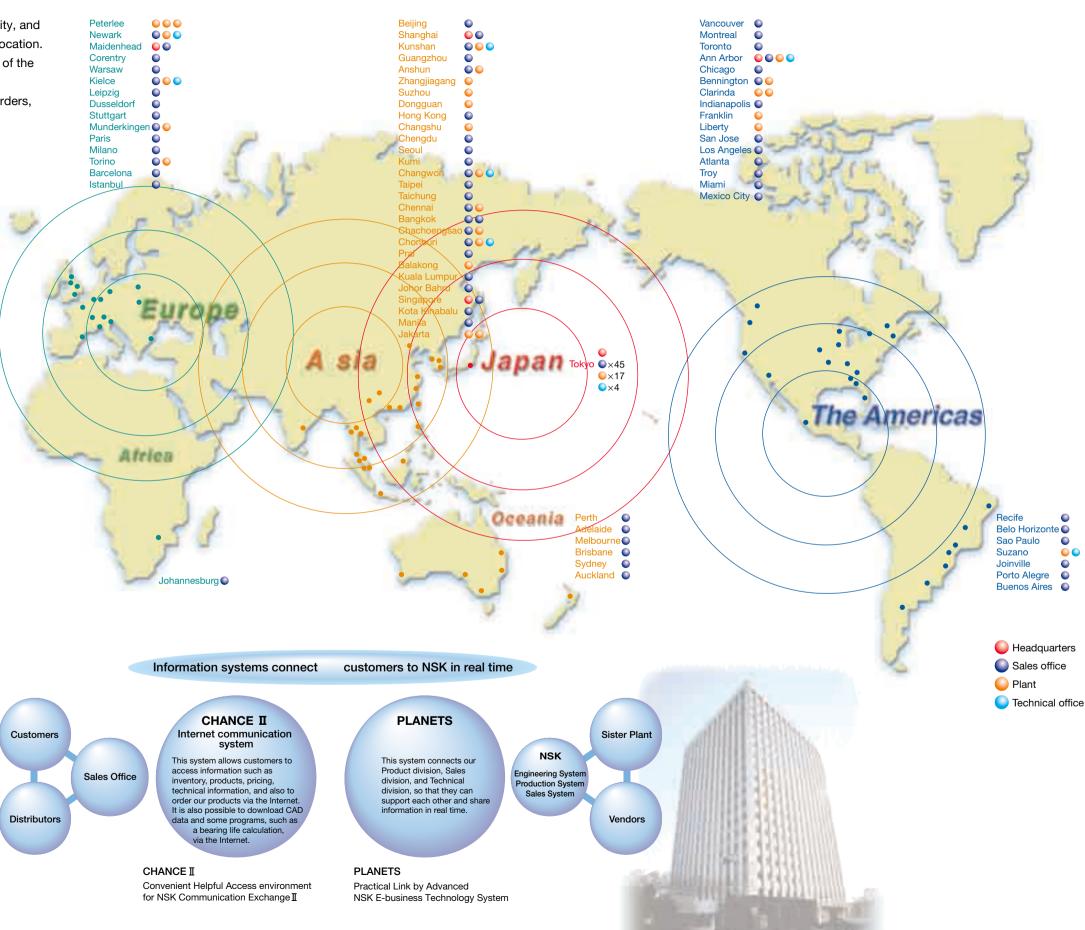
No matter how difficult or complex the challenge, NSK is able to respond immediately.

NSK's global network means excellent products and superior customer service.

NSK has established a communication system that links the major markets of the world in Europe, Asia, Japan, and the Americas. We use this highly developed system to

share information, in real time, related to changes and the trends of each market. As a result, we can react quickly to meet changing customer needs to supply the best, high quality

products. Our global network makes NSK a truly global company. We are able to transcend borders and other restrictions to meet the needs of our global customers.



Wherever our customers are in the world, our global support network is there.

Our extensive global network is able to receive orders and supply products anywhere in the world. NSK's distributors cover the world, and keep inventory of all critical products in all the major markets and locations, making it possible to supply the products to customers without delay. NSK also provides

technical support globally to help customers determine the best bearing for each application and to respond quickly to any questions and deal immediately with any problems our customers may have.

http://www.nsk.com

Research & Development

Communicating through our global network, the Technology Centers in Europe, The Americas and Japan engage in a continual exchange of ideas, reflecting NSK's extensive commitment to research and development.

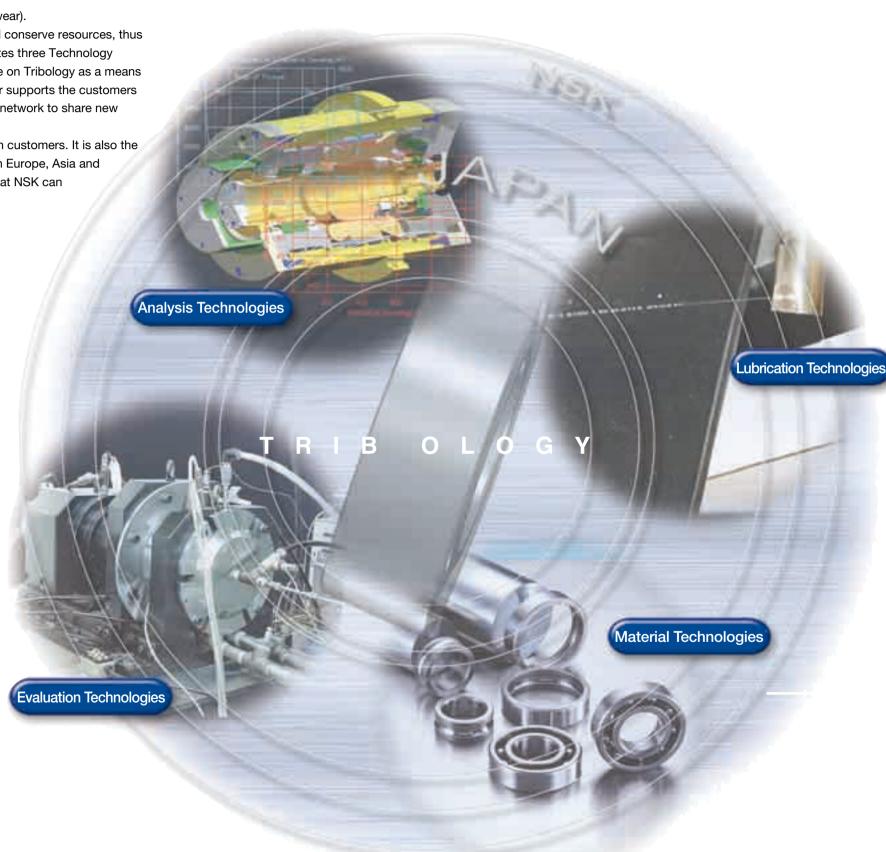
NSK's key technology is Tribology (the study of the friction and wear).

By decreasing friction and wear, it is possible to save energy and conserve resources, thus preventing machine failures and increasing reliability. NSK operates three Technology Centers located in Europe, the USA and Japan. They concentrate on Tribology as a means to develop innovative new technologies. Each Technology Center supports the customers in its region and all three communicate continually via our global network to share new information and findings.

The Technology Center in Japan acts as a direct support to Asian customers. It is also the center that systematically gathers information on market needs in Europe, Asia and the Americas to identify emerging needs and market trends so that NSK can aggressively develop the next generation of products.

Proposing a new approach to value New technology development

NSK is developing four basic technologies, Analysis, Materials, Lubrication, and Evaluation. Using these technologies, NSK produces new products that satisfy the unique requirements in each application. This approach provides real value to our customers.


Custom products for unique customer applications

Each Technology Center works closely with our customers to determine their precise application needs. In doing so we can help them identify the right NSK product for each application so they receive maximum efficiency and cost effectiveness. Upon request, we can also supply completely customized products to satisfy highly specialized customer needs.

Technology Center customer support

In addition to basic research, each Technology Center provides technical support to the customers in its region. As a result of this support, our customers are able to use NSK's products in their best condition and achieve their best performance.

Bearing Technology Center (Japan)

European Technology Center (England)

American Technology Center (USA)

6 NSK NSK 7

Quality & Production

We employ the latest manufacturing technologies and quality control procedures to produce products that are recognized as having the highest degree of accuracy in the world.

NSK precision bearings deliver the highest level of quality because of our production capability, state of the art equipment, extensive manufacturing expertise, and our commitment to applying the same rigorous quality control procedures at every stage of the production process in every NSK facility.

Manufacturing technologies to produce high accuracy products

To maintain our reputation for manufacturing precision bearings with the highest degree of accuracy in the world, all precision bearings are checked nanometer accuracy.

Global production in England and Japan

NSK's precision bearings are made in both England and Japan. The combined expertise of these manufacturing facilities, and their global locations allow us to meet every customer need.

NSK Newark Plant

NSK Fujisawa Plant

Complete quality control and environmental responsibility

As an ISO 9001 certified company, every NSK manufacturing facility adheres to the same strict standards for quality control.

Frequent quality checks are one part of the production process to ensure that all our products maintain the same high level of quality.

Our company has also received ISO 14001 Certification and all our facilities operate to the highest level of environmental responsibility.

ISO 14001 Certification

tification ISO 9001 Certification

NSK's symbol

NSK's golden box is your assurance of the absolute highest level of quality.

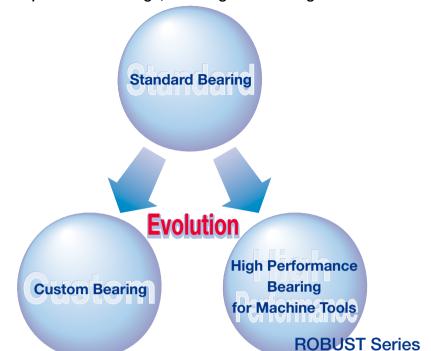
Courtesy of NASDA

PRODUCTS

(National Space Development Agency of Japan)

Bearing Production (Newark Plant)

Inspection Process (Fujisawa Plant)



Machining Process (Fujisawa Plant)

8 NSK NSK 9

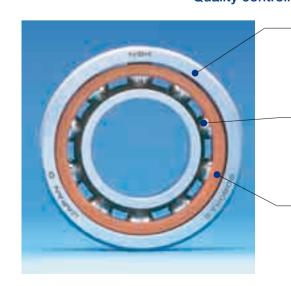
CONCEPT

NSK's precision bearings, for Long Life and High Performance.

Depending on each application and its operating conditions, there are the following choices:

Standard Bearings

The NSK standard precision bearing series covers a wide range of sizes and conforms to ISO standards. The bearing rings are made of Z Steel, (a high cleanliness SUJ2 bearing steel) which extends bearing life.


High Performance Bearings for Machine Tools

Using new material and analysis technologies to optimize the design for high speed operation, NSK has developed a ROBUST series of high performance bearings for machine tool main spindles.

Custom Bearings

NSK provides custom bearings by using advanced materials and an optimal design suited to each application and operating condition.

Quality controlled NSK bearing components

Raceway Material

NSK uses only selected materials, such as Z Steel or EP Steel, to achieve longer life. SHX Steel provides seizure-resistant performance at ultra high speeds.

Rolling Element Material

NSK bearings deliver high performance at high operating speeds by using steel balls with ultra high accuracy or high performance, lightweight ceramic rolling elements.

Cage

NSK cages, made of standard materials such as phenolic resin, polyamide, and new engineered polymer, offer benefits of high temperature resistance, light weight and high rigidity. NSK cages provide reliable operation in a variety of applications.

High Performance in the Next Generation:

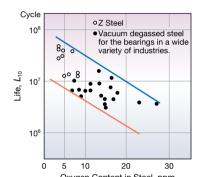
NSK continually challenges the status quo to explore new possibilities. As our design philosophy does not allow us to compromise quality in manufacturing, we are driven to develop total solution technologies.

By using the latest material and analysis technologies we are able to design and manufacture exceptional, high performance precision bearings.

NSK will always strive to achieve the quality and performance that will be required in next generation bearings.

Metallurgical Technologies to Extend Bearing Life

MATERIAL TECHNOLOGY


Advanced materials combined with strict quality controls allow NSK bearings to provide both long life and high performance.

It is well known that the rolling fatigue life of high carbon chrome bearing steel (SAE52100, SUJ2) used for rolling bearings is greatly affected by non-metallic inclusions. Life tests show that oxide non-metallic inclusions exert a particularly adverse affect on the rolling fatigue life. In cooperation with a steel supplier, NSK improved the steel making process and operating conditions to reduce impurities substantially, thereby achieving a decrease in oxide non-metallic inclusions. The resulting long-life steel is Z Steel and EP Steel.

Long Life Material (Z Steel)

Features of Z Steel

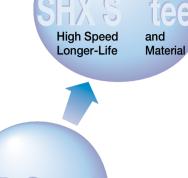
Z Steel is produced by reducing the amount of non-metallic inclusions, oxide and other inclusions such as Ti, or S, inside of the steel. Bearings made of this steel have a significantly extended service life when compared to conventional vacuum degassed steel. (up to 1.8 times longer)

Products made of Z Steel

NSK uses this Z Steel as a standard material

Extra Long Life and High Reliability Steel

Features of EP Steel


Bearings made from EP Steel have increased reliability due to minimal variations in life resulting from the new evaluation technique and significant reductions in impurities.

The establishment of new a evaluation technique

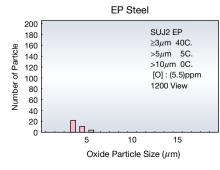
In order to improve the evaluation of oxide non-metallic inclusions, NSK has established the NSK-ISD² Method (an image analysis system and a special steel making procedure.)

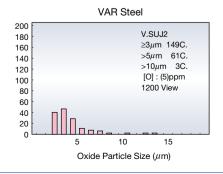
Improvement of steel making procedures

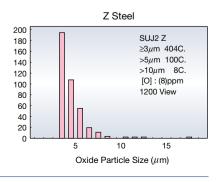
The introduction of this technique into steel manufacturing technology resulted in a significant improvement in purity and reduction of non-metallic inclusions relative to Z Steel. EP Steel has fewer large sized particles than Vacuum Arc Remelted (VAR) or conventionally refined Z Steel.

Longer-Life Material

and




Products made of EP Steel



Ball Screw Support Bearings for Machine Tool Applications

Purity comparison through image analysis

Heat Resistant Steel, Extends the Life of Bearings used in **Ultra High Speed Applications**

(SHX Steel)

The Feature of SHX Steel

SHX

1 000

Sliding distance (m)

Test conditions

Surface pressure: 880MPa

Sliding ratio: 30% Lubrication : Spindle oil

Temperature: Room

(2cc/min)

2 cylindrical rollers wear test

1 500

2 000

0.05 ≥ 0.04

0.03

0.02

Load

 \checkmark

SHX is a heat resistant steel resulting from NSK's special heat treatment technology. SHX Steel has similar heat resistant performance to M50 steel which is used for bearings on the main shaft of jet engine applications where temperatures reach 300°C. This heat resistance, combined with lower friction performance and indentation resistance are ideally suited steel characteristics for ultra high speed machine tool bearings. Patent Number: 2961768JP

Heat Resistance Seizure Resistance **Fatique Life** Tempering temperature and Dry seizure limit test (4 balls test) Subsurface originated flaking test hardness of each material Test conditions Lubrication: None Clean lubrication Sliding condition: PV=380kgf·mm²·m/s 850 S 800 750 300 § 700 200 650 SHX P/C: 0.71 ± 600 O SUJ2 550 eed: 4900rpr 500 300 M50 200 Tempering temperature (°C) Life (h) High temperature hardness Oil bath seizure limit test (4 balls test) Surface originated flaking test of each material Test conditions Lubrication: Oil bath Contaminated lubrication 600 500 SHX O SUJ2 400 □ M50 300 200 300 M50 Temperature (°C) Material Life (h) **Wear Resistance** Bearings made of SHX Steel have a 4 balls test significantly extended service life when Wear resistance of each material compared to SUJ2 Steel. (4 times longer) (2 cylindrical rollers wear test) <u>6</u> 0.06

Products made of SHX Steel

Ultra High-Speed ACBB ROBUST Series X, XE type

Ultra High-Speed Single Row CRB ROBUST Series RX, RXH type

12 NSK NSK 13 High speed, high rigidity, and high reliability are all achieved using ceramic rolling elements.

High

Accuracy

High

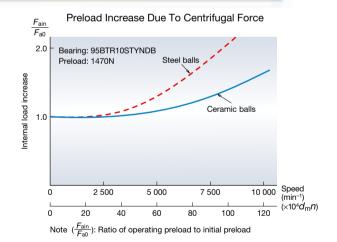
Rigidity

Ceramic hybrid bearings have many excellent performance characteristics such as heat resistance, extended life, light weight, lower thermal expansion, electrically non-conductive, and thus can be used in an infinite number of applications as a new generation material. Early on NSK's knowledge of materials and bearing manufacturing led us to utilize one ceramic in particular, silicon nitride (Si₃N₄), for the rolling elements in ceramic hybrid bearings. Hybrid bearings with ceramic elements have earned a good reputation in the field

for ultra high speed combined with ultra high accuracy, a performance combination that is not achievable in bearings with steel rolling elements.

Precision Ceramic Angular Contact Ball Bearing

High Speed Saizura Resistance **Ceramic**

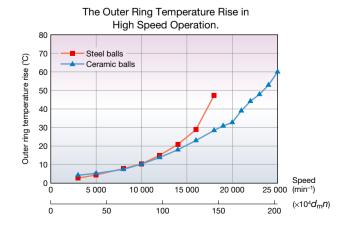

Rolling Elements

Qualit

Superior High Speed Performance

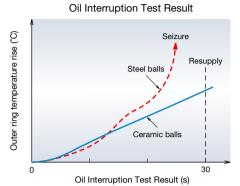
Lightweight

As the density is 40% lower than that of steel, the centrifugal force applied to the rolling elements is smaller, thus extending bearing life.



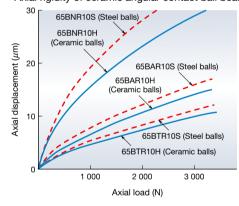
Low coefficient of linear expansion

In applications involving high speed operation, although the temperature of the bearing is high, this low coefficient results in lower preload and lower heat generation.

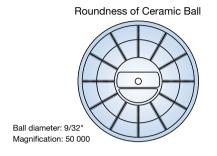

The slip of the rolling element during operation is reduced, and this means less heat is generated.

> Bearing: 65BNR10XTDB+KL144 Grease lubrication (Isoflex NBU15) Position preload (No Jacket Cooling) Preload after mounted: 300 (N)

Seizure Resistance


Relative to steel rolling elements, ceramics have a higher seizure resistance.

High Rigidity

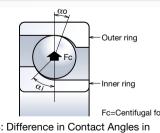

Ceramic balls have a Youngs Modulus that is 50% higher than that of steel, making it an ideal material for use in machine tool spindles requiring rigid cutting performance.

High Accuracy through Manufacturing Technology

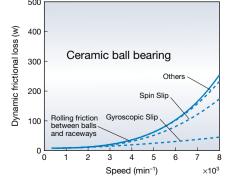
NSK's expertise in the manufacturing of balls and rollers. and improvements in the sintering process and the grade of materials used, enables NSK to produce higher accuracy balls and rollers.

High Quality by Selecting the Best Materials

By including the purchase of materials in the QA system, NSK's bearings with ceramic rolling elements are well accepted in the field as being of the highest quality.



High Speed Performance Characteristics of Balls and Rollers


When using ceramic rolling elements in

ACBB: low centrifugal forces decrease the gyroscopic and spin slip in high speed operation

CRB: low material density reduces the heat generation caused by the skew of the rollers

Calculated result of heat generation

Steel ball bearing 200

ACBB: Difference in Contact Angles in **High Speed Operation**

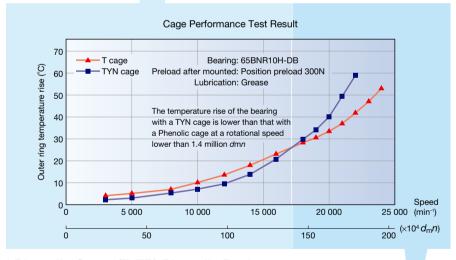
CRB: Roller Skewing in High Speed Operation

Cages MATERIAL TECHNOLOGY

Engineered Polymer Cages Suited for High Speed Operation

Because of lightweight (polymer density is 1/6 that of brass), easy formability, and high corrosion resistance, polymer materials are used widely in bearing cages. Polymers can be engineered to have lower friction and thus lower heat generation and higher speed capability. Polymers can be engineered for low wear, thus extending grease life. The engineered polymer cage is well suited for bearings used in machine tool main spindles.

Cage for Angular Contact Ball Bearing


Ball Guided Polyamide Cage (TYN) Engineered Polymer

- This special design allows the bearing to have lower friction and lower noise.
- This cage is effective with grease lubrication. The internal free space of the bearing in this cage is larger than that with outer ring guided cage so, it is possible to keep more grease inside of the bearing.
- The period of the grease running in procedure for a bearing with this cage is shorter than that of a bearing, with a phenolic cage.

Application Example
Ultra High-Speed ACBB ROBUST Series

Outer Ring Guided Phenolic Cage (T, TR) Phenolic Resin

• The rotational movement of the outer ring guided cage is more stable in high speed operation.

Application Example Standard Series ACBB standard Series Ultra High-Speed ACBB ROBUST Series

Cage for Cylindrical Roller Bearing

High Strength Roller Guided PPS Cage (TB) Engineered Polymer

- High temperature resistance to a maximum of 220°C.
- Complete chemical resistance against most acid, alkaline or organic solutions.
- Physical properties include high strength, toughness, wear and fatigue resistance relative to current Polyamide cage material.

Application Example
Double row CRB High Rigidity Series

Outer Ring Guided PEEK Cage with Ultra High Temperature Resistance (TP) Engineered Polymer

- High temperature resistance to a maximum of 240°C.
- Excellent wear-resistant performance and suited to minimal oil lubrication.
- Physical properties include high strength, toughness, wear and fatigue resistance.
- Dimensional stability results in minimal deformation during high speed operation.

Application Example
Ultra High-Speed Single Row CRB
Robust Series

Roller Guided Machined Brass Cage (MB, MR)

• This cage demonstrates high temperature resistance, high strength, and high rigidity.

Cage Variations

16 NSK Ultra High-Speed ACBB ROBUST Series NSK 17

Super Precision Bearings – Product Range

Several types of super precision bearings are available from NSK, including the ROBUST™ series of high performance bearings, the special series of bearings for unique and specialized applications, and the standard series bearings.

High Precision Angular Contact Ball Bearings Standard Series

Basic NSK super precision bearings manufactured to conform to ISO standard.

- 70xx, 72xx, 79xx series
- Three types of contact angle: 15° (C), 25° (A5), 30° (A)
- Two types of cage design: Select either phenolic (TR) or polyamide (TYN), depending on application requirements

Ultra High-Speed Angular Contact Ball Bearings BNR, BER Series

High performance bearings developed for high speed operation with low temperature rise. Suitable for ultra high precision machining applications, and ultra high speed applications.

- Two types of contact angle: 18° (BNR), 25° (BER)
- Two types of ball material: steel (S type) and ceramic (H and X type)
- Two types of cage design: Select either phenolic (T) or polyamide (TYN). depending on application requirements
- ROBUST series also can be used for ultra high speed applications of over 3 million d_mn.

High-Speed Angular Contact Thrust Ball Bearings BAR, BTR Series

- Two types of contact angle: 30° (BAR), 40° (BTR)
- Two types of ball material: steel (S type) and ceramic (H type)

High rigidity thrust bearings for lathe applications.

Ultra High Precision Angular Contact Ball Bearings BGR Series

High Performance bearings developed specifically for internal grinding or high speed motor applications under spring preload.

- Bore size range: ϕ 6–25 mm, contact angle: 15°
- Two types of ball material: steel (S type) and ceramic (H and X type)
- Non separable type
- Universal combinations (DU and SU)

Sealed Angular Contact Ball Bearings Special Series

Pre greased and sealed to reduce handling problems. Suitable for maintenance of machine tool spindles.

- Standard series super precision angular contact ball bearings
- ROBUST series high speed angular contact ball bearings Bore size range: ϕ 30–100 mm in ISO series 10 and 19 (70xx and 79xx)

ROBUST series is the high performance series of NSK super precision bearings.

Ultra High-Speed Single Row Cylindrical Roller Bearings ROBUST Series Standard Series

High performance cylindrical bearings designed for ultra high speed applications, such as machining center spindles.

- Two types of cage material: Brass (MR)⁽¹⁾ and PEEK resin (TP)
- Three types of roller material: Steel, SHX and Ceramic
- Ultra high speed ROBUST RXH design can be used up to 3 million d_mn
- (1) MR cage is used in the standard series

Double Row Cylindrical Roller Bearings High Rigidity Series

Designed to deliver high rigidity in high speed applications such as lathe

- Two types of cage material: Brass (MB), PPS resin (TB)
- Standard specification E44: Outer ring oil holes and groove

Angular Contact Thrust Ball Bearings for Ball Screw Support

for Machine Tool Applications

High rigidity thrust bearings designed specifically for ball screw support applications in machine tools.

- Contact angle: 60°
- Can be universally matched to any required rigidity specification or life cycle
- A pre-greased line using special grease is also available
- A new series is available, supplied with contact seals and waterproof grease

Angular Contact Thrust Ball Bearings for Ball Screw Support

for Injection Molding Machines

The high load capacity design delivers five times the life expectancy compared to ball screw support bearings for machine tool applications of a similar size. The number of rows can also be reduced.

- Easier handling than tapered roller bearings or thrust spherical roller bearings as a result of non-separable configuration
- Optimum ball bearing design results in lower rotational torque
- Can be universally matched to any required rigidity specification or life cycle

High Precision Deep Groove Ball Bearings Special Series

Suitable for high speed and high precision motors.

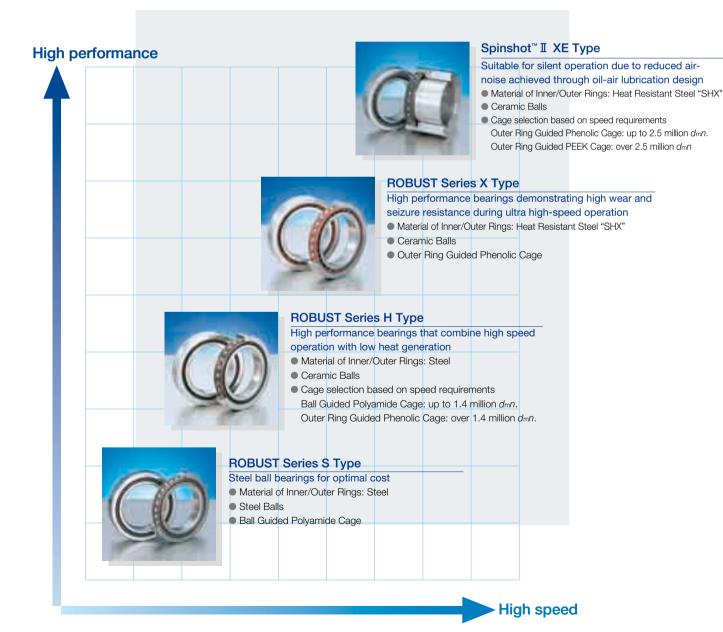
- Three types of cage : Ball guided polyamide cage (T1X,TYA) and inner ring guided phenolic cage (T), selection depends on the application
- Suitable for silent or low vibration operation

18 **NSK NSK** 19

Ultra High-Speed Angular Contact Ball Bearings

Designed to achieve high speed operation combined with low heat generation —ROBUST Series

Benefits


Low Heat Generation

2

High Seizure Resistance

Better Temperature Stability "Robustness"

4
Stable during High Speed Operation

Features of "XE" series

High Speed Performance (in Position Preload)

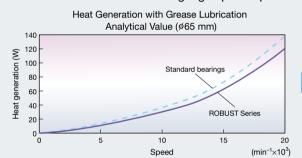
High speed performance in position preload to a maximum of 2.5 million $d_m n$ with jacket cooling (Max. 2.7 million $d_m n$ without jacket cooling)

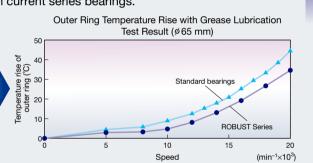
Silent Operation

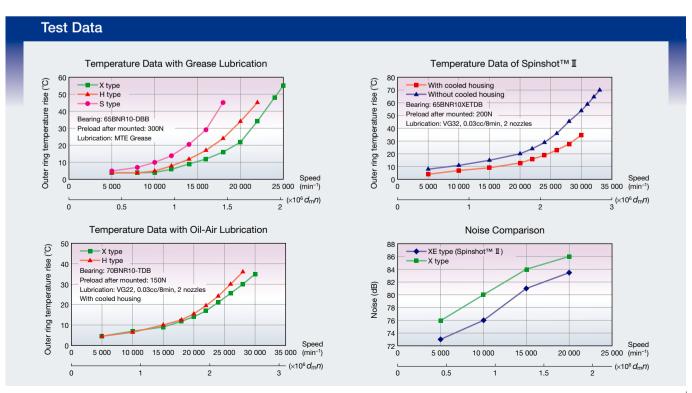
Silent operation 3-5 dB quieter than conventional oil-air lubrication.

Orientation

Remains stable in either vertical or horizontal spindle orientation.


Reduced Air Consumption


Air consumption can be 1/3 relative to conventional oil-air lubrication.



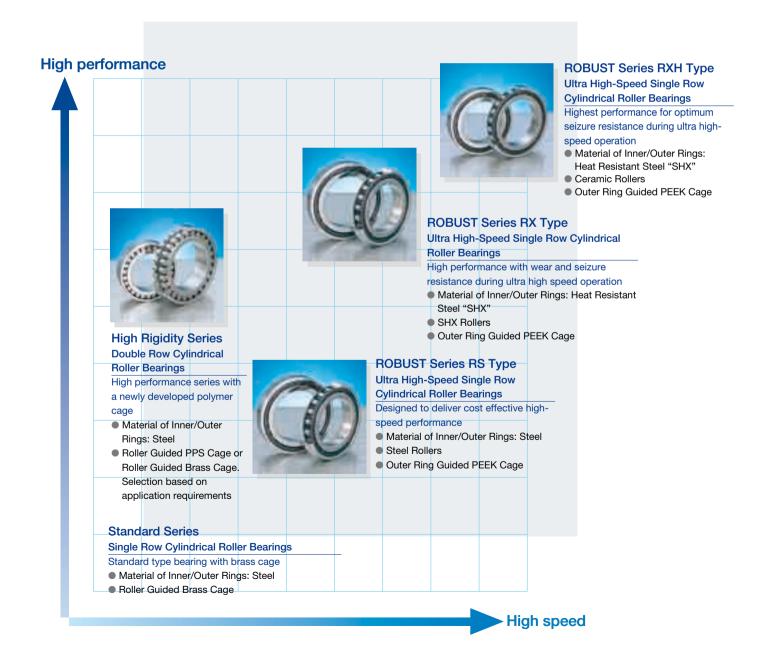
Analysis Data

Sophisticated analysis software takes into account the slip inside the bearing and simulates temperature rise to establish optimum design specifications. By reducing the heat generated, ROBUST series bearings remain much more stable during high speed operation than current series bearings.

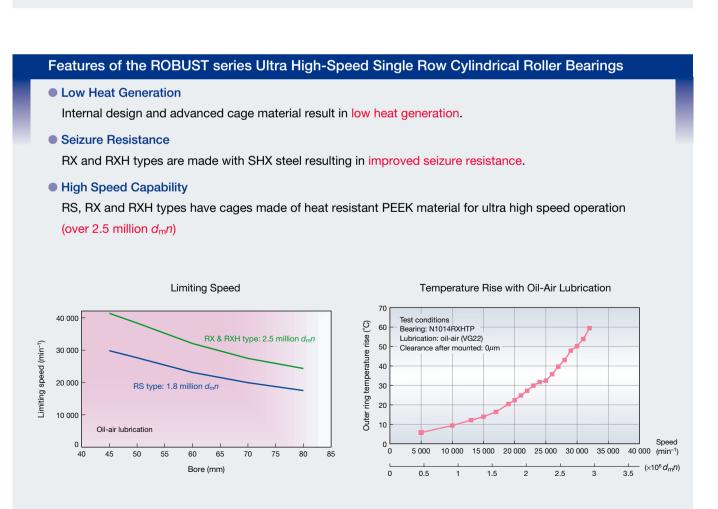
High Performance Cylindrical Roller Bearings

Designed to achieve high speed performance combined with high rigidity

Benefits


1 Low Heat Generation

2


Improved Seizure Resistance

3

Stable Operation in Ultra High Speed

Features of High Rigidity Double Row Cylindrical Roller Bearings Longer Bearing Life The PPS (engineered polymer) cage is heat resistant and provides high rigidity. As compared to a brass cage, this cage eliminates any wear particles, allowing an extended grease life. Limiting Speed Temperature Rise with Grease Lubrication Bearing with new plastic cage (PPS) Bearing: NN3019 10 000 Clearance after mounted: 0um 0.85 million d_mn 5 000 95 100 105 110 60 65 70 75 80 85 90 2 000 4 000 6 000 8 000 10 000 12 000 (min-1 Bore (mm (×10⁶ d_mn) 0.6 1.2

High-Speed Angular Contact Thrust Ball Bearings

High performance bearings that combine high speed capability with high rigidity—ROBUST Series

Benefits

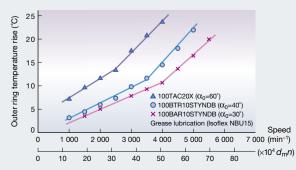
1 High Speed Capability 2

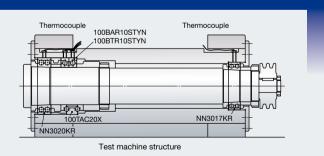
Low Heat Generation

3 High Accuracy

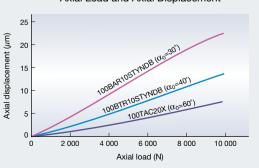
Double Row Angular Contact Thrust Ball Bearings TAC Series BTR10 Series BTR10 Series BAR10 Series			00
TAC Series BTR10 Series BAR10 Series 60° contact angle with the 40° contact angle and high axial highest axial rigidity. 8AR10 Series 30° contact angle delivers higher speed capability. Interchangeable	Double Row Angular Contact	High-Speed Angular Contact	High-Speed Angular Contact
60° contact angle with the 40° contact angle and high axial 30° contact angle delivers higher highest axial rigidity. rigidity and low heat generation. speed capability. Interchangeable	Thrust Ball Bearings	Thrust Ball Bearings	Thrust Ball Bearings
highest axial rigidity. rigidity and low heat generation. speed capability. Interchangeable	TAC Series	BTR10 Series	BAR10 Series
	60° contact angle with the	40° contact angle and high axial	30° contact angle delivers higher
	highest axial rigidity.	rigidity and low heat generation. Interchangeable with TAC series.	speed capability. Interchangeable with BTR and TAC series.

Features of Angular Contact Thrust Ball Bearings


High Accuracy


Due to the high degree of accuracy, they are particularly suited for lathe spindle applications.

Interchangeable


To adjust spindle stiffness characteristics, BTR and BAR series can be interchanged with TAC series, with minimal modification of the spindle. (See right figure).

Data with Grease Lubrication

Axial Load and Axial Displacement

Ultra High Precision Angular Contact Ball Bearings

Ultra high speed internal grinding spindle bearings for high accuracy and longer life—BGR Series

Benefits

7 Optimum Internal Design

2 Easy Handling Due to Non Separable Feature

Free Choice of Arrangement with Universal Combination

Features of the BGR Series

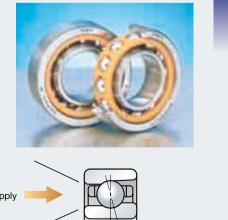
Optimum Design

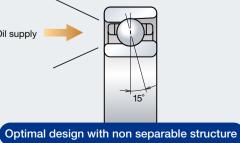
Optimum outer ring guided cage design for better lubrication. Inner ring shoulder relieved to enable a stable supply of oil into the bearing.

Longer Life

Heat resistant SHX steel for longer life.

Easy Handling


Non separable structure makes handling easy.


Ultra High Accuracy

ISO class 2 (ABMA ABEC9) is the standard.

Universal Combination

Bearings can be configured in the usual arrangements of DB/DF/DT, as well as a variety of other arrangements.

Ball Screw Support Angular Contact Thrust Ball Bearings

(for Machine Tool Applications)

High performance special bearings with high rigidity—TAC B Series

Benefits

Longer Life Lower Torque Easy Handling High Accuracy

Features of Ball Screw Support Bearings for Machine Tools

Longer Life

Components made from longer life EP extremely purified steel.

High Rigidity

Special internal design (60° contact angle and more balls) for higher axial rigidity.

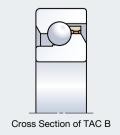
Lower starting torque than either tapered or cylindrical roller bearings means high rotation accuracy even at low driven power.

Universal Combination

Bearings can be configured in the usual arrangements of DB/DF/DT, as well as a variety of other arrangements.

A pre greased option is also available (with Alvania No.2 grease).

Easy Handling and Increased Reliability


New series with contact seals and waterproof grease has higher reliability and easier handling.

Single universal combination (SU) is the standard for this series.

High Running Accuracy

New polyamide cage for high running accuracy.

Ball Screw Support Angular Contact Thrust Ball Bearings (for Injection Molding Machines)

These special high performance bearings can simplify machine design and reduce costs - TAC 02, 03 Series

Benefits

Space Saving, High Load Capacity **High Reliability Easy Handling**

Reduced Torque from Optimized Design

Features of Ball Screw Support Bearings for Injection Molding Machines

High Reliability

High load capacity design delivers five times the life value compared to the similarly sized TAC B series.

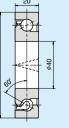
Easy Handling

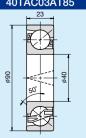
Easier to handle and use than tapered roller bearings or thrust spherical roller bearings due to the non separable design.

Simplified Design Leads to Reduced Costs

Preload is preset so assembly is fast and without any preload adjustment. Design of special parts for preload adjustment is unnecessary, which saves time and cost.

Lower Rotational Torque


Optimal internal design for lower torque (i.e., in cases where roller bearings are currently being used because of large load, these bearings can be used to reduce the bearing torque generated by roller bearings).



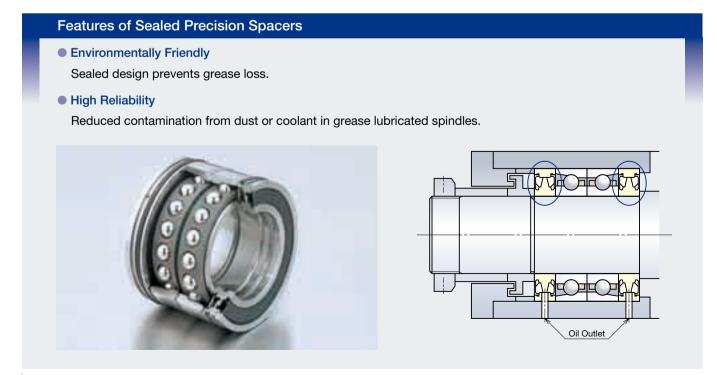
and Injection Molding Machine

For Machine Tools 40TAC90B

Molding Machines

26 **NSK NSK** 27

Sealed Angular Contact Ball Bearings


Suitable for spindle maintenance—ROBUST series and Standard series

Sealed Precision Spacers

Sealed spacers eliminate the possibility of contamination Precision spacers available for machine tool spindles

High Performance Greases for Machine Tool Spindles

MTS, MTE, ENS

Features of Greases for Machine Tool Spindles

MTS Contains urea thickener and delivers higher heat resistance.

Recommended for use with ultra high speed machine tool spindles.

Formulated to handle higher load capacities.

Recommended for use in high speed machine tool spindles.

ENS Environmentally friendly thanks to biodegradability.

MTE and MTS are available in 100g tubes as well as 1kg cans, and ENS is available in 2.5kg cans.

Characteristics of each grease

Items	Condition	MTS	MTE	ENS	Test Method
Thickener	-	Urea	Barium Complex	Urea	-
Base Oil	_	Mixed Synthetic Oil	Ester Oil	Ester Oil	-
Kinematic Viscosity of Base Oil (mm²/S)	40°C	22	20	32	JIS K 2220 5.19
Worked Penetration	25°C, 60W	2–3	2	2	JIS K 2220 5.3
Dropping Point (°C)	-	> 220	> 200	> 260	JIS K 2220 5.4
Evaporation (mass%)	99°C×22H	0.3	0.4	0.4	JIS K 2220 5.6B
Oil Separation (mass%)	100°C×24H	0.4	1.0	1.1	JIS K 2220 5.7

Selecting the Right Bearing is Critical

Precision bearings are designed to deliver the high accuracy, high rotational speed, and high rigidity needed for demanding machine tool applications. As each application has its own unique requirements, and each type of bearing has different characteristics, it is essential to select the type of bearing based on the specific demands of a given application.

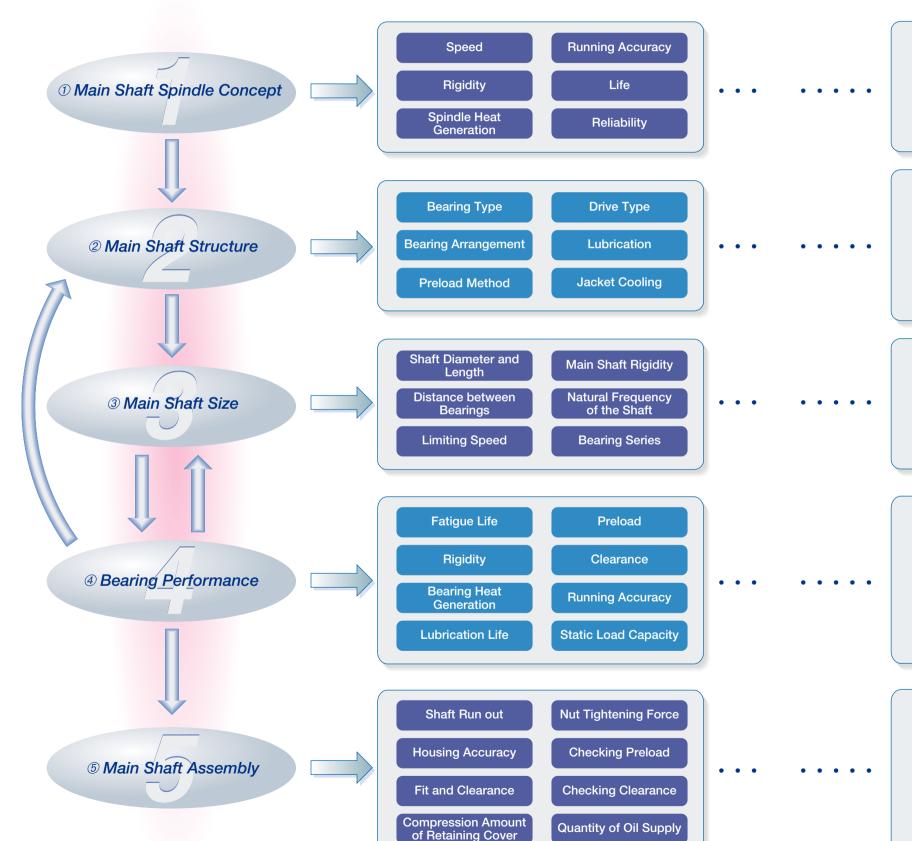
Take Advantage of NSK Technical Support when Selecting Bearings

NSK is committed to helping customers select the proper bearings that will deliver the best performance based on the application involved.

When designing a new spindle, including ultra high speed, specialized or custom applications, or making your bearing selection, please don't hesitate to ask us for technical assistance. We have the experience and expertise in state of the art, high speed, main shaft spindle technology to assure that you get the very best bearings for your application.

For more information on the latest NSK technology, please visit our Web site or call today.

NSK Web Site http://www.nsk.com


Bearing Selection P32
Typical High Speed Main ShaftP34 Spindle Structures
Other Spindle Structures P36
Features of Angular Contact Ball Bearings ···· P38
Features of Cylindrical Roller BearingsP40

BEARING SELECTION

Part 3

The chart below outlines the correct five step procedure to follow when selecting the proper bearing for a typical high-speed spindle application, including the factors to be considered in each stage of the selection process.

Remember, NSK technical support is always at your disposal when designing a new spindle, an ultra high speed spindle or a spindle for a unique specialized application. We offer customers our experience and our expertise in advanced technology.

When designing a new main shaft spindle, we recommend a thorough analysis of the desired spindle performance before selecting the bearing. In designing the spindle, it is necessary to determine which performance factor is most important. For example, deciding if the rotational speed is more important than the rigidity, or vice versa. Once the performance factors are prioritized proceed to the next step.

After the performance analysis of the main shaft has been completed, the next step is to determine the structure of the main shaft. To determine the optimum structure, consideration must be given to each individual component: the bearing design (ball bearing or roller bearing); combination (the number of rows); type of drive (belt, gear, coupling or integral motor); and lubrication system (grease, oil-air, oil mist, or jet). Care must be taken to ensure that the structure is compatible with the criteria and priority established in your analysis of spindle performance. Please refer to the chart on Page 34–35, which shows the relationship between the main shaft structure and its rigidity and speed.

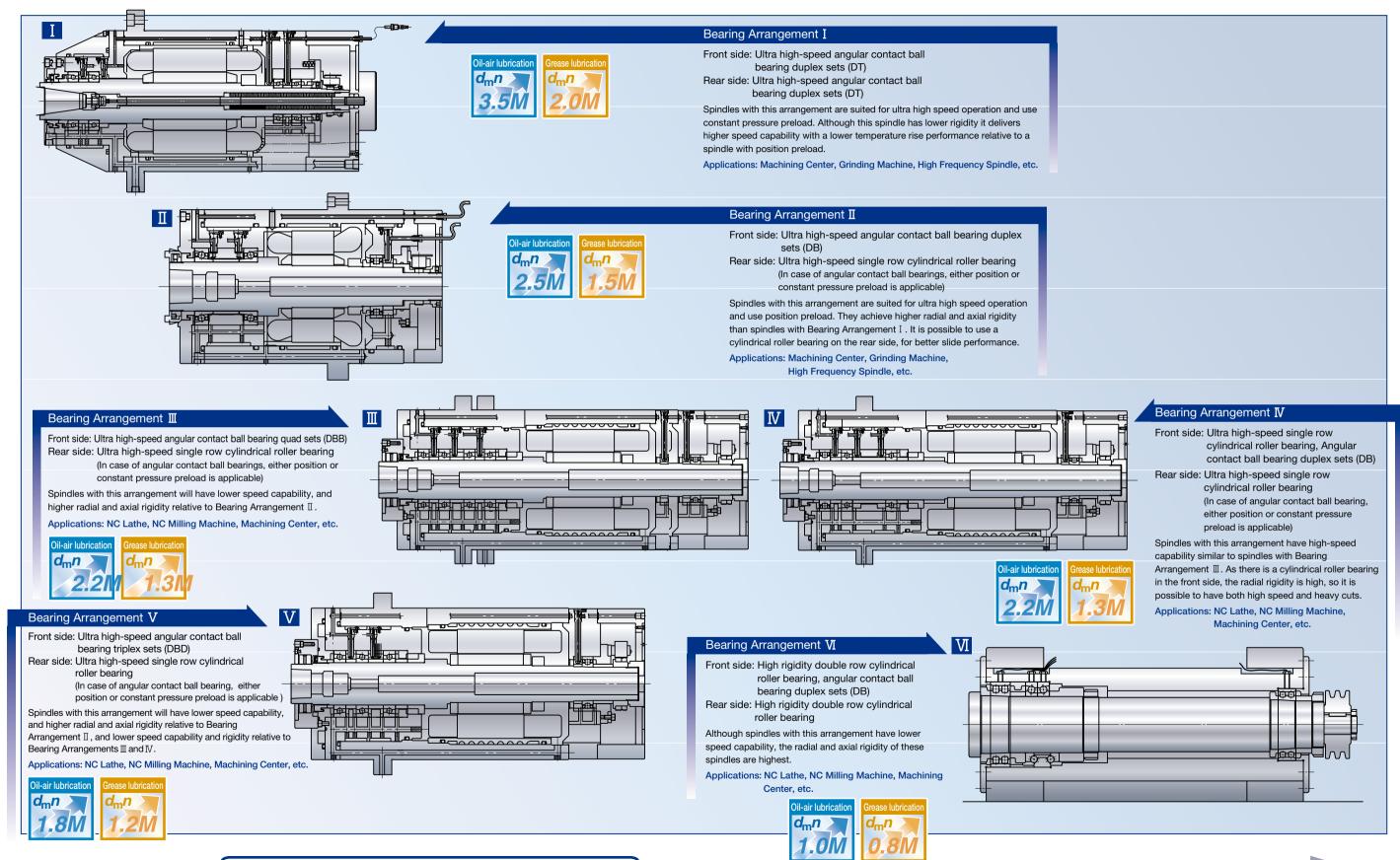
After the structure has been determined, the dimensions of the shaft must be determined, including diameter, length, and distance between the bearings. The size of the main shaft will determine the limiting speed of the bearing, the rigidity of the main shaft, and the natural frequency of the main shaft. As the size, type, combination of bearing used, and the method of lubrication all affect the limiting speed, please refer to Part 4 and Part 5 before making a final determination.

See Part 4 and Part 5

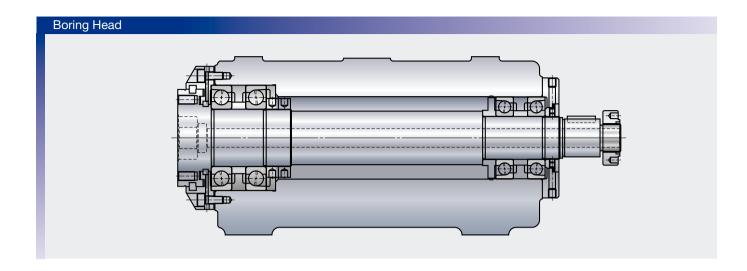
Once the size and type of the bearing are selected, the specification of the bearing should be determined. In order to select the appropriate clearance, or preload, of the bearing it is necessary to consider such factors as fatigue life, axial and radial rigidity, and heat generation. Clearance or preload must be selected carefully, as these factors have the largest impact on overall spindle performance, especially during high speed operation. If the preload is wrong it may cause problems such as early failure or seizure. Sometimes it is necessary to repeat step ③, or even steps ② and ③, before the most accurate spindle design is achieved.

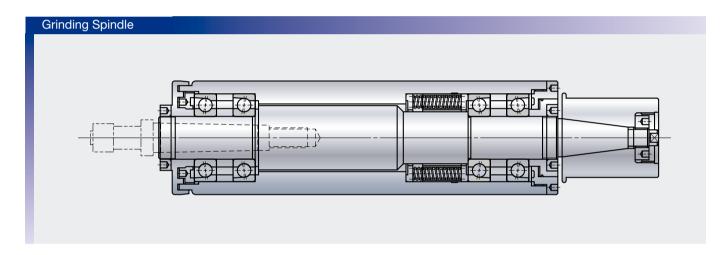
See Part 5

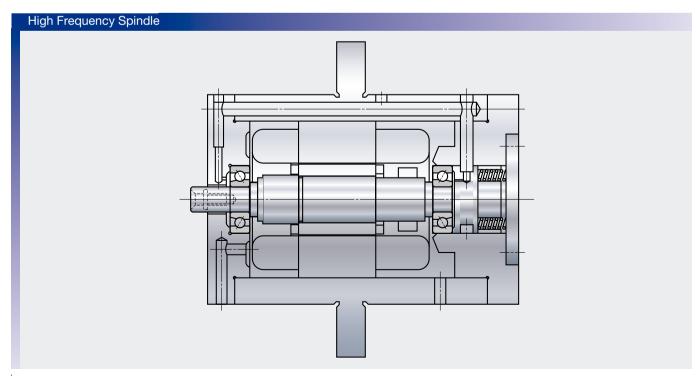
After the specification of the main shaft is complete, the final stage is the specification of the assembly method. Accuracy of the shaft and housing at the bearing seats is important. Specify the fit and clearance of the bearings to the shaft and housing. Use the correct nut tightening force to fix the bearings. And double check that the preload, or clearance, after the bearing has been mounted is correct.

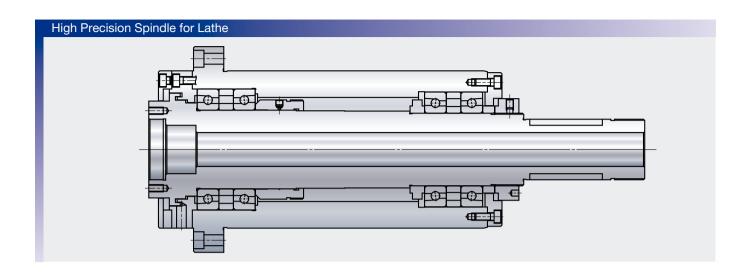

See Part 6

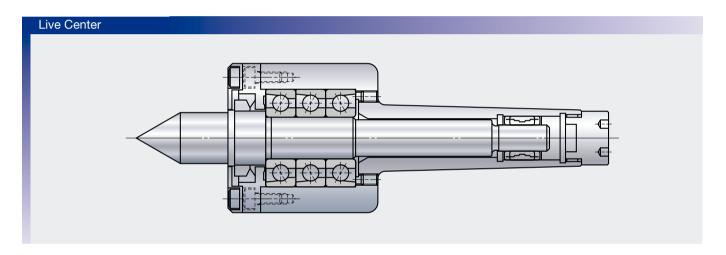
(Speeds Higher than 0.7 million $d_m n$)

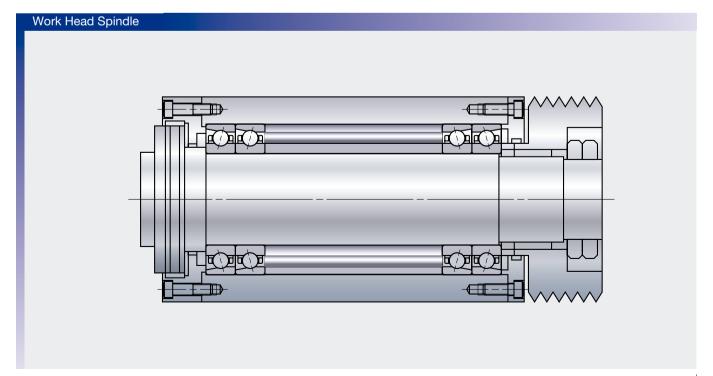

 $(d_m n)$


Speed


Rotational




Rigidity of The Main Shaft

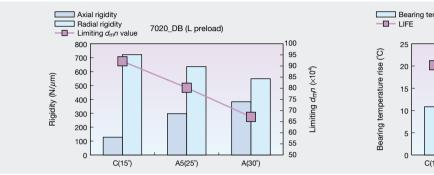


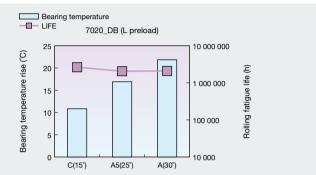
The main features of the ACBB are (1) a predefined contact angle, and (2) they are used in matched combinations with preload.

When selecting Angular Contact Ball Bearings, it is important to take these features into account, as each ACBB has different performance. It is important to understand the affect of changes in contact angle and preload on performance so that you select the ACBB that is best suited to the application.

The following graphs represent the relative performance of each type of ACBB, depending on the contact angle, under the same size, preload, and combination.

Performance Comparison of Each type of Bearing (Bore size-70mm, DB combination, L preload) Rotational Speed Radial Rigidity **Axial Rigidity** Dynamic Load Rating 79 C Grease 79_A5 Lubrication Oil-air 70 C Lubrication **High Precision ACBB** Standard Series 70_A 72 C 72_A5 72_A BNR19S BNR19H BNR19X BNR19XE BER19S RFR19H BER19X BER19XE Ultra High-Speed **ROBUST Series** BNR10S BNR10H BNR10X BNR10XF BER10S BER10H BER10X BER10XE BAR10S BAR10H Thrust ACBB BTR10S BTR10H TAC20X 10 000 20 000 30 000 40 000 0 500 500 1 000 100 150 $(N/\mu m)$ $(N/\mu m)$

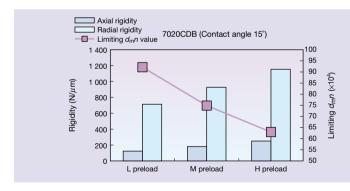

(min⁻¹)

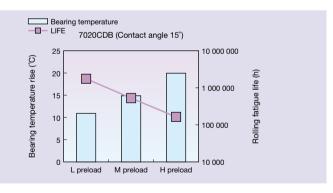

The Effect of Contact Angle

As the contact angle increases, Angular Contact Ball Bearings have a higher axial load capacity, but a lower speed capability. Thus, the ACBB with a smaller contact angle is better suited for high speed and high radial load applications.

The figure below compares the rigidity, limiting speed and temperature rise of a 7020 Angular Contact Ball Bearing with different contact angles: C angle (15°), A5 angle (25°) and A angle (30°)

Under the same light preload level (L), the bearing with C angle has higher radial rigidity with lower temperature rise relative to the bearing with A angle. The bearing with A angle has the highest axial rigidity, three times higher than that of the bearing with C angle, but the limiting speed is lower than the others.

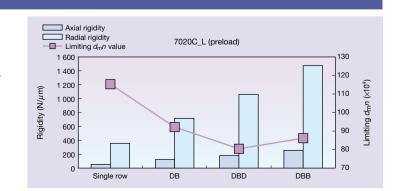



The Effect of Preload

Preload affects performance of ACBBs in much the same way that the contact angle does. As preload increases, the rigidity increases but the speed capability decreases. NSK has defined standard preload levels as extra light (EL), light (L), medium (M) and heavy (H).

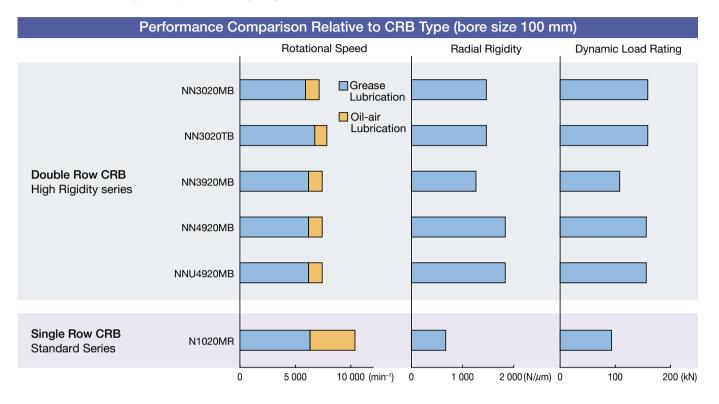
The figure below compares the performance of a 7020CDB with each preload level. Even if the contact angle is held constant, when the preload is larger, both axial and radial rigidity are increased. However the temperature also rises, so the limiting speed and calculated life become lower.

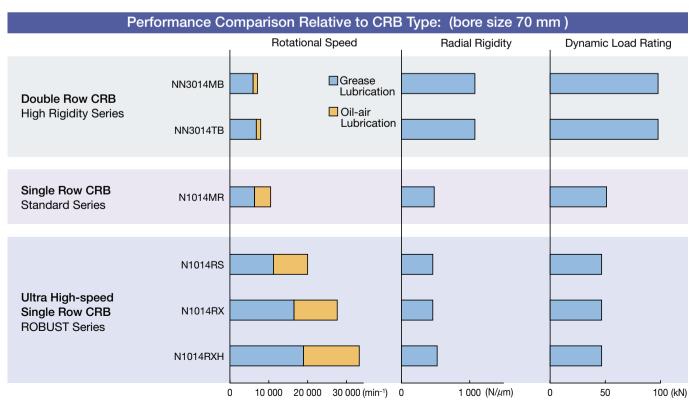
In order to maintain high rigidity, it is necessary to sacrifice higher speed. Similarly to accomplish higher speed, it is necessary to sacrifice high rigidity. Caution must be exercised. If too high a preload is combined with high operation speed, there is a possibility of seizure.



The Effect of Combination

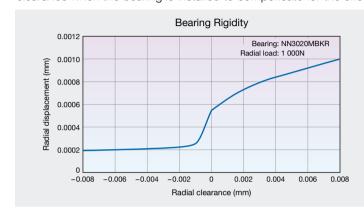
ACBBs are usually used as multiple bearing sets.


There are three types of combinations —Back to Back (DB), Face to Face (DF) and Tandem (DT).


Two row, three row, and four row are the most popular multiple bearing sets. When the combination is held constant, and the number of rows is increased, the rigidity and the load capacity become larger, but the limiting speed becomes lower

Unlike ACBB's which support both axial and radial loads, cylindrical roller bearings support only radial loads. However the radial load capacity rating is larger than that of ACBBs. Depending on the application either double row CRBs (NN type and NNU type) or single row CRBs (N type) are used.

Generally, double row cylindrical roller bearings are used in high rigidity applications such as a lathes, while single row cylindrical roller bearings are used in high speed applications such as a machining centers. The following graphs represent cylindrical roller bearing performance depending on the type of bearing (single or double row) and the radial clearance involved.

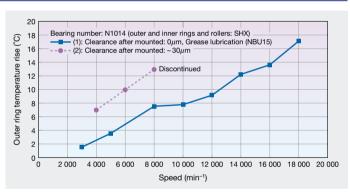


The Effect of the Radial Clearance

When using cylindrical roller bearings, it is important to control the radial clearance since it will have the greatest impact on bearing performance.

As the radial clearance increases, both rigidity and calculated fatigue life decrease. With higher radial clearances heat generation during operation also decreases. Conversely, as the figure below illustrates, rigidity is not increased if the radial clearance drops below –0.003 mm, while the calculated fatigue life continues to decrease. Therefore, the optimum clearance target to achieve high rigidity and long life is 0 or just slightly negative clearance.

For applications involving high speed, it is necessary to control the clearance during operation. Properly adjusting the radial clearance when the bearing is installed to compensate for the effects of high speed operation does this.


The Relationship Between Radial Clearance and Temperature Rise

The figure at the right shows test result of the temperature rise of CRB.

After-mounted Radial Clearance

Bearing (1): $0 \mu m$ Bearing (2): $-30 \mu m$

The temperature rise of bearing (2) is larger and the limiting speed is lower than bearing (1), clearly demonstrating the importance of properly controlling the clearance.

A CRB with a tapered bore is used to control radial clearance during spindle assembly because it is easy to adjust the radial clearance to any value. For a CRB with a tapered bore, the popular unmounted noninterchangeable radial clearance classes are CC9, CC0, and CC1. The specific features of each are outlined below.

CC0 clearance (NSK's recommended clearance)

Matched clearance range less than CC1. This range overlaps with the upper values of CC9 and lower values of CC1. As this clearance is easy for customers to target this range, it is the recommended clearance offered for CRB with taper bore.

CC1 clearance

Matched clearance range is greater than CC0. While not the standard, this clearance is most popular in the field. When clearance is at its maximum, special care is required to accommodate expansion of the inner ring. If care is not used, and the spindle's cross-section is thin, deformation of the bearing or shaft may occur.

CC9 clearance

Matched clearance range is less than CC0. This clearance will help avoid potential deformation of the inner ring or the shaft when there is little tolerance for inner ring expansion. Since the radial clearance is reduced to the minimum, the interference between the inner ring and the shaft becomes small. In high speed applications, this may cause loosening of the inner ring from the shaft and result in some creep damage.

High Precision Angular Contact Ball Bearings

Standard Series

Ultra High-Speed Angular Contact Ball Bearings

ROBUST Series

Ultra High-Speed Angular Contact Ball Bearings

Spinshot™ II

Ultra High Precision Angular Contact Ball Bearings

BGR Series

Angular Contact Ball Bearings

High Precision Angular Contact Ball Bearings (Standard Series) ... P44-56

Features

Numbering System

Bearing Tables

Miniature Series

79 Series

70 Series

72 Series

Ultra High-Speed Angular Contact Ball Bearings (ROBUST Series) ··· P58-69

Features

Numbering System

Bearing Tables

BNR19, BER19 Series

BNR10, BER10 Series

BNR19XE, BER19XE Series (Spinshot™ II)

BNR10XE, BER10XE Series (Spinshot™ II)

Ultra High Precision Angular Contact Ball Bearings (BGR Series) ···P70-74

Features

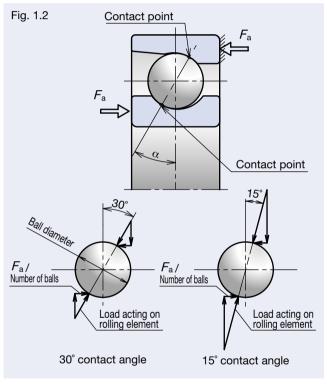
Numbering System

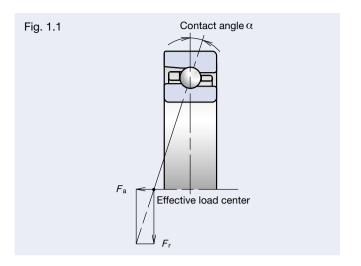
Bearing Tables

BGR19 Series

BGR10 Series

BGR02 Series


Angular Contac t Ball Bearings

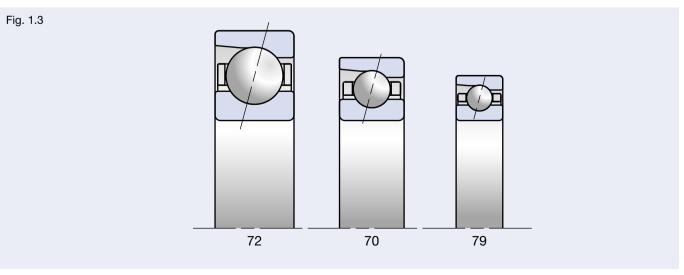

NSK | 43

Features

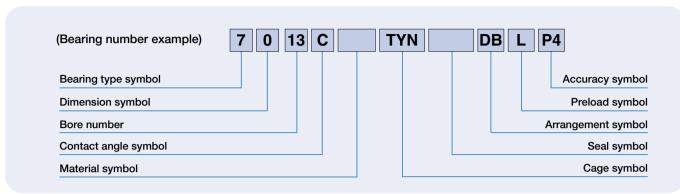
Single row angular contact ball bearings have a line connecting the contact points drawn in the radial direction, which is called the contact angle. The contact angle makes this bearing suitable for accommodating radial loads, single direction axial loads, and a combination of both. Furthermore, since an axial component is generated when a radial load is applied, these bearings are generally used in pairs, triplex sets, quadruplex sets, or multiplex sets.

Contact Angle

When a load is applied to an angular contact ball bearing, elastic deformation and the amount of stress at the contact point changes as a result of the varying load conditions of the balls, inner ring, and outer ring according to the contact angle of the bearing.


Figure 1.2 illustrates loads acting on two rolling elements for a 30° contact angle, and a 15° contact angle. The relation between an axial load being applied to the bearing and resulting load acting on the rolling element can be formulated as:

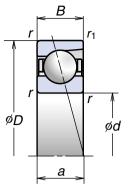
Fa/(Number of balls $\times \sin \alpha$).


Therefore, the larger the contact angle, the smaller the load acting on the rolling element. Load at the contact point, and its consequential deformation, is reduced thus resulting in longer life. When a radial load is applied, the smaller the contact angle, the smaller the load acting on the rolling element, thus resulting in reduced load at the contact point.

(See Pages 38 and 39 for contact angle specifics.)

Dimension Series

Numbering System of High Precision Angular Contact Ball Bearings (Standard Series)


			Reference pages
7	Bearing type	7: single row angular contact ball bearing	38-39, 44
0	Dimension	9: 19 series, 0: 10 series, 2: 02 series	38-39, 44
		Loca than 02 Paguing have 00: 10mm 01: 10mm 00: 15mm 00: 17mm	
13	Bore number	Less than 03, Bearing bore 00: 10mm, 01: 12mm 02: 15mm, 03: 17mm Over 04, Bearing bore Bore number×5 (mm)	46-56
		Over 04, Dearing bore Bore number/5 (min)	
С	Contact angle	C: 15°, A5: 25°, A: 30°	38-39, 44
	Material	No symbol: bearing steel (SUJ2) SN24: ceramic ball (Si ₃ N ₄) (²)	12-15
TYN	Cage	TYN: ball guided polyamide resin cage; limiting speed $d_{mn} = 1400000$; operational temperature limit = 120°C	16-17
	_	TR: outer ring guided phenolic resin cage; operational temperature limit = 120°C	
	Seal	No symbol: open type V1V: non-contact rubber seal (¹)	28
DB	A	SU: universal arrangement (single row) DU: universal arrangement (double row)	38-39
סט	Arrangement	DB: back-to-back arrangement DF: face-to-face arrangement DT: tandem arrangement DBD, DFD, DTD, DUD: triplex set arrangement DBB, DFF, DBT, DFT, DTT, QU: quadruplex set arrangement	130-133
		DDD, DI D, DI D, DOD. Inplex set analigement DDD, DI T, DI T, DI T, QO. quadruplex set analigement	
		EL: extra light preload, L: light preload, M: medium preload, H: heavy preload	38-39
L	Preload	CP: special preload, CA: special axial clearance	134-142
		P2: ISO Class 2, P4: ISO Class 4, P5: ISO Class 5	133
P4	Accuracy	P3: special class (dimensional accuracy: ISO Class 4; rotating accuracy: ISO Class 2)	158-161
		P4Y: special accuracy (Bore diameter and outside diameter are exclusive to NSK. All others are ISO Class 4.)	

⁽i) Sealed angular contact ball bearings are standardized for SU arrangement and ISO Class 3. Sealed angular contact ball bearing correspondence numbers 79, 70: Bore diameter= ϕ 30-100mm.

⁽²⁾ Angular contact ceramic ball bearing correspondence numbers 79, 70: Bore diameter= ϕ 10-100mm.

70 Series72 Series

Bore Diameter 5-8 mm

Bearing		Bound	ary Dime (mm)	ensions			Basic Load Ratings (kN)		Effective Load Center			Speeds (²) n-1)
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)		(mm) a	(approx)	Grease	Oil
725C	5	16	5	0.3	0.15	1.700	0.660	0.545	3.91	4.5	110 000	167 000
725A	5	16	5	0.3	0.15	1.610	0.620	0.665	5.53	4.5	72 000	96 000
706C	6	17	6	0.3	0.15	2.150	0.845	0.765	4.54	5.5	100 000	153 000
706A	6	17	6	0.3	0.15	2.030	0.795	0.725	6.32	5.5	66 000	87 000
726C	6	19	6	0.3	0.15	2.390	1.000	0.835	4.67	7.8	92 000	140 000
726A	6	19	6	0.3	0.15	2.240	0.940	0.395	6.61	7.8	60 000	80 000
707C	7	19	6	0.3	0.15	2.390	1.000	0.835	4.67	7.4	89 000	135 000
707A	7	19	6	0.3	0.15	2.240	0.940	0.375	6.61	7.4	58 000	77 000
708C	8	22	7	0.3	0.15	3.550	1.540	1.300	5.51	12.0	77 000	117 000
708A	8	22	7	0.3	0.15	3.350	1.450	1.020	7.84	12.0	50 000	67 000
728C	8	24	8	0.3	0.15	3.600	1.580	1.330	6.14	16.0	72 000	110 000
728A	8	24	8	0.3	0.15	3.350	1.480	0.610	8.62	16.0	47 000	63 000

⁽¹⁾ For permissible axial load, please refer to Page 129.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A" suffix: nominal contact angle 30°

High Precision Angular Contact Ball Bearings (Standard Series)

79 Series

Bore Diameter 10-55 mm

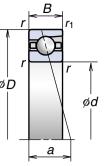
or additional information:	Page No.	
Dynamic equivalent load	121	4
Static equivalent load	128	
Preload and rigidity	134	
Abutment and fillet dimensions	168	
Nozzle position	174	
Quantity of packed grease·····	157	

Bearing		Bound	ary Dime (mm)	ensions		Basic Loa	-	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed	Limiting S (mi	. ,
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) <i>a</i>	(approx)	Design	Grease	Oil
7900C	10	22	6	0.3	0.15	3.00	1.52	1.23	14.1	5.1	0.010	_	71 900	109 400
7900A5	10	22	6	0.3	0.15	2.88	1.45	1.44	-	6.7	0.009	_	62 500	93 800
7901C	12	24	6	0.3	0.15	3.35	1.86	1.45	14.7	5.4	0.011	_	63 900	97 300
7901A5	12	24	6	0.3	0.15	3.20	1.77	1.71	_	7.2	0.011	_	55 600	83 400
7902C	15	28	7	0.3	0.15	4.75	2.64	1.93	14.5	6.4	0.016	-	53 500	81 400
7902A5	15	28	7	0.3	0.15	4.55	2.53	2.22	-	8.5	0.016	_	46 600	69 800
7903C	17	30	7	0.3	0.15	5.00	2.94	2.09	14.8	6.6	0.017	_	49 000	74 500
7903A5	17	30	7	0.3	0.15	4.75	2.80	2.21	-	9.0	0.017	-	42 600	63 900
7904C	20	37	9	0.3	0.15	6.95	4.25	3.20	14.9	8.3	0.036	_	40 400	61 500
7904A5	20	37	9	0.3	0.15	6.60	4.05	3.55	_	11.1	0.037	_	35 100	52 700
7905C	25	42	9	0.3	0.15	7.85	5.40	3.90	15.5	9.0	0.043	-	34 400	52 300
7905A5	25	42	9	0.3	0.15	7.45	5.15	4.40	_	12.3	0.043	_	29 900	44 800
7906C	30	47	9	0.3	0.15	8.30	6.25	4.40	15.9	9.7	0.049	0	29 900	45 500
7906A5	30	47	9	0.3	0.15	7.85	5.95	4.95	_	13.5	0.050	0	26 000	39 000
7907C	35	55	10	0.6	0.3	12.1	9.15	6.60	15.7	11.0	0.074	0	25 600	38 900
7907A5	35	55	10	0.6	0.3	11.4	8.70	7.20	-	15.5	0.075	0	22 300	33 400
7908C	40	62	12	0.6	0.3	15.1	11.7	8.40	15.7	12.8	0.109	0	22 600	34 400
7908A5	40	62	12	0.6	0.3	14.3	11.2	8.90	-	17.9	0.110	0	19 700	29 500
7909C	45	68	12	0.6	0.3	16.0	13.4	8.55	16.0	13.6	0.129	0	20 400	31 000
7909A5	45	68	12	0.6	0.3	15.1	12.7	9.95	-	19.2	0.130	0	17 700	26 600
7910C	50	72	12	0.6	0.3	16.9	15.0	9.45	16.2	14.2	0.130	0	18 900	28 700
7910A5	50	72	12	0.6	0.3	15.9	14.2	11.0	-	20.2	0.132	0	16 400	24 600
7911C	55	80	13	1.0	0.6	19.1	17.7	11.0	16.3	15.5	0.182	0	17 100	26 000
7911A5	55	80	13	1.0	0.6	18.1	16.8	12.5	_	22.2	0.184	0	14 900	22 300

⁽¹⁾ For permissible axial load, please refer to Page 129.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15°
Bearing numbers with an "A5" suffix: nominal contact angle 25°

46 NSK NSK 47

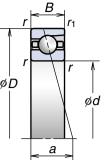

⁽²⁾ For application of limiting speeds, please refer to Page 152.

⁽²⁾ For application of limiting speeds, please refer to Page 152.

When a ceramic ball is used, limiting speed value will be 1.25 times the value of steel ball.

79 Series

Bore Diameter 60-280 mm


Bearing		Bound	ary Dime (mm)	ensions		Basic Load Ratings (kN)		Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed	Limiting S (mir	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Design	Grease	Oil
7912C	60	85	13	1.0	0.6	19.4	18.7	11.5	16.5	16.2	0.195	0	15 900	24 200
7912A5	60	85	13	1.0	0.6	18.3	17.7	13.0	_	23.4	0.198	0	13 800	20 700
7913C	65	90	13	1.0	0.6	20.2	20.5	12.5	16.7	16.9	0.208	0	14 900	22 600
7913A5	65	90	13	1.0	0.6	19.1	19.4	14.2	_	24.6	0.211	0	13 000	19 400
7914C	70	100	16	1.0	0.6	28.1	27.8	17.3	16.4	19.4	0.338	0	13 600	20 600
7914 A 5	70	100	16	1.0	0.6	26.5	26.3	20.3	_	27.8	0.341	0	11 800	17 700
7915C	75	105	16	1.0	0.6	28.6	29.3	18.0	16.6	20.1	0.358	0	12 800	19 500
7915A5	75	105	16	1.0	0.6	26.9	27.7	21.2	_	29.0	0.355	0	11 200	16 700
7916C	80	110	16	1.0	0.6	29.0	30.5	18.7	16.7	20.7	0.377	0	12 200	18 500
7916A5	80	110	16	1.0	0.6	27.3	29.0	22.1	_	30.2	0.381	0	10 600	15 800
7917C	85	120	18	1.1	0.6	39.0	40.5	25.9	16.5	22.7	0.534	0	11 300	17 100
7917 A 5	85	120	18	1.1	0.6	36.5	38.5	30.0	_	32.9	0.541	0	9 800	14 700
7918C	90	125	18	1.1	0.6	41.5	46.0	29.1	16.6	23.4	0.568	0	10 700	16 300
7918A5	90	125	18	1.1	0.6	39.5	43.5	33.5	_	34.1	0.560	0	9 400	14 000
7919C	95	130	18	1.1	0.6	42.5	48.0	30.0	16.7	24.1	0.597	0	10 300	15 600
7919A5	95	130	18	1.1	0.6	40.0	45.5	35.0	_	35.2	0.603	0	8 900	13 400
7920C	100	140	20	1.1	0.6	50.0	54.0	33.0	16.5	26.1	0.800	0	9 600	14 600
7920A5	100	140	20	1.1	0.6	47.5	51.5	39.5	_	38.0	0.808	0	8 400	12 500
7921C	105	145	20	1.1	0.6	51.0	57.0	34.5	16.6	26.7	0.831	ı	9 200	14 000
7921A5	105	145	20	1.1	0.6	48.0	54.0	41.0	_	39.2	0.820	-	8 000	12 000
7922C	110	150	20	1.1	0.6	52.0	59.5	35.5	16.7	27.4	0.867	1	8 900	13 500
7922A5	110	150	20	1.1	0.6	49.0	56.0	43.0	-	40.3	0.877	1	7 700	11 600
7924C	120	165	22	1.1	0.6	72.0	81.0	50.5	16.5	30.1	1.160	ı	8 100	12 300
7924A5	120	165	22	1.1	0.6	67.5	77.0	59.5	_	44.2	1.150	-	7 100	10 600

For permissible axial load, please refer to Page 129.

For application of limiting speeds, please refer to Page 152.

When a ceramic ball is used, limiting speed value will be 1.25 times the value of steel ball.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25°

79 Series (continued)

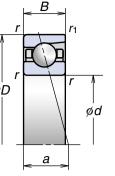
or additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load	128
Preload and rigidity	134
Abutment and fillet dimensions	168
Nozzle position·····	174
Quantity of packed grease ·····	157

Bearing		Bounda	ary Dime (mm)	ensions		Basic Loa (k		Axial		Effective Load Center	Mass (kg)	Sealed	Limiting Speeds (²) (min ⁻¹)	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Design	Grease	Oil
7926C	130	180	24	1.5	1.0	78.5	91.0	55.0	16.5	32.8	1.500	_	7 500	11 300
7926A5	130	180	24	1.5	1.0	74.0	86.0	63.5	_	48.1	1.540	_	6 500	9 700
7928C	140	190	24	1.5	1.0	79.5	95.5	58.0	16.7	34.1	1.630	-	7 000	10 700
7928A5	140	190	24	1.5	1.0	75.0	90.0	68.0	-	50.5	1.630	-	6 100	9 100
7930C	150	210	28	2.0	1.0	102	122	74.0	16.6	38.1	2.960	_	6 400	9 800
7930A5	150	210	28	2.0	1.0	96.5	115	84.5	_	56.0	2.970	_	5 600	8 400
7932C	160	220	28	2.0	1.0	106	133	80.0	16.7	39.4	3.100	-	6 100	9 300
7932A5	160	220	28	2.0	1.0	100	125	93.5	-	58.3	3.120	-	5 300	7 900
7934C	170	230	28	2.0	1.0	113	148	88.5	16.8	40.8	3.360	-	5 800	8 800
7934A5	170	230	28	2.0	1.0	106	140	103	-	60.6	3.360	-	5 000	7 500
7 936C	180	250	33	2.0	1.0	145	184	111	16.6	45.3	4.900	_	5 400	8 200
7936A5	180	250	33	2.0	1.0	137	174	127	_	66.6	4.940	_	4 700	7 000
7938C	190	260	33	2.0	1.0	147	192	115	16.7	46.6	4.980	-	5 200	7 800
7938A5	190	260	33	2.0	1.0	139	182	131	-	69.0	5.120	_	4 500	6 700
7940C	200	280	38	2.1	1.1	189	244	144	16.5	51.2	6.850	-	4 800	7 300
7940A5	200	280	38	2.1	1.1	178	231	169	-	75.0	6.920	-	4 200	6 300
7944C	220	300	38	2.1	1.1	190	256	235	16.7	53.8	6.665	-	4 500	6 800
7944A5	220	300	38	2.1	1.1	179	242	174	-	79.6	6.665	-	3 900	5 800
7948C	240	320	38	2.1	1.1	200	286	260	16.8	56.5	7.224	_	4 200	6 300
7948A5	240	320	38	2.1	1.1	189	270	193	_	84.3	7.224	_	3 600	5 400
7952C	260	360	46	2.1	1.1	256	365	340	16.6	64.5	11.936	_	3 800	5 700
7952A5	260	360	46	2.1	1.1	241	345	252	_	95.3	11.936	-	3 300	4 900
7956C	280	380	46	2.1	1.1	272	410	380	16.7	67.2	12.853	-	3 500	5 400
7956A5	280	380	46	2.1	1.1	256	390	283	_	99.9	12.853	_	3 100	4 600

For permissible axial load, please refer to Page 129.

For application of limiting speeds, please refer to Page 152.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25°


NSK 49 48 **NSK**

1. ANGULAR CONTACT BALL BEARINGS

High Precision Angular Contact Ball Bearings (Standard Series)

70 Series

Bore Diameter 10-75 mm

Bearing		Bound	ary Dime (mm)	ensions		· ·	N)	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed	Limiting S (mi	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Design	Grease	Oil
7000C	10	26	8	0.3	0.15	5.30	2.49	2.16	12.6	6.4	0.019	_	63 900	97 300
7000A5	10	26	8	0.3	0.15	5.15	2.41	2.48	_	8.2	0.019	-	55 600	83 400
7000A	10	26	8	0.3	0.15	5.00	2.34	1.91	_	9.2	0.019	_	41 700	55 600
7001C	12	28	8	0.3	0.15	5.80	2.90	2.40	13.2	6.7	0.021	-	57 500	87 500
7001A5	12	28	8	0.3	0.15	5.60	2.79	2.82	_	8.7	0.021	-	50 000	75 000
7001A	12	28	8	0.3	0.15	5.40	2.71	2.13	_	9.8	0.021	-	37 500	50 000
7002C	15	32	9	0.3	0.15	6.25	3.40	2.63	14.1	7.6	0.030	-	49 000	74 500
7002A5	15	32	9	0.3	0.15	5.95	3.25	3.05	_	10.0	0.030	-	42 600	63 900
7002A	15	32	9	0.3	0.15	5.80	3.15	2.36	_	11.3	0.030	-	32 000	42 600
7003C	17	35	10	0.3	0.15	6.60	3.80	2.85	14.5	8.5	0.039	-	44 300	67 400
7003A5	17	35	10	0.3	0.15	6.30	3.65	3.35	_	11.1	0.040	_	38 500	57 700
7003A	17	35	10	0.3	0.15	6.10	3.50	2.59	_	12.5	0.040	-	28 900	38 500
7004C	20	42	12	0.6	0.3	11.1	6.55	4.80	14.0	10.1	0.067	-	37 100	56 500
7004A5	20	42	12	0.6	0.3	10.6	6.25	5.45	_	13.2	0.067	-	32 300	48 400
7004A	20	42	12	0.6	0.3	10.3	6.10	4.20	_	14.9	0.068	_	24 200	32 300
7005C	25	47	12	0.6	0.3	11.7	7.40	5.20	14.7	10.8	0.078	-	32 000	48 700
7005A5	25	47	12	0.6	0.3	11.1	7.10	5.95	_	14.4	0.077	-	27 800	41 700
7005A	25	47	12	0.6	0.3	10.7	6.85	4.55	_	16.4	0.079	-	20 900	27 800
7006C	30	55	13	1.0	0.6	15.1	10.3	6.85	14.9	12.2	0.114	0	27 100	41 200
7006A5	30	55	13	1.0	0.6	14.4	9.80	8.05	_	16.4	0.114	0	23 600	35 300
7006A	30	55	13	1.0	0.6	13.9	9.45	6.20	_	18.8	0.116	0	17 700	23 600
7007C	35	62	14	1.0	0.6	19.1	13.7	9.35	15.0	13.5	0.151	0	23 800	36 100
7007A5	35	62	14	1.0	0.6	18.2	13.0	11.4	-	18.3	0.151	0	20 700	31 000
7007A	35	62	14	1.0	0.6	17.5	12.6	8.75	_	21.0	0.153	0	15 500	20 700

For permissible axial load, please refer to Page 129.

For application of limiting speeds, please refer to Page 152.

When a ceramic ball is used, limiting speed value will be 1.25 times the value of steel ball.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

70 Series (continued)

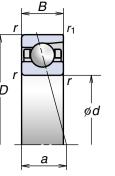
or addition	al inforn	nation:		Page No.
Dynamic e	equivalen	t load ···		121
Static equ	ivalent lo	ad		128
Preload ar	nd rigidity	,		134
Abutment	and fillet	dimension	าร	168
Nozzle po	sition·····		•••••	174
Quantity o	f packed	grease ···	•••••	157
Effective Load	Mass		Limiting Sp	peeds (²)

Bearing		Bound	ary Dime (mm)	ensions		(k	,	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed		Speeds (²) in-1)
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) <i>a</i>	(approx)	Design	Grease	Oil
7008C	40	68	15	1.0	0.6	20.6	15.9	10.6	15.4	14.7	0.189	0	21 300	32 500
7008A5	40	68	15	1.0	0.6	19.5	15.1	12.0	_	20.1	0.188	0	18 600	27 800
7008A	40	68	15	1.0	0.6	18.8	14.6	9.15	_	23.1	0.191	0	13 900	18 600
7009C	45	75	16	1.0	0.6	24.4	19.3	12.4	15.4	16.0	0.238	0	19 200	29 200
7009A5	45	75	16	1.0	0.6	23.1	18.3	14.5	_	22.0	0.250	0	16 700	25 000
7009A	45	75	16	1.0	0.6	22.3	17.7	11.1	_	25.3	0.241	0	12 500	16 700
7010C	50	80	16	1.0	0.6	26.0	21.9	13.9	15.7	16.7	0.259	0	17 700	27 000
7010A5	50	80	16	1.0	0.6	24.6	20.8	16.2	_	23.2	0.270	0	15 400	23 100
7010A	50	80	16	1.0	0.6	23.7	20.1	12.5	-	26.8	0.262	0	11 600	15 400
7011C	55	90	18	1.1	0.6	34.0	28.6	18.9	15.5	18.7	0.380	0	15 900	24 200
7011A5	55	90	18	1.1	0.6	32.5	27.2	21.8	_	25.9	0.383	0	13 800	20 700
7011A	55	90	18	1.1	0.6	31.0	26.3	16.6	_	29.9	0.385	0	10 400	13 800
7012C	60	95	18	1.1	0.6	35.0	30.5	19.9	15.7	19.4	0.405	0	14 900	22 600
7012A5	60	95	18	1.1	0.6	33.0	29.1	23.0	_	27.1	0.408	0	13 000	19 400
7012A	60	95	18	1.1	0.6	32.0	28.1	17.6	-	31.4	0.410	0	9 700	13 000
7013C	65	100	18	1.1	0.6	37.0	34.5	22.0	15.9	20.0	0.435	0	14 000	21 300
7013A5	65	100	18	1.1	0.6	35.0	32.5	25.4	-	28.2	0.455	0	12 200	18 200
7013A	65	100	18	1.1	0.6	33.5	31.5	19.5	_	32.8	0.441	0	9 100	12 200
7014C	70	110	20	1.1	0.6	47.0	43.0	26.8	15.7	22.1	0.606	0	12 800	19 500
7014A5	70	110	20	1.1	0.6	44.5	41.0	32.0	_	31.0	0.625	0	11 200	16 700
7014A	70	110	20	1.1	0.6	42.5	39.5	24.6	-	36.0	0.613	0	8 400	11 200
7015C	75	115	20	1.1	0.6	48.0	45.5	28.1	15.9	22.7	0.643	0	12 200	18 500
7015A5	75	115	20	1.1	0.6	45.5	43.5	33.5	_	32.1	0.652	0	10 600	15 800
7015A	75	115	20	1.1	0.6	43.5	41.5	25.9	_	37.4	0.650	0	7 900	10 600

For permissible axial load, please refer to Page 129.

For application of limiting speeds, please refer to Page 152.

When a ceramic ball is used, limiting speed value will be 1.25 times the value of steel ball.


Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

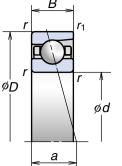
50 **NSK NSK** 51

1. ANGULAR CONTACT BALL BEARINGS

70 Series

Bore Diameter 80-200 mm

Bearing		Bound	ary Dime (mm)	ensions		Basic Loa	N)	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed		Speeds (²) n-1)
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Design	Grease	Oil
7016C	80	125	22	1.1	0.6	58.5	55.5	34.5	15.7	24.7	0.855	0	11 300	17 100
7016A5	80	125	22	1.1	0.6	55.5	52.5	41.0	_	34.9	0.880	0	9 800	14 700
7016A	80	125	22	1.1	0.6	53.5	50.5	31.5	_	40.6	0.864	0	7 400	9 800
7017C	85	130	22	1.1	0.6	60.0	58.5	38.0	15.9	25.4	0.898	0	10 700	16 300
7017A5	85	130	22	1.1	0.6	57.0	55.5	43.0	_	36.1	0.904	0	9 400	14 000
7017A	85	130	22	1.1	0.6	54.5	53.5	33.0	_	42.0	0.907	0	7 000	9 400
7018C	90	140	24	1.5	1.0	71.5	69.0	44.5	15.7	27.4	1.160	0	10 000	15 300
7018A5	90	140	24	1.5	1.0	68.0	65.5	52.0	_	38.8	1.170	0	8 700	13 100
7018A	90	140	24	1.5	1.0	65.0	63.5	40.5	_	45.2	1.180	0	6 600	8 700
7019C	95	145	24	1.5	1.0	73.5	73.0	47.0	15.9	28.1	1.210	0	9 600	14 600
7019A5	95	145	24	1.5	1.0	69.5	69.5	52.5	_	40.0	1.410	0	8 400	12 500
7019A	95	145	24	1.5	1.0	67.0	67.0	40.5	_	46.6	1.230	0	6 300	8 400
7020C	100	150	24	1.5	1.0	75.5	77.0	49.0	16.0	28.7	1.270	0	9 200	14 000
7020A5	100	150	24	1.5	1.0	71.0	73.5	57.5	_	41.1	1.450	0	8 000	12 000
7020A	100	150	24	1.5	1.0	68.5	70.5	44.5	_	48.1	1.280	0	6 000	8 000
7021C	105	160	26	2.0	1.0	88.0	89.5	57.0	15.9	30.7	1.580	-	8 700	13 300
7021A5	105	160	26	2.0	1.0	83.5	85.0	66.5	_	43.9	1.820	-	7 600	11 400
7021A	105	160	26	2.0	1.0	80.0	81.5	51.0	_	51.2	1.600	-	5 700	7 600
7022C	110	170	28	2.0	1.0	106	104	68.5	15.6	32.7	1.940	-	8 300	12 500
7022A5	110	170	28	2.0	1.0	100	99.0	79.5	_	46.6	2.260	-	7 200	10 800
7022A	110	170	28	2.0	1.0	96.5	95.5	61.0	_	54.4	1.960	-	5 400	7 200
7024C	120	180	28	2.0	1.0	112	117	75.5	15.8	34.1	2.090	-	7 700	11 700
7024A5	120	180	28	2.0	1.0	106	111	87.5	_	49.0	2.430	ı	6 700	10 000
7024A	120	180	28	2.0	1.0	102	107	67.5	_	57.3	2.120	_	5 000	6 700


For permissible axial load, please refer to Page 129.

For application of limiting speeds, please refer to Page 152.

When a ceramic ball is used, limiting speed value will be 1.25 times the value of steel ball.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15°

Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

Static equivalent load ------128 Preload and rigidity ------134 Abutment and fillet dimensions · · · · · · 168 ● Nozzle position ······174 Quantity of packed grease -----157

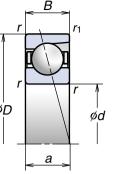
For additional information:

70 Series (continued)

Bearing		Bound	ary Dime (mm)	ensions		Basic Loa (kl	N)	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Sealed	Limiting S (mi	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Design	Grease	Oil
7026C	130	200	33	2.0	1.0	129	137	86.0	15.9	38.6	3.220	-	7 000	10 700
7026A5	130	200	33	2.0	1.0	122	130	99.5	-	55.0	3.660	-	6 100	9 100
7026A	130	200	33	2.0	1.0	117	125	76.5	_	64.1	3.260	-	4 600	6 100
7028C	140	210	33	2.0	1.0	132	145	90.0	16.0	39.9	3.410	-	6 600	10 000
7028A5	140	210	33	2.0	1.0	125	138	104	-	57.3	3.870	-	5 800	8 600
7028A	140	210	33	2.0	1.0	120	133	80.5	_	67.0	3.440	-	4 300	5 800
7030C	150	225	35	2.1	1.1	151	168	105	16.0	42.6	4.150	-	6 200	9 400
7030A5	150	225	35	2.1	1.1	143	160	123	_	61.2	4.690	-	5 400	8 000
7030A	150	225	35	2.1	1.1	137	154	95.0	_	71.6	4.190	-	4 000	5 400
7032C	160	240	38	2.1	1.1	171	193	118	16.0	45.8	5.110	-	5 800	8 800
7032A5	160	240	38	2.1	1.1	162	183	138	-	65.6	5.710	-	5 000	7 500
7032A	160	240	38	2.1	1.1	155	176	106	-	76.7	5.160	-	3 800	5 000
7034C	170	260	42	2.1	1.1	205	234	149	15.9	49.8	6.880	-	5 400	8 200
7034A5	170	260	42	2.1	1.1	193	223	168	_	71.1	7.830	_	4 700	7 000
7034A	170	260	42	2.1	1.1	186	214	129	_	83.1	6.940	-	3 500	4 700
7036C	180	280	46	2.1	1.1	228	276	175	15.8	53.8	10.40	-	5 000	7 700
7036A5	180	280	46	2.1	1.1	216	262	195	-	76.6	10.40	-	4 400	6 600
7036A	180	280	46	2.1	1.1	207	252	151	-	89.4	9.270	-	3 300	4 400
7038C	190	290	46	2.1	1.1	247	305	192	15.9	55.2	11.20	-	4 800	7 300
7038A5	190	290	46	2.1	1.1	233	291	222	_	79.0	11.20	-	4 200	6 300
7038A	190	290	46	2.1	1.1	224	280	172	-	92.3	11.30	-	3 200	4 200
7040C	200	310	51	2.1	1.1	265	340	213	15.9	59.7	13.60	-	4 600	6 900
7040A5	200	310	51	2.1	1.1	250	325	245	_	85.0	13.70	-	4 000	5 900
7040A	200	310	51	2.1	1.1	240	310	190	-	99.1	13.70	_	3 000	4 000

For permissible axial load, please refer to Page 129.

(2) For application of limiting speeds, please refer to Page 152.


Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

52 **NSK NSK** 53

1. ANGULAR CONTACT BALL BEARINGS

72 Series

Bore Diameter 10-105 mm

Bearing		Boun	dary Dim (mm)	nensions		Basic Loa	N)	Permissible Axial	Factor	Effective Load Center	Mass (kg)	Limiting S	Speeds (²) n-1)
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Grease	Oil
7200C	10	30	9	0.6	0.3	5.40	2.61	2.16	13.2	7.2	0.032	57 500	87 500
7200A5	10	30	9	0.6	0.3	5.20	2.51	2.49	_	9.2	0.031	50 000	75 000
7200A	10	30	9	0.6	0.3	5.05	2.44	1.92	1	10.3	0.032	37 500	50 000
7201C	12	32	10	0.6	0.3	7.90	3.85	3.45	12.5	7.9	0.036	52 300	79 600
7201A5	12	32	10	0.6	0.3	7.65	3.70	3.55	1	10.1	0.036	45 500	68 200
7201A	12	32	10	0.6	0.3	7.45	3.65	2.72	-	11.4	0.030	34 100	45 500
7202C	15	35	11	0.6	0.3	8.65	4.55	3.85	13.2	8.8	0.045	46 000	70 000
7202A5	15	35	11	0.6	0.3	8.35	4.35	3.95	1	11.3	0.044	40 000	60 000
7202A	15	35	11	0.6	0.3	8.10	4.25	3.00	1	12.7	0.045	30 000	40 000
7203C	17	40	12	0.6	0.3	10.9	5.85	4.85	13.3	9.8	0.065	40 400	61 500
7203A5	17	40	12	0.6	0.3	10.4	5.60	5.30	-	12.6	0.064	35 100	52 700
7203A	17	40	12	0.6	0.3	10.1	5.45	4.05	_	14.2	0.065	26 400	35 100
7204C	20	47	14	1.0	0.6	14.6	8.05	6.30	13.3	11.5	0.103	34 400	52 300
7204A5	20	47	14	1.0	0.6	14.0	7.75	7.40	ı	14.8	0.102	29 900	44 800
7204A	20	47	14	1.0	0.6	13.6	7.55	5.75	_	16.7	0.104	22 400	29 900
7205C	25	52	15	1.0	0.6	16.6	10.2	7.50	14.0	12.7	0.127	29 900	45 500
7205A5	25	52	15	1.0	0.6	15.9	9.80	9.05	_	16.5	0.130	26 000	39 000
7205A	25	52	15	1.0	0.6	15.4	9.45	6.95	_	18.6	0.129	19 500	26 000
7206C	30	62	16	1.0	0.6	23.0	14.7	10.3	13.9	14.2	0.194	25 000	38 100
7206A5	30	62	16	1.0	0.6	22.1	14.1	12.0	1	18.7	0.194	21 800	32 700
7206A	30	62	16	1.0	0.6	21.3	13.6	9.20	-	21.3	0.197	16 400	21 800
7207C	35	72	17	1.1	0.6	30.5	19.9	14.4	13.9	15.7	0.280	21 500	32 800
7207A5	35	72	17	1.1	0.6	29.1	19.1	16.6	_	21.0	0.277	18 700	28 100
7207A	35	72	17	1.1	0.6	28.2	18.5	12.7	1	23.9	0.284	14 100	18 700
7208C	40	80	18	1.1	0.6	36.5	25.2	17.6	14.1	17.0	0.366	19 200	29 200
7208A5	40	80	18	1.1	0.6	34.5	24.1	20.6	-	23.0	0.362	16 700	25 000
7208A	40	80	18	1.1	0.6	33.5	23.3	15.8	_	26.3	0.370	12 500	16 700
7209C	45	85	19	1.1	0.6	41.0	28.8	19.6	14.2	18.2	0.406	17 700	27 000
7209A5	45	85	19	1.1	0.6	39.0	27.6	23.3	-	24.7	0.402	15 400	23 100
7209A	45	85	19	1.1	0.6	37.5	26.7	18.0	-	28.3	0.410	11 600	15 400
7210C	50	90	20	1.1	0.6	43.0	31.5	21.1	14.5	19.4	0.457	16 500	25 000
7210A5	50	90	20	1.1	0.6	41.0	30.5	25.2	_	26.3	0.453	14 300	21 500
7210A	50	90	20	1.1	0.6	39.5	29.3	19.4	_	30.2	0.462	10 800	14 300

(1)	For permissible axial load, please refer to Page 12	55
-----	---	----

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

		< D >	
	r		<i>r</i> ₁
٨			
	r	$\overline{}$	<i>r</i> 1
	_		
ø	ם		ød
		\	
- 1			<u> </u>
		а	

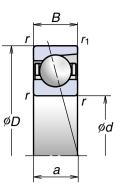
72 Series (continued)

or additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load	128
Preload and rigidity	134
Abutment and fillet dimensions	168
Nozzle position·····	····174
Quantity of packed grease ·····	····157

Effective Load Mass Limiting Speeds (2)

Bearing		Doun	(mm)	<u> </u>		(kN)		Axial Factor		Center (kg)		(min ⁻¹)	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (1) (kN)	f _o	(mm) a	(approx)	Grease	Oil
7211C	55	100	21	1.5	1.0	53.0	40.0	27.6	14.5	20.9	0.601	14 900	22 600
7211A5	55	100	21	1.5	1.0	50.5	38.0	32.5	_	28.6	0.596	13 000	19 400
7211A	55	100	21	1.5	1.0	49.0	37.0	25.0	_	32.9	0.609	9 700	13 000
7212C	60	110	22	1.5	1.0	64.0	49.0	34.0	14.4	22.4	0.780	13 600	20 600
7212A5	60	110	22	1.5	1.0	61.0	47.0	40.0	_	30.8	0.773	11 800	17 700
7212A	60	110	22	1.5	1.0	59.0	45.5	30.5	_	35.5	0.789	8 900	11 800
7213C	65	120	23	1.5	1.0	73.0	58.5	40.0	14.6	23.9	1.010	12 500	19 000
7213A5	65	120	23	1.5	1.0	69.5	56.0	46.5	_	33.1	1.000	10 900	16 300
7213A	65	120	23	1.5	1.0	67.5	54.0	36.0	_	38.2	1.020	8 200	10 900
7214C	70	125	24	1.5	1.0	79.5	64.5	43.0	14.6	25.1	1.090	11 800	18 000
7214A5	70	125	24	1.5	1.0	76.0	61.5	49.5	_	34.7	1.080	10 300	15 400
7214A	70	125	24	1.5	1.0	73.0	59.5	38.0	_	40.1	1.100	7 700	10 300
7215C	75	130	25	1.5	1.0	83.0	70.0	46.0	14.8	26.2	1.190	11 300	17 100
7215A5	75	130	25	1.5	1.0	79.0	66.5	53.0	_	36.4	1.180	9 800	14 700
7215A	75	130	25	1.5	1.0	76.0	64.5	40.5	_	42.1	1.200	7 400	9 800
7216C	80	140	26	2.0	1.0	93.0	77.5	54.5	14.7	27.7	1.430	10 500	16 000
7216A5	80	140	26	2.0	1.0	88.5	74.0	62.0	_	38.6	1.420	9 100	13 700
7216A	80	140	26	2.0	1.0	85.5	71.5	47.5	_	44.8	1.450	6 900	9 100
7217C	85	150	28	2.0	1.0	107	90.5	60.5	14.7	29.7	1.790	9 800	14 900
7217A5	85	150	28	2.0	1.0	102	86.5	70.0	_	41.4	1.790	8 600	12 800
7217A	85	150	28	2.0	1.0	98.5	83.5	53.5	_	47.9	1.800	6 400	8 600
7218C	90	160	30	2.0	1.0	123	105	72.0	14.6	31.7	2.200	9 200	14 000
7218A5	90	160	30	2.0	1.0	117	100	83.5	_	44.1	2.310	8 000	12 000
7218A	90	160	30	2.0	1.0	113	96.5	64.5	_	51.1	2.230	6 000	8 000
7219C	95	170	32	2.1	1.1	133	112	76.0	14.6	33.7	2.640	8 700	13 300
7219A5	95	170	32	2.1	1.1	127	107	87.0	_	46.9	2.630	7 600	11 400
7219A	95	170	32	2.1	1.1	122	103	67.0	_	54.2	2.670	5 700	7 600
7220C	100	180	34	2.1	1.1	149	127	88.5	14.5	35.7	3.180	8 300	12 500
7220A5	100	180	34	2.1	1.1	142	121	103	-	49.6	3.160	7 200	10 800
7220A	100	180	34	2.1	1.1	137	117	79.5	_	57.4	3.210	5 400	7 200
7221C	105	190	36	2.1	1.1	162	143	97.5	14.5	37.7	3.780	7 800	11 900
7221A5	105	190	36	2.1	1.1	155	137	111	_	52.4	3.770	6 800	10 200
7221A	105	190	36	2.1	1.1	150	132	85.0	_	60.6	3.820	5 100	6 800

Basic Load Ratings | Permissible


Note: Bearing numbers with a "C" suffix: nominal contact angle 15° Bearing numbers with an "A5" suffix: nominal contact angle 25° Bearing numbers with an "A" suffix: nominal contact angle 30°

⁽¹⁾ For permissible axial load, please refer to Page 129.

⁽²⁾ For application of limiting speeds, please refer to Page 152.

72 Series

Bore Diameter 110-150 mm

Bearing		Boun	dary Dim (mm)	nensions			Basic Load Ratings (kN)		Factor	Effective Load Center	Mass (kg)		Speeds (²) n-1)
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	f _o	(mm) a	(approx)	Grease	Oil
7222C	110	200	38	2.1	1.1	176	160	108	14.5	39.8	4.450	7 500	11 300
7222A5	110	200	38	2.1	1.1	168	153	126	_	55.1	4.450	6 500	9 700
7222A	110	200	38	2.1	1.1	162	148	97.0	_	63.7	4.490	4 900	6 500
7224C	120	215	40	2.1	1.1	199	192	132	14.6	42.4	5.420	6 900	10 500
7224A5	120	215	40	2.1	1.1	189	184	150	_	59.1	5.420	6 000	9 000
7224A	120	215	40	2.1	1.1	183	177	116	_	68.3	5.450	4 500	6 000
7226C	130	230	40	3.0	1.1	206	209	144	14.9	44.1	6.230	6 400	9 800
7226A5	130	230	40	3.0	1.1	196	199	163	_	62.0	6.220	5 600	8 400
7226A	130	230	40	3.0	1.1	189	193	127	_	72.0	6.280	4 200	5 600
7228C	140	250	42	3.0	1.1	238	254	172	14.8	47.1	7.910	5 900	9 000
7228A5	140	250	42	3.0	1.1	226	242	194	_	66.5	7.910	5 200	7 700
7228A	140	250	42	3.0	1.1	218	234	150	_	77.3	7.970	3 900	5 200
7230C	150	270	45	3.0	1.1	270	305	205	14.7	50.6	11.100	5 500	8 400
7230A5	150	270	45	3.0	1.1	258	290	231	_	71.5	11.100	4 800	7 200
7230A	150	270	45	3.0	1.1	248	280	179	_	83.1	11.200	3 600	4 800

⁽¹⁾ For permissible axial load, please refer to Page 129.

Note: Bearing numbers with a "C" suffix: nominal contact angle 15°
Bearing numbers with an "A5" suffix: nominal contact angle 25°
Bearing numbers with an "A" suffix: nominal contact angle 30°

56 NSK NSK 57

⁽²) For application of limiting speeds, please refer to Page 152.

Features

Optimum Design

Robust design achieved with NSK's proprietary analytical technology.

Optimum design achieved by computer simulation of temperature rise resulting from ball skid.

Long Life

New SHX steel material provides superior heat and wear resistance.

Enhanced service life measures include raising the seizure limit under low lubrication and high-speed operating conditions.

High Accuracy

Rolling element material can be tailored to match the application.

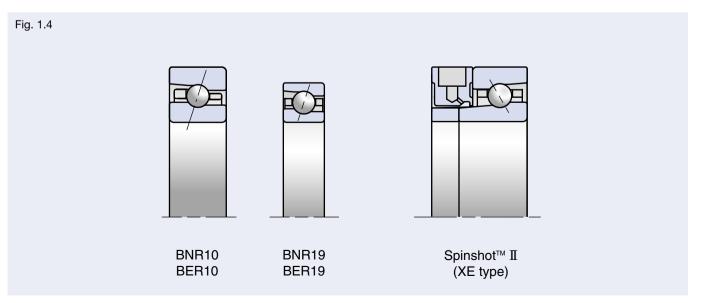
Ceramic balls are used for ROBUST series angular contact ball bearings.

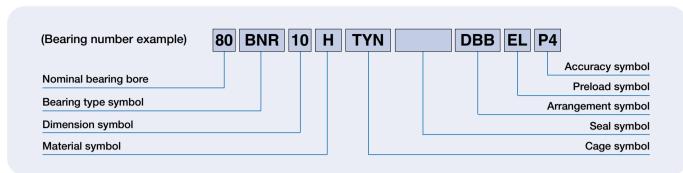
Highly accurate P2 series is available.

NSK's experience and know-how ensure bearing specifications with a high degree of accuracy.

High Speed

Cage engineered for high-speed operations.

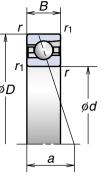

Benefits of the lightweight, high strength engineered resin cage include heat resistance and high rigidity, making this cage indispensable for high-speed applications.


Quieter running high-speed spindle featuring Spinshot [™] II lubrication system.

Eliminates noise caused by compressed air of the oil-air lubrication system.

Dimension Series

Numbering System of Ultra High-Speed Angular Contact Ball Bearings (ROBUST Series)



					Reference pages							
80	Nominal bearing bore	Bore diameter (mm)			60-69							
BNR	Bearing type	BNR: 18° contact ang	le BER: 25° contact angle		38-39, 44							
10	Dimension	10: 10 series, 19: 19	series		38-39, 58							
		Type -	Material Rings	Rolling elements								
н	84.1.2.1	S	Bearing steel (SUJ2)	Bearing steel (SUJ2)	12-15							
П	Material	Н	3 ,									
		Х	X Heat resistant steel (SHX) Ceramics (Si ₃ N ₄)									
		XE (Spinshot™ II)	Ceramics (Si ₃ N ₄)									
TYN	Cage	. ,	nide resin cage; limiting speed $d_m n = 1400000$; with outer ring guide; operational tempera	·	16-17							
	Seal	No symbol: open type	e V1V: non-contact rubber seal (¹)		28							
DBB	Arrangement	DB: back-to-back arr	ment (single row) DU: universal arrangemer angement DF: face-to-face arrangement triplex set arrangement DBB, DFF, DBT, DFT, DT	DT: tandem arrangement	38-39 130-133							
EL	Preload	• .	:: extra light preload, L: light preload, M: medium preload, H: heavy preload P: special preload, CA: special axial clearance									
P4	Accuracy	P3: special class (dim	SO Class 4, P5: ISO Class 5 nensional accuracy: ISO Class 4; rotating ac Bore diameter and outside diameter are exclusiv	,	133 158-161							

⁽¹) Sealed angular contact ball bearings are standardized for SU arrangement and ISO Class 3.

Sealed angular contact ball bearing correspondence numbers BNR19, BER19, BNR10, BER10: Bore diameter=¢30-100mm

BNR 19 Series **BER 19** Series

Bearing		Bound	dary Dim (mm)	ensions			d Ratings N)	Permissible Axial	Effective Load Center	Mass (kg)	Sealed		Speeds (²) n-1)
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
25BNR19S	25	42	9	0.3	0.15			4.95		0.042	_	41 800	59 800
25BNR19H	25	42	9	0.3	0.15	5.95	3.50	0.05	9.9	0.038	_	53 800	83 600
25BNR19X	25	42	9	0.3	0.15			3.25		0.038	_	62 700	98 600
25BER19S	25	42	9	0.3	0.15			5.90		0.042	_	35 900	50 800
25BER19H	25	42	9	0.3	0.15	5.70	3.40	2.05	12.3	0.038	_	47 800	74 700
25BER19X	25	42	9	0.3	0.15			3.95		0.038	_	56 800	89 600
30BNR19S	30	47	9	0.3	0.15			5.75		0.048	0	36 400	52 000
30BNR19H	30	47	9	0.3	0.15	6.30	4.05	0.00	10.8	0.043	0	46 800	72 800
30BNR19X	30	47	9	0.3	0.15			3.80		0.043	0	54 600	85 800
30BER19S	30	47	9	0.3	0.15			6.80		0.048	0	31 200	44 200
30BER19H	30	47	9	0.3	0.15	6.00	3.90	4.00	13.5	0.043	0	41 600	65 000
30BER19X	30	47	9	0.3	0.15			4.60		0.043	0	49 400	78 000
35BNR19S	35	55	10	0.6	0.3			8.55		0.072	0	31 200	44 500
35BNR19H	35	55	10	0.6	0.3	9.20	6.00	F 00	12.3	0.063	0	40 000	62 300
35BNR19X	35	55	10	0.6	0.3			5.60		0.063	0	46 700	73 400
35BER19S	35	55	10	0.6	0.3			10.0		0.072	0	26 700	37 800
35BER19H	35	55	10	0.6	0.3	8.80	5.75	0.00	15.5	0.063	0	35 600	55 600
35BER19X	35	55	10	0.6	0.3			6.80		0.063	0	42 300	66 700
40BNR19S	40	62	12	0.6	0.3			10.8		0.105	0	27 500	39 300
40BNR19H	40	62	12	0.6	0.3	11.5	7.65	7.10	14.3	0.092	0	35 300	55 000
40BNR19X	40	62	12	0.6	0.3			7.10		0.092	0	41 200	64 800
40BER19S	40	62	12	0.6	0.3			12.8		0.105	0	23 600	33 400
40BER19H	40	62	12	0.6	0.3	11.0	7.35	8.65	17.9	0.092	0	31 400	49 100
40BER19X	40	62	12	0.6	0.3			6.65		0.092	0	37 300	58 900
45BNR19S	45	68	12	0.6	0.3			12.4		0.125	0	24 800	35 400
45BNR19H	45	68	12	0.6	0.3	12.1	8.70	0 10	15.2	0.111	0	31 900	49 600
45BNR19X	45	68	12	0.6	0.3			8.10		0.111	0	37 200	58 500
45BER19S	45	68	12	0.6	0.3			14.6		0.125	0	21 300	30 100
45BER19H	45	68	12	0.6	0.3	11.6	8.35	0.05	19.2	0.111	0	28 400	44 300
45BER19X	45	68	12	0.6	0.3			9.85		0.111	0	33 700	53 100
50BNR19S	50	72	12	0.6	0.3			13.9		0.127	0	23 000	32 800
50BNR19H	50	72	12	0.6	0.3	12.8	9.75	0.10	15.9	0.111	0	29 600	46 000
50BNR19X	50	72	12	0.6	0.3			9.10		0.111	0	34 500	54 100
50BER19S	50	72	12	0.6	0.3			16.3		0.127	0	19 700	27 900
50BER19H	50	72	12	0.6	0.3	12.3	9.35	11.0	20.2	0.111	0	26 300	41 000
50BER19X	50	72	12	0.6	0.3			11.0		0.111	0	31 200	49 200

1	1)	For permissible axial load, place	o refer to Page 120
(1)	For permissible axial load, pleas	e reier to Page 129.

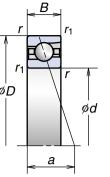
⁽²⁾ For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18°

r	< B >	<i>r</i> ₁
\		
øD		r N
		ød
		\Box
	<u></u> a	>

For additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load	128
Preload and rigidity · · · · · · · · · · · · · · · · · · ·	134
Abutment and fillet dimensions	168
Nozzle position	174
Quantity of packed grease	157

Numbers 55BNR19S	d	D				(kN)		Axial Center		(kg)		(min-1)	
55BNR19S	EE		В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) <i>a</i>	(approx)	Design	Grease	Oil
	55	80	13	1.0	0.6]		16.2		0.178	0	20 800	29 700
55BNR19H	55	80	13	1.0	0.6	14.4	11.4	10.0	17.5	0.158	0	26 700	41 500
55BNR19X	55	80	13	1.0	0.6			10.6		0.158	0	31 200	48 900
55BER19S	55	80	13	1.0	0.6			16.1		0.178	0	17 800	25 200
55BER19H	55	80	13	1.0	0.6	13.8	10.9	12.9	22.2	0.158	0	23 800	37 100
55BER19X	55	80	13	1.0	0.6			12.9		0.158	0	28 200	44 500
60BNR19S	60	85	13	1.0	0.6			17.1		0.190	0	19 400	27 600
60BNR19H	60	85	13	1.0	0.6	14.6	12.0	11.2	18.3	0.170	0	24 900	38 700
60BNR19X	60	85	13	1.0	0.6			11.2		0.170	0	29 000	45 600
60BER19S	60	85	13	1.0	0.6			20.1		0.190	0	16 600	23 500
60BER19H	60	85	13	1.0	0.6	14.0	11.5	13.6	23.4	0.170	0	22 100	34 500
60BER19X	60	85	13	1.0	0.6					0.170	0	26 300	41 400
65BNR19S	65	90	13	1.0	0.6			18.7		0.204	0	18 100	25 900
65BNR19H	65	90	13	1.0	0.6	15.2	13.2	12.3	19.1	0.181	0	23 300	36 200
65BNR19X	65	90	13	1.0	0.6					0.181	0	27 100	42 600
65BER19S	65	90	13	1.0	0.6		12.6	22.1		0.204	0	15 500	22 000
65BER19H	65	90	13	1.0	0.6	14.5		14.9	24.6	0.181	0	20 700	32 300
65BER19X	65	90	13	1.0	0.6					0.181	0	24 600	38 800
70BNR19S	70	100	16	1.0	0.6		18.1	26.1	-	0.328	0	16 500	23 600
70BNR19H	70	100	16	1.0	0.6	21.3		17.1	21.8	0.292	0	21 200	33 000
70BNR19X	70	100	16	1.0	0.6					0.292	0	24 800	38 900
70BER19S	70	100	16	1.0	0.6	-		30.5		0.328	0	14 200	20 000
70BER19H	70	100	16	1.0	0.6	20.4	17.3	20.7	27.8	0.292	0	18 900	29 500
70BER19X	70	100	16	1.0	0.6					0.292	0	22 400	35 300
75BNR19S	75	105	16	1.0	0.6			27.5		0.348	0	15 600	22 300
75BNR19H	75	105	16	1.0	0.6	21.6	19.0	18.0	22.6	0.310	0	20 000	31 200
75BNR19X	75	105	16	1.0	0.6					0.310	0	23 400	36 700
75BER19S	75	105	16	1.0	0.6			32.5		0.348	0	13 400	18 900
75BER19H	75	105	16	1.0	0.6	20.7	18.2	21.7	29.0	0.310	0	17 800	27 800
75BER19X	75	105	16	1.0	0.6					0.310	0	21 200	33 400
80BNR19S	80	110	16	1.0	0.6			28.9		0.366	0	14 800	21 100
80BNR19H	80	110	16	1.0	0.6	22.0	19.9	18.9	23.4	0.326	0	19 000	29 500
80BNR19X	80	110	16	1.0	0.6					0.326	0	22 200	34 800
80BER19S	80	110	16	1.0	0.6		40.	34.0		0.366	0	12 700	17 900
80BER19H	80	110	16	1.0	0.6	21.0	19.1	22.8	30.1	0.326	0	16 900	26 400
80BER19X (¹) For permiss	80	110	16	1.0	0.6					0.326	0	20 000	31 600


Basic Load Ratings Permissible Effective Load Mass

(¹) For permissible axial load, please refer to Page 129.
(²) For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18°
Bearing type BER: nominal contact angle 25°

BNR 19 Series **BER 19** Series

Bore Diameter 85-150 mm

Bearing		Bound	ary Dime	ensions			d Ratings N)	Permissible Effective Load Axial Center	Mass (kg)	Sealed	Limiting Speeds (²) (min-1)		
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
85BNR19S	85	120	18	1.1	0.6			38.0		0.527	0	13 700	19 600
85BNR19H	85	120	18	1.1	0.6	29.4	26.3	24.8	25.7	0.456	0	17 600	27 400
85BNR19X	85	120	18	1.1	0.6					0.456	0	20 500	32 200
85BER19S	85	120	18	1.1	0.6			35.5		0.527	0	11 800	16 600
85BER19H	85	120	18	1.1	0.6	28.1	25.2	30.0	32.9	0.456	0	15 700	24 400
85BER19X	85	120	18	1.1	0.6			30.0		0.456	0	18 600	29 300
90BNR19S	90	125	18	1.1	0.6			43.0		0.552	0	13 100	18 700
90BNR19H	90	125	18	1.1	0.6	31.5	29.7	00.4	26.5	0.480	0	16 800	26 100
90BNR19X	90	125	18	1.1	0.6			28.1		0.480	0	19 600	30 700
90BER19S	90	125	18	1.1	0.6			50.5		0.552	0	11 200	15 900
90BER19H	90	125	18	1.1	0.6	30.0	28.5	34.0	34.1	0.480	0	14 900	23 300
90BER19X	90	125	18	1.1	0.6			34.0		0.480	0	17 700	28 000
95BNR19S	95	130	18	1.1	0.6			50.0		0.571	0	12 500	17 800
95BNR19H	95	130	18	1.1	0.6	32.0	31.0	32.5	28.3	0.497	0	16 000	24 900
95BNR19X	95	130	18	1.1	0.6			32.5		0.497	0	18 700	29 400
95BER19S	95	130	18	1.1	0.6		29.7	58.5		0.571	0	10 700	15 200
95BER19H	95	130	18	1.1	0.6	30.5		39.5	36.7	0.497	0	14 300	22 300
95BER19X	95	130	18	1.1	0.6					0.497	0	16 900	26 700
100BNR19S	100	140	20	1.1	0.6			50.5		0.571	0	11 700	16 700
100BNR19H	100	140	20	1.1	0.6	38.0	35.0	22.0	29.5	0.497	0	15 000	23 400
100BNR19X	100	140	20	1.1	0.6			33.0		0.497	0	17 500	27 500
100BER19S	100	140	20	1.1	0.6			59.5		0.770	0	10 000	14 200
100BER19H	100	140	20	1.1	0.6	36.0	33.5	40.0	38.0	0.673	0	13 400	20 900
100BER19X	100	140	20	1.1	0.6			40.0		0.673	0	15 900	25 000
105BNR19S	105	145	20	1.1	0.6			53.0		0.795	_	11 200	16 000
105BNR19H	105	145	20	1.1	0.6	38.5	36.5	20.0	31.5	0.693	_	14 400	22 400
105BNR19X	105	145	20	1.1	0.6			39.0		0.693	-	16 800	26 400
105BER19S	105	145	20	1.1	0.6			62.0		0.795	_	9 600	13 600
105BER19H	105	145	20	1.1	0.6	37.0	35.0	40.0	40.9	0.693	_	12 800	20 000
105BER19X	105	145	20	1.1	0.6			42.0		0.693	_	15 200	24 000

(1)	1	For	permissi	hla avia	l load	nlagea	rofor t	o Paga	120
١.	1	ı Oı	PELLIIOSI	DIE ania	ıı ıvau,	picase	10101 L	U I aye	120.

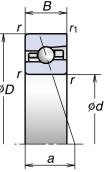
⁽²⁾ For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

r	$\stackrel{B}{{=}}$	
Λ <i>r</i> ₁		
øD 	\	,
	a »	

BNR 19 BER 19 Series (continued)

r additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load ······	128
Preload and rigidity ·····	134
Abutment and fillet dimensions	168
Nozzle position······	174
Quantity of packed grease ······	157


Bearing		Bound	ary Dime	ensions		Basic Load Ratings (kN)		Axial Center	Mass (kg)	Sealed	Limiting Speeds (²) (min-1)		
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
110BNR19S	110	150	20	1.1	0.6			55.5		0.838	-	10 800	15 400
110BNR19H	110	150	20	1.1	0.6	39.0	38.0	42.0	31.1	0.733	-	13 900	21 600
110BNR19X	110	150	20	1.1	0.6			42.0		0.733	1	16 200	25 400
110BER19S	110	150	20	1.1	0.6			65.0		0.838	-	9 300	13 100
110BER19H	110	150	20	1.1	0.6	37.5	36.5	44.0	40.3	0.733	1	12 400	19 300
110BER19X	110	150	20	1.1	0.6			44.0		0.733	_	14 700	23 100
120BNR19S	120	165	22	1.1	0.6			75.0		1.124	-	9 900	14 100
120BNR19H	120	165	22	1.1	0.6	54.0	52.0	49.0	34.2	0.949	-	12 700	19 700
120BNR19X	120	165	22	1.1	0.6			49.0		0.949	-	14 800	23 200
120BER19S	120	165	22	1.1	0.6	51.5	50.0	88.0	88.0 59.5	1.124	1	8 500	12 000
120BER19H	120	165	22	1.1	0.6			50 F		0.949	1	11 300	17 600
120BER19X	120	165	22	1.1	0.6			59.5		0.949	1	13 400	21 100
130BNR19S	130	180	24	1.5	1.0	59.5	58.5	85.0	37.2	1.477	_	9 100	13 000
130BNR19H	130	180	24	1.5	1.0	39.5		56.0		1.265	-	11 700	18 100
130BER19S	130	180	24	1.5	1.0	57.0	56.5	100	48.1	1.477	1	7 800	11 000
130BER19H	130	180	24	1.5	1.0	37.0	50.5	67.5	40.1	1.265	_	10 400	16 200
140BNR19S	140	190	24	1.5	1.0	60.0	61.5	89.5	38.8	1.567	1	8 500	12 200
140BNR19H	140	190	24	1.5	1.0	00.0	01.0	58.5	00.0	1.353	1	11 000	17 000
140BER19S	140	190	24	1.5	1.0	57.5	59.0	105	50.5	1.567	-	7 300	10 400
140BER19H	140	190	24	1.5	1.0	37.5	55.0	70.5	30.5	1.353	-	9 700	15 200
150BNR19S	150	210	28	2.0	1.0	77.0	78.5	114	43.2	2.459	-	7 800	11 200
150BNR19H	150	210	28	2.0	1.0	17.0	70.5	75.0	40.2	2.139	_	10 000	15 600
150BER19S	150	210	28	2.0	1.0	73.5	75.5	134	55.9	2.459	_	6 700	9 500
150BER19H	150	210	28	2.0	1.0	73.3	13.3	90.5	33.9	2.139	_	8 900	13 900

For permissible axial load, please refer to Page 129.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

For application of limiting speeds, please refer to Page 152.

BNR 10 Series **BER 10** Series

Bearing		Boun	dary Dim (mm)	nensions					Axial Center	Mass (kg)	Sealed	Limiting Speeds (²) (min-1)	
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
30BNR10S	30	55	13	1.0	0.6			8.20		0.124	0	33 000	47 100
30BNR10H	30	55	13	1.0	0.6	8.65	5.75	5.35	13.3	0.116	0	42 400	65 900
30BNR10X	30	55	13	1.0	0.6					0.116	0	49 500	77 700
30BER10S	30	55	13	1.0	0.6			9.65		0.124	0	28 300	40 000
30BER10H	30	55	13	1.0	0.6	8.30	5.50	0.50	16.3	0.116	0	37 700	58 900
30BER10X	30	55	13	1.0	0.6			6.50		0.116	0	44 800	70 600
35BNR10S	35	62	14	1.0	0.6			10.2		0.164	0	28 900	41 300
35BNR10H	35	62	14	1.0	0.6	10.1	7.10	6.70	14.8	0.154	0	37 200	57 800
35BNR10X	35	62	14	1.0	0.6					0.154	0	43 300	68 100
35BER10S	35	62	14	1.0	0.6			12.0		0.164	0	24 800	35 100
35BER10H	35	62	14	1.0	0.6	9.70	6.85	0.40	18.2	0.154	0	33 000	51 600
35BER10X	35	62	14	1.0	0.6			8.10		0.154	0	39 200	61 900
40BNR10S	40	68	15	1.0	0.6			11.5		0.204	0	26 000	37 100
40BNR10H	40	68	15	1.0	0.6	10.6	7.95	7.50	16.2	0.193	0	33 400	51 900
40BNR10X	40	68	15	1.0	0.6			7.50		0.193	0	38 900	61 200
40BER10S	40	68	15	1.0	0.6		7.65	13.5	19.9	0.204	0	22 300	31 500
40BER10H	40	68	15	1.0	0.6	10.1		9.10		0.193	0	29 700	46 300
40BER10X	40	68	15	1.0	0.6					0.193	0	35 200	55 600
45BNR10S	45	75	16	1.0	0.6			12.7		0.259	0	23 400	33 400
45BNR10H	45	75	16	1.0	0.6	11.7	9.00	0.05	17.6	0.246	0	30 000	46 700
45BNR10X	45	75	16	1.0	0.6			8.35		0.246	0	35 000	55 000
45BER10S	45	75	16	1.0	0.6			15.0		0.259	0	20 000	28 400
45BER10H	45	75	16	1.0	0.6	11.2	8.60		21.8	0.246	0	26 700	41 700
45BER10X	45	75	16	1.0	0.6			10.1		0.246	0	31 700	50 000
50BNR10S	50	80	16	1.0	0.6			14.0		0.281	0	21 600	30 800
50BNR10H	50	80	16	1.0	0.6	12.2	9.90		18.4	0.266	0	27 700	43 100
50BNR10X	50	80	16	1.0	0.6	1		9.20		0.266	0	32 400	50 800
50BER10S	50	80	16	1.0	0.6			16.5		0.281	0	18 500	26 200
50BER10H	50	80	16	1.0	0.6	11.6	9.50		23.0	0.266	0	24 700	38 500
50BER10X	50	80	16	1.0	0.6	1		11.1		0.266	0	29 300	46 200

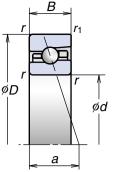
(1) For permissible axial load, please refer to Page 129.

(2) For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

r	<u> </u>	<i>r</i> 1
٨		
r øD 		r
		ød \
١	a	<u> </u>

BNR 10 BER 10 Series (continued)


For additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load ·····	128
Preload and rigidity	134
Abutment and fillet dimensions	168
Nozzle position	174
Quantity of packed grease	157

Bearing Numbers C	55	<i>D</i> 90	В	r			Basic Load Ratings (kN)		Center	Mass (kg)	Sealed	Limiting Speeds (²) (min-1)	
55BNR10H 5	55	00		(min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
		90	18	1.1	0.6			17.8		0.414	0	19400	27600
55BNR10X 5		90	18	1.1	0.6	15.1	12.5		20.6	0.393	0	24 900	38 700
	5	90	18	1.1	0.6			11.7		0.393	0	29 000	45 600
55BER10S 5	55	90	18	1.1	0.6			21.0		0.414	0	16 600	23 500
55BER10H 5	55	90	18	1.1	0.6	14.4	12.0	444	25.7	0.393	0	22 100	34 500
55BER10X 5	55	90	18	1.1	0.6			14.1		0.393	0	26 300	41 400
60BNR10S 6	0	95	18	1.1	0.6			19.5		0.443	0	18 100	25 900
60BNR10H 6	0	95	18	1.1	0.6	15.6	13.7	40.0	21.5	0.419	0	23 300	36 200
60BNR10X 6	0	95	18	1.1	0.6			12.8		0.419	0	27 100	42 600
60BER10S 6	0	95	18	1.1	0.6			22.9		0.443	0	15 500	22 000
60BER10H 6	60	95	18	1.1	0.6	15.0	13.1	15.5	26.9	0.419	0	20 700	32 300
60BER10X 6	0	95	18	1.1	0.6			15.5		0.419	0	24 600	38 800
65BNR10S 6	5 1	100	18	1.1	0.6			21.1		0.472	0	17 000	24 300
65BNR10H 6	5 1	100	18	1.1	0.6	16.2	14.8	13.9	22.3	0.447	0	21 900	34 000
65BNR10X 6	5 1	100	18	1.1	0.6			13.9		0.447	0	25 500	40 000
65BER10S 6	5 1	100	18	1.1	0.6			24.9		0.472	0	14 600	20 700
65BER10H 6	5 1	100	18	1.1	0.6	15.5	14.2	16.8	28.0	0.447	0	19 400	30 400
65BER10X 6	5 1	100	18	1.1	0.6			10.0		0.447	0	23 100	36 400
70BNR10S 7	0 1	110	20	1.1	0.6			28.6		0.645	0	15 600	22 300
70BNR10H 7	0 1	110	20	1.1	0.6	22.3	19.8	100	18.8		0	20 000	31 200
70BNR10X 7	0 1	110	20	1.1	0.6			10.0		0.605	0	23 400	36 700
70BER10S 7	0 1	110	20	1.1	0.6			33.5		0.645	0	13 400	18 900
70BER10H 7	0 1	110	20	1.1	0.6	21.3	18.9	22.6	30.8	0.605	0	17 800	27 800
70BER10X 7		110	20	1.1	0.6			22.0		0.605	0	21 200	33 400
75BNR10S 7	75 1	115	20	1.1	0.6			30.0		0.679	0	14 800	21 100
75BNR10H 7		115	20	1.1	0.6	22.6	20.7	19.7	25.3	0.638	0	19 000	29 500
75BNR10X 7		115	20	1.1	0.6					0.638	0	22 200	34 800
75BER10S 7		115	20	1.1	0.6			35.0		0.679	0	12 700	17 900
75BER10H 7		115	20	1.1	0.6	21.6	19.8	23.7	31.9	0.638	0	16 900	26 400
75BER10X 7		115	20	1.1	0.6					0.638	0	20 000	31 600
80BNR10S 8		125	22	1.1	0.6	-		35.5		0.921	0	13 700	19 600
		125	22	1.1	0.6	26.5	24.5	23.4	27.5	0.867	0	17 600	27 400
80BNR10X 8	0 1	125	22	1.1	0.6			20.4		0.867	0	20 500	32 200
80BER10S 8		125	22	1.1	0.6			42.0		0.921	0	11 800	16 600
		125	22	1.1	0.6	25.3	23.5	28.2	34.6	0.867	0	15 700	24 400
80BER10X 8	0 1	125	22	1.1	0.6			20.2		0.867	0	18 600	29 300

^{(&#}x27;) For permissible axial load, please refer to Page 129. (') For application of limiting speeds, please refer to Page 152. **Note:** Bearing type BNR: nominal contact angle α =18° Bearing type BER: nominal contact angle α =25°

BNR 10 Series **BER 10** Series

Bore Diameter 85-150 mm

Bearing		Boundary Dimensions (mm)			ıd Ratings N)	Permissible Axial	Effective Load Center	Mass (kg)	Sealed		Speeds (²) n-1)		
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) <i>a</i>	(approx)	Design	Grease	Oil
85BNR10S	85	130	22	1.1	0.6			37.5		0.962	0	13 100	18 700
85BNR10H	85	130	22	1.1	0.6	26.8	25.7	04.5	28.4	0.906	0	16 800	26 100
85BNR10X	85	130	22	1.1	0.6			24.5		0.906	0	19 600	30 700
85BER10S	85	130	22	1.1	0.6			43.5		0.962	0	11 200	15 900
85BER10H	85	130	22	1.1	0.6	25.6	24.6	29.5	36.1	0.906	0	14 900	23 300
85BER10X	85	130	22	1.1	0.6			29.5		0.906	0	17 700	28 000
90BNR10S	90	140	24	1.5	1.0			48.0		1.241	0	12 200	17 400
90BNR10H	90	140	24	1.5	1.0	35.0	33.0	31.5	30.7	1.155	0	15 700	24 400
90BNR10X	90	140	24	1.5	1.0			31.5		1.155	0	18 300	28 700
90BER10S	90	140	24	1.5	1.0			56.0		1.241	0	10 500	14 800
90BER10H	90	140	24	1.5	1.0	33.5	31.5	38.0	38.8	1.155	0	14 000	21 800
90BER10X	90	140	24	1.5	1.0			36.0		1.155	0	16 600	26 100
95BNR10S	95	145	24	1.5	1.0	35.5		50.0		1.298	0	11 700	16 700
95BNR10H	95	145	24	1.5	1.0		34.5	32.5	31.3	1.209	0	15 000	23 400
95BNR10X	95	145	24	1.5	1.0			52.5		1.209	0	17 500	27 500
95BER10S	95	145	24	1.5	1.0			58.5		1.298	0	10 000	14 200
95BER10H	95	145	24	1.5	1.0	34.0	33.0	39.5	39.7	1.209	0	13 400	20 900
95BER10X	95	145	24	1.5	1.0			39.5		1.209	0	15 900	25 000
100BNR10S	100	150	24	1.5	1.0			52.0		1.245	0	11 200	16 000
100BNR10H	100	150	24	1.5	1.0	36.0	36.0	34.0	32.3	1.253	0	14 400	22 400
100BNR10X	100	150	24	1.5	1.0			34.0		1.253	0	16 800	26 400
100BER10S	100	150	24	1.5	1.0			61.0		1.245	0	9 600	13 600
100BER10H	100	150	24	1.5	1.0	34.5	34.5	41.0	41.2	1.253	0	12 800	20 000
100BER10X	100	150	24	1.5	1.0			71.0		1.253	0	15 200	24 000
105BNR10S	105	160	26	2.0	1.0			59.5		1.698	_	10 600	15 100
105BNR10H	105	160	26	2.0	1.0	41.0	41.0	39.0	34.5	1.585	_	13 600	21 200
105BNR10X	105	160	26	2.0	1.0			09.0		1.585	_	15 900	25 000
105BER10S	105	160	26	2.0	1.0			70.0		1.698	_	9 100	12 900
105BER10H	105	160	26	2.0	1.0	39.0	39.5	47.5	43.9	1.585	_	12 100	18 900
105BER10X	105	160	26	2.0	1.0			47.5		1.585	_	14 400	22 700

(1)	For permissible axial load, please refer to F	age 129
-----	---	---------

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

P		
r ød		
a	BNR 10	Series (co

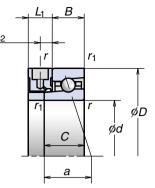
continued) **BEK 10**

radditional information:	Page No.
Dynamic equivalent load	121
Static equivalent load	128
Preload and rigidity ·····	134
Abutment and fillet dimensions	168
Vozzle position·····	174
Quantity of packed grease ·····	157

Bearing		Bound	ary Dime (mm)	ensions			N)	Axial Center		Mass (kg)	Sealed		Speeds (²) n-1)
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Design	Grease	Oil
110BNR10S	110	170	28	2.0	1.0			68.0		2.133	_	10 000	14 300
110BNR10H	110	170	28	2.0	1.0	46.0	47.0	44.5	36.7	1.996	_	12 900	20 000
110BNR10X	110	170	28	2.0	1.0			44.5		1.996	1	15 000	23 600
110BER10S	110	170	28	2.0	1.0			79.5		2.133	1	8 600	12 200
110BER10H	110	170	28	2.0	1.0	44.0	45.0	54.0	46.7	1.996	_	11 500	17 900
110BER10X	110	170	28	2.0	1.0			54.0		1.996	1	13 600	21 500
120BNR10S	120	180	28	2.0	1.0			73.5		2.286	-	9 400	13 400
120BNR10H	120	180	28	2.0	1.0	47.5	50.5	48.0	38.4	2.139	ı	12 000	18 700
120BNR10X	120	180	28	2.0	1.0			46.0		2.139	1	14 000	22 000
120BER10S	120	180	28	2.0	1.0					2.286	-	8 000	11 400
120BER10H	120	180	28	2.0	1.0	45.5 48.5		58.0	49.0	2.139	1	10 700	16 700
120BER10X	120	180	28	2.0	1.0			56.0		2.139	1	12 700	20 000
130BNR10S	130	200	33	2.0	1.0	60.0	60.0 61.5		43.0	3.408	-	8 500	12 200
130BNR10H	130	200	33	2.0	1.0	00.0	01.0	58.5	40.0	3.194	1	11 000	17 000
130BER10S	130	200	33	2.0	1.0	57.5	59.0	105	54.6	3.408	1	7 300	10 400
130BER10H	130	200	33	2.0	1.0	07.0	00.0	70.5	04.0	3.194	1	9 700	15 200
140BNR10S	140	210	33	2.0	1.0	62.5	66.5	97.0	44.6	3.647	1	8 000	11 500
140BNR10H	140	210	33	2.0	1.0	02.0	00.0	63.5	11.0	3.419	1	10 300	16 000
140BER10S	140	210	33	2.0	1.0	59.5	64.0	113	56.9	3.647	-	6 900	9 800
140BER10H	140	210	33	2.0	1.0	00.0	0 1.0	76.5	00.0	3.419	1	9 200	14 300
150BNR10S	150	225	35	2.1	1.0	73.5	78.0	114	47.6	4.405	-	7 500	10 700
150BNR10H	150	225	35	2.1	1.0	73.3	70.0	74.5	47.0	4.129	1	9 600	15 000
150BER10S	150	225	35	2.1	1.0	70.0	75.0	99.5	60.8	4.405	-	6 400	9 100
150BER10H	150	225	35	2.1	1.0	70.0	75.0	90.0	00.0	4.129	-	8 600	13 400

For permissible axial load, please refer to Page 129.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°


66 **NSK NSK** 67

For application of limiting speeds, please refer to Page 152.

1. ANGULAR CONTACT BALL BEARINGS

Ultra High-Speed Angular Contact Ball Bearings (Spinshot™ II Series)

BNR 19XE Series **BER 19XE** Series

Bearing		Во	oundary [(m		ns			acer Dimension	Basic Load		Permissible Axial	Effective Load Center	Mass (kg)	Limiting Speeds (2) (min-1)
Numbers	d	D	В	С	r (min)	<i>r</i> ₁ (min)	L ₁ (approx)	L ₂ (approx)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) <i>a</i>	(approx)	Oil
40BNR19XE	40	62	12	17	0.6	0.3	15	7.5	11.5	7.65	7.10	19.3	0.106	64 800
40BER19XE	40	62	12	17	0.6	0.3	15	7.5	11.0	7.35	8.65	22.9	0.106	58 900
45BNR19XE	45	68	12	17	0.6	0.3	15	7.5	12.1	8.70	8.10	20.2	0.128	58 500
45BER19XE	45	68	12	17	0.6	0.3	15	7.5	11.6	8.35	9.85	24.2	0.128	53 100
50BNR19XE	50	72	12	17	0.6	0.3	15	7.5	12.8	9.75	9.10	20.9	0.129	54 100
50BER19XE	50	72	12	17	0.6	0.3	15	7.5	12.3	9.35	11.0	25.2	0.129	49 200
55BNR19XE	55	80	13	18	1.0	0.6	15	7.5	14.4	11.4	10.6	22.5	0.182	48 900
55BER19XE	55	80	13	18	1.0	0.6	15	7.5	13.8	10.9	12.9	27.2	0.182	44 500
60BNR19XE	60	85	13	18	1.0	0.6	15	7.5	14.6	12.0	11.2	23.3	0.196	45 600
60BER19XE	60	85	13	18	1.0	0.6	15	7.5	14.0	11.5	13.6	28.4	0.196	41 400
65BNR19XE	65	90	13	18	1.0	0.6	15	7.5	15.2	13.2	12.3	24.1	0.209	42 600
65BER19XE	65	90	13	18	1.0	0.6	15	7.5	14.5	12.6	14.9	29.6	0.209	38 800
70BNR19XE	70	100	16	21	1.0	0.6	15	7.5	21.3	18.1	17.1	26.8	0.328	38 900
70BER19XE	70	100	16	21	1.0	0.6	15	7.5	20.4	17.3	20.7	32.8	0.328	35 300
75BNR19XE	75	105	16	21	1.0	0.6	15	7.5	21.6	19.0	18.0	27.6	0.348	36 700
75BER19XE	75	105	16	21	1.0	0.6	15	7.5	20.7	18.2	21.7	34.0	0.348	33 400
80BNR19XE	80	110	16	21	1.0	0.6	15	7.5	22.0	19.9	18.9	28.4	0.366	34 800
80BER19XE	80	110	16	21	1.0	0.6	15	7.5	21.0	19.1	22.8	35.1	0.366	31 600
85BNR19XE	85	120	18	23	1.1	0.6	15	7.5	29.4	26.3	24.8	30.7	0.506	32 200
85BER19XE	85	120	18	23	1.1	0.6	15	7.5	28.1	25.2	30.0	37.9	0.506	29 300
90BNR19XE	90	125	18	23	1.1	0.6	15	7.5	31.5	29.7	28.1	31.5	0.532	30 700
90BER19XE	90	125	18	23	1.1	0.6	15	7.5	30.0	28.5	34.0	39.1	0.532	28 000
95BNR19XE	95	130	18	23	1.1	0.6	15	7.5	35.5	34.5	32.5	33.3	0.589	29 400
95BER19XE	95	130	18	23	1.1	0.6	15	7.5	34.0	33.0	39.5	41.7	0.589	26 700
100BNR19XE	100	140	20	25	1.1	0.6	15	7.5	38.0	35.0	33.0	34.5	0.739	27 500
100BER19XE	100	140	20	25	1.1	0.6	15	7.5	36.0	33.5	40.0	43.0	0.739	25 000
105BNR19XE	105	145	20	25	1.1	0.6	15	7.5	41.0	41.0	39.0	36.5	0.758	26 400
105BER19XE	105	145	20	25	1.1	0.6	15	7.5	39.0	39.5	47.5	45.9	0.758	24 000
110BNR19XE	110	150	20	25	1.1	0.6	15	7.5	39.0	38.0	36.5	36.1	0.804	25 400
110BER19XE	110	150	20	25	1.1	0.6	15	7.5	37.5	36.5	44.0	45.3	0.804	23 100

(1) For permissible axial load, please refer to Page	.ge 129.
--	----------

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

BNR	10XE	Series
BER	10XE	Series

Bore Diameter 40-110 mm

For additional information:	: Page No.
 Dynamic equivalent load 	121
Static equivalent load ·····	128
Preload and rigidity · · · · · · ·	134
 Shoulder and fillet dimens 	ions168

		D.	undary [)imonoio	nc		CninchatTM Cna	noor Dimonoior	Basic Loa	d Datings	Permissible	Effective Load	Mass	Limiting Speeds (2)
Bearing			(m		115		1 '	im)	(ki		Axial	Center	(kg)	(min ⁻¹)
Numbers	d	D	В	С	r (min)	r ₁ (min)	L ₁ (approx)	L ₂ (approx)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Oil
40BNR10XE	40	68	15	20	1.0	0.6	15	7.5	10.6	7.95	7.50	21.2	0.217	61 200
40BER10XE	40	68	15	20	1.0	0.6	15	7.5	10.1	7.65	9.10	24.9	0.217	55 600
45BNR10XE	45	75	16	21	1.0	0.6	15	7.5	11.7	9.00	8.35	22.6	0.273	55 000
45BER10XE	45	75	16	21	1.0	0.6	15	7.5	11.2	8.60	10.1	26.8	0.273	50 000
50BNR10XE	50	80	16	21	1.0	0.6	15	7.5	12.2	9.90	9.20	23.4	0.296	50 800
50BER10XE	50	80	16	21	1.0	0.6	15	7.5	11.6	9.50	11.1	28.0	0.296	46 200
55BNR10XE	55	90	18	23	1.1	0.6	15	7.5	15.1	12.5	11.7	25.6	0.433	45 600
55BER10XE	55	90	18	23	1.1	0.6	15	7.5	14.4	12.0	14.1	30.7	0.433	41 400
60BNR10XE	60	95	18	23	1.1	0.6	15	7.5	15.6	13.7	12.8	26.5	0.463	42 600
60BER10XE	60	95	18	23	1.1	0.6	15	7.5	15.0	13.1	15.5	31.9	0.463	38 800
65BNR10XE	65	100	18	23	1.1	0.6	15	7.5	16.2	14.8	13.9	27.3	0.493	40 000
65BER10XE	65	100	18	23	1.1	0.6	15	7.5	15.5	14.2	16.8	33.0	0.493	36 400
70BNR10XE	70	110	20	25	1.1	0.6	15	7.5	22.3	19.8	18.8	29.5	0.660	36 700
70BER10XE	70	110	20	25	1.1	0.6	15	7.5	21.3	18.9	22.6	35.8	0.660	33 400
75BNR10XE	75	115	22	27	1.1	0.6	15	7.5	22.6	20.7	19.7	30.3	0.697	34 800
75BER10XE	75	115	22	27	1.1	0.6	15	7.5	21.6	19.8	23.7	36.9	0.697	31 600
80BNR10XE	80	125	22	27	1.1	0.6	15	7.5	26.5	24.5	23.4	32.5	0.939	32 200
80BER10XE	80	125	22	27	1.1	0.6	15	7.5	25.3	23.5	28.2	39.6	0.939	29 300
85BNR10XE	85	130	22	27	1.1	0.6	15	7.5	26.8	25.7	24.5	33.4	0.988	30 700
85BER10XE	85	130	22	27	1.1	0.6	15	7.5	25.6	24.6	29.5	41.1	0.988	28 000
90BNR10XE	90	140	24	29	1.5	1.0	15	7.5	35.0	33.0	31.5	35.7	1.250	28 700
90BER10XE	90	140	24	29	1.5	1.0	15	7.5	33.5	31.5	38.0	43.8	1.250	26 100
95BNR10XE	95	145	24	29	1.5	1.0	15	7.5	35.5	34.5	32.5	36.3	1.300	27 500
95BER10XE	95	145	24	29	1.5	1.0	15	7.5	34.0	33.0	39.5	44.7	1.300	25 000
100BNR10XE	100	150	24	29	1.5	1.0	15	7.5	36.0	36.0	34.0	37.3	1.359	26 400
100BER10XE	100	150	24	29	1.5	1.0	15	7.5	34.5	34.5	41.0	46.2	1.359	24 000
105BNR10XE	105	160	26	31	2.0	1.0	15	7.5	41.0	41.0	39.0	39.5	1.707	25 000
105BER10XE	105	160	26	31	2.0	1.0	15	7.5	39.0	39.5	47.5	48.9	1.707	22 700
110BNR10XE	110	170	28	33	2.0	1.0	15	7.5	46.0	47.0	44.5	41.7	2.139	23 600
110BER10XE	110	170	28	33	2.0	1.0	15	7.5	44.0	45.0	54.0	51.7	2.139	21 500

For permissible axial load, please refer to Page 129.

Note: Bearing type BNR: nominal contact angle 18° Bearing type BER: nominal contact angle 25°

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Ultra High Precision Angular Contact Ball Bearings (BGR Series)

Features

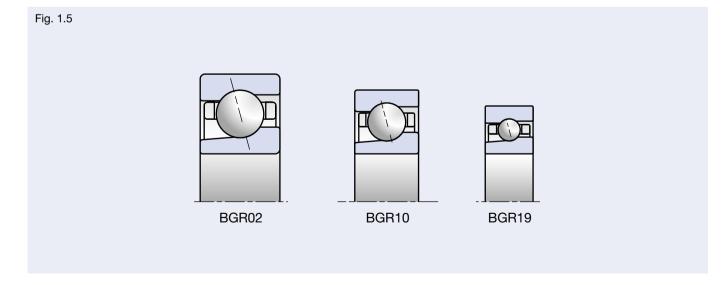
Optimum Design

An outer ring guided cage is used to improve lubrication performance.

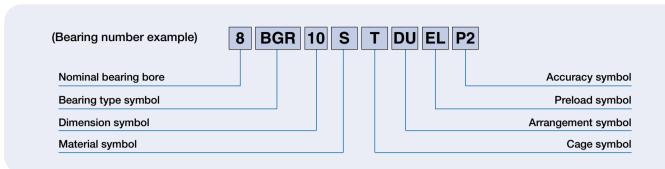
The counter-bore inner ring improves oil-mist flow to ensure a stable oil supply.

Long Life

Special heat resistant SHX steel and ceramic balls significantly improve service life (X-type bearings).


Easy Mounting

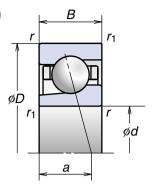
Non-separable inner ring design greatly simplifies mounting and dismounting procedures. Interchangeable assembly for any desired arrangement to meet customer needs.


High Accuracy

BGR Series are standardized for ISO Class 2 (ABMA ABEC 9).

Dimension Series

Numbering System of Ultra High Precision Angular Contact Ball Bearings (BGR Series)


					Reference pages				
8	Nominal bearing bore	Bore diameter (mm)			72-74				
BGR	Bearing type	BGR: 15° contact an	gle		38-39, 44				
10	Dimension	10: 10 series, 19: 19	0: 10 series, 19: 19 series, 02: 02 series						
			Material						
		Туре	Rings	Rolling elements					
н	Material	S	Bearing steel (SUJ2)	Bearing steel (SUJ2)	12-15				
		Н	Bearing steel (SUJ2)	Ceramics (Si ₃ N ₄)	25				
		Х	Heat resistant steel (SHX)	Ceramics (Si ₃ N ₄)					
T	Cage	T: phenolic resin cag	ge with outer ring guide; operational tempe	rature limit = 120°C	16-17				
DU	Arrangement	SU: universal arrang	ement (single row) DU: universal arrangem	ent (double row)	38-39 130-133				
EL	Preload	EL: extra light preloa	ad		38-39 134-137, 147				
P2	Accuracy	P2: ISO Class 2			158-161				

70|NSK | 71

Ultra High Precision Angular Contact Ball Bearings (BGR Series)

BGR 19 Series

Bore Diameter 10-25 mm

Bearing		Bound	lary Dime (mm)	ensions		(k	nd Ratings N)	Permissible Axial	Effective Load Center	Mass (kg)		Speeds (²) n-1)
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (1) (kN)	(mm) a	(approx)	Grease	Oil
10BGR19S	10	22	6	0.3	0.15			0.93		0.010	100 000	138 000
10BGR19H	10	22	6	0.3	0.15	2.03	0.78	0.61 5.1	5.1	0.009	119 000	175 000
10BGR19X	10	22	6	0.3	0.15					0.009	138 000	188 000
12BGR19S	12	24	6	0.3	0.15			1.14	5.4	0.011	88 900	123 000
12BGR19H	12	24	6	0.3	0.15	2.28	0.95	0.74		0.010	106 000	156 000
12BGR19X	12	24	6	0.3	0.15					0.010	123 000	167 000
15BGR19S	15	28	7	0.3	0.15		3.25 1.35	1.67	6.4	0.016	74 500	103 000
15BGR19H	15	28	7	0.3	0.15	3.25		1.09		0.014	88 400	131 000
15BGR19X	15	28	7	0.3	0.15			1.09		0.014	103 000	140 000
17BGR19S	17	30	7	0.3	0.15			1.86		0.017	68 100	93 700
17BGR19H	17	30	7	0.3	0.15	3.40	1.50	1.21	6.6	0.015	80 900	120 000
17BGR19X	17	30	7	0.3	0.15			1.21		0.015	93 700	128 000
20BGR19S	20	37	9	0.3	0.15			2.66		0.036	56 200	77 200
20BGR19H	20	37	9	0.3	0.15	4.75	2.16	1.73	8.3	0.033	66 700	98 300
20BGR19X	20	37	9	0.3	0.15			1./3		0.033	77 200	106 000
25BGR19S	25	42	9	0.3	0.15			3.40		0.043	47 800	65 700
25BGR19H	25	42	9	0.3	0.15	5.40	2.76		9.0	0.039	56 800	83 600
25BGR19X	25	42	9	0.3	0.15			2.22		0.039	65 700	89 600

(1) For permissible axial load, please refer to Page 129.

(2) For application of limiting speeds, please refer to Page 152.

Note: Bearing type BGR: nominal contact angle 15°

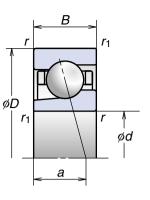
BGR 10 Series

Bore Diameter 6-25 mm

r additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load ·····	128
Preload and rigidity	134
Abutment and fillet dimens	sions ·····168
Nozzle position·····	174
Quantity of packed grease	157

Bearing		Boundary Dimensions (mm)					d Ratings N)	Axial Center		Mass (kg)		Speeds (²) in-1)
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Grease	Oil
6BGR10S	6	17	6	0.3	0.15			0.51		0.006	140 000	192 000
6BGR10H	6	17	6	0.3	0.15	1.42	0.43	0.34	4.5	0.005	166 000	244 000
6BGR10X	6	17	6	0.3	0.15		! 	0.34		0.005	192 000	261 000
7BGR10S	7	19	6	0.3	0.15			0.62		0.008	124 000	170 000
7BGR10H	7	19	6	0.3	0.15	1.60	0.52	0.40	4.7	0.007	147 000	216 000
7BGR10X	7	19	6	0.3	0.15			0.40		0.007	170 000	231 000
8BGR10S	8	22	7	0.3	0.15		· ———	0.97		0.012	107 000	147 000
8BGR10H	8	22	7	0.3	0.15	2.37	0.80	0.63	5.5	0.011	127 000	187 000
8BGR10X	8	22	7	0.3	0.15			0.63		0.011	147 000	200 000
10BGR10S	10	26	8	0.3	0.15			1.55		0.019	88 900	123 000
10BGR10H	10	26	8	0.3	0.15	3.50	1.27	1.00	6.4	0.016	106 000	156 000
10BGR10X	10	26	8	0.3	0.15			1.00		0.016	123 000	167 000
12BGR10S	12	28	8	0.3	0.15			1.80		0.021	80 000	110 000
12BGR10H	12	28	8	0.3	0.15	3.85	1.48	1.17	6.7	0.018	95 000	140 000
12BGR10X	12	28	8	0.3	0.15		! 	1.17		0.018	110 000	150 000
15BGR10S	15	32	9	0.3	0.15			2.12		0.029	68 100	93 700
15BGR10H	15	32	9	0.3	0.15	4.20	1.72	1.37	7.6	0.026	80 900	120 000
15BGR10X	15	32	9	0.3	0.15			1.37		0.026	93 700	128 000
17BGR10S	17	35	10	0.3	0.15			2.39		0.038	61 600	84 700
17BGR10H	17	35	10	0.3	0.15	4.45	1.93	1.55	8.5	0.035	73 100	108 000
17BGR10X	17	35	10	0.3	0.15			1.55		0.035	84 700	116 000
20BGR10S	20	42	12	0.6	0.3			4.10		0.066	51 700	71 000
20BGR10H	20	42	12	0.6	0.3	7.45	3.35	2.67	10.2	0.059	61 300	90 400
20BGR10X	20	42	12	0.6	0.3			2.07		0.059	71 000	96 800
25BGR10S	25	47	12	0.6	0.3			4.65		0.076	44 500	61 200
25BGR10H	25	47	12	0.6	0.3	7.90	3.75	2.05	10.8	0.068	52 800	77 800
25BGR10X	25	47	12	0.6	0.3		·	3.05		0.068	61 200	83 400

(1) For permissible axial load, please refer to Page 129.


(2) For application of limiting speeds, please refer to Page 152.

Note: Bearing type BGR: nominal contact angle 15°

Ultra High Precision Angular Contact Ball Bearings (BGR Series)

BGR 02 Series

Bore Diameter 10-25 mm

Bearing		Bou	ndary Di (mm)	mensions		Basic Loa (ki	N)	Permissible Axial	Effective Load Center	Mass (kg)		Speeds (²) n-1)
Numbers	d	D	В	r (min)	r ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (1) (kN)	(mm) a	(approx)	Grease	Oil
10BGR02S	10	30	9	0.6	0.3			1.62		0.032	80 000	110 000
10BGR02H	10	30	9	0.6	0.3	3.60	1.33	1.06	7.2	0.029	95 000	140 000
10BGR02X	10	30	9	0.6	0.3			1.06		0.029	110 000	150 000
12BGR02S	12	32	10	0.6	0.3			2.46		0.036	72 800	100 000
12BGR02H	12	32	10	0.6	0.3	5.30	1.99	1.60	7.9	0.032	86 400	128 000
12BGR02X	12	32	10	0.6	0.3			1.60		0.032	100 000	137 000
15BGR02S	15	35	11	0.6	0.3			2.90		0.045	64 000	88 000
15BGR02H	15	35	11	0.6	0.3	5.80	2.34	8.8	0.040	76 000	112 000	
15BGR02X	15	35	11	0.6	0.3	-		1.09		0.040	88 000	120 000
17BGR02S	17	40	12	0.6	0.3			3.65		0.065	56 200	77 200
17BGR02H	17	40	12	0.6	0.3	7.25	2.98	2.39	9.8	0.057	66 700	98 300
17BGR02X	17	40	12	0.6	0.3			2.39		0.057	77 200	106 000
20BGR02S	20	47	14	1.0	0.6			5.10		0.103	47 800	65 700
20BGR02H	20	47	14	1.0	0.6	9.70	4.10	3.30	11.5	0.091	56 800	83 600
20BGR02X	20	47	14	1.0	0.6			3.30		0.091	65 700	89 600
25BGR02S	25	52	15	1.0	0.6			6.45		0.127	41 600	57 200
25BGR02H	25	52	15	1.0	0.6	11.1	5.20		12.7	0.112	49 400	72 800
25BGR02X	25	52	15	1.0	0.6			4.20		0.112	57 200	78 000

⁽¹⁾ For permissible axial load, please refer to Page 129.

Note: Bearing type BGR: nominal contact angle 15°

74 **NSK** NSK | 75

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Double Row Cylindrical Roller Bearings

High Rigidity Series

Single Row Cylindrical Roller Bearings

Standard Series

Ultra High-Speed Single Row Cylindrical Roller Bearings

ROBUST Series

Cylindrical Roller Bearings

Cylindrical Roller Bearings ·····P78-85

Features

Numbering System

Bearing Tables

Double Row Cylindrical Roller Bearings (High Rigidity Series)

30 Series

39 Series

49 Series

Single Row Cylindrical Roller Bearings (Standard Series)

10 Series

Ultra High-Speed Single Row Cylindrical Roller Bearings (ROBUST Series)

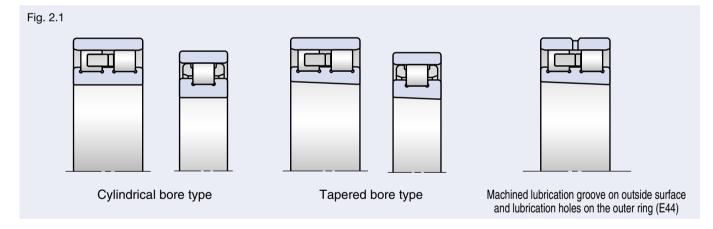
10 Series

Cylindrical Ro ller Bearings

76 **NS**K

NSK | 77

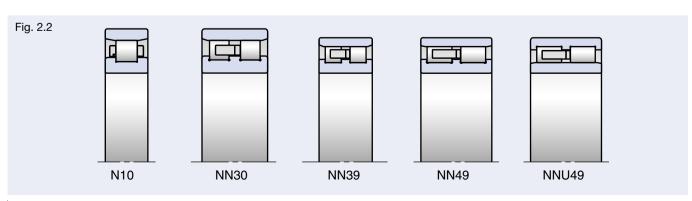
Features

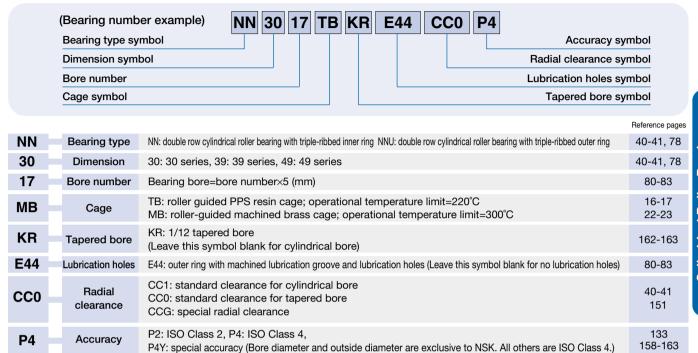

The high rigidity of NSK's double row cylindrical roller bearings makes them a perfect match for use in machine tool spindles. Typically, single row and double row cylindrical roller bearings have either a cylindrical bore or a tapered bore. Double row cylindrical roller bearings with a tapered bore are often mounted to the main shaft as a fixed-end bearing. Simplicity in design and the ability to adjust radial internal clearance after mounting continue to make these bearings popular among machine tool users.

NSK offers several types of cylindrical roller bearings. Users can request an E44 configuration, which includes both lubrication holes and a machined lubrication groove on the outside surface of the outer ring. Types of bearings include the NNU type, which features double ribbed outer rings, and the NN type, which features excellently grease discharge during the initial running-in period, and helps promote steady oil flow throughout the bearing.

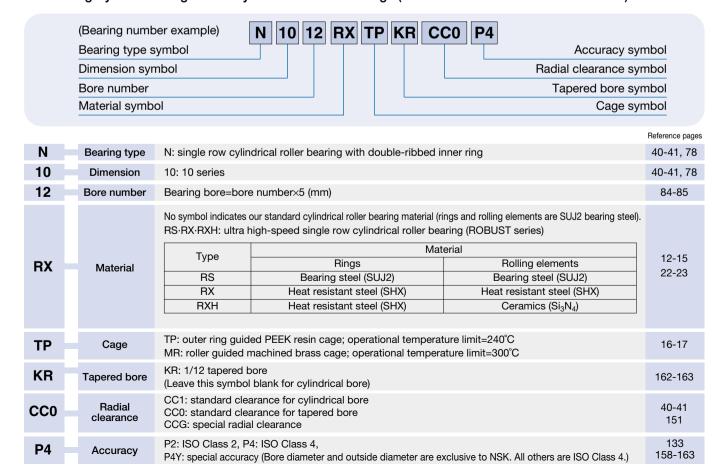
For thin section type bearings, the narrower NN39 series is more suitable than the wider NN49 series due to less heat generation and greater roller stability. Machined brass cages are most common with cylindrical roller bearings. NSK offers a roller-guided PPS (polyphenylene sulfide) resin cage for the NN30 series, and a PEEK (polyether ether ketone) resin cage, which is guided by the outer ring, for N10 series of ultra high-speed single row cylindrical roller bearings.

Bearing type	Cage symbol	Specification	Available size		
			NN3005-NN3040		
NN	MB	Roller-guided machined brass cage	NN3920-NN3956		
ININ			NN4920-NN4940		
	TB	Roller-guided PPS resin cage	NN3006-NN3026		
NNU	MB	Roller-guided machined brass cage	NNU4920-NNU4940		
N	MR	Roller-guided machined brass cage	N1006-N1028		
Į,	TP	Outer ring-guided PEEK resin cage	N1009-N1017		


Specification of Bore and Lubrication Holes

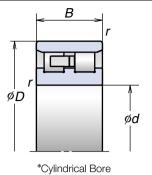

Double row and single row bearings available with cylindrical bore or tapered bore.

Double row cylindrical roller bearings available with a machined lubrication groove and lubrication holes (the best solution for oil lubrication).


Bearing Type and Dimension Series

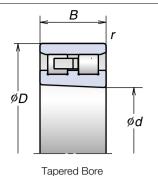
Numbering System of Double Row Cylindrical Roller Bearings (High Rigidity Series)

Numbering System of Single Row Cylindrical Roller Bearings (Standard Series and ROBUST Series)


78 NSK NSK 179

2. CYLINDRICAL ROLLER BEARINGS

Double Row Cylindrical Roller Bearings (High Rigidity Series)


30 Series

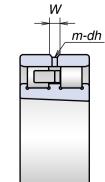
Bore Diameter 25-200 mm

Bearing		Bounda	ry Dimensior (mm)	าร		ad Ratings N)	Mass (kg)		Speeds (1) in-1)
Numbers	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
NN3005MBKR	25	47	16	0.6	25.8	30.0	0.127	20 900	25 000
NN3006MBKR	30	55	19	1.0	31.0	37.0	0.198	17 700	21 200
NN3006TBKR	30	55	19	1.0	31.0	37.0	0.172	20 000	23 600
NN3007MBKR	35	62	20	1.0	39.5	50.0	0.258	15 500	18 600
NN3007TBKR	35	62	20	1.0	39.5	50.0	0.224	17 600	20 700
NN3008MBKR	40	68	21	1.0	43.5	55.5	0.309	13 900	16 700
NN3008TBKR	40	68	21	1.0	43.5	55.5	0.283	15 800	18 600
NN3009MBKR	45	75	23	1.0	52.0	68.5	0.407	12 500	15 000
NN3009TBKR	45	75	23	1.0	52.0	68.5	0.373	14 200	16 700
NN3010MBKR	50	80	23	1.0	53.0	72.5	0.436	11 600	13 900
NN3010TBKR	50	80	23	1.0	53.0	72.5	0.402	13 100	15 400
NN3011MBKR	55	90	26	1.1	69.5	96.5	0.647	10 400	12 500
NN3011TBKR	55	90	26	1.1	69.5	96.5	0.592	11 800	13 800
NN3012MBKR	60	95	26	1.1	73.5	106	0.693	9 700	11 700
NN3012TBKR	60	95	26	1.1	73.5	106	0.635	11 000	13 000
NN3013MBKR	65	100	26	1.1	77.0	116	0.741	9 100	11 000
NN3013TBKR	65	100	26	1.1	77.0	116	0.681	10 400	12 200
NN3014MBKR	70	110	30	1.1	94.5	143	1.060	8 400	10 000
NN3014TBKR	70	110	30	1.1	94.5	143	0.988	9 500	11 200
NN3015MBKR	75	115	30	1.1	96.5	149	1.110	7 900	9 500
NN3015TBKR	75	115	30	1.1	96.5	149	1.030	9 000	10 600
NN3016MBKR	80	125	34	1.1	119	186	1.540	7 400	8 800
NN3016TBKR	80	125	34	1.1	119	186	1.440	8 300	9 800
NN3017MBKR	85	130	34	1.1	122	194	1.630	7 000	8 400
NN3017TBKR	85	130	34	1.1	122	194	1.520	8 000	9 400

⁽¹⁾ For application of limiting speeds, please refer to Page 152.

30 Series (continued)	
-----------------------	--

Bearing		Bounda	ry Dimension (mm)	าร	(k	nd Ratings N)	Mass (kg)		Speeds (1) n-1)
Numbers	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
NN3018MBKR	90	140	37	1.5	143	228	2.090	6 600	7 900
NN3018TBKR	90	140	37	1.5	143	228	1.930	7 400	8 700
NN3019MBKR	95	145	37	1.5	146	238	2.190	6 300	7 500
NN3019TBKR	95	145	37	1.5	146	238	2.030	7 100	8 400
NN3020MBKR	100	150	37	1.5	149	247	2.280	6 000	7 200
NN3020TBKR	100	150	37	1.5	149	247	2.120	6 800	8 000
NN3021MBKR	105	160	41	2.0	192	310	2.880	5 700	6 800
NN3021TBKR	105	160	41	2.0	192	310	2.690	6 500	7 600
NN3022MBKR	110	170	45	2.0	222	360	3.710	5 400	6 500
NN3022TBKR	110	170	45	2.0	222	360	3.440	6 100	7 200
NN3024MBKR	120	180	46	2.0	233	390	4.040	5 000	6 000
NN3024TBKR	120	180	46	2.0	233	390	3.750	5 700	6 700
NN3026MBKR	130	200	52	2.0	284	475	5.880	4 600	5 500
NN3026TBKR	130	200	52	2.0	284	475	5.470	5 200	6 100
NN3028MBKR	140	210	53	2.0	298	515	6.340	4 300	5 200
NN3030MBKR	150	225	56	2.1	335	585	7.760	4 000	4 800
NN3032MBKR	160	240	60	2.1	375	660	9.410	3 800	4 500
NN3034MBKR	170	260	67	2.1	450	805	12.80	3 500	4 200
NN3036MBKR	180	280	74	2.1	565	995	16.80	3 300	4 000
NN3038MBKR	190	290	75	2.1	595	1 080	17.80	3 200	3 800
NN3040MBKR	200	310	82	2.1	655	1 170	22.70	3 000	3 600


Unit: mm

(1) For application of limiting speeds, please refer to Page 152.

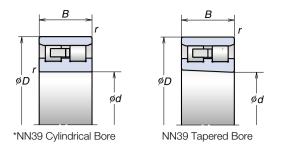
Lubrication Holes Dimensions (E44 Specification)

200

Outer Ri	ng Width	Lubrication Hole	Machined Lubrication Groove	Number of Hole
Over	incl.	dh	W	т
-	30	2	3.5	
30	40	2.5	5	
40	50	3	6	
50	60	4	8	
60	80	5	9	4
80	120	6	12	
120	160	8	15	
160	200	10	18	

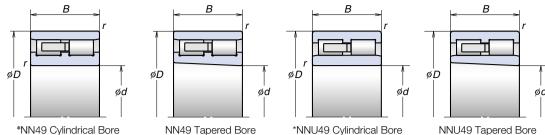
For additional information:	Page No
Dynamic equivalent load	121
● Static equivalent load ············	128
● Radial clearance ······	151
 Abutment and fillet dimensions 	168
Nozzla position	174

● Quantity of packed grease ······157


^{*}For the cylindrical bore type, eliminate the "KR" symbol and leave this symbol blank.

2. CYLINDRICAL ROLLER BEARINGS

Double Row Cylindrical Roller Bearings (High Rigidity Series)

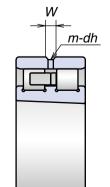

39 Series

Bore Diameter 100-280 mm

Bearing		Bounda	ry Dimensior (mm)	าร		ad Ratings N)	Mass (kg)	Limiting Speeds (¹) (min⁻¹)	
Numbers	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
NN3920MBKR	100	140	30	1.1	106	182	1.32	6 300	7 500
NN3921MBKR	105	145	30	1.1	110	194	1.50	6 000	7 200
NN3922MBKR	110	150	30	1.1	114	207	1.41	5 800	7 000
NN3924MBKR	120	165	34	1.1	138	251	1.99	5 300	6 400
NN3926MBKR	130	180	37	1.5	173	325	2.64	4 900	5 900
NN3928MBKR	140	190	37	1.5	201	375	2.97	4 600	5 500
NN3930MBKR	150	210	45	2.0	262	490	4.47	4 200	5 000
NN3932MBKR	160	220	45	2.0	271	520	4.75	4 000	4 800
NN3934MBKR	170	230	45	2.0	280	550	5.01	3 800	4 500
NN3936MBKR	180	250	52	2.0	340	655	7.76	3 500	4 200
NN3938MBKR	190	260	52	2.0	345	680	7.46	3 400	4 000
NN3940MBKR	200	280	60	2.1	420	815	10.60	3 200	3 800
NN3944MBKR	220	300	60	2.1	440	895	11.40	2 900	3 500
NN3948MBKR	240	320	60	2.1	460	975	12.10	2 700	3 300
NN3952MBKR	260	360	75	2.1	670	1 380	21.40	2 500	3 000
NN3956MBKR	280	380	75	2.1	695	1 460	22.70	2 300	2 800

⁽¹⁾ For application of limiting speeds, please refer to Page 152.

49 Series


Bore Diameter 100-200mm

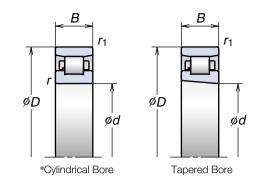
Bearing		Bounda	ry Dimensior (mm)	าร	(k	ad Ratings N)	Mass (kg)		Speed (1) in-1)
Numbers	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
NN4920MBKR	100	140	40	1.1	155	295	1.76	6 300	7 500
NNU4920MBKR	100	140	40	1.1	155	295	1.90	6 300	7 500
NN4921MBKR	105	145	40	1.1	161	315	2.00	6 000	7 200
NNU4921MBKR	105	145	40	1.1	161	315	1.99	6 000	7 200
NN4922MBKR	110	150	40	1.1	167	335	2.10	5 800	7 000
NNU4922MBKR	110	150	40	1.1	167	335	2.07	5 800	7 000
NN4924MBKR	120	165	45	1.1	183	360	2.87	5 300	6 400
NNU4924MBKR	120	165	45	1.1	183	360	2.85	5 300	6 400
NN4926MBKR	130	180	50	1.5	274	545	3.84	4 900	5 900
NNU4926MBKR	130	180	50	1.5	274	545	3.85	4 900	5 900
NN4928MBKR	140	190	50	1.5	283	585	4.07	4 600	5 500
NNU4928MBKR	140	190	50	1.5	283	585	4.08	4 600	5 500
NN4930MBKR	150	210	60	2.0	350	715	6.36	4 200	5 000
NNU4930MBKR	150	210	60	2.0	350	715	6.39	4 200	5 000
NN4932MBKR	160	220	60	2.0	365	760	6.77	4 000	4 800
NNU4932MBKR	160	220	60	2.0	365	760	6.76	4 000	4 800
NN4934MBKR	170	230	60	2.0	375	805	7.13	3 800	4 500
NNU4934MBKR	170	230	60	2.0	375	805	7.12	3 800	4 500
NN4936MBKR	180	250	69	2.0	480	1 020	10.4	3 500	4 200
NNU4936MBKR	180	250	69	2.0	480	1 020	10.4	3 500	4 200
NN4938MBKR	190	260	69	2.0	485	1 060	10.9	3 400	4 000
NNU4938MBKR	190	260	69	2.0	485	1 060	10.9	3 400	4 000
NN4940MBKR	200	280	80	2.1	570	1 220	15.3	3 200	3 800
NNU4940MBKR	200	280	80	2.1	570	1 220	15.3	3 200	3 800

⁽¹⁾ For application of limiting speeds, please refer to Page 152.

^{*}For the cylindrical bore type, eliminate the "KR" symbol and leave this symbol blank.

Lubrication F	loles Dimens	ions (E44 Sp	ecification)	Unit: mm
Outer Ri	ng Width	Lubrication Hole	Machined Lubrication Groove	Number of Holes
Over	incl.	dh	W	m
_	30	2	3.5	
30	40	2.5	5	
40	50	3	6	
50	60	4	8	
60	80	5	9	4
80	120	6	12	
120	160	8	15	
160	200	10	18	
200	_	12	20	

For additional information:	Page I
Dynamic equivalent load	121
Static equivalent load	128
Radial clearance	151
Abutment and fillet dimensions ··	168
Nozzle position · · · · · · · · · · · · · · · · · · ·	174
Quantity of packed grease ········	157

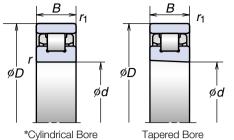

^{*}For the cylindrical bore type, eliminate the "KR" symbol and leave this symbol blank.

2. CYLINDRICAL ROLLER BEARINGS

Single Row Cylindrical Roller Bearings (Standard Series)

10 Series

Bore Diameter 30-140 mm


Bearing		Boun	dary Dimer (mm)	nsions		(k	ad Ratings N)	Mass (kg)	Limiting Speeds (1) (min-1)	
Numbers	d	D	В	r	r ₁	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
N1006MR1KR	30	55	13	1.0	0.6	19.7	19.7 19.6		19 000	31 000
N1007MRKR	35	62	14	1.0	0.6	22.6	23.2	0.153	17 000	27 000
N1008MRKR	40	68	15	1.0	0.6	27.3	29.0	0.192	15 000	25 000
N1009MRKR	45	75	16	1.0	0.6	32.5	35.5	0.318	14 000	22 000
N1010MRKR	50	80	16	1.0	0.6	32.0	36.0	0.339	13 000	20 000
N1011BMR1KR	55	90	18	1.1	1.0	37.5	44.0	0.487	12 000	18 000
N1012BMR1KR	60	95	18	1.1	1.0	40.0	48.5	0.519	11 000	17 000
N1013BMR1KR	65	100	18	1.1	1.0	41.0	51.0	0.541	10 000	16 000
N1014BMR1KR	70	110	20	1.1	1.0	50.0	63.0	0.752	9 000	15 000
N1015MRKR	75	115	20	1.1	1.0	60.0	74.5	0.935	8 500	13 700
N1016BMR1KR	80	125	22	1.1	1.0	63.5	82.0	1.038	7 900	12 700
N1017BMR1KR	85	130	22	1.1	1.0	65.0	86.0	1.067	7 500	12 100
N1018MRKR	90	140	24	1.5	1.1	88.0	114	1.200	7 000	11 400
N1019BMR1KR	95	145	24	1.5	1.1	83.0	114	1.260	6 700	10 900
N1020MRKR	100	150	24	1.5	1.1	93.0	126	1.320	6 400	10 400
N1021MRKR	105	160	26	2.0	1.1	109	149	1.670	6 100	9 900
N1022BMR1KR	110	170	28	2.0	1.1	126	173	2.070	5 800	9 300
N1024MRKR	120	180	28	2.0	1.1	139	191	2.190	5 400	8 700
N1026MRKR	130	200	33	2.0	1.1	172	238	3.320	4 900	7 900
N1028BMR1KR	140	210	33	2.0	1.1	164	240	3.810	4 600	7 500

⁽¹⁾ For application of limiting speeds, please refer to Page 152.

Ultra High-Speed Cylindrical Roller Bearings (ROBUST Series) $|B|_{r_1}$

10 Series

Bore Diameter 45-85 mm

For additional information:	Page No
Dynamic equivalent load	121
Static equivalent load ·······	128
Radial clearance	151
 Abutment and fillet dimension 	s ···168
Nozzle position · · · · · · · · · · · · · · · · · · ·	174
Quantity of packed grease ···	157

		Boun	dary Dimer	nsions		Basic Loa	ad Ratings	Mass	Limiting Speeds (1)	
Bearing		Bouil	(mm)	1010110		(k	iN)	(kg)		in-1)
Numbers	d	D	В	r	r ₁	C _r (Dynamic)	C _{or} (Static)	(approx)	Grease	Oil
N1009RSTPKR	45	75	16	1.0	0.6	24.6	26.1	0.262	22 000	30 000
N1009RXTPKR	45	75	16	1.0	0.6	24.6	26.1	0.262	25 000	42 000
N1009RXHTPKR	45	75	16	1.0	0.6	24.6	26.1	0.228	29 000	50 000
N1010RSTPKR	50	80	16	1.0	0.6	26.6	29.7	0.283	20 000	28 000
N1010RXTPKR	50	80	16	1.0	0.6	26.6	29.7	0.283	24 000	39 000
N1010RXHTPKR	50	80	16	1.0	0.6	26.6	29.7	0.246	27 000	47 000
N1011RSTPKR	55	90	18	1.1	1.0	35.0	39.5	0.372	18 000	25 000
N1011RXTPKR	55	90	18	1.1	1.0	35.0	39.5	0.372	21 000	35 000
N1011RXHTPKR	55	90	18	1.1	1.0	35.0	39.5	0.324	24 000	42 000
N1012RSTPKR	60	95	18	1.1	1.0	37.5	44.0	0.442	17 000	24 000
N1012RXTPKR	60	95	18	1.1	1.0	37.5	44.0	0.442	20 000	33 000
N1012RXHTPKR	60	95	18	1.1	1.0	37.5	44.0	0.385	22 000	39 000
N1013RSTPKR	65	100	18	1.1	1.0	39.5	49.0	0.518	16 000	22 000
N1013RXTPKR	65	100	18	1.1	1.0	39.5	49.0	0.518	19 000	31 000
N1013RXHTPKR	65	100	18	1.1	1.0	39.5	49.0	0.451	21 000	37 000
N1014RSTPKR	70	110	20	1.1	1.0	46.5	57.0	0.648	15 000	20 000
N1014RXTPKR	70	110	20	1.1	1.0	46.5	57.0	0.648	17 000	28 000
N1014RXHTPKR	70	110	20	1.1	1.0	46.5	57.0	0.564	19 000	34 000
N1015RSTPKR	75	115	20	1.1	1.0	49.5	63.0	0.672	14 000	19 000
N1015RXTPKR	75	115	20	1.1	1.0	49.5	63.0	0.585	16 000	27 000
N1015RXHTPKR	75	115	20	1.1	1.0	49.5	63.0	0.585	18 000	32 000
N1016RSTPKR	80	125	22	1.1	1.0	61.5	81.5	0.926	13 000	18 000
N1016RXTPKR	80	125	22	1.1	1.0	61.5	81.5	0.926	15 000	25 000
N1016RXHTPKR	80	125	22	1.1	1.0	61.5	81.5	0.812	17 000	30 000
N1017RSTPKR	85	130	22	1.1	1.0	65.0	86.0	0.943	13 000	17 000
N1017RXTPKR	85	130	22	1.1	1.0	65.0	86.0	0.943	14 000	24 000
N1017RXHTPKR	85	130	22	1.1	1.0	65.0	86.0	0.826	16 000	28 000

⁽¹⁾ For application of limiting speeds, please refer to Page 152.

84 NSK NSK 85

^{*}For the cylindrical bore type, eliminate the "KR" symbol and leave this symbol blank.

^{*}For the cylindrical bore type, eliminate the "KR" symbol and leave this symbol blank.

High-Speed Angular Contact Thrust Ball Bearings

(ROBUST Series)

Double-Direction Angular Contact Thrust Ball Bearings

(TAC Series)

Angular Contact Thrust Ball Bearings

Angular Contact Thrust Ball Bearings88-95

Features

Numbering System

Bearing Tables

High-Speed Angular Contact Thrust Ball Bearings (ROBUST Series)

BAR10 Series

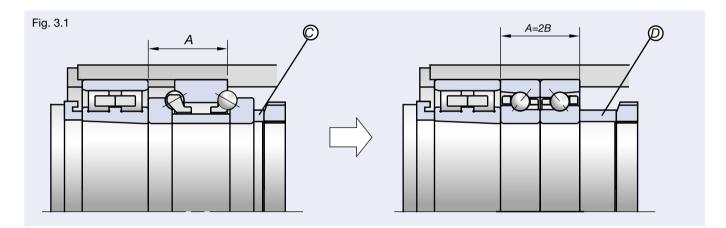
BTR10 Series

Double-Direction Angular Contact Thrust Ball Bearings (TAC Series)

TAC29X Series

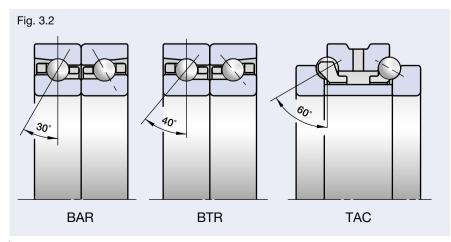
TAC20X Series

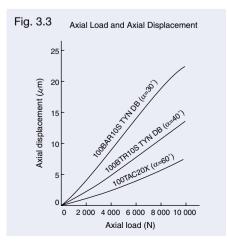
Angular Contact T hrust Ball Bearings

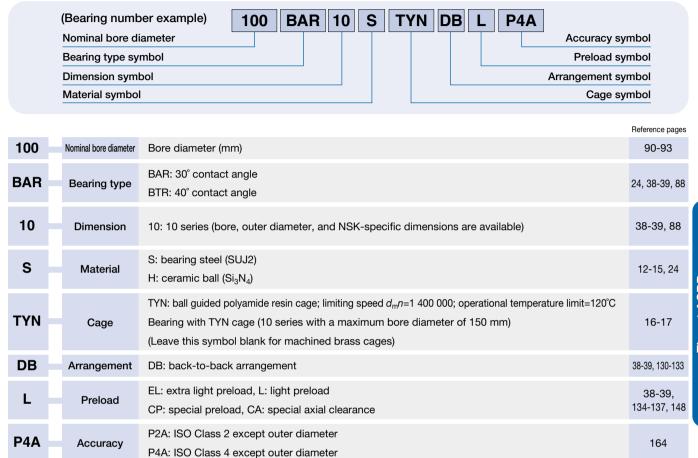

Features

For the main spindles of machine tools, good high speed performance and high rigidity are required for the ball bearings used in combination with double-row cylindrical roller bearings. For these applications, to allow selection appropriate for the characteristics of the machine, NSK provides three types of bearings.

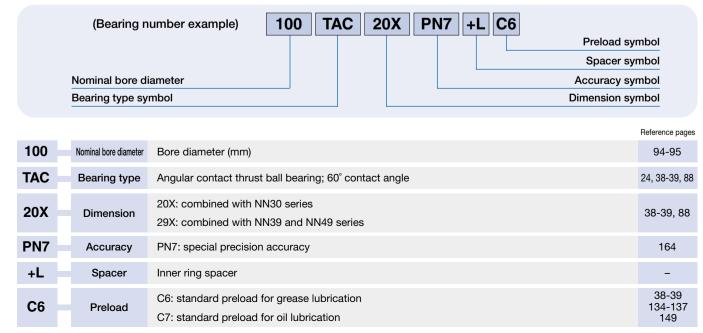
All these bearings have special outer ring outside diameter tolerances (P4A Class and P2A Class) to provide clearance between the outer ring periphery and housing bore in order to avoid any load. NSK's ROBUST series high-speed angular contact thrust ball bearings are capable of high-speed operations while maintaining high rigidity. Ball diameter and number of balls are the same as TAC type bearings. BTR type bearings have a 40° contact angle, and BAR type bearings have a 30° contact angle. The result is superior high-speed performance that minimizes heat generation.


Interchangeability


Customers can easily replace their TAC20X series bearings with NSK's BAR type or BTR type bearings without having to change the shaft or housing of the machine tool spindle. Both types of bearings have unique width dimensions that accommodate a new spacer (D), which replaces the older one (C) (see Fig. 3.1).

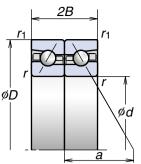

Contact Angle

For the differing contact angles, TAC type bearings rank highest in levels of rigidity, closely followed by BTR type bearings, with BAR type bearings coming in last. For temperature rise of the outer ring, however, this ranking is reversed with BAR type bearings having the highest tolerance, followed by BTR type bearings, and finally TAC type bearings with the least tolerance. Be sure to select the product that will best meet the needs of your specific operating conditions.



Numbering System of High-Speed Angular Contact Thrust Ball Bearings (ROBUST Series)

Numbering System of Double-Direction Angular Contact Thrust Ball Bearings (TAC Series)



88 **NSK NSK** |89

High-Speed Angular Contact Thrust Ball Bearings (ROBUST Series)

BAR 10 Series **BTR 10** Series

Bore Diameter 50-105 mm

Bearing		Bou	indary Di (mm)	mensions		Basic Loa (ki		Axial Center	Mass (kg)		Speeds (²) n-1)	
Numbers	d	D	2B	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) a	(approx)	Grease	Oil
50BAR10S	50	80	28.5	1.0	0.6	147	27.7	18.4	05.7	0.272	11 600	14 700
50BAR10H	50	80	28.5	1.0	0.6	14.7	21.1	12.6	25.7	0.257	13 100	16 200
50BTR10S	50	80	28.5	1.0	0.6	47.4	31.5	21.5	34.1	0.272	10 000	13 100
50BTR10H	50	80	28.5	1.0	0.6	17.4	31.5	15.5	34.1	0.257	11 600	14 700
55BAR10S	55	90	33.0	1.1	0.6	18.2	35.0	23.4	28.9	0.412	10 400	13 200
55BAR10H	55	90	33.0	1.1	0.6	18.2	35.0	16.0	28.9	0.391	11 800	14 500
55BTR10S	55	90	33.0	1.1	0.6	21.6	40.0	26.4	38.3	0.412	9 000	11 800
55BTR10H	55	90	33.0	1.1	0.6	21.0	40.0	19.7	38.3	0.391	10 400	13 200
60BAR10S	60	95	33.0	1.1	0.6	18.9	38.0	25.5	30.4	0.420	9 700	12 300
60BAR10H	60	95	33.0	1.1	0.6	10.9	30.0	17.5	30.4	0.397	11 000	13 600
60BTR10S	60	95	33.0	1.1	0.6	22.4	43.5	25.8	40.4	0.420	8 400	11 000
60BTR10H	60	95	33.0	1.1	0.6	22.4	43.5	21.5	40.4	0.397	9 700	12 300
65BAR10S	65	100	33.0	1.1	0.6	19.5	41.5	27.7	31.8	0.447	9 100	11 600
65BAR10H	65	100	33.0	1.1	0.6	19.5	41.5	19.0	31.8	0.406	10 400	12 800
65BTR10S	65	100	33.0	1.1	0.6	23.1	47.0	27.3	42.5	0.447	7 900	10 400
65BTR10H	65	100	33.0	1.1	0.6	23.1	47.0	23.3	42.5	0.406	9 100	11 600
70BAR10S	70	110	36.0	1.1	0.6	26.9	55.0	37.5	34.7	0.601	8 400	10 600
70BAR10H	70	110	36.0	1.1	0.6	20.9	55.0	25.5	34.7	0.561	9 500	11 700
70BTR10S	70	110	36.0	1.1	0.6	32.0	63.0	35.0	46.2	0.601	7 300	9 500
70BTR10H	70	110	36.0	1.1	0.6	32.0	63.0	31.5	46.3	0.561	8 400	10 600
75BAR10S	75	115	36.0	1.1	0.6	07.0	500	39.0	26.1	0.634	7 900	10 000
75BAR10H	75	115	36.0	1.1	0.6	27.3	58.0	26.7	36.1	0.592	9 000	11 100
75BTR10S	75	115	36.0	1.1	0.6	20.5	CE E	36.5	40.4	0.634	6 900	9 000
75BTR10H	75	115	36.0	1.1	0.6	32.5	65.5	33.0	48.4	0.592	7 900	10 000

For permissible axial load, please refer to Page 129.

Limiting speeds listed on this page are based on a back-to-back arrangement (DB) with extra light preload (EL).

Adjust the limiting speed to 85% of the figure shown when a light preload (L) has been selected.

Note: Bearing type BAR10: nominal contact angle 30° Bearing type BTR10: nominal contact angle 40°

	2	В _	
<u>r</u> 1			<i>r</i> ₁
øD r			<i>r</i> 1
			ød
			[/
		_ (a _

BAR10 BTR10 Series (continued)

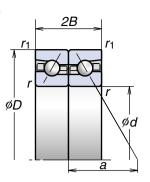
For additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load ·····	128
Preload and rigidity · · · · · · · · · · · · · · · · · · ·	134
Abutment and fillet dimensions · · · · · · · · · · · · · · · · · · ·	168
Nozzle position	174
Quantity of packed grease · · · · · · · · · · · · · · · · · · ·	157

Bearing		Bou	ndary Di (mm)	mensions		Basic Loa (kl		Permissible Axial	Effective Load Center	Mass (kg)		Speeds (²) in-1)	
Numbers	d	D	2B	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (1) (kN)	(mm) <i>a</i>	(approx)	Grease	Oil	
80BAR10S	80	125	40.5	1.1	0.6	20.0	CO F	46.5	20.4	0.875	7 400	9 300	
80BAR10H	80	125	40.5	1.1	0.6	32.0	68.5	32.0	39.4	0.821	8 300	10 300	
80BTR10S	80	125	40.5	1.1	0.6	38.0	78.0	43.0	52.7	0.875	6 400	8 300	
80BTR10H	80	125	40.5	1.1	0.6	36.0	76.0	39.0	52.7	0.821	7 400	9 300	<u> </u>
85BAR10S	85	130	40.5	1.1	0.6	32.5	71.5	48.5	41.1	0.971	7 000	8 900	Thrust ACBB
85BAR10H	85	130	40.5	1.1	0.6	32.5	71.5	33.0	41.1	0.915	8 000	9 800	T to
85BTR10S	85	130	40.5	1.1	0.6	38.5	81.5	50.5	55.2	0.971	6 100	8 000	È
85BTR10H	85	130	40.5	1.1	0.6	36.5	61.3	41.0	55.2	0.915	7 000	8 900	
90BAR10S	90	140	45	1.5	1.0	42.5	92.5	62.5	44.4	1.198	6 600	8 300	
90BAR10H	90	140	45	1.5	1.0	42.5	92.5	43.0	44.4	1.124	7 400	9 200	F
90BTR10S	90	140	45	1.5	1.0	50.0	105	58.0	59.5	1.198	5 700	7 400	ā
90BTR10H	90	140	45	1.5	1.0	50.0	105	52.5	59.5	1.124	6 600	8 300	۵
95BAR10S	95	145	45	1.5	1.0	43.0	96.5	65.0	45.5	1.320	6 300	8 000	
95BAR10H	95	145	45	1.5	1.0	45.0	90.5	44.5	45.5	1.231	7 100	8 800	
95BTR10S	95	145	45	1.5	1.0	51.0	110	69.0	61.0	1.320	5 500	7 100	
95BTR10H	95	145	45	1.5	1.0	31.0	110	55.0	01.0	1.231	6 300	8 000	
100BAR10S	100	150	45	1.5	1.0	43.5	100	68.0	47.3	1.399	6 000	7 600	
100BAR10H	100	150	45	1.5	1.0	45.5	100	46.5	47.3	1.307	6 800	8 400	
100BTR10S	100	150	45	1.5	1.0	51.5	114	66.5	63.7	1.399	5 200	6 800	
100BTR10H	100	150	45	1.5	1.0	31.3	114	57.0	03.7	1.307	6 000	7 600	
105BAR10S	105	160	49.5	2.0	1.0	49.5	115	78.0	50.6	1.740	5 700	7 200	
105BAR10H	105	160	49.5	2.0	1.0	49.5	113	53.5	30.0	1.624	6 500	8 000	
105BTR10S	105	160	49.5	2.0	1.0	58.5	131	84.0	68.0	1.740	5 000	6 500	
105BTR10H	105	160	49.5	2.0	1.0	36.5	131	65.5	06.0	1.624	5 700	7 200	

For permissible axial load, please refer to Page 129.

Limiting speeds listed on this page are based on a back-to-back arrangement (DB) with extra light preload (EL). Adjust the limiting speed to 85% of the figure shown when a light preload (L) has been selected.

Note: Bearing type BAR10: nominal contact angle 30° Bearing type BTR10: nominal contact angle 40°


For application of limiting speeds, please refer to Page 152.

For application of limiting speeds, please refer to Page 152.

High-Speed Angular Contact Thrust Ball Bearings (ROBUST Series)

BAR 10 Series BTR 10 Series

Bore Diameter 110-200 mm

Bearing		Bou	ndary Di (mm)	mensions		Basic Loa		Permissible Axial	Effective Load Center	Mass (kg)		Speeds (²) in-1)
Numbers	d	D	2B	r (min)	<i>r</i> ₁ (min)	C _r (Dynamic)	C _{or} (Static)	Load (¹) (kN)	(mm) <i>a</i>	(approx)	Grease	Oil
110BAR10S	110	170	54.0	2.0	1.0	- 55.5	131	89.0	53.9	2.11	5 400	6 800
110BAR10H	110	170	54.0	2.0	1.0	35.5	131	60.5	55.9	1.972	6 100	7 500
110BTR10S	110	170	54.0	2.0	1.0	66.0	148	82.5	72.2	2.11	4 700	6 100
110BTR10H	110	170	54.0	2.0	1.0	00.0	140	74.5	12.2	1.972	5 400	6 800
120BAR10S	120	180	54.0	2.0	1.0	57.0	141	96.0	56.8	2.262	5 000	6 400
120BAR10H	120	180	54.0	2.0	1.0	57.0	141	65.5	36.6	2.114	5 700	7 000
120BTR10S	120	180	54.0	2.0	1.0	- 68.0	160	88.5	76.4	2.262	4 400	5 700
120BTR10H	120	180	54.0	2.0	1.0	06.0	100	80.5	70.4	2.114	5 000	6 400
130BAR10S	130	200	63.0	2.0	1.0	72.5	172	117	63.4	3.362	4 600	5 800
130BAR10H	130	200	63.0	2.0	1.0	72.5	172	79.5	03.4	3.148	5 200	6 400
130BTR10S	130	200	63.0	2.0	1.0	86.0	195	106	85.0	3.362	4 000	5 200
130BTR10H	130	200	63.0	2.0	1.0	80.0	195	98.0	65.0	3.148	4 600	5 800
140BAR10S	140	210	63.0	2.0	1.0	78.5	200	135	66.2	3.558	4 300	5 500
140BTR10S	140	210	63.0	2.0	1.0	93.0	227	84.0	89.1	3.558	3 800	4 900
150BAR10S	150	225	67.5	2.1	1.1	92.5	234	160	71	4.354	4 000	5 100
150BTR10S	150	225	67.5	2.1	1.1	110	267	104	95.5	4.354	3 500	4 600
160BAR10S	160	240	72.0	2.1	1.1	98.5	250	175	75.7	5.64	3 800	4 800
160BTR10S	160	240	72.0	2.1	1.1	117	284	184	101.9	5.64	3 300	4 300
170BAR10S	170	260	81.0	2.1	1.1	115	295	207	82.3	7.90	3 500	4 500
170BTR10S	170	260	81.0	2.1	1.1	136	335	220	110.5	7.90	3 100	4 000
180BAR10S	180	280	90.0	2.1	1.1	151	385	262	88.8	10.2	3 300	4 200
180BTR10S	180	280	90.0	2.1	1.1	179	440	255	118.9	10.2	2 900	3 700
190BAR10S	190	290	90.0	2.1	1.1	151	390	273	91.8	10.7	3 200	4 000
190BTR10S	190	290	90.0	2.1	1.1	179	445	281	123.2	10.7	2 800	3 600
200BAR10S	200	310	99.0	2.1	1.1	169	444	300	98.3	13.8	3 000	3 800
200BTR10S	200	310	99.0	2.1	1.1	201	505	310	131.7	13.8	2 600	3 400

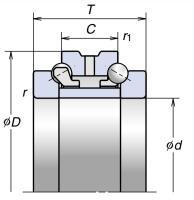
⁽¹⁾ For permissible axial load, please refer to Page 129.

Note: Bearing type BAR10: nominal contact angle 30°

Bearing type BTR10: nominal contact angle 40°

⁽²⁾ For application of limiting speeds, please refer to Page 152.

Limiting speeds listed on this page are based on a back-to-back arrangement (DB) with extra light preload (EL). Adjust the limiting speed to 85% of the figure shown when a light preload (L) has been selected.


ust ACBB

ouble Direction

Double Direction Angular Contact Thrust Ball Bearings (TAC Series)

TAC 29X Series TAC 20X Series

Bore Diameter 35-280 mm

Bearing			Boundary [Basic Load		Mass (kg)	Limiting Speeds(1) (min-1)	
Numbers	d	D	Т	С	r (min)	<i>r</i> ₁ (min)	C _a (Dynamic)	C _{oa} (Static)	(approx)	Grease	Oil
35TAC20X+L	35	62	34	17	1.0	0.6	22.8	53.5	0.375	10 000	11 000
40TAC20X+L	40	68	36	18	1.0	0.6	23.6	59.0	0.460	9 000	10 000
45TAC20X+L	45	75	38	19	1.0	0.6	26.3	67.5	0.580	8 000	9 000
50TAC20X+L	50	80	38	19	1.0	0.6	27.2	74.0	0.625	7 000	8 000
55TAC20X+L	55	90	44	22	1.1	0.6	33.5	94.0	0.945	6 300	6 900
60TAC20X+L	60	95	44	22	1.1	0.6	35.0	102	1.000	5 900	6 500
65TAC20X+L	65	100	44	22	1.1	0.6	36.0	110	1.080	5 500	6 100
70TAC20X+L	70	110	48	24	1.1	0.6	49.5	146	1.460	5 000	5 600
75TAC20X+L	75	115	48	24	1.1	0.6	50.0	152	1.550	4 800	5 300
80TAC20X+L	80	125	54	27	1.1	0.6	59.0	181	2.110	4 400	4 900
85TAC20X+L	85	130	54	27	1.1	0.6	59.5	189	2.210	4 200	4 700
90TAC20X+L	90	140	60	30	1.5	1.0	78.5	246	2.930	4 000	4 400
95TAC20X+L	95	145	60	30	1.5	1.0	79.5	256	3.050	3 800	4 200
100TAC29X+L	100	140	48	24	1.1	0.6	55.0	196	1.950	3 800	4 200
100TAC20X+L	100	150	60	30	1.5	1.0	80.5	267	3.200	3 600	4 000
105TAC29X+L	105	145	48	24	1.1	0.6	56.5	208	2.040	3 600	4 000
105TAC20X+L	105	160	66	33	2.0	1.0	91.5	305	4.100	3 400	3 800
110TAC29X+L	110	150	48	24	1.1	0.6	57.0	215	2.120	3 500	3 900
110TAC20X+L	110	170	72	36	2.0	1.0	103	350	5.150	3 300	3 600
120TAC29X+L	120	165	54	27	1.1	0.6	66.5	256	2.940	3 200	3 600
120TAC20X+L	120	180	72	36	2.0	1.0	106	375	5.500	3 000	3 400
130TAC29X+L	130	180	60	30	1.5	1.0	79.5	315	3.950	3 000	3 300
130TAC20X+L	130	200	84	42	2.0	1.0	134	455	8.200	2 800	3 100

(1) Limiting speeds listed on this page are based on recommended standard preload (C6 & C7)

Note: Bearing type TAC29X: nominal contact angle 60° Bearing type TAC20X: nominal contact angle 60°

For additional information:	Page No.
Dynamic equivalent load	121
Static equivalent load ·····	128
● Preload and rigidity ·····	134
● Abutment and fillet dimensions ······	168
Quantity of packed grease · · · · · · · · · · · · · · · · · · ·	157

TAC 29X TAC 20X Series (continued)

Bearing				Dimensions im)			Basic Load		Mass Limiting Spe (kg) (min ⁻¹		
Numbers	d	D	Т	С	r (min)	r ₁ (min)	C _a (Dynamic)	C _{oa} (Static)	(approx)	Grease	Oil
140TAC29D+L	140	190	60	30	1.5	1.0	91.5	365	4.200	2 800	3 100
140TAC20D+L	140	210	84	42	2.0	1.0	145	525	8.750	2 600	2 900
150TAC29D+L	150	210	72	36	2.0	1.0	116	465	6.600	2 500	2 800
150TAC20D+L	150	225	90	45	2.1	1.1	172	620	10.700	2 400	2 700
160TAC29D+L	160	220	72	36	2.0	1.0	118	490	7.000	2 400	2 700
160TAC20D+L	160	240	96	48	2.1	1.1	185	680	13.000	2 300	2 500
170TAC29D+L	170	230	72	36	2.0	1.0	120	520	7.350	2 300	2 500
170TAC20D+L	170	260	108	54	2.1	1.1	218	810	17.700	2 100	2 400
180TAC29D+L	180	250	84	42	2.0	1.0	158	655	10.700	2 100	2 400
180TAC20D+L	180	280	120	60	2.1	1.1	281	1 020	23.400	2 000	2 200
190TAC29D+L	190	260	84	42	2.0	1.0	161	695	11.200	2 000	2 300
190TAC20D+L	190	290	120	60	2.1	1.1	285	1 060	24.400	1 900	2 100
200TAC29D+L	200	280	96	48	2.1	1.1	204	855	15.700	1 900	2 100
200TAC20D+L	200	310	132	66	2.1	1.1	315	1 180	31.500	1 800	2 000
220TAC29D+L	220	300	96	48	2.1	1.1	210	930	17.000	1 800	2 000
240TAC29D+L	240	320	96	48	2.1	1.1	213	980	18.300	1 700	1 800
260TAC29D+L	260	360	120	60	2.1	1.1	315	1 390	31.500	1 500	1 700
280TAC29D+L	280	380	120	60	2.1	1.1	320	1 470	33.500	1 400	1 600

(1) Limiting speeds listed on this page are based on recommended standard preload (C6 & C7)

Note: Bearing type TAC29X: nominal contact angle 60° Bearing type TAC20X: nominal contact angle 60°

Machine Tool Applications

TAC B Series

Electric Injection Molding Machines

TAC 02 and 03 Series

Angular Contact Thrust Ball Bearings for Ball Screw Support

Angular Contact Thrust Ball Bearings for Ball Screw SupportP98-103

Features

Numbering System

Bearing Tables

Machine Tool Applications

TAC B Series

Electric Injection Molding Machines

TAC02 and 03 Series

Angular Contact Thrust Ball B earings for Ball Screw Supp 96 **NSK**

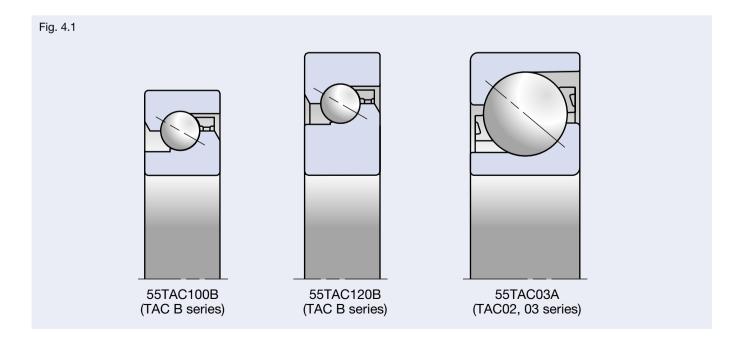
Features

High precision angular contact thrust ball bearings to support precision ball screws, have better performance than earlier combinations of angular contact ball bearings or combinations using thrust bearings. They are especially suitable for high precision machine-tool feeding mechanisms and similar applications.

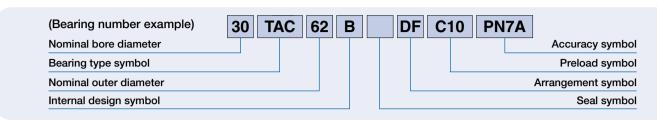
TAC B Series

The axial rigidity is high because of a large number of balls and a contact angle of 60°. Compared with tapered roller bearings of cylindrical roller bearings, this type has lower starting torque; so smoother rotation is possible with less driving force.

TAC B series bearings incorporate NSK's recently developed molded polyamide resin cage. In addition, using extra-pure (EP) steel for the inner and outer rings has further enhanced service life. Our EP steel is manufactured by controlling the amount of harmful oxide-based non-metallic inclusions, which eliminates large size inclusions and enjoys higher purity than vacuum arc remelted (VAR) steel.


This series with "DG" seal, low torque contact seal, with "WPH" grease, an waterproof grease, increase the reliability and provide for easy handling.

TAC 02 & 03 Series


TAC 02 & 03 series are angular contact ball bearings that provide support for large size ball screws operating under a heavy load from the driving mechanism of electric injection molding machines. Low torque is achieved by optimum design of the ball bearings. Users can significantly reduce bearing torque by replacing their roller bearings with these series.

TAC B and TAC 02, 03 Differences

Electric injection molding machines produce a heavier load on ball screw support bearings than that of machine tools. TAC 02 and 03 bearings are designed to operate under such heavy load conditions. Conversely, TAC B bearings are designed for increased permissible load by increasing the number of balls and bearing width.

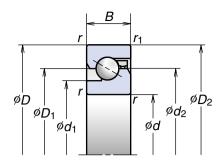
Numbering System of Angular Contact Thrust Ball Bearings for Ball Screw Support (Machine Tool Applications)

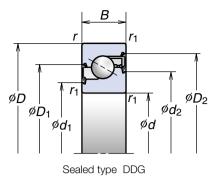
			Reference pages
30	Nominal bore diameter	Bore diameter (mm)	100-101
TAC	Bearing type	Angular contact thrust ball bearing; 60°contact angle	26, 98
62	Nominal outer diameter	Outer diameter (mm)	100-101
В	Internal design		-
	Seal	No symbol: open type DDG: contact rubber seal (¹)	26
DF	Arrangement	SU: universal arrangement (single row) DU: universal arrangement (double row) DB: back-to-back arrangement DF: face-to-face arrangement DT: tandem arrangement DBD, DFD, DTD: triplex set arrangement DBB, DFF, DBT, DFT, DTT: quadruplex set arrangement	130-133
C10	Preload	C10: standard preload C9: light preload (low torque specification)	134-137, 150
PN7A	Accuracy	PN7A: standard accuracy (Equivalent to ISO Class 4) PN7B: special accuracy (Bore diameter and outside diameter are exclusive to NSK. Equivalent to ISO Class 4. For SU arrangement only.)	165

⁽¹⁾ Sealed angular contact ball bearings for ball screw support are standardized for SU arrangement and PN7B accuracy.

Numbering System of Angular Contact Thrust Ball Bearings for Ball Screw Support (Electric Injection Molding Machines)

(Bearing number example)	30	TAC	02	Α	T85	SU	C8	PN5	D
Nominal bore diameter	T					· —	\top		Accuracy symbol
Bearing type symbol	_							,	Preload symbol
Dimension series symbol									Arrangement symbol
Internal design symbol									Cage symbol


			Reference pages
30	Nominal bore diameter	Bore diameter (mm)	102-103
TAC	Bearing type	Angular contact thrust ball bearing; 60°contact angle	27, 98
02	Dimension series	02: 02 series 03: 03 series	98
Α	Internal design		-
T85	Cage	T85: polyamide resin cage M: machined brass cage	-
SU	Arrangement	SU: universal arrangement (single row)	130-133
C8	Preload	C8: standard preload	134-137, 150
PN5D	Accuracy	PN5D: standard accuracy (Equivalent to ISO Class 5)	165


98 NSK NSK 99

For Machine Tool Applications

TAC B Series

Bore Diameter 15-60 mm

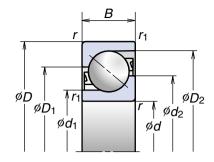
(Open type)	S
Bearing Boundary Dimensions Reference Dimension (mm) (mm)	ons Recomm Grea

Bearing		Boun	dary Dimer (mm)	nsions		F	Reference (m	Dimension m)	S	Recommended Grease		Speeds (1) n-1)
Numbers	d	D	В	r (min)	r ₁ (min)	<i>d</i> ₁	d ₂	<i>D</i> ₁	<i>D</i> ₂	Quantities (cc)	Grease	Oil
15 TAC 47B	15	47	15	1.0	0.6	27.2	34	34	39.6	2.2	6 000	8 000
17 TAC 47B	17	47	15	1.0	0.6	27.2	34	34	39.6	2.2	6 000	8 000
20 TAC 47B	20	47	15	1.0	0.6	27.2	34	34	39.6	2.2	6 000	8 000
25 TAC 62B	25	62	15	1.0	0.6	37	45	45	50.7	3.0	4 500	6 000
30 TAC 62B	30	62	15	1.0	0.6	39.5	47	47	53.2	3.2	4 300	5 600
35 TAC 72B	35	72	15	1.0	0.6	47	55	55	60.7	3.8	3 600	5 000
40 TAC 72B	40	72	15	1.0	0.6	49	57	57	62.7	3.9	3 600	4 800
40 TAC 90B	40	90	20	1.0	0.6	57	68	68	77.2	8.8	3 000	4 000
45 TAC 75B	45	75	15	1.0	0.6	54	62	62	67.7	4.2	3 200	4 300
45 TAC 100B	45	100	20	1.0	0.6	64	75	75	84.2	9.7	2 600	3 600
50 TAC 100B	50	100	20	1.0	0.6	67.5	79	79	87.7	10.2	2 600	3 400
55 TAC 100B	55	100	20	1.0	0.6	67.5	79	79	87.7	10.2	2 600	3 400
55 TAC 120B	55	120	20	1.0	0.6	82	93	93	102.2	12	2 200	3 000
60 TAC 120B	60	120	20	1.0	0.6	82	93	93	102.2	12	2 200	3 000

(Sealed type)

Bearing		Bou	ndary Dimen (mm)	sions			Limiting Speeds (1) (min-1)			
Numbers	d	D	В	r (min)	r ₁ (min)	d ₁	d ₂	<i>D</i> ₁	D ₂	Grease
15 TAC 47B DDG	15	47	15	1.0	0.6	25.1	30.8	36	41.8	6 000
17 TAC 47B DDG	17	47	15	1.0	0.6	25.1	30.8	36	41.8	6 000
20 TAC 47B DDG	20	47	15	1.0	0.6	25.1	30.8	36	41.8	6 000
25 TAC 62B DDG	25	62	15	1.0	0.6	34.3	40.5	46.5	52.9	4 500
30 TAC 62B DDG	30	62	15	1.0	0.6	36.8	43	49	55.4	4 300
35 TAC 72B DDG	35	72	15	1.0	0.6	44.3	50.5	56.5	62.9	3 600
40 TAC 72B DDG	40	72	15	1.0	0.6	46.3	52.5	58.5	64.9	3 600
40 TAC 90B DDG	40	90	20	1.0	0.6	54	64	70	79.4	3 000
45 TAC 100B DDG	45	100	20	1.0	0.6	61	71	77	86.4	2 600

(1)	Limiting speeds are based on C10 preload. In case of C9 preload, the figures become 1.3 times of the figures listed above.
Note:	Bearing type TAC B: nominal contact angle 60°


Bas	sic Dynamic Load Rating	Ca		Limiting Axial Load		Mass
Single Row Load	Double Row Load	Triple Row Load	Single Row Load	Double Row Load	Triple Row Load	(kg)
DF, DB	DT, DFD, DBD, DFF, DBB	DTD, DFT, DBT	DF, DB	DT, DFD,DBD, DFF, DBB	DTD, DFT, DBT	(approx)
(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
21.9	35.5	47.5	26.6	53.0	79.5	0.144
21.9	35.5	47.5	26.6	53.0	79.5	0.144
21.9	35.5	47.5	26.6	53.0	79.5	0.135
28.5	46.5	61.5	40.5	81.5	122	0.252
29.2	47.5	63.0	43.0	86.0	129	0.224
31.0	50.5	67.0	50.0	100	150	0.310
31.5	51.5	68.5	52.0	104	157	0.275
59.0	95.5	127	89.5	179	269	0.674
33.0	53.5	71.0	57.0	114	170	0.270
61.5	100	133	99.0	198	298	0.842
63.0	102	136	104	208	310	0.778
63.0	102	136	104	208	310	0.714
67.5	109	145	123	246	370	1.230
67.5	109	145	123	246	370	1.160
		·	·			

	Bas	ic Dynamic Load Rating	Ca		Limiting Axial Load		Mass
	Single Row Load DF, DB	Double Row Load DT, DFD, DBD, DFF, DBB	Triple Row Load DTD, DFT, DBT	Single Row Load DF, DB	Double Row Load DT, DFD,DBD, DFF, DBB	Triple Row Load DTD, DFT, DBT	(kg) (approx)
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(
	21.9	35.5	47.5	26.6	53.0	79.5	0.144
	21.9	35.5	47.5	26.6	53.0	79.5	0.144
	21.9	35.5	47.5	26.6	53.0	79.5	0.135
	28.5	46.5	61.5	40.5	81.5	122	0.252
_	29.2	47.5	63.0	43.0	86.0	129	0.224
	31.0	50.5	67.0	50.0	100	150	0.310
_	31.5	51.5	68.5	52.0	104	157	0.275
	59.0	95.5	127	89.5	179	269	0.674
	61.5	100	133	99.0	198	298	0.842

For Electric Injection Molding Machines

TAC 02 and 03 Series

Bore Diameter 15-120 mm

Bearing		Boun	dary Dimer (mm)	sions			Reference I (m	Dimensions m)	i	Contact	Limiting Speeds (1) (min-1)	
Numbers	d	D	В	r (min)	<i>r</i> ₁ (min)	d ₁	d ₂	D ₁	D ₂	(Degree)	Grease	Oil
15TAC02AT85	15	35	11	0.6	0.3	19.5	23.5	26.5	31.9	50	8 000	10 000
25TAC02AT85	25	52	15	1.0	0.6	30.5	36.6	40.4	47.4	50	5 100	7 000
TAC35-2T85	35	90	23	1.5	1.0	49.7	61.4	68.6	81.9	50	3 000	4 100
40TAC03AT85	40	90	23	1.5	1.0	49.7	61.4	68.6	81.9	50	3 000	4 100
45TAC03AT85	45	100	25	1.5	1.0	55.8	68.6	76.4	91.0	50	2 700	3 700
TAC45-2T85	45	110	27	2.0	1.0	60.3	75.6	84.5	100.9	50	2 500	3 300
50TAC03AT85	50	110	27	2.0	1.0	60.3	75.6	84.5	100.9	50	2 500	3 300
55TAC03AT85	55	120	29	2.0	1.0	67.1	82.7	92.3	110.1	50	2 200	3 000
60TAC03AT85	60	130	31	2.1	1.1	72.1	89.8	100.2	119.4	50	2 100	2 800
80TAC03AM	80	170	39	2.1	1.1	94.0	118.5	131.5	152.5	50	1 500	2 100
100TAC03CMC	100	215	47	3.0	1.1	122.5	156.9	158.1	188.1	55	1 200	1 600
120TAC03CMC	120	260	55	3.0	1.1	153.0	189.3	190.7	223.5	55	1 000	1 300

Dy	namic Axiai Load Rating	Ca	Limiting Axiai Load				
Single Row Load DF, DB	Double Row Load DT, DFD, DBD, DFF, DBB	Triple Row Load DTD, DFT, DBT	Single Row Load DF, DB	Double Row Load DT, DFD, DBD, DFF, DBB	Triple Row Load DTD, DFT, DBT		
(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		
18.8	30.5	40.5	11.5	22.9	34.5		
33.5	54.5	72.0	22.7	45.5	68.0		
102	166	220	75.5	151	226		
102	166	220	75.5	151	226		
120	195	259	91.5	183	274		
150	243	325	116	232	350		
150	243	325	116	232	350		
171	278	370	133	266	400		
196	320	425	152	305	455		
274	445	590	238	475	715		
365	595	795	231	460	690		
430	700	930	295	590	885		

NSK 103 102 **NSK**

⁽¹⁾ Limiting speeds listed on this page are based on a standard preload (C8)

Precision Deep Groove Ball Bearings

General Purpose Motors, High Speed Spindle Motors **Woodworking Machinery Spindle Motors**

Precision Deep Groove Ball Bearings

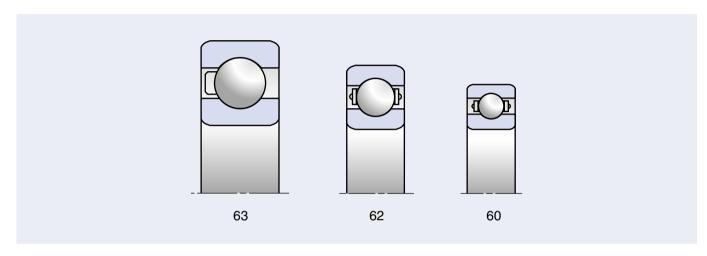
Precision Deep Groove Ball BearingsP106-109

Features

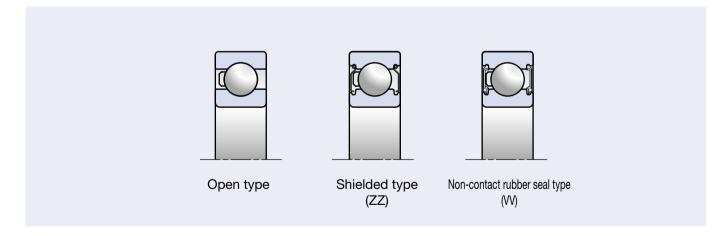
Numbering System

Bearing Table

60, 62 and 63 Series (T1X and TYA Types)

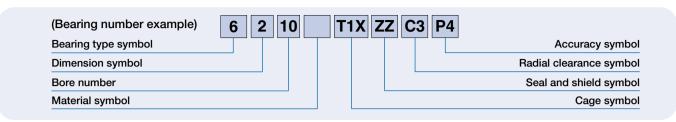

60 and 62 Series

Deep Groove Ball Bearings


Features

- Capable of bearing not only radial loads but also axial loads in both directions.
- Frictional torque is small, thus suitable for operations requiring high speed, low noise, and low vibrations.
- Three types are available: open type; shielded type (steel shield); and sealed type (rubber seal).

Dimension series

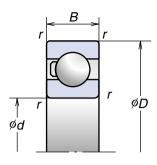

Structure

Cages

- **T1X** Ball guided polyamide resin cage: provides superior wear resistance for general purpose motors.
- **TYA** Ball guided polyamide resin cage: incorporates the same design concepts of angular contact ball bearings for high speed motors.
- T Inner ring guided phenolic resin cage: well balanced symmetry, offering superior heat resistance for high speed operations of woodworking machinery spindles.

Numbering System of Precision Deep Groove Ball Bearings

			Reference pages
6	Bearing type	6: single row deep groove ball bearing	106
2	Dimension	0: 10 series, 2:02 series, 3: 03 series	106
10	Bore number	Less than 03 bearing bore 00: 10mm, 01: 12mm, 02: 15mm, 03: 17mm More than 04 bearing bore: Bore number x 5 (mm)	108-109
	Material	No symbol: bearing steel (SUJ2) SN24: ceramic ball (Si ₃ N ₄)	12-15, 25
T1X	Cage	T1X: ball guided polyamide resin cage TYA: high speed, ball guided polyamide resin cage T: inner ring guided phenolic resin cage	106
ZZ	Seal and shield	No symbol: open type ZZ: steel shield VV: non-contact rubber seal	106
C 3	Radial clearance	No symbol: normal clearance C3: larger than normal clearance CM: special clearance for electric motor CG: special radial clearance	-
P4	Accuracy	P2: ISO Class 2 P4: ISO Class 4 P5: ISO Class 5	158-161


Precision Deep Groove Ball Bearings

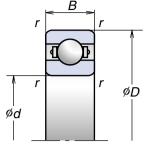
Precision Deep Groove Ball Bear

T1X Type (Polyamide Resin Cage)

60, 62, and 63 Series

Open type Shield type Seal type
6000 ZZ VV

Bearing				Boundary [(m			Basic Loa (k	Limiting Speeds (²)	
Numbers (1)	Shield type	Seal type	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	(min⁻¹)
6000T1X	ZZ	VV	10	26	8	0.3	4.55	1.87	38 900
6200T1X	ZZ	VV	10	30	9	0.6	5.10	2.39	35 000
6001T1X	ZZ	VV	12	28	8	0.3	5.10	2.37	35 000
6201T1X	ZZ	VV	12	32	10	0.6	6.80	3.05	31 900
6301T1X	ZZ	VV	12	37	12	1.0	9.70	4.20	28 600
6002T1X	ZZ	VV	15	32	9	0.3	5.60	2.83	29 800
6202T1X	ZZ	VV	15	35	11	0.6	7.65	3.75	28 000
6302T1X	ZZ	VV	15	42	13	1.0	11.4	5.45	24 600
6003T1X	ZZ	VV	17	35	10	0.3	6.00	3.25	27 000
6203T1X	ZZ	VV	17	40	12	0.6	9.55	4.80	24 600
6303T1X	ZZ	VV	17	47	14	1.0	13.6	6.65	21 900
6004T1X	ZZ	VV	20	42	12	0.6	9.40	5.00	22 600
6204T1X	ZZ	VV	20	47	14	1.0	12.8	6.60	20 900
6005T1X	ZZ	VV	25	47	12	0.6	10.1	5.85	19 500
6205T1X	ZZ	VV	25	52	15	1.0	14.0	7.85	18 200
6305T1X	ZZ	VV	25	62	17	1.5	20.6	11.2	16 100
6006T1X	ZZ	VV	30	55	13	1.0	13.2	8.30	16 500
6206T1X	ZZ	VV	30	62	16	1.0	19.5	11.3	15 300
6306T1X	ZZ	VV	30	72	19	2.0	26.7	14.1	13 800
6007T1X	ZZ	VV	35	62	14	1.0	16.0	10.3	14 500
6207T1X	ZZ	VV	35	72	17	1.0	25.7	15.3	13 100
6307T1X	ZZ	VV	35	80	21	2.5	33.5	18.0	12 200
6008T1X	ZZ	VV	40	68	15	1.0	16.8	11.5	13 000
6208T1X	ZZ	VV	40	80	18	1.0	29.1	17.9	11 700
6308T1X	ZZ	VV	40	90	23	2.5	40.5	22.6	10 800
6009T1X	ZZ	VV	45	75	16	1.0	20.9	15.2	11 700
6209T1X	ZZ	VV	45	85	19	1.0	31.5	20.4	10 800
6010T1X	ZZ	VV	50	80	16	1.0	21.8	16.6	10 800
6210GT1X	ZZ	VV	50	90	20	1.0	35.0	23.2	10 000


⁽¹⁾ TYA cage available for high speed motor application. Contact NSK for details.

Adjust the limiting speeds by 115% for TYA cages.

T Type (Phenolic Resin Cage)

60 and 62 Series

Bore Diameter 20-120 mr

		Daumdami	Dimensions		Donie I ee	d Datings	Limiting C	naada (1)	
Bearing		Boundary Dimensions (mm)				Basic Load Ratings (kN)		Limiting Speeds (1) (min-1)	
Numbers	d	D	В	r	C _r (Dynamic)	C _{or} (Static)	Grease	Oil	
6004T	20	42	12	0.6	9.38	5.03	32 000	48 000	
6204T	20	47	14	1.0	12.8	6.58	35 000	44 000	
6005T	25	47	12	0.6	10.1	5.85	27 000	45 200	
6205T	25	52	15	1.0	14	7.83	26 000	42 800	
6006T	30	55	13	1.0	13.2	8.27	23 000	40 000	
6206T	30	62	16	1.0	19.5	11.3	21 000	37 300	
6007T	35	62	14	1.0	16	10.3	22 000	35 800	
6207T	35	72	17	1.0	25.7	15.3	18 500	32 700	
6008T	40	68	15	1.0	16.8	11.5	21 000	32 400	
6208T	40	80	18	1.0	29.1	17.9	16 600	26 700	
6009T	45	75	16	1.0	19.9	14	18 800	29 000	
6209T	45	85	19	1.0	32.7	20.4	15 300	26 000	
6010T	50	80	16	1.0	20.8	15.4	17 300	26 700	
6210T	50	90	20	1.0	35.1	23.2	14 300	24 200	
6011T	55	90	18	1.0	28.3	21.2	16 700	23 800	
6211T	55	100	21	1.5	43.4	29.2	12 000	21 900	
6012T	60	95	18	1.0	29.4	23.2	15 700	21 900	
6212T	60	110	22	1.5	52.5	36	11 700	19 700	
6013T	65	100	18	1.0	29.2	23.5	13 300	20 600	
6213T	65	120	23	1.5	57.5	40	10 800	17 800	
6014T	70	110	20	1.0	38.1	30.9	11 900	18 400	
6214T	70	125	24	1.5	62	44	10 200	16 700	
6015T	75	115	20	1.0	37.8	31.2	11 100	17 200	
6215T	75	130	25	1.5	66	49	10 100	15 600	
6016T	80	125	22	1.0	47.6	39.7	10 200	15 700	
6216T	80	140	26	2.0	72.5	53	9 200	14 300	
6017T	85	130	22	1.0	47.5	40	9 500	14 700	
6217T	85	150	28	2.0	84	62	8 500	13 100	
6018T	90	140	24	1.5	58.2	49.6	8 700	13 500	
6019T	95	145	24	1.5	58	50	8 100	12 600	
6020T	100	150	24	1.5	60	54	7 800	12 000	
6022T	110	170	28	2.0	85	73	6 500	10 100	
6024T	120	180	28	2.0	85	80	6 100	9 400	

⁽¹⁾ For application of limiting speed, please refer to Page 152.

108|NSK | 109

⁽²⁾ Limiting speed figures are based on T1X.

Gauges And Oil-Air Lubricator

Gauges ·····P112-115

GR Gauges

Features

Numbering System

GTR Gauges

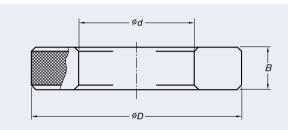
Features

Numbering System

GN Gauges

Features

Numbering System


Oil-Air Lubricator ·····P116-117

Gauges and Oil -Air Lubricator

Ring Gauges GR Series

Housing bore diameter precision measuring gauges

To obtain satisfactory performance of precision rolling bearings for machine tool spindles, it is important to have an accurate fitting with the shaft and housing.

To achieve an accurate fitting, it is necessary to measure the shaft outside diameter and housing bore exactly.

NSK Ring Gauges GR series are master gauges for measuring the bore diameters of housings with in an accuracy of 0.001mm.

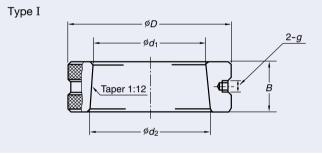
Features

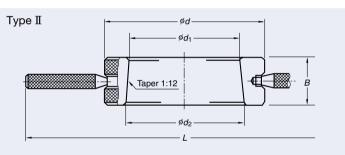
- Ring design enables reliable cylinder gauge settings.
- Ring thickness eliminates any deformation caused by measuring pressure.
- Heat treatment during manufacturing of the ring negates any effects of aging on ring dimensions.
- Exact gauging is possible due to precisely measured dimensions that are marked on the gauges in 0.001 mm units in both the X and Y directions.

	Ар	plicable Bearin	gs			Boundary Dimensions (mm)			Mana
79 69 NN39 NN49	BNR19 BER19	70 60 N10 NN30	BNR10 BER10	72 62 N2	Gauge Numbers	d	D	В	Mass (kg) (approx)
- 02 03	-	00 01 -	_ _ _	_ _ 00	GR 26 GR 28 GR 30	26 28 30	75 75 80	20 20 20	0.6 0.6 0.7
- - 04	_ _ _	02 03	- - -	01 02 -	GR 32 GR 35 GR 37	32 35 37	80 85 85	20 20 20 20	0.7 0.7 0.7 0.7
- 05 06	_ _ _	_ 04 05	- - -	03 _ 04	GR 40 GR 42 GR 47	40 42 47	90 95 95	20 20 20 20	0.8 0.9 0.8
07 _ 08	- - -	- 06 07	- 30 35	05 - 06	GR 52 GR 55 GR 62	52 55 62	100 100 100	20 20 20 20	0.9 0.9 0.8
09 10 -	50 -	08 _ 09	40 - 45	- 07 -	GR 68 GR 72 GR 75	68 72 75	110 115 115	20 20 20	0.9 1.0 0.9
11 12 13	55 60 65	10 - 11	50 - 55	08 09 10	GR 80 GR 85 GR 90	80 85 90	120 130 135	25 25 25	1.2 1.5 1.5
_ 14 15	- 70 75	12 13 -	60 65 –	- 11 -	GR 95 GR 100 GR 105	95 100 105	140 145 150	25 25 25	1.6 1.7 1.8
16 - 17	80 - 85	14 15 -	70 75 –	12 - 13	GR 110 GR 115 GR 120	110 115 120	160 165 170	25 25 25	2.1 2.1 2.2
18 19 20	90 95 100	16 17 18	80 85 90	14 15 16	GR 125 GR 130 GR 140	125 130 140	175 180 190	25 25 25	2.3 2.4 2.5
21 22 -	105 110 –	19 20 21	95 100 105	- 17 18	GR 145 GR 150 GR 160	145 150 160	200 205 215	30 30 30	3.5 3.6 3.8
24 _ 26	120 - 130	22 24	110 120	19 20	GR 165 GR 170 GR 180	165 170 180	220 225 230	30 30 30	3.9 4.0 3.8
	140	_ 26	_ 130	21 22	GR 190 GR 200	190 200	240 250	30 30	4.0 4.1

Taper Gauges GTR30 Series Shaft taper measuring gauges

NN30XXKR are tapered bore, double row cylindrical roller bearings that have high rigidity and are suitable for high speeds, so they are often used in machine tool spindles.

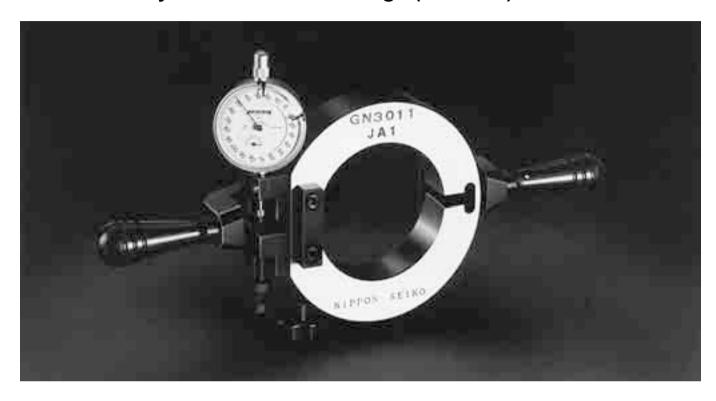

To use these bearings, it is important to exactly match the taper of the bearing bore with that of the spindle. The bearing taper (taper 1:12) is precisely controlled and manufactured for a specific accuracy. A Tapered Gauge


GTR30 is one whose bore is precision finished with a taper identical with that of a bearing.

By machining the taper of a spindle to match this taper gauge, its exact contact with bearing is assured.

Features

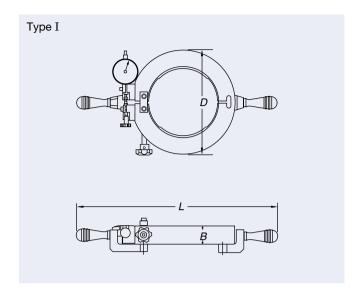
- Ring thickness eliminate any deformation caused by measuring pressure.
- Heat treatment during manufacturing of the ring negates any effects of aging on ring dimensions.

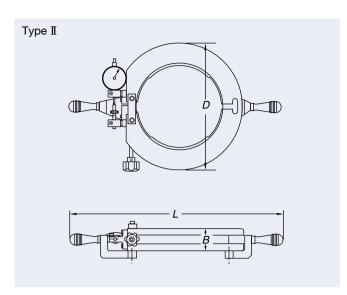


Applicable	Gauge	_	Boundary dimensions (mm)								
Bearings	Numbers	Types	d ₁	d ₂	D	В	L	g	(approx)		
NN3006KR	GTR3006	I	30	31.583	70	19	_	M3×0.5	0.5		
NN3007KR	GTR3007	I	35	36.667	75	20	_	M3×0.5	0.5		
NN3008KR	GTR3008	I	40	41.750	80	21	_	M3×0.5	0.6		
NN3009KR	GTR3009	I	45	46.917	85	23	_	M5×0.8	0.7		
NN3010KR	GTR3010	I	50	51.917	90	23	_	M5×0.8	0.8		
NN3011KR	GTR3011	I	55	57.167	95	26	_	M5×0.8	0.9		
NN3012KR	GTR3012	I	60	62.167	100	26	_	M5×0.8	1.0		
NN3013KR	GTR3013	I	65	67.167	105	26	_	M5×0.8	1.0		
NN3014KR	GTR3014	I	70	72.500	110	30	_	M5×0.8	1.3		
NN3015KR	GTR3015	I	75	77.500	115	30	_	M5×0.8	1.3		
NN3016KR	GTR3016	I	80	82.833	125	34	_	M5×0.8	1.8		
NN3017KR	GTR3017	I	85	87.833	130	34	_	M5×0.8	1.9		
NN3018KR	GTR3018	I	90	93.083	140	37	358	_	2.5		
NN3019KR	GTR3019	I	95	98.083	145	37	363	_	2.6		
NN3020KR	GTR3020	I	100	103.083	150	37	368	_	2.7		
NN3021KR	GTR3021	I	105	108.417	160	41	376	_	3.5		
NN3022KR	GTR3022	I	110	113.750	165	45	381	_	4.0		
NN3024KR	GTR3024	I	120	123.833	170	46	386	_	3.9		
NN3026KR	GTR3026	I	130	134.333	180	52	396	_	4.6		
NN3028KR	GTR3028	I	140	144.417	190	53	406	_	5.0		
NN3030KR	GTR3030	П	150	154.667	210	56	426	_	7.0		
NN3032KR	GTR3032	π	160	165.000	220	60	436	_	7.8		

GN gauges GN30 Series

Precision measuring gauges for residual radial clearance of double row cylindrical roller bearings (NN30XX)


When mounting a double row cylindrical roller bearing with a tapered bore onto a shaft, it is important to accurately match the spindle taper with that of the bearing, and to ensure that the desired radial internal clearance is attained after mounting.


If there is excessive residual radial internal clearance, the main shaft will have some play and machining accuracy will be adversely affected. If clearance is too small, despite little or no change in rigidity, heat generation will become excessive and rolling fatigue life will be extremely shortened. (See page 137)

With the recent trends toward higher speed and higher precision, it is necessary to control residual radial internal clearance more carefully. In the past, radial clearance measuring methods were very difficult and required much skill. GN gauges developed by NSK for residual radial internal clearance measurements of double row cylindrical roller bearing simplify bearing mounting and improve mounting accuracy. (Use of GN gauges also require a bore measuring cylinder gauge.)

Features

- Simple, reliable, and accurate measurements can be made
- No more complicated calculations for corrections based on interference of an outer ring with housing.
- Both positive and negative clearance (preload) can be measured
- Accurate measurements are obtained since all GN gauges are calibrated fo measuring pressure.

540

13

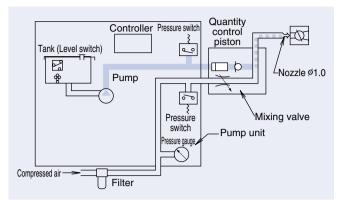
Applicable	Gauge	Types			Mass (kg)	
Bearings	Numbers	Турез	D	В	L	(approx)
NN3007	GN3007	I	102	23	292	1.3
NN3008	GN3008	I	108	23	297	1.4
NN3009	GN3009	I	115	23	305	1.5
NN3010	GN3010	I	120	23	310	1.6
NN3011	GN3011	I	131	26	324	2.1
NN3012	GN3012	I	138	26	329	2.2
NN3013	GN3013	I	145	26	335	2.4
NN3014	GN3014	I	156	30	347	3.0
NN3015	GN3015	I	162	30	353	3.1
NN3016	GN3016	I	175	33	374	4.2
NN3017	GN3017	I	185	33	381	4.3
NN3018	GN3018	I	195	35	393	5.2
NN3019	GN3019	I	204	35	399	5.6
NN3020	GN3020	I	210	35	411	6.1
NN3021	GN3021	I	224	39	419	7.1
NN3022	GN3022	I	233	44	433	8.5
NN3024	GN3024	II	254	44	470	7.5
NN3026	GN3026	II	280	50	492	9.5
NN3028	GN3028	II	289	50	500	9.5
NN3030	GN3030	II	314	54	520	12
			l .	1		I

329

114|NSK | 115

NN3032

GN3032


■ FINE-LUBE Oil-Air Lubricator

[Features]

Remarkable technological innovations continue in the field of machine tools. Particularly, spindle motors are operating faster than before. New developments for improving bearing and lubrication methods to facilitate the higher speeds are therefore vital.

NSK has made many developments in oil-air lubrication systems and oil supply equipment. In 1984, NSK introduced the FINE-LUBE oil-air lubricator to the market, and continues to enjoy success with this product. The FINE-LUBE has evolved with the times, and has been adopted for use in many machine tools, while earning a reputation for excellent performance and high reliability.

The FINE-LUBE oil-air lubricator enjoys a leading position in the oil-air lubrication market. This unit provides oil-air lubrication by a system, which consists of a pump, mixing valves, and a control unit. Reliability has been further improved by incorporating safety devices.

[Precautions]

- Use clean, dry compressed air at a pressure of 0.2-0.4MPa.
- Use fresh, clean lubricating oil with a viscosity of ISO VG 10 or higher. Please take extra care to avoid oil contamination, which can shorten the life of equipment.
- Take extra care in selecting quality oil lines for use between the pump and mixing valves. Oil lines exceeding 5m in length require you contact NSK prior to use.
- Oil lines from the mixing valve to the spindle should be limited to 1.5–5m.

[Features]

Mixing Valve MVF

4٥

 \oplus

Oil connection port

Oil connection port

Metering nipple

Stamped number

Air bleed button (1)

or Air bleed plug

M10×1, for Ø6 tubing

· Adopts a piston-type control for discharging small, fixed quantities of oil.

Air flow control screw

Air connection port

Air bleed button (

Oil-air outlet

M8×1. Ø4 tube

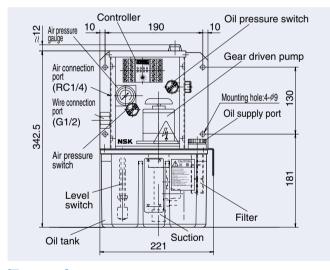
(Drawing is for MVX5)

M12Y1

- · Discharged quantities of 0.01, 0.03, and 0.06 cm³ per stroke can be selected.
- · Number of outlets and discharge quantities can be selected depending on each condition.

Notes (1) In case the discharged quantity is 0.01cm3, use Air bleed plug for Air bleed procedure.

> In case the discharged quantity is 0.03cm³, or 0.06cm³, attach Air bleed button instead of Air bleed plug, for Air bleed


(2) In case the discharged quantity is 0.03cm³, or 0.06cm³. attach the Air bleed button to this position, during the operation.

Type number	Number of valves	L	Α	Р	В
MVF1	1	42	10	22	21
MVF2	2	64	9.5	45	21
MVF3	3	86	8	70	21
MVF4	4	108	6.5	95	21
MVF5	5	130	5	120	21
MVF6	6	155	5	145	22.5

2-Ø5.5

Discharge quantity (cm³/stroke)	Stamping number	Code number		
0.01	1	P1		
0.03	3	P2		
0.06	6	P3		

OAEG Pump Unit

[Features]

- · The OAEG unit is a newly developed low viscosity gear driven pump.
- (Operating oil viscosity range: 10-68 cst/°C)
- · A special controller is used to set lubricating intervals at 1, 2, 4, 8, 16, 24, 32, 48, 64, or 128 minutes.
- · Standard safety devices include:
- ① Oil level switch
- 2 Power failure warning
- 3 Air pressure switch
- 4 Oil pressure switch

OAEG (Incl. controller) OAEG-N (No controller)

Lubrication: high speed spindle oil, or turbine oil

Power supply: 100V Tank capacity: 2.7L

Effective oil level: 1.7L

· Components of pump unit: Controller, air pressure switch, Oil pressure switch and Float switch.

NSK also offers a more economical pump unit that is CE Mark

This pump can be controlled exclusively by our controller, or by a machine equipment sequencer.

Optional Parts.

[Controller]

(Equipped on OAEG)

- ·The controller monitors pump operations. At first indication of a lubricating abnormality, an alarm is signaled and the machine tool spindle can be stopped.
- · An LED display helps the user pinpoint any of seven different failure modes.

[Pressure Switch] OAG

· Monitors for increases in air and oil pressure and any drop in oil pressure. (Equipped on OAEG)

[Oil Filter] OAV-02/03

- · Filters remove minute foreign particles from the oil.
- · Two types are available: 3µm and $20\mu m$

[Air Bleed Valve] OAV-01

· Bleed valves facilitate bleeding air after disconnecting oil lines for maintenance of the lubricator.

116 **NSK**

TECHNICAL GUIDE

Technical Guide

1. Life	·····P120-127
·Rolling Fatigue Life and Basic Load Rating	
·New Life Theory	
2. Static Load Rating and Static Equivalent Loads	·····P128-129
3. Angular Contact Ball Bearing Combinations	·····P130-133
·Features of Each Combination	
·Universal Combination	
4. Preload and Rigidity	·····P134-151
·Types of Preload and Rigidity	
·Preload and Rigidity Tables	
5. Limiting Speed ·····	·····P152-153
6. Lubrication ·····	·····P154-157
7. Bearing Accuracy ······	·····P158-165
·Radial Bearing Accuracy	
·Taper Bore Accuracy	
·Thrust Angular Contact Ball Bearing Accuracy	
8. Design of Shafts and Housings ······	·····P166-170
·Shaft and Housing Fit	
·Shaft and Housing Accuracy	
·Boundary Dimensions	
·Chamfer Dimensions	
9. Spacer	·····P171-175
·Spacer Dimensions	
Position of the Spray Nozzle	

Technical Guide

Part 5

Equivalent Loads

Contact Ball Static Lo
Combinations Static Ec

oad and Rigidity Bea

Limiting Speed

ubrication.

s and Bearing Accı

Housings

Space

118 NSK NSK 119

Rolling Fatique Life and Basic Load Rating **Bearing Life**

The various functions required of rolling bearings vary according to the bearing application. These functions must be performed for a prolonged period. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces.

Bearing life, in the broad sense of the term, is the period during which bearings continue to operate and to satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which one causes loss of bearing service.

Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heatseizure, fracture, scoring of the rings, wear of the seals, or other damage occurs. Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance.

Rolling Fatigue Life and Basic Rating Life

When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatigue of the rolling contact surfaces of the raceways and rolling elements. scaly particles may separate from the bearing material

This phenomenon is called "flaking" Rolling fatigue life is represented by the total number of revolutions at which time the bearing surface will start flaking due to stress. This is called fatigue life. Even for seemingly identical bearings, which are of the same type, size, and material and receive the same heat treatment and other processing, the rolling fatigue life varies greatly, even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life.

Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10% of them fail as a result of flaking caused by rolling fatique. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10% of the bearings become

inoperable due to flaking.

In determining bearing life, basic rating life is often the only factor considered. However, other factors must also be taken into account. For example, the grease life of greaseprelubricated bearings can be estimated. Since noise life and abrasion life are determined according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically.

Basic Dynamic Load Rating

The basic dynamic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions (106 rev). The basic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same deflection as the central axis. The load ratings are listed under C_r for radial bearings and C_a for thrust bearings in the dimension tables.

Basic Rating Life

The following relation exists between bearing load and basic rating life:

For ball bearings $L_{10} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3$ (h)

For roller bearings $L_{10} = \left(\frac{C}{P}\right)^{10/2}$ $L_{10} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{10/3}$ (h)

> L_{10} : Basic rating life (10° rev, or h) P: Bearing load (equivalent load) (N) (Refer to Page 121) C: Bearing dynamic load rating (N) For radial bearings, C is written C_r For thrust bearings, C is written C_a n: Rotational Speed (min-1)

In the case of bearings that run at a constant speed, it is convenient to express the fatigue life in terms of hours.

Dynamic Equivalent Load

In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases, the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction.

In such cases, the loads actually applied on bearings cannot be used for bearings life calculations; therefore, a hypothetical load should be estimated that has a constant magnitude and passes through the center of the bearing, and will give the same bearing life that the bearing would attain under actual conditions of load and rotation. Such a hypothetical load is called the dynamic equivalent load.

Assuming the equivalent radial load as P_r , the radial load as F_r . the axial load as F_a , and the contact angle as α , the relationship between the equivalent radial load and bearing load can be approximated as follows:

$$P_r = XF_r + YF_a$$

where X: Radial load factor Y: Axial load factor Y: Axial load factor

The axial load factor varies depending on the contact angle. In the case of roller bearings, the contact angle remains the same regardless of the magnitude of the axial load. In the case of single row deep groove ball bearings and angular contact ball bearings, the contact angle increases when the axial load is increased. Such change in the contact angle can be expressed by the ratio of the basic static load rating C_{0r} and axial load F_a . Table 1.1 shows the axial load factor at the contact angle corresponding to this ratio. Regarding angular contact ball bearings, the effect of change in the contact angle on the load factor may be ignored under normal conditions even if the contact angle is as large as 25°, 30° or 40°.

For the thrust bearing with the contact angle of $\alpha \neq 90^{\circ}$ receiving both radial and axial loads simultaneously, the equivalent axial load P_a becomes as follows:

$$P_a = XF_r + YF_a$$

Table 1.1 Value of Factors X and Y

if E*		Single, DT				DB or DF			
	е	F _a /I	-r≦ <i>e</i>	F _a /I	-r> <i>e</i>	F _a /F	r≦ <i>e</i>	F _a /I	-r> <i>e</i>
O _{0r}		X	Y	X	Y	X	Y	X	Y
0.178	0.38				1.47		1.65		2.39
0.357	0.40				1.40		1.57		2.28
0.714	0.43				1.30		1.46		2.11
1.070	0.46				1.23		1.38		2.00
1.430	0.47	1	0	0.44	1.19	1	1.34	0.72	1.93
2.140	0.50				1.12		1.26		1.82
3.570	0.55				1.02		1.14		1.66
5.350	0.56				1.00		1.12		1.63
_	0.57	1	0	0.43	1.00	1	1.09	0.70	1.63
_	0.68	1	0	0.41	0.87	1	0.92	0.67	1.41
_	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
_	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93
_	1.49	-	-	0.73	1	1.37	0.57	0.73	1
_	1.79	_	_	0.81	1	1.60	0.56	0.81	1
_	2.17	_	-	0.92	1	1.90	0.55	0.92	1
	if _o F _a C _{0r} 0.178 0.357 0.714 1.070 1.430 2.140 3.570	$\begin{array}{c} if_0F_{\rm a}\\ \hline C_{\rm Or} \\ \end{array} \begin{array}{c} e \\ \hline 0.178 & 0.38 \\ 0.357 & 0.40 \\ 0.714 & 0.43 \\ 1.070 & 0.46 \\ 1.430 & 0.47 \\ 2.140 & 0.50 \\ 3.570 & 0.55 \\ 5.350 & 0.56 \\ \hline - & 0.57 \\ \hline - & 0.68 \\ \hline - & 0.80 \\ \hline - & 1.14 \\ \hline - & 1.49 \\ \hline - & 1.79 \\ \hline - & 2.17 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

*For i, use 2 for DB, DF and 1 for DT

Table 1.2 Basic Load Rating of ACBB as Multiple Sets

Double Row		Triple	Row	Quadruple Row		
C_{r}	C _{or}	C _r C _{or}		C _r	C_{or}	
1.62times relative to Single row	2times relative to Single row	2.15times relative to Single row	3times relative to Single row	2.64times relative to Single row	4times relative to Single row	

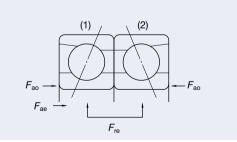
Life Calculation of Multiple Bearings as a Group

When multiple rolling bearings are used in one machine, the fatigue life of individual bearings can be determined if the load acting on individual bearings is known. Generally, however, the machine becomes inoperative if a bearing in any part fails. It may therefore be necessary in certain cases to know the fatigue life of a group of bearings used in one machine.

The fatigue life of the bearings varies greatly and our fatigue life calculation equation $L_{10} = \left(\frac{C}{D}\right)^3$ applies to the 90% life (also called the rating fatigue life, which is either the gross number of revolution or hours to which 90% of multiple similar bearings operated under similar conditions can reach).

In other words, the calculated fatigue life for one bearing has a probability of 90%. Since the endurance probability of a group of multiple bearings for a certain period is a product of the endurance probability of individual bearings for the same period, the rating fatigue life of a group of multiple bearings is not determined solely from the shortest rating fatigue life among the individual bearings. In fact, the group life is much shorter than the life of the bearing with the shortest fatigue life.

Assuming the rating fatigue life of individual bearings as L_1 , L_2 , L_3 ...Ln and the rating fatigue life of the entire group of bearings as L_1 , the below equation is obtained:


$$\frac{1}{L_{e}} = \frac{1}{L_{1}^{e}} + \frac{1}{L_{2}^{e}} + \frac{1}{L_{3}^{e}} + \cdots + \frac{1}{L_{n}^{e}}$$

where, e = 1.1 (both for ball and roller bearings)

Life Calculations of Preloaded Angular Contact Ball Bearings

To establish the total radial (F_r) and axial (F_a) load components on each bearing in a multiple arrangement of preloaded angular contact ball bearings, the externally applied radial load (F_{re}) and axial load (F_{ae}) , the axial preload (F_{ao}) and the load distribution must be taken into account. The latter is a function of the rolling element to raceway deflection which is proportional to (load)^{2/3}. The calculation procedure for popular mounting variations of identical bearings is detailed below.

Back-to-back, Pair of Bearings

Under external radial load (F_{re}), total Preload (F_{an}) is the following,

$$F_{ap} = \frac{F_{re} \times 1.2 \times tan\alpha + F_{ao}}{2}$$

when $F_{ap} < F_{ao}$, use $F_{ap} = F_{ao}$

Total axial component of (F_{a1}, F_{a2}) with applied axial load on each bearing (1 and 2):

$$F_{a1} = 2/3F_{ae} + F_{ap}$$

 $F_{a2} = F_{ap} - 1/3F_{ae}$

when $F_{a2} < 0$ the preload is relieved so that $F_{a1} = F_{a0}$, and Fa2 = 0

Total radial component of load (F_r) on each bearing is proportioned by the ratio of the axial load on each bearing to the total axial load, each component raised to the power of

$$F_{\rm r1} = \frac{F_{\rm a1}^{2/3}}{F_{\rm e2}^{2/3} + F_{\rm e2}^{2/3}} \times F_{\rm re}$$

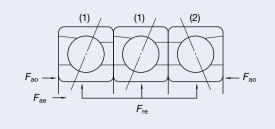
$$F_{r2} = \frac{F_{a2}^{2/3}}{F_{a1}^{2/3} + F_{a2}^{2/3}} \times F_{re}$$

The dynamic equivalent radial load (P_{r1}) and (P_{r2}) for each bearing is calculated from:

$$P_{r1} = XF_{r1} + YF_{a1}$$

 $P_{r2} = XF_{r2} + YF_{a2}$

The values of X and Y are obtained from Table 1.1 (Page 121) The basic rating life (L_{10}) of each bearing is :


$$L_{10 (1)} = \frac{16 667}{n} \left(\frac{C_{\rm r}}{P_{\rm r1}}\right)^{3}$$
 (h)

$$L_{10 (2)} = \frac{16 667}{n} \left(\frac{C_{\rm r}}{P_{\rm r2}} \right)^3$$
 (h)

The two bearings may be considered as a unit and according to the theory of probability, the life of the unit, or pair of bearings, will be shorter than the shortest rating life of the individual bearings. Thus:

$$L_{10} = \frac{1}{\left(\frac{1}{L_{13...}} + \frac{1}{L_{13...}}\right)^{\frac{1}{1.1}}}$$
 (h)

DBD Set of Bearings

Under external radial load (F_{ro}) , total Preload (F_{co}) is the following

$$F_{\rm ap1} = \frac{F_{\rm re} \times 1.2 \times \tan \alpha + F_{\rm ao}}{4}$$

$$F_{\rm ap2} = \frac{F_{\rm re} \times 1.2 \times tan\alpha + F_{\rm ao}}{2}$$

when $F_{an1} < F_{ao}/2$, use $F_{an1} = F_{ao}/2$ and $F_{an2} < F_{an}$, use $F_{an2} = F_{an2}$

Total axial component of load (F_{a1}, F_{a2}) on each bearing with applied axial load

$$F_{a1} = 0.4F_{ae} + F_{ap1}$$

$$F_{a2} = F_{ap2} - 0.2F_{ae}$$

When $F_{a2} < 0$ the preload is relieved so that

$$F_{a1} = \frac{F_{ae}}{2}$$
 and $F_{a2} = 0$

Total radial component of load (F_r) on each bearing:

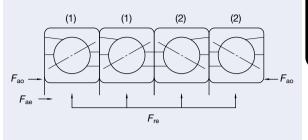
$$F_{\rm r1} = \frac{F_{\rm a1}^{2/3}}{2F_{\rm a1}^{2/3} + F_{\rm a2}^{2/3}} \times F_{\rm re}$$

$$F_{r2} = \frac{F_{a2}^{2/3}}{2F_{a1}^{2/3} + F_{a2}^{2/3}} \times F_{re}$$

The dynamic equivalent radial load (P_{r1}) and (P_{r2}) for each bearing:

$$P_{\rm r1} = XF_{\rm r1} + YF_{\rm a1}$$

$$P_{r2} = XF_{r2} + YF_{s2}$$


The values of X and Y are obtained from Table 1.1, page 121. The basic rating life (L_{10}) of each bearing :

$$L_{10(1)} = \frac{16\ 667}{n} \left(\frac{C_r}{P_{r1}}\right)^3$$
 (h)

$$L_{10(2)} = \frac{16\ 667}{n} \left(\frac{C_{\rm r}}{P_{\rm r2}} \right)^3$$
 (h)

$$L_{10}$$
 for the unit = $\frac{1}{\left(\frac{1}{L_{10(1)}^{1.1}} + \frac{1}{L_{10(2)}^{1.1}}\right)^{\frac{1}{1.1}}}$ (h)

DBB Set of Bearings

Under external radial load (F_r) , total Preload (F_{so}) is the following

$$F_{\rm ap} = \frac{F_{\rm re} \times 1.2 \times tan\alpha + F_{\rm ao}}{4}$$

When $F_{an} < F_{ao}/2$, use $F_{an} = F_{ao}/2$

Total axial component of load (F_{21}, F_{22}) on each bearing with applied axial load

$$F_{a1} = 1/3F_{ae} + F_{ap}$$

 $F_{a2} = F_{ap} - 1/6F_{ae}$

When Fa2 < 0 the preload is relieved so that

$$F_{a1} = \frac{F_{ae}}{2}$$
 and $F_{a2} = 0$

Total radial component of load (F_r) on each bearing:

$$F_{r1} = \frac{F_{a1}^{2/3}}{F_{a1}^{2/3} + F_{a2}^{2/3}} \times \frac{F_{re}}{2}$$

$$F_{r2} = \frac{F_{a2}^{2/3}}{F_{a1}^{2/3} + F_{a2}^{2/3}} \times \frac{F_{re}}{2}$$

The dynamic equivalent radial load (P_{r1}) and (P_{r2}) for each bearing:

$$P_{r1} = XF_{r1} + YF_{a1}$$

 $P_{r2} = XF_{r2} + YF_{a2}$

The values of X and Y are obtained from Table 1.1. page 121. The basic rating life (L_{10}) of each bearing:

$$L_{10(1)} = \frac{16667}{n} \left(\frac{C_{\rm r}}{P_{\rm r1}} \right)^3$$
 (h)

$$L_{10(2)} = \frac{16667}{n} \left(\frac{C_r}{P_{r2}} \right)^3$$
 (h)

$$L_{10}$$
 for the unit = $\frac{1}{\left(\frac{1}{L_{10(1)}^{1.1}} + \frac{1}{L_{10(2)}^{1.1}}\right)^{\frac{1}{1.1}}}$ (h)

New Life Theory

Introduction

Bearing technology has advanced rapidly in recent years, particularly in the areas of dimensional accuracy and material cleanliness. As a result, bearings can now have a longer rolling fatigue life in a cleaner environment, than the life obtained by the traditional ISO life calculation formula. This extended life is partly due to the important advancements in bearing related technology such as lubrication cleanliness and filtration.

The conventional life calculation formula, based on the theories of G. Lundberg and A. Palmgren (L-P theory, hereafter) addresses only sub-surface originated flaking. This is the phenomenon in which cracks initially occur due to dynamic shear stress immediately below the rolling surface then progressively reach the surface in the form of flaking.

$$1n\frac{1}{S} \propto \frac{\tau_0^c \cdot N^e \cdot V}{Z_0^h}$$

NSK's new life calculation formula theorizes that rolling fatique life is the sum total of the combined effects of both subsurface originated flaking and surface originated flaking occurring simultaneously.

NSK New Life Calculation Formula

(1) Sub-surface originated flaking

A pre-condition of sub-surface originated flaking of rolling bearings is contact of the rolling elements with the raceway via a sufficient and continuous oil film under clean lubrication conditions

Fig. 1.1 plots the L_{10} life for each test condition with maximum surface contact pressure (P_{max}) and the number of repeated stresses applied on the ordinate and the abscissa, respectively.

In the figure, line L_{10} theoretical is the theoretical line obtained using the conventional life calculation formula. As maximum surface contact pressure decreases, the actual life line separates from the line created by using conventional theoretical calculation and moves towards longer life. This separation suggests the presence of fatigue load limit P_{II} below which no rolling fatigue occurs. This is better illustrated in Fig. 1.2.

Fig. 1.1 Life Test Result under Clean Lubrication Condition

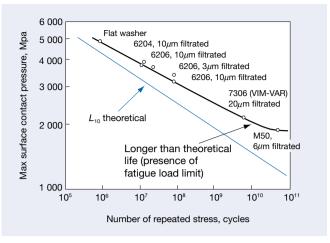
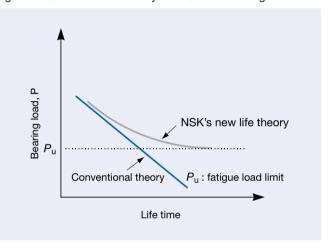
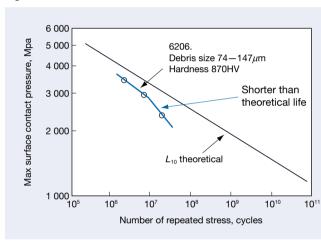



Fig. 1.2 NSK's New Life Theory That Considers Fatigue Limit

(2) Surface originated flaking

Under actual bearing operation, the lubricant is often contaminated with foreign objects such as metal chips, burrs, cast sand, etc.


When the foreign particles are mixed in the lubricant, the particles are pressed onto the raceways by the rolling elements and dents occur on the surfaces of the raceways and rolling elements. Stress concentration occurs at the edges of the dents, generating fine cracks, which over time, propagate into flaking of the raceways and rolling elements..

As shown in Fig. 1.3, the actual life is shorter than conventional calculated life, under conditions of contaminated lubrication at low max surface pressure. The actual life line separates from the line created by theoretical life calculations and moves towards a shorter life. This result shows that the actual life under contaminated lubrication is further shortened compared to the theoretical life because of the decrease in maximum surface contact pressure.

Table 1.3 Value of Contamination Coefficient a

	Very clean	Clean	Normal	Contaminated	Heavily contaminated
$a_{\rm c}$ factor	1	0.8	0.5	0.4-0.1	0.05
Application guide	10µm filtration	10–30µm filtration	30–100µm filtration	Greater than 100µm filtration or no filtration (oil bath, circulating lubrication, etc.)	No filtration, presence of many fine particles
Application examples	Sealed grease lubricated bearing for electrical appliances and information technology equipment, etc.	Sealed grease lubricated bearing for electric motors Sealed grease bearing for railway axle boxes and machine tools, etc.	Normal usage Automotive hub unit bearing. etc.	Bearing for automotive transmission; Bearing for industrial gearbox; Bearing for construction machine, etc.	_

Fig. 1.3 Life Test Result under Contaminated Lubrication Condition

Therefore, the NSK new life calculation formula considers the trend in the results of the life test under conditions of clean environment and at low load zone. Based on these results, the new life equation is a function of $(P-P_1)/C$, which is affected by specific lubrication conditions identified by the lubrication parameter. Also, it is assumed that effects of different types and shapes of foreign particles are strongly influenced by the bearing load and lubrication conditions present, and that such a relationship can be expressed as a function of the load parameter. This relationship of the new life calculation formula is defined by $(P-P_{\parallel})/C \cdot 1/a_{c}$.

Calculation formula for surface originated flaking, based on the above concept, is as follows:

$$1n\frac{1}{S} \propto N^{e} \int_{V}^{\bullet} \frac{(\tau - \tau_{u})^{c}}{Z_{o}^{h}} dV \times \left\{ \frac{1}{f(a_{c}, a_{L})} - 1 \right\}$$

V = stress volume

The contamination coefficient in terms of lubrication cleanliness is shown in Table 1.3. Test results on ball and roller bearings with grease lubrication and clean filtration show the life as being a number of times longer than that of the contaminated calculation. Yet when the foreign object is harder than Hv350, hardness becomes a factor and a dent appears on the raceway. Fatique damage from these dents, can progress to flaking in a short time. Test results on ball and roller bearings under conditions of foreign object contamination show from 1/3 to 1/10 the life when compared with conventionally calculated life.

Based on these test results, the contamination coefficient ac is classified into five steps for NSK's new life theory.

(3) New life calculation formula.

The following formula, which combines sub-surface originated flaking and surface originated flaking, is proposed as the new life calculation formula.

$$1n\frac{1}{S} \propto N^{e} \int_{V}^{\bullet} \frac{(\tau - \tau_{u})^{c}}{Z_{o}^{h}} dV \times \left\{ \frac{1}{f(a_{c}, a_{L})} \right\}$$

$$L_{\text{able}} = a_1 \cdot a_{\text{NSK}} \cdot L_{10}$$

Life Correction Factor ansk

The life correction factor a_{nsk} is the function of lubrication parameter $(P-P_{\parallel})/C \cdot 1/a_{c}$ as shown below.

$$a_{\text{NSK}} \propto F \left\{ a_{\text{L}}, i \left(\frac{P - P_{\text{u}}}{C \cdot a_{\text{c}}} \right) \right\}$$

NSK's new life theory considers the life extending affect of improved material and heat treatment by correcting the contamination factor a_c . The theory also utilizes viscosity ratio k $(k = v/v_1)$ where v is the operational viscosity and v_1 the required viscosity) because the lubrication parameter a changes with the degree of oil film formation, based on the lubricant and operating temperature. The theory indicates that the better the lubrication conditions (higher k) the longer the life.

Figures 1.4 and 1.5 show the diagrams of the correction factor $a_{\rm nsk}$ as a function of the new life calculation formula. Also in this new life calculation formula, point contact and line contact are considered separately for ball and roller bearings respectively.

New Life Calculation Formula Lable

The concept of new life calculation formula is simplified into one factor as shown by the formula below in which conventional life calculation formula (L_{10}) is multiplied with correction factor (a_{NSK}) and reliability factor (a₁; Table 1.4)

$$L_{\text{able}} = a_1 \cdot a_{\text{NSK}} \cdot L_{10}$$

Table 1.4 Reliability Factor

Table III Hellar	Jiney I de					
Reliability (%)	90	95	96	97	98	99
Reliability Factor	1.00	0.62	0.53	0.44	0.33	0.21

New Life Theory Applied to Precision Bearings for **Machine Tools**

When the new life calculation formula is applied to precision bearings, a_{NSK} is determined to be:

This is based on NSK Precision bearings made with standard Z steel, used with grease lubrication or with lubricant of VG22 -VG68 viscosity, in a clean environment.

Fig. 1.4 New Life Calculation Diagram for Ball Bearings

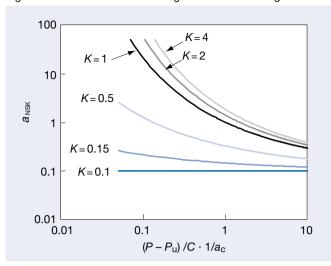
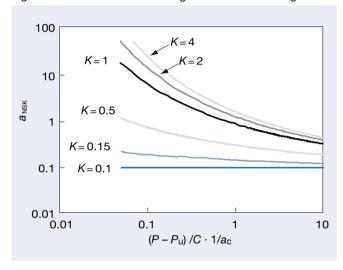



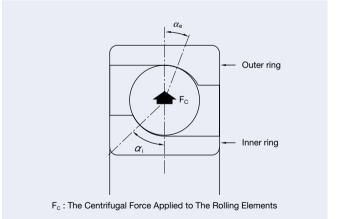
Fig. 1.5 New Life Calculation Diagram for Roller Bearings

To Access the NSK Calculation Tools

Visit our website at http://home2.nsk.com/index2.html

Life of High Speed Bearings

When bearings operate at high speed, in addition to the external load, the internal load generated by the centrifugal force acting on the rolling element must be taken into account. A computer should be used for the calculation of the load conditions on bearings operation at high speeds. (in excess of $800,000 d_{\rm m} n$


Balance among the forces acting on the rolling elements and inner/outer rings as well as changes in contact angle are obtained by using convergence calculations(1), based on the load condition of the bearing (radial load, axial load, centrifugal force on rolling elements, etc.).

Life is initially calculated for each individual rolling elements under load between inner and outer ring and then the life of the entire single row of bearing is obtained.

(1) Convergence calculations allow NSK to calculate with great accuracy the centrifugal force exerted on balls and to actually perform load calculations for each rolling element.

For life calculations on bearings used in high speed applications, please contact NSK.

Fig. 1.6 Change in Contact Angle Due to Centrifugal Force.

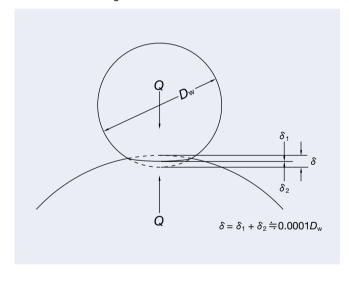
Life of Ceramic Hybrid Bearings

 $C_{\rm r}$, $C_{\rm or}$ valves and $L_{\rm 10}$ standards do not exist in ISO281 for ceramic bearings.

However, ceramic bearing life tends to be longer than that of conventional steel ball bearings, under the same appropriate operating conditions.

This may be especially true in the situations where the centrifugal force on the balls are significant.

Static Load Ratings


When subjected to an excessive load or a strong shock load, rolling bearings may incur a local permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. The nonelastic deformation increases in area and depth as the load increases, and when the load exceeds a certain limit, the smooth running of the bearing is impeded.

The basic static load rating is defined as that static load which produces the following calculated contact stress at the center of the contact area between the rolling element subjected to the maximum stress and the raceway surface.

For ball bearings: 4 200MPa For roller bearings: 4 000MPa

In this most heavily contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element's diameter. The basic static load rating C_0 is written C_{0r} for radial bearings and C_{0a} for thrust bearings in the bearing tables.

Fig. 2.1 The Relation between Indentations and Basic Static Load Rating

Static Equivalent Loads

The static equivalent load is a hypothetical load that produces a contact stress equal the above maximum stress under actual conditions, while the bearing is stationary (including very slow rotation or oscillation), in the area of contact between the most heavily stressed rolling element and bearing raceway.

The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static axial load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings.

Static equivalent load on radial bearings.

The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings.

$$P_0 = X_0 F_r + Y_0 F_a$$
$$P_0 = F_r$$

Static equivalent load on thrust bearings

$$P_0 = X_0 F_r + F_a \quad \alpha \neq 90^\circ$$

Table 2.1 Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$

Contact	Singl	0.5 0.42 1 0.84 0.5 0.38 1 0.76 0.5 0.33 1 0.66			where
Angle	X_0	Y_0	X_0	Y_0	P_0 : Static equivalent load (N)
15	0.5	0.46	1	0.92	F _r : Radial load (N)
18	0.5	0.42	1	0.84	1
25	0.5	0.38	1	0.76	F_a : Axial load (N)
30	0.5	0.33	1	0.66	X_0 : Static radial load factor
40	0.5	0.26	1	0.52	Y_0 : Static axial load factor
					10. Otalic axiai load lactor

When single or DT mounting and $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$

Permissible Static Load Factor

The permissible static equivalent load on bearings varies depending on the basic static load rating and also their application and operating conditions.

The permissible static load factor is a safety factor that is applied to the basic static load rating, and it is defined by the ratio in equation bellow.

$$f_{\rm S} = (C_0/P_0)$$

where

 C_0 : Basic static load rating (N)

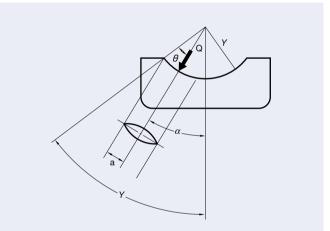
P₀: Static equivalent load (N)

Table 2.2 Values of Permissible Static Load Factor f_s

Operating conditions	Lower limit of f _s						
Operating conditions	Ball bearings	Roller bearings					
Low-noise applications	2.0	3.0					
Bearings subjected to	1.5	2.0					
vibration and shock loads	1.5	2.0					
Standard operating conditions	1.0	1.5					

Permissible Axial Loads

In order to optimize bearing performance, NSK has defined the permissible axial loads statistically, based on the following 2 situations:


- 1 --The limiting load at which a contact ellipse is generated between the ball and raceway due to a change in the contact angle when a radial bearing, which is under an axial load, rides over the shoulder of the raceway groove.
- 2 -- The value of a static equivalent load P_0 which is determined from the basic static load rating C_0 using static axial load factor Y_0 .

The permissible axial loads is determined by the lower of the two values defined above.

This value has been proven through experience, and includes a safety factor .

(Refer to the bearing tables for permissible axial loads)

Fig. 2.2 Contact Ellipse and the Limiting Axial Loads

128|**NSK**|129

Angular Contact Ball Bearings Combinations Available

Normally, NSK supplies matched super precision angular contact ball bearings as 2, 3, and 4 row combinations. The combinations available for the fixed end of spindles are usually 2 rows (DB), 3 rows (DBD), and 4 rows (DBB) sets. However, in the case of 3 row combinations, since the preload distribution to each bearing is not equal, the optimum preload setting range is very limited making them unsuitable for high speed applications.

Matched bearings are manufactured as sets, so when they are mounted adjacent to each other, a given preload is automatically obtained. The variation per pair of matched bearings for bore and outer diameters is adjusted to less than 1/3 of the permissible tolerance.

Table 3.1 Features of Each Combination

	DB	DF	DT	DBD	DBB
Load direction	⇔	⇔	→	⇔	⇔
Moment stiffness	0	0	Δ	0	©
Speed capability	0	0	©	Δ	0
Heat generation	0	0	©	Δ	0
Stiffness	0	0	Δ	0	<u></u>

©Excellent ©Very good ○Good △Fair →One direction only ⇔Two directions

Features of Each Combination

Back-to-back Arrangement, DB

Axial loads in both directions and radial loads can be sustained. Since the distance between the effective load centers is large, this type is suitable if moments are applied. However, if accuracy of housing is not enough and there is a misalignment in the spindle, internal loads of bearings could be large enough to possibly cause premature failure due to greater moment stiffness.

• Face-to-face Arrangement, DF

Compared with the DB type, the distance between the effective load centers is small, so the capacity to sustain moments is inferior to the DB type.

On the other hand, this type is suitable for using with housings that have less accuracy or larger shaft deflections due to low bending stiffness of shaft.

Tandem Arrangement, DT

Axial loads in one direction and radial loads can be sustained. Since axial stiffness of this type is twice the value of a single row type, this arrangement is used when the axial load in one direction is heavy.

• 3 rows Arrangement, DBD

Axial loads in both directions and radial loads can be sustained.

However, the preload distribution to each bearing is not equal, and preload on the counter side (single side) is twice that of other side

Consequently, this type is unsuitable for high speed operation because of the large increase of internal load of the single side which could lead to bearing failure.

• 4 rows Arrangement, DBB

Axial loads in both directions and radial loads can be

In situations that have the same axial clearance as DB arrangement, preload and stiffness are twice that of the DB arrangement. Also, the permissible axial load of a 4 row arrangement is larger than that of a DB arrangement.

Fig. 3.1 The Distance between the Effective Load Centers of Back-to-back and Face-to-face Arrangements

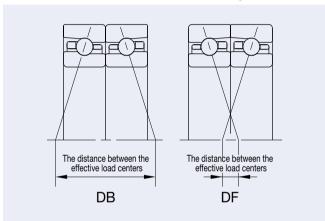


Fig. 3.2 Load Direction in Back-to-Back and Tandem Arrangements

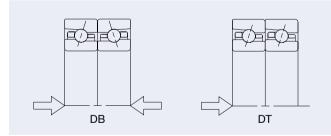
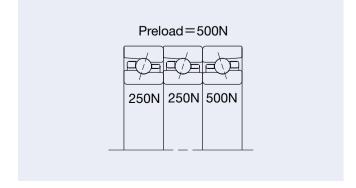



Fig. 3.3 Internal Preload in DBD Arrangement

Shaft Bending Comparison between Back-to-back and Face-to-face Arrangements

Moment stiffness is different between Back-to-back and Faceto-face arrangements as shown in the shaft bending comparison calculation example below. In this example, angular contact ball bearings (75BNR10XET) are used in the front side and the typically shaft deflections are shown for both DB and DF configurations. When 1 000N of radial load is applied on the spindle nose, radial displacements on the spindle nose are calculated as follows.

> $\sigma_{DR} = 2.4079 \times 10^{-2}$ $\sigma_{\rm DF}$ =2.9853 × 10⁻²

This demonstrates the effect of the distance between effective load centers on spindle bending.

Mounting Instructions for Angular Contact Ball Bearings — Matching Method

Direction of Matching

For matched bearings, the mounting order and load application direction are very important.

A "V" is marked on the bearings outer diameter surfaces as shown in the figure on the right. When the bearings are mounted so their marks correctly form a "V", they are properly matched and aligned.

On the side surface or chamfered part of the inner rings, the symbol "O" is marked to indicate the position of maximum radial runout. Optimum accuracy is achieved when the bearing is mounted so the "O" symbol is placed just opposite the position of shaft maximum eccentricity.

Fig. 3.5 The Symbol for the Position of Maximum Radial Runout of Inner Ring

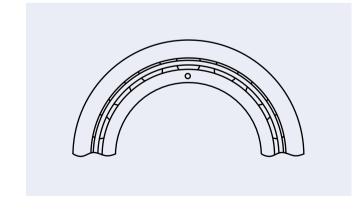


Fig. 3.4 Spindle Displacement Curve

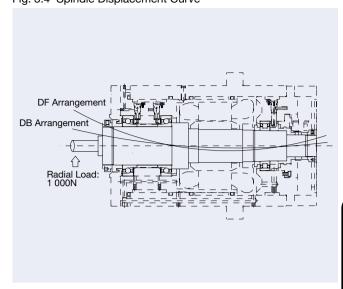
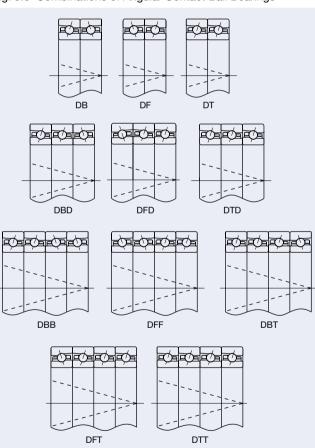
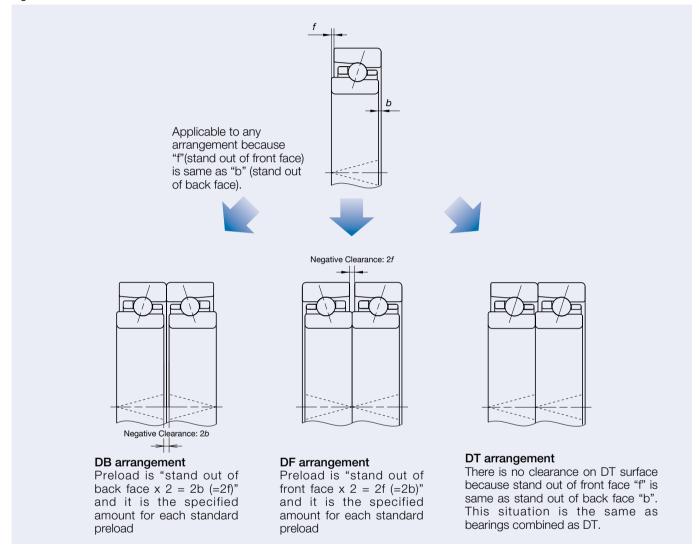



Fig. 3.6 Combinations of Angular Contact Ball Bearings



Universal Combination

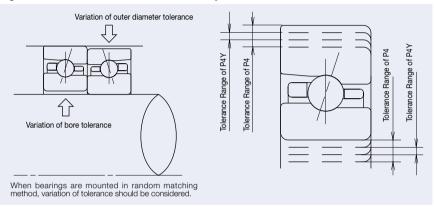
NSK supplies universal combination angular contact ball bearings that have the same amount of stand out on both the front and back face. This means that when bearings that have the same reference number are combined, they have the specified amount for each standard preload.

For universal combination bearings, the "V" combination marks on the outer diameter surface of outer ring prevent "direction" mistakes, ensure correct matching when they are mounted, and indicate the direction of the contact angle.

Fig. 3.7 Universal Combination

Difference between SU and DU Bearings

There are 2 types of NSK universal combination bearings as shown in the table below.


Table 3.2 Features of SU and DU Bearings

	SU	DU
Row of bearings	1	2
Variation of bore and	_	Controlled in 1/3 of tolerance
outer diameter tolerance	_	Controlled in 1/3 of tolerance

Notice for Use of Single Universal (SU) Bearings

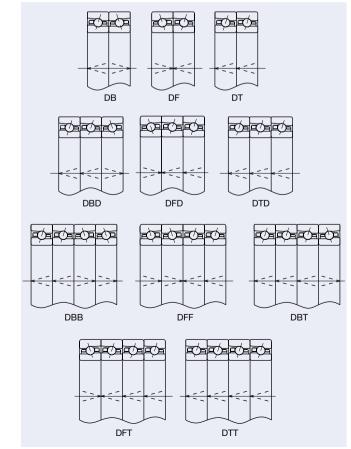

- •When these bearings are used as part of multiple combined bearings, it is recommended that the variation of bore and outer diameter tolerance is within 1/3 of tolerance range.
- ●There are also special bearings with special accuracy "P4Y" that can accommodate small variations of bore and outer diameter tolerance. "P4Y" tolerance has the same running accuracy as P4 but has a narrower tolerance range of bore and outer diameter than P4. It is suitable for "random matching method" universal combination bearings.
- •"P4Y" is suitable for use "random matching method" universal combination bearings. However, when these bearings are operated over 1 500 000 $d_m n$, there is a possibility that this very small variation of fits with either the shaft or the housing can cause bearing failure because of imbalance of internal load in each row. If these bearings are considered for such high speed applications, this issue should be taken into account.

Fig. 3.8 Tolerance of P4 and P4Y Accuracy

Combination Mark and Matching Method for Universal Combination Bearings

Fig. 3.9 Universal Bearings Combinations

Bore and Outer Diameter Tolerance (P4Y Accuracy)

Table 3.3 Tolerance of Bore Diameter of Inner Ring Unit: μm

Bore di	ameter	Р	4	P4Y (Controlled to medium value)			
Over	Incl	High	Low	High	Low		
30	50	0	- 6	-1	-3		
50	80	0	- 7	-2	- 5		
80	120	0	- 8	-3	-6		
120	150	0	-10	-3	- 7		

*Tolerances for bearings under 30mm bore are the same as values quoted between 30–50 mm bore.

Table 3.4 Tolerance of Outer Diameter of Outer Ring Unit: μm

Outer d	iameter	Р	4	P4Y (Controlled to medium value)			
Over	Incl	High	Low	High	Low		
50	80	0	- 7	-2	-6		
80	120	0	- 8	-2	- 6		
120	150	0	- 9	-3	- 7		
150	180	0	-10	-3	- 7		
180	200	0	-11	-4	-9		
200	Under 215	0	-11	-2	-9		

*Tolerances for bearings under 50mm outer diameter are the same as values quoted between 50–80 mm outer diameter.

Regarding the rigidity of machine tool spindles, it is possible to think of the bearings as being springs. Axial displacement, when an axial load is applied to the spindle, is determined by the axial rigidity of the fixed end bearings.

When high radial rigidity is required, cylindrical roller bearings are generally used. Axial loads are usually sustained by angular contact ball bearings. The bigger the contact angle of the angular contact ball bearings, the higher the axial rigidity. Bearings of the same bore size, which have more rolling elements (diameter series 0 or 9; or BNR10 or BNR19 series), have higher rigidity, even though the diameter or the rolling elements is smaller.

Normally, preload is applied to bearings in order to increase rigidity of machine tool spindles. But if the preload is excessively high, flaking and possible seizure will result. Many users increase rigidity by using a combination of two or more angular contact ball bearings. This is especially true for ball screw support bearings, where high rigidity is required, the contact angle is big, and preload is higher than that for a spindle. Axial loads are widely sustained with two or three bearings.

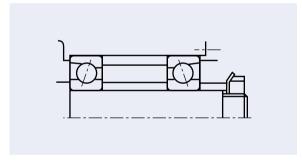
Purpose

The main purposes of preloaded bearings in a machine tool spindle are as follows;

- \cdot To improve and maintain the running accuracy of the shaft.
- · To increase bearing rigidity
- · To minimize noise due to axial vibration and resonance.
- · To prevent false brinelling.
- To prevent sliding between the rolling elements and raceways due to gyroscopic moments.
- To maintain the rolling elements in their proper position.

Usually a preload is applied to bearings by using two or more bearings in combination with each other, such as angular contact ball bearings or tapered roller bearings.

Cylindrical roller bearings can be preloaded by making the radial internal clearance negative.

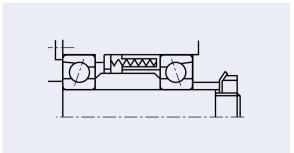

(1) Position Preload

A position preload is achieved by fixing two axially opposed bearings in a position that remains unchanged while in operation. In practice, the following three methods are generally used to obtain a position preload.

- 1. By installing a duplex bearing set with previously adjusted stand-out dimensions and axial clearance
- 2. By using a spacer or shim of proper size to obtain the required spacing and preload (see Fig. 4.1).
- 3. By utilizing bolts or nuts to allow adjustment of the axial preload (In this case, the starting torque should be measured to verify the proper preload. However, this method cannot be recommended for high precision machine tool spindles due to difficulty in verifying the proper

preload, thus risking vertical displacement (tilting) of the bearing.)

Fig. 4.1 Position Preload



(2) Constant Pressure Preload

A constant pressure preload is achieved using a coil or leaf spring.

Even if the relative position of the bearings change during operation, the magnitude of the preload remains relatively constant. An angular contact ball bearing arrangement for high speed rotation is shown in Fig. 4.2.

Fig. 4.2 Constant Pressure Preload

Change of Rigidity by Preload

Position Preload and Axial Rigidity

When the inner rings of the duplex bearings shown in Fig. 4.3 are fixed axially, bearing A and B are displaced δ_{aoA} and δ_{aoB} and axial space δ_{ao} between the inner rings is eliminated. With this condition, a preload F_{ao} is imposed on each bearing. The relation between axial load, F_a and displacement in a duplex set is shown in Fig. 4.4. Figures.4.5 and 4.6 illustrate the same concepts for a DBD arrangement.

Back-to-Back Arrangement (DB)

Fig. 4.3 Preloaded DB Arrangement

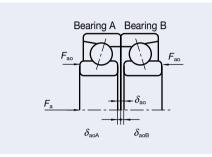
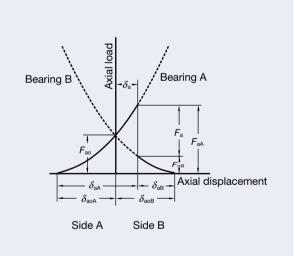



Fig. 4.4 Preloaded Axial Displacement of DB Arrangement

 $\begin{array}{ll} F_{a} & : \text{Axial load applied from outside} \\ F_{a^{\text{A}}} & : \text{Axial load imposed on bearing A} \\ F_{a^{\text{B}}} & : \text{Axial load imposed on bearing B} \\ \delta_{a} & : \text{Displacement of duplex set} \\ \delta_{a^{\text{A}}} & : \text{Displacement of bearing A} \\ \delta_{a^{\text{B}}} & : \text{Displacement of bearing B} \end{array}$

DBD Arrangement

Fig. 4.5 Preloaded DBD Arrangement

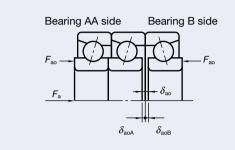
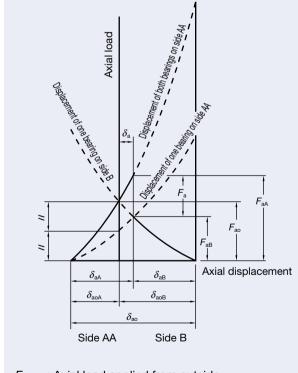



Fig. 4.6 Preloaded Axial Displacement of DBD Arrangement

 F_a : Axial load applied from outside F_{aA} : Axial load imposed on bearing AA

 $F_{\rm aB}$: Axial load imposed on bearing B $\delta_{\rm a}$: Displacement of triplex set

 δ_{aA} : Displacement of bearing AA δ_{aB} : Displacement of bearing B

Constant Pressure Preload and Axial Rigidity

Fig. 4.7 illustrates duplex bearing under constant pressure preload. The deflection curve of the spring is nearly parellel to the horizontal axis due to the rigidity of the springs being smaller than that of the bearing. As a result, rigidity under constant pressure preload is approximately equal to that for a single bearing with a preload of F_{ao} being applied to it.

Fig. 4.8 compares the rigidity of a bearing with position preloading and one with constant pressure preloading.

Fig. 4.7 Axial Displacement with Constant Pressure Preload

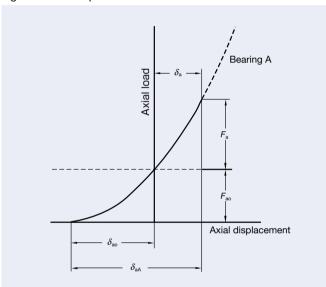
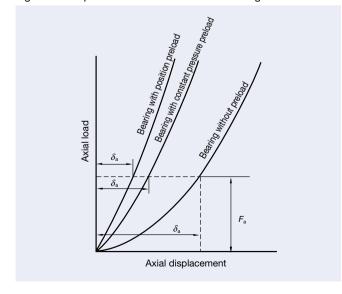



Fig. 4.8 Comparison of Stiffness and Preloading

Comparison of Preloading Methods

Position preload and constant pressure preload can be compared as follows:

- (1) When both of the preloads are equal, the position preload provides greater bearing rigidity. In other words, the deflection due to external loads is less for bearings with a
- (2) Under position preload, the preload varies depending on such factors as a difference in axial expansion due to a temperature difference between the shaft and housing, a difference in radial expansion due to a temperature difference between the inner and outer rings, and deflection due to load. Under constant pressure preload, it is possible to minimize any change in preload because the variation of the spring load with shaft expansion and contraction is negligible.

From the foregoing explanation, it is seen that position preloads are generally preferred for increasing rigidity while constant pressure preloads are more suitable for high speed applications.

Preload Amount

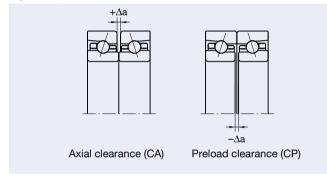
A larger preload results in higher rigidity. However, if preload is larger than necessary, abnormal heat is generated, which reduces fatigue life. In extreme cases, it may result in excessive wear or even seizure. Therefore, the amount of preload should be carefully studied and selected to avoid excessive preload while taking into consideration the type of application and the operating conditions.

High Speed Spindles and Preload

When bearings operate at high speed, the contact surface pressure between the balls and the inner and outer ring raceways increases due to expansion of the internal axial load caused by centrifugal force, generation of internal axial load caused by centrifugal force on the balls, and temperature difference between inner and outer rings. For bearings having a contact angle, such as angular contact ball bearings, pure rolling motion with sliding due to spin moments and gyroscopic moments on the balls may occur.

Sliding increases as bearing speed increases. As a result, the intensity of heat generated in the contact areas increases and the viscosity of the lubricating oil decreases. In some cases, a breakdown of the oil film occurs, resulting in complete seizure of the bearing. In other words, if the contact surface pressure at low speed operation is equal to that of high speed operation, then heat generation, which is due to sliding at high speeds, becomes more intense. This concept can be expressed quantitatively as a PV value, where P is the contact surface pressure, and V is the slip rate. The PV value can be applied to the rolling contact area of the bearing. If the PV value is constant, sliding is greater at high speed operation than at low speed operation. Whereas velocity is increased, it

becomes necessary to reduce the contact surface pressure. NSK can calculate contact surface pressure and slip rate generated during high speed operations by computer. Taking advantage of abundant empirical test data and actual market results, we can determine the preload according to limiting factors, which are based on the lubricating method and rotating speed. For operations exceeding a $d_m n$ value of 800,000, please contact NSK.


Special Clearance

For special clearance of combined angular contact ball bearings, NSK offers both CA and CP clearances.

CA: axial clearance (Clearance exists in the axial direction.)

CP: preload clearance (Preload is generated)

Fig. 4.9 Special Clearance

Preload Adjustment

When you change preload (for example "EL→L"), please adjust the difference of the measured axial clearance, by a spacer. (When increasing preload, inner spacer should be shorter, and outer spacer should be shorter when decreasing preload) Please refer Page 138–146 of the measured axial clearances. Please refer the measuring load of axial clearance to Table 4.1.

Table 4.1 Measuring load of axial clearance

Nominal Outside	Diameter (mm)	Massuring load (N)				
Over	Incl	Measuring load (N)				
*10	50	24.5				
50	120	49				
120	200	98				
200	_	196				

^{*} Applied to the bearing with the O. D. less htan 10mm.

Fig. 4.10 Radial Clearance in Double Row Cylindrical Roller Bearing and Variation of Rolling Fatigue Life

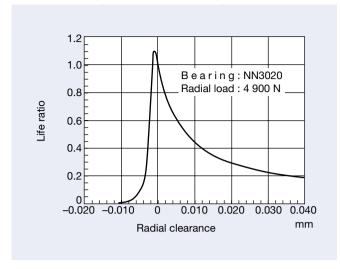
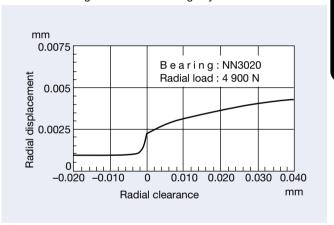



Fig. 4.11 Radial Clearance in Double Row Cylindrical Roller Bearing and Variation of Rigidity

Internal Clearance in Cylindrical Roller Bearings

In order for machine tool spindles to have high running accuracy and rigidity, bearings are used with minimum internal clearance or preload after mounted. Cylindrical roller bearings with tapered bores are usually used to allow easier adjustment of internal clearance. In general, cylindrical roller bearings for the front end (fixed end) of the spindle are adjusted to apply a preload during operating. Bearing for the rear end (free end) are adjusted when mounted to produce a slight clearance during operating. The amount of radial internal clearance after mounted is based on several factors such speed, load, lubricating method, bearing size, required rigidity, life, etc.

Fig. 4.10 illustrates the relation between radial internal clearance in a bearing and life. Fig. 4.11 shows the relation between radial internal clearance and radial elastic displacement of an NN3020 (Bore diameter 100mm, outside diameter 150mm, width 37mm).

Preload and Rigidity (DB and DF Arrangement)

High Precision Angular Contact Ball Bearing (Standard series)

Calculation of radial rigidity
Multiply axial rigidity by factors in table A.

Table A

15° 6.5 6.0 5.0 4.5 15° 6.5 6.0 5.0 4.5 18° 4.5 2.0 1.4

79 series, C angle

Nominal contact angle 15° Steel ball and Ceramic ball*

	Nicologi												
D Ml	Nominal	D	EL	to the total	D		tal Bratis	B	М		B	Н	Bratan
Bore Number	Bearing Bore	Preload		rial Rigidity	Preload	I AX	ial Rigidity	Preload		ial Rigidity	Preload	Ах	ial Rigidity
	(mm)	(N)		(N/μm)	(N)	(=)	(N/μm)	(N)		(N/μm)	(N)		(N/μm)
00	10	7	(5)	10	15	(2)	14	29	(-1)	19	59	(–6)	27
01	12	8.6	(4)	12	15	(2)	16	39	(-3)	24	78	(-8)	34
02	15	12	(3)	14	25	(0)	20	49	(-4)	26	100	(-11)	38
03	17	12	(3)	15	25	(0)	20	59	(–5)	30	120	(-12)	43
04	20	19	(1)	19	39	(-3)	26	78	(–8)	35	150	(-15)	48
05	25	19	(1)	21	39	(-2)	28	100	(-9)	43	200	(-17)	61
06	30	24	(0)	25	49	(-3)	33	100	(–9)	45	200	(-16)	65
07	35	34	(2)	29	69	(-2)	39	150	(-9)	55	290	(-18)	78
08	40	39	(1)	32	78	(-3)	42	200	(-12)	63	390	(-22)	88
09	45	50	(0)	37	100	(-5)	50	200	(-12)	66	390	(-21)	94
10	50	50	(0)	39	100	(-4)	51	250	(-14)	78	490	(-24)	111
11	55	60	(-1)	45	120	(–6)	58	290	(-15)	90	590	(-26)	127
12	60	60	(-1)	46	120	(–5)	60	290	(-14)	93	590	(-25)	128
13	65	75	(-2)	53	150	(-7)	71	340	(-16)	104	690	(-27)	146
14	70	100	(-4)	59	200	(-10)	79	490	(-22)	119	980	(-35)	168
15	75	100	(-4)	61	200	(-10)	88	490	(–21)	120	980	(-35)	171
16	80	100	(-4)	62	200	(-9)	80	490	(–21)	124	980	(-34)	173
17	85	145	(-6)	73	290	(-13)	97	640	(-25)	138	1 270	(-41)	191
18	90	145	(-3)	79	290	(-9)	102	740	(-23)	156	1 470	(-39)	219
19	95	145	(-3)	81	290	(–9)	105	780	(-24)	165	1 570	(-40)	231
20	100	195	(-5)	83	390	(-13)	112	880	(-27)	164	1 770	(-46)	231
21	105	195	(-5)	86	390	(–13)	116	880	(–27)	167	1 770	(–45)	235
22	110	195	(-5)	89	390	(–13)	120	930	(-27)	173	1 860	(-45)	244
24	120	270	(-8)	102	540	(-17)	135	1 270	(-35)	200	2 550	(-56)	278
26	130	320	(-10)	108	640	(-20)	148	1 470	(-38)	214	2 940	(-61)	302
28	140	320	(-10)	111	640	(–19)	150	1 470	(-37)	218	2 940	(-60)	309
30	150	395	(-7)	124	790	(-18)	166	1 790	(-38)	239	3 560	(-63)	334
32	160	425	(-8)	134	855	(-19)	179	1 930	(-39)	258	3 840	(-64)	361
34	170	485	(–9)	151	970	(–20)	200	2 180	(-40)	288	4 310	(-65)	403
36	180	595	(- 12)	158	1 190	(-25)	211	2 650	(-48)	302	5 340	(-78)	425
38	190	605	(-12)	162	1 210	(–25)	217	2 790	(- 49)	315	5 600	(- 79)	443
40	200	785	(-16)	183	1 570	(–31)	244	3 570	(-58)	352	7 110	(-92)	493

79 series, A5 angle

Nominal contact angle 25° Steel ball and Ceramic ball*

	Nominal		EL			L			М			Н	
Bore Number	Bearing Bore	Preload	Axi	al Rigidity	Preload	l Ax	ial Rigidity	Preload	Ax	ial Rigidity	Preload	I Ax	ial Rigidity
	(mm)	(N)	(N/ <i>µ</i> m)	(N)		(N/μm)	(N)		(N/μm)	(N)		$(N/\mu m)$
00	10	9.8	(2) (1)	24	20	(1)	31	49	(-3)	44	100	(-6)	59
01	12	16		32	29	(-1)	40	59	(-3)	52	120	(- 7)	70
02	15	16	(1)	33	39	(-1)	46	78	(-4)	60	150	(-9)	78
03	17	19	(1)	34	39	(-1)	46	78	(-4)	62	150	(-8)	81
04	20	29	(0)	43	59	(-3)	60	120	(–6)	75	250	(-12)	103
05	25	34	(-1)	56	69	(-3)	70	150	(-7)	95	290	(–12)	123
06	30	39	(-1)	61	78	(-3)	77	150	(-6)	99	290	(-11)	131
07	35	50	(0)	70	100	(-3)	94	250	(-8)	127	490	(–15)	170
08	40	60	(-1)	72	120	(-3)	97	290	(-9)	139	590	(–16)	182
09	45	75	(-1)	87	150	(-4)	114	340	(-10)	160	690	(–17)	207
10	50	75	(-1)	94	150	(-4)	124	390	(-10)	175	780	(-18)	235
11	55	100	(-2)	112	200	(-5)	144	440	(-11)	198	880	(-18)	263
12	60	100	(–2)	117	200	(–5)	150	440	(-10)	198	880	(–18)	267
13	65	100	(-2)	125	200	(-5)	161	490	(-11)	223	980	(–18)	289
14	70	145	(-3)	138	290	(-7)	183	690	(-14)	249	1 370	(-24)	334
15	75	145	(-3)	142	290	(-7)	188	740	(-15)	267	1 470	(-24)	347
16	80	170	(-4)	156	340	(–8)	203	780	(–15)	274	1 570	(-25)	367
17	85	220	(–5)	172	440	(-9)	229	980	(-17)	306	1 960	(-29)	402
18	90	245	(-4)	188	490	(–8)	253	1 080	(-16)	340	2 160	(-27)	449
19	95	245	(-3)	195	490	(-8)	262	1 180	(-17)	363	2 350	(–28)	475
20	100	295	(–5)	197	590	(-10)	266	1 270	(–19)	346	2 550	(–31)	463
21	105	295	(-4)	203	590	(-9)	264	1 370	(-19)	368	2 750	(-32)	490
22	110	320	(-5)	222	640	(-10)	284	1 470	(-20)	391	2 940	(-33)	517
24	120	440	(-7)	244	880	(–13)	328	1 960	(-24)	441	3 920	(–39)	580
26	130	490	(-7)	262	980	(-14)	346	2 160	(-25)	460	4 310	(–41)	611
28	140	490	(-7)	273	980	(-13)	348	2 260	(-26)	479	4 510	(-42)	635
30	150	625	(-7)	308	1 250	(-14)	393	2 880	(-28)	540	5 860	(-47)	719
32	160	665	(-7)	330	1 330	(-14)	422	3 230	(-29)	592	6 290	(-47)	775
34	170	775	(-8)	376	1 550	(-15)	478	3 520	(-29)	653	7 110	(-48)	867
36	180	1 010	(-10)	397	2 020	(-19)	514	4 420	(-35)	693	8 830	(-57)	917
38	190	1 035	(-10)	409	2 070	(–19)	531	4 550	(-35)	717	9 110	(–57)	949
40	200	1 280	(-12)	453	2 560	(-22)	585	5 840	(-41)	801	11 620	(-66)	1 057

Calculation of preload and axial Table B rigidity for combination bearings Multiply by factors in table B. For radial rigidity, multiply the value obtained in table A with factors in table B.

DBD DBB Precoad factor 1.36 2 Axial rigidity 1.48 2 Radial rigidity 1.54 2

70 series, C angle

Nominal contact angle 15° Steel ball and Ceramic ball*

	Nominal		EL			L			M		H		
Bore Number	Bearing Bore	Preload		ial Rigidity	Preload		ial Rigidity	Preload	A۱	ial Rigidity	Preload		al Rigidity
	(mm)	(N)		(N/μm)	(N)		(N/ <i>μ</i> m)	(N)		(N/μm)	(N)		(N/ <i>µ</i> m)
00	10	12	(3)	12	25	(0)	17	49	(-5)	23	100	(-12)	32
01	12	12	(3)	14	25	(0)	18	59	(-6)	26	120	(-14)	37
02	15	14	(3)	16	29	(-1)	20	69	(-7)	29	150	(–16)	43
03	17	14	(2)	16	29	(-1)	21	69	(-7)	31	150	(-16)	45
04	20	24	(0)	21	49	(-4)	28	120	(-12)	42	250	(-22)	59
05	25	29	(-1)	24	59	(-5)	32	150	(-14)	48	290	(-24)	68
06	30	39	(1)	29	78	(–3)	39	200	(-13)	59	390	(–24)	83
07	35	60	(-1)	36	120	(-7)	49	250	(-16)	68	490	(-28)	94
80	40	60	(-1)	39	120	(–6)	51	290	(-17)	77	590	(-30)	110
09	45	75	(-3)	43	150	(–8)	58	340	(-19)	85	690	(-33)	121
10	50	75	(–2)	46	150	(–8)	63	390	(-20)	96	780	(-34)	136
11	55	100	(-4)	51	200	(-11)	69	490	(-24)	102	980	(-40)	145
12	60	100	(-4)	53	200	(-11)	70	540	(-26)	110	1 080	(-42)	158
13	65	125	(–6)	61	250	(-13)	82	540	(-24)	117	1 080	(–39)	164
14	70	145	(-7)	68	290	(-14)	88	740	(-30)	135	1 470	(–48)	190
15	75	145	(-7)	70	290	(-14)	92	780	(-31)	144	1 570	(–49)	202
16	80	195	(–6)	76	390	(-14)	103	930	(-31)	152	1 860	(–52)	216
17	85	195	(-6)	78	390	(-14)	106	980	(-32)	161	1 960	(–52)	225
18	90	245	(–8)	87	490	(-18)	117	1 180	(-37)	172	2 350	(-60)	242
19	95	270	(-9)	93	540	(-19)	124	1 180	(-36)	176	2 350	(–58)	246
20	100	270	(-9)	97	540	(-18)	127	1 270	(-37)	187	2 550	(–60)	264
21	105	320	(-11)	103	640	(-21)	134	1 470	(-42)	198	2 940	(–67)	277
22	110	370	(-13)	104	740	(-25)	137	1 770	(-49)	203	3 530	(–78)	286
24	120	415	(-14)	116	830	(-26)	153	1 960	(-50)	225	3 920	(–79)	317
26	130	490	(-16)	126	980	(-29)	167	2 260	(-54)	244	4 510	(–85)	344
28	140	500	(-11)	132	1 000	(-24)	174	2 210	(-47)	248	4 420	(-77)	349
30	150	575	(-13)	141	1 150	(-27)	187	2 560	(-52)	267	5 100	(-84)	374
32	160	625	(-14)	147	1 250	(-29)	197	2 930	(-57)	288	5 840	(-90)	403
34	170	780	(-18)	160	1 560	(-35)	213	3 560	(-66)	309	7 150	(-104)	435
36	180	930	(-21)	179	1 860	(-39)	238	4 160	(-71)	342	8 320	(-111)	479
38	190	1 030	(-23)	188	2 060	(-42)	251	4 640	(-76)	360	9 340	(-119)	507
40	200	1 150	(-25)	198	2 300	(-45)	264	5 170	(-81)	379	10 350	(-126)	533

70 series, A5 angle

Nominal contact angle 25° Steel ball and Ceramic ball*

	Nominal	EL				1			М		Н			
Bore Number	Bearing Bore	Preload	Axial Rigidity		Preload	- Ax	ial Rigidity	Preload	Axial Rigidity		Preload	Axial Rigidity		
	(mm)	(N)		(N/μm)	(N)		(N/μm)	(N)		(N/µm)	(N)		$(N/\mu m)$	
00	10	19	(1)	29	39	(-2)	41	78	(-5)	51	150	(-10)	67	
01	12	19	(1)	31	39	(-2)	45	100	(-6)	60	200	(-12)	81	
02	15	19	(1)	33	39	(- 1)	43	100	(- 6)	65	200	(-11)	84	
03	17	24	(0)	41	49	(- 2)	52	120	(- 7)	75	250	(-13)	99	
04	20	39	(- 1)	51	78	(-4)	68	200	(- 10)	97	390	(-17)	128	
05	25	50	(-2)	61	100	(-5)	79	200	(-9)	99	390	(-16)	133	
06	30	60	(-1)	68	120	(-4)	89	290	(-10)	129	590	(-18)	171	
07	35	75	(-1)	78	150	(-5)	107	390	(-12)	149	780	(-21)	198	
08	40	100	(-2)	95	200	(–6)	127	440	(-12)	168	880	(-21)	223	
09	45	100	(-2)	99	200	(–6)	132	490	(-13)	181	980	(-22)	238	
10	50	120	(-3)	118	250	(-7)	154	590	(-14)	208	1 180	(-24)	278	
11	55	170	(-4)	127	340	(-9)	170	780	(-18)	235	1 570	(-29)	307	
12	60	170	(-4)	134	340	(–9)	179	780	(-17)	241	1 570	(-28)	317	
13	65	195	(–5)	157	390	(-9)	196	880	(-18)	272	1 770	(-29)	356	
14	70	245	(–6)	170	490	(-11)	218	1 080	(-20)	293	2 160	(-33)	390	
15	75	245	(-6)	179	490	(-11)	229	1 180	(-21)	316	2 350	(-34)	418	
16	80	320	(–6)	187	640	(-11)	245	1 470	(-23)	343	2 940	(-37)	448	
17	85	320	(-5)	196	640	(-11)	257	1 470	(-22)	352	2 940	(-36)	462	
18	90	390	(-7)	218	780	(-13)	275	1 770	(-25)	374	3 530	(-41)	494	
19	95	415	(-7)	227	830	(-13)	287	1 860	(–25)	392	3 730	(-42)	525	
20	100	415	(-7)	235	830	(-13)	299	1 960	(-26)	417	3 920	(-42)	548	
21	105	490	(-8)	246	980	(-15)	317	2 260	(-28)	430	4 510	(-46)	571	
22	110	590	(-10)	258	1 180	(-18)	330	2 650	(-33)	447	5 300	(-53)	588	
24	120	635	(-10)	281	1 270	(-18)	361	2 940	(–33)	491	5 880	(-54)	654	
26	130	785	(-12)	305	1 570	(-20)	396	3 430	(-36)	536	6 860	(-58)	710	
28	140	785	(-9)	317	1 570	(-18)	413	3 660	(-35)	569	7 270	(-56)	750	
30	150	930	(-11)	351	1 850	(-20)	446	4 070	(-37)	601	8 250	(-61)	800	
32	160	1 080	(-12)	376	2 160	(-22)	482	4 700	(-40)	649	9 380	(-65)	858	
34	170	1 270	(-14)	401	2 550	(-25)	514	5 900	(-47)	707	11 600	(-75)	929	
36	180	1 550	(-16)	450	3 100	(-28)	577	6 820	(-50)	779	13 560	(-80)	1 028	
38	190	1 660	(-17)	460	3 320	(-29)	599	7 560	(-53)	819	15 130	(-85)	1 084	
40	200	1 850	(–18)	493	3 700	(–31)	631	8 360	(–56)	860	16 820	(-90)	1 141	

*When a ceramic ball is used, Preload and axial rigidity value will be 1.2 times the value of steel ball. The value in () shows a measured axial clearance.

Preload and Rigidity (DB and DF Arrangement) High Precision Angular Contact Ball Bearing

Calculation of radial rigidityMultiply axial rigidity by factors in table A.

Table A EL L M H 15° 6.5 6.0 5.0 4.5 18° 4.5 2.0 1.4

70 series, A angle Nominal contact angle 30° Steel ball

(Standard series)

	Nominal	EL				1			М			Н	
Bore Number	Bearing Bore	Preload		xial Rigidity	Preload	Preload Axial Rigidity		Preload Axial Rigidity				xial Rigidity	
20.0	(mm)	(N)		$(N/\mu m)$	(N)		$(N/\mu m)$	(N)		$(N/\mu m)$	(N)	, .	$(N/\mu m)$
00	10	25	(0)	44	100	(-5)	71	210	(-10)	94			
01	12	25	(0)	48	110	(-5)	78	220	(-10)	104	_		_
02	15	25	(0)	50	110	(-5)	85	240	(-10)	113	_		_
03	17	25	(0)	52	120	(-5)	91	250	(-10)	122	_		_
04	20	25	(0)	58	130	(-5)	103	280	(-10)	139	470	(-15)	170
05	25	25	(0)	61	140	(-5)	111	290	(-10)	149	510	(-15)	183
06	30	50	(0)	85	190	(-5)	138	390	(-10)	180	640	(-15)	217
07	35	50	(0)	92	210	(–5)	150	420	(-10)	196	700	(-15)	237
80	40	50	(0)	100	220	(–5)	168	460	(-10)	220	760	(-15)	267
09	45	50	(0)	103	230	(-5)	175	480	(-10)	230	1 180	(-20)	324
10	50	50	(0)	110	250	(-5)	194	530	(-10)	255	1 270	(-20)	360
11	55	50	(0)	112	250	(-5)	196	880	(-15)	311	1 270	(-20)	360
12	60	50	(0)	116	250	(–5)	205	930	(–15)	327	1 370	(-20)	380
13	65	50	(0)	124	270	(-5)	224	980	(-15)	360	1 470	(-20)	417
14	70	50	(0)	127	270	(–5)	230	1 080	(-16)	370	2 060	(-25)	482
15	75	50	(0)	131	280	(-5)	241	1 080	(-15)	387	2 160	(-25)	505
16	80	100	(0)	168	760	(–10)	340	1 770	(-20)	464	3 040	(-30)	572
17	85	100	(0)	173	780	(-10)	355	1 860	(-20)	486	3 240	(-30)	600
18	90	100	(0)	174	780	(-10)	358	2 450	(-25)	542	3 920	(-35)	650
19	95	100	(0)	180	810	(-10)	372	2 550	(-25)	568	4 120	(-35)	680
20	100	100	(0)	185	840	(-10)	368	2 750	(-25)	595	4 310	(-35)	713
21	105	100	(0)	185	840	(-10)	388	2 750	(-25)	591	4 310	(-35)	707
22	110	100	(0)	180	1 320	(-15)	443	3 330	(-30)	620	5 980	(-45)	774
24	120	100	(0)	193	1 470	(–15)	486	3 630	(-30)	683	6 570	(-45)	853
26	130	100	(0)	200	1 470	(–15)	507	4 710	(-35)	772	7 940	(-50)	942
28	140	200	(0)	206	1 770	(-15)	557	5 300	(-35)	828	8 730	(-50)	1 005
30	150	200	(0)	256	1 830	(-15)	573	5 850	(-37)	876	11 700	(-60)	1 146
32	160	200	(0)	260	1 880	(-15)	591	5 545	(-35)	870	12 070	(-60)	1 143
34	170	200	(0)	262	2 669	(-20)	669	6 024	(-37)	899	12 048	(-60)	1 178
36	180	200	(0)	273	3 580	(-24)	778	7 157	(-40)	1 001	14 314	(-64)	1 311
38	190	200	(0)	276	3 851	(-25)	809	8 081	(-43)	1 060	16 162	(-69)	1 389
40	200	200	(0)	279	5 012	(-30)	902	13 314	(–60)	1 294	26 628	(-95)	1 708

The value in () shows a measured axial clearance.

Calculation of preload and axial Table B rigidity for combination bearings
Multiply by factors in table B. For radial rigidity, multiply the value obtained in table A with factors in table B.

DBD DBB 1.36 2 1.48 2 Preload factor Axial rigidity Radial rigidity 1.54 2

72 series, C angle Nominal contact angle 15° Steel ball

	Nominal				L				М		Н		
Bore Number	Bearing Bore	Preload		ial Rigidity	Preload		ial Rigidity	Preload	Axi	al Rigidity	Preload		ial Rigidity
	(mm)	(N)		(N/μm)	(N)		(N/ <i>μ</i> m)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>μ</i> m)
00	10	14	(3)	13	29	(-1)	18	69	(-8)	27	150	(-18)	38
01	12	19	(1)	16	39	(-3)	21	100	(-12)	33	200	(-22)	46
02	15	19	(1)	17	39	(-3)	23	100	(-11)	34	200	(–21)	48
03	17	24	(0)	19	49	(-4)	25	150	(-16)	42	290	(-28)	59
04	20	34	(-2)	23	69	(-7)	30	200	(-20)	49	390	(-33)	70
05	25	39	(1)	26	78	(-4)	36	200	(–15)	53	390	(-26)	76
06	30	60	(-1)	32	120	(–8)	43	290	(–20)	66	590	(-35)	94
07	35	75	(-3)	37	150	(-10)	50	390	(-25)	75	780	(-43)	108
08	40	100	(–5)	44	200	(-13)	60	490	(-29)	90	980	(–47)	126
09	45	125	(-7)	49	250	(–16)	67	540	(-30)	94	1 080	(–49)	132
10	50	125	(-7)	52	250	(–15)	69	590	(–31)	102	1 180	(–50)	143
11	55	145	(–8)	56	290	(-17)	74	780	(-38)	117	1 570	(-60)	163
12	60	195	(–11)	64	390	(-22)	86	930	(–42)	126	1 860	(–67)	179
13	65	220	(–12)	71	440	(-23)	95	1 080	(-44)	141	2 160	(-70)	200
14	70	245	(-9)	75	490	(-20)	100	1 180	(-43)	148	2 350	(–69)	210
15	75	270	(-10)	81	540	(-21)	108	1 230	(-42)	157	2 450	(-68)	220
16	80	295	(–12)	83	590	(-24)	109	1 370	(-47)	159	2 750	(-76)	224
17	85	345	(–14)	88	690	(-27)	120	1 670	(–53)	177	3 330	(–85)	251
18	90	390	(–15)	97	780	(-29)	126	1 860	(–57)	187	3 730	(-90)	263
19	95	440	(–18)	98	880	(-33)	130	2 060	(-63)	192	4 120	(-99)	271
20	100	490	(-20)	101	980	(-36)	137	2 350	(-68)	202	4 710	(-107)	285
21	105	540	(–21)	108	1 080	(-38)	144	2 650	(-73)	216	5 300	(-114)	305
22	110	635	(-24)	117	1 270	(-43)	156	2 940	(–78)	228	5 880	(-121)	321
24	120	700	(–19)	128	1 400	(-38)	170	3 210	(-73)	247	6 350	(-116)	345
26	130	760	(-20)	138	1 520	(-39)	183	3 400	(-73)	262	6 740	(-116)	367
28	140	925	(-24)	152	1 850	(–45)	202	4 110	(–82)	288	8 300	(-131)	406
30	150	1 110	(–28)	167	2 220	(-51)	222	4 960	(-92)	318	9 970	<u>(–145)</u>	447

72 series, A5 angle Nominal contact angle 25° Steel ball

	Nominal		EL		L		М	Н		
Bore Number	Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity	Preload	Axial Rigidity	Preload	Axial Rigidity	
	(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>μ</i> m)	(N)	(N/ <i>μ</i> m)	(N)	(N/ <i>µ</i> m)	
00	10	19	(1) 29	39	(–2) 41	100	(-7) 58	200	(-13) 73	
01	12	29	(-1) 36	59	(–3) 49	150	(-9) 70	290	(-16) 92	
02	15	34	(-1) 43	69	(–4) 57	200	(-11) 83	390	(–19) 111	
03	17	39	(-1) 46	78	(-4) 60	200	(-11) 87	390	(-18) 116	
04	20	60	(-3) 59	120	(-6) 73	290	(-14) 104	590	(-24) 140	
05	25	75	(–2) 68	150	(–5) 90	340	(-12) 124	690	(–22) 167	
06	30	100	(–3) 85	200	(–7) 107	440	(-15) 147	880	(-25) 192	
07	35	125	(-4) 95	250	(–8) 118	590	(-18) 167	1 180	(-30) 218	
08	40	145	(-4) 104	290	(–9) 136	740	(-20) 195	1 470	(-33) 258	
09	45	170	(–5) 115	340 (-	-10) 147	880	(–22) 212	1 770	(–37) 280	
10	50	195	(-6) 129	390 (-	-11) 163	980	(-23) 233	1 960	(-37) 306	
11	55	245	(-7) 141	490 (-	-13) 181	1 180	(-26) 255	2 350	(-42) 337	
12	60	295	(–8) 155	590 (-	-15) 202	1 470	(-29) 281	2 940	(-47) 374	
13	65	345	(–9) 177	690 (-	-15) 221	1 670	(-30) 314	3 330	(-48) 414	
14	70	390	(-8) 188	780 (-	-15) 238	1 860	(-30) 331	3 730	(-49) 438	
15	75	415	(-8) 199	830 (-	-15) 253	1 960	(-30) 352	3 920	(-49) 466	
16	80	465	(-9) 200	930 (-	-17) 258	2 160	(-33) 356	4 310	(-54) 472	
17	85	540	(-10) 217	1 080 (-	-19) 283	2 450	(-35) 383	4 900	(–57) 507	
18	90	635	(-12) 239	1 270 (-	-21) 304	2 940	(-39) 416	5 880	(-64) 556	
19	95	685	(-13) 240	1 370 (-	-23) 308	3 140	(-42) 419	6 280	(-68) 557	
20	100	785	(-14) 251	1 570 (-	-25) 325	3 530	(-45) 441	7 060	(-73) 587	
21	105	885	(-15) 267	1 770 (-	-27) 348	3 920	(-48) 471	7 850	(-77) 624	
22	110	980	(-16) 280	1 960 (-	-29) 368	4 410	(-51) 496	8 830	(-82) 660	
24	120	1 140	(-15) 315	2 280 (-	-28) 409	5 180	(- 52) 559	10 350	(- 85) 739	
26	130	1 200	(-15) 334	2 410 (-	-28) 435	5 500	(–52) 595	11 000	(–83) 788	
28	140	1 480	(-18) 373	2 970 (-	-32) 481	6 650	(-58) 654	13 480	(-93) 870	
30	150	1 810	(-21) 416	3 620 (-	-36) 532	7 990	(-64) 719	16 350	(-104) 960	

The value in () shows a measured axial clearance.

140 **NSK NSK** 141

Preload and Rigidity (DB and DF Arrangement)

High Precision Angular Contact Ball Bearing (Standard series)

Calculation of radial rigidityMultiply axial rigidity by factors in table A.

Table A EL L M H 15° 6.5 6.0 5.0 4.5 18° 4.5 25° 2.0 30° 1.4 40° 0.7 2.0 1.4

72 series, A angle Nominal contact angle 30° Steel ball

	Nominal		EL		1	М			Н
Bore Number	Bearing Bore	Preload	Axial Rigidity	Preload	- Axial Rigidity	Preload	Axial Rigidity	Preload	Axial Rigidity
	(mm)	(N)	(N/μm) ´	(N)	(N/ <i>μ</i> m)	(N)	$(N/\mu m)$	(N)	(N/ <i>µ</i> m)
00	10	25	(0) 44	100	(-5) 71	210 (-10	0) 94	_	_
01	12	25	(0) 47	110	(- 5) 78	220 (-10	O) 103	360	(-15) 125
02	15	25	(0) 50	110	(–5) 85	240 (-10	O) 114	390	(-15) 139
03	17	25	(0) 52	190	(–5) 108	250 (-10	0) 120	410	(-15) 145
04	20	25	(0) 55	260	(-10) 128	440 (-1	5) 155	650	(-20) 180
05	25	50	(0) 79	350	(-10) 160	580 (-1	5) 193	840	(-20) 223
06	30	50	(0) 85	380	(-10) 175	630 (-1	5) 210	910	(-20) 423
07	35	50	(0) 88	400	(-10) 184	660 (-1		1 270	(-25) 285
80	40	50	(0) 95	440	(-10) 205	730 (-1		1 470	(-26) 318
09	45	50	(0) 98	450	(-10) 212	1 080 (-20		1 860	(-30) 363
10	50	50	(0) 103	480	(-10) 227	1 180 (-20		2 060	(-30) 390
11	55	50	(0) 106	490	(-10) 235	1 670 (-26		2 650	(-35) 438
12	60	50	(0) 110	510	(-10) 246	1 670 (-2		2 750	(-35) 455
13	65	50	(0) 117	550	(-10) 270	1 860 (-2		3 040	(-35) 500
14	70	100	(0) 150	1 080	(-15) 345	2 650 (-30		3 920	(-40) 562
15	75	100	(0) 157	1 080	(-15) 366	2 750 (-30		4 220	(-40) 598
16	80	100	(0) 154	1 080	(-15) 355	2 650 (-30		4 020	(-40) 575
17	85	100	(0) 160	1 180	(-16) 370	3 430 (-3		5 790	(-50) 678
18	90	100	(0) 162	1 670	(–20) 434	4 310 (-40		5 980	(-50) 697
19	95	360	(-5) 248	1 670	(–20) 421	4 220 (-40	-,	6 670	(-55) 710
20	100	370	(-5) 252	1 670	(–20) 430	5 100 (-4		7 650	(-60) 758
21	105	380	(-5) 260	2 260	(–25) 493	5 200 (-4		8 920	(-65) 818
22	110	380	(-5) 266	2 350	(–25) 504	6 180 (-50		10 200	(-70) 871
24	120	550	(-5) 320	2 840	(–25) 570	8 140 (-5		11 570	(-70) 964
26	130	560	(-5) 340	3 730	(-30) 660	9 810 (–60		13 530	(–75) 1 068
28	140	580	(-5) 352	5 000	(-36) 750	11 470 (-6		15 490	(-80) 1 150
30	150	600	(-5) 366	5 000	(-35) 772	12 100 (-66	6) 1 063	16 500	(-81) 1 194

Small size angular contact ball bearing

Danina		EL			L			М			Н	
Bearing	Preload	Α	xial Rigidity	Preload	A	Axial Rigidity	Preload	A	Axial Rigidity	Preload	Α	xial Rigidity
Number	(N)		(N/μm)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)	(N)		(N/μm)
725C	1.3	(10)	4.0	5.5	(7)	7.3	12.1	(4)	10.3	24.2	(0)	14.4
725A	5.0	(3)	18.5	10.3	(2)	23.8	24.5	(0)	32.6	49.0	(-3)	42.5
706C	1.5	(10)	4.3	7.9	(6)	8.3	15.1	(3)	11.1	30.3	(-2)	15.4
706A	4.9	(3)	18.6	16.8	(1)	28.7	24.4	(0)	32.8	48.8	(-3)	42.4
726C	1.8	(9)	5.1	9.2	(5)	9.6	17.6	(2)	12.8	35.2	(-3)	27.8
726A	3.7	(3)	18.4	16.2	(1)	30.8	34.0	(-1)	40.3	68.0	(-4)	52.4
707C	1.8	(9)	5.1	9.2	(5)	9.6	17.6	(2)	12.8	35.2	(-3)	17.8
707A	3.7	(3)	18.4	16.2	(1)	30.8	34.0	(-1)	40.3	68.0	(-4)	52.4
708C	4.2	(7)	7.5	14.1	(3)	12.2	28.6	(-1)	16.7	57.1	(-7)	23.3
708A	8.1	(2)	26.3	24.5	(0)	38.8	46.4	(-2)	48.9	92.8	(-5)	63.4
728C	4.2	(7)	7.5	14.1	(3)	12.2	28.5	(-1)	16.7	57.0	(-7)	23.3
728A	8.1	(2)	26.3	24.5	(-1)	38.8	46.4	(-2)	48.9	92.9	(-5)	63.4

The value in () shows a measured axial clearance.

Ultra High Speed Angular Contact Ball Bearing (ROBUST series)

Calculation of preload and axial Tab rigidity for combination bearings
Preload and axial rigidity can be Preload and axial rigidity can be obtained by multipling factors in table B.

For radial rigidity, multiply the value obtained in table A with factors in

table B.

ıble B		DBD	DBB
	Preload factor	1.36	2
	Axial rigidity	1.48	2
	Radial rigidity	1.54	2

BNR19S Nominal contact angle 18° Steel ball

Nominal		EL			L			M			
Bearing Bore	Preload	Α	xial Rigidity	Preload	Ax	ial Rigidity	Preload	Ax	ial Rigidity		
(mm)	(N)		$(N/\mu m)$	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)		
25	25	(0)	26	94	(-8)	43	188	(-16)	57		
30	50	(0)	36	100	(–8)	48	200	(-15)	63		
35	50	(0)	37	140	(-8)	55	280	(-17)	73		
40	50	(0)	38	140	(–8)	57	280	(-16)	74		
45	50	(0)	41	150	(–8)	62	300	(-16)	82		
50	50	(0)	44	160	(-8)	68	320	(-16)	89		
55	50	(0)	46	170	(-8)	71	340	(-16)	94		
60	50	(0)	47	170	(-8)	74	340	(-16)	97		
65	50	(0)	50	180	(-8)	79	360	(-16)	104		
70	50	(0)	50	180	(–8)	80	360	(-16)	104		
75	50	(0)	52	180	(-8)	83	460	(-19)	117		
80	50	(0)	53	190	(-8)	86	474	(-19)	121		
85	50	(0)	54	190	(-8)	88	646	(-24)	138		
90	100	(0)	75	280	(-8)	110	709	(-21)	154		
95	100	(0)	76	290	(-8)	110	768	(-22)	163		
100	100	(0)	72	330	(-10)	110	871	(-26)	161		
105	100	(0)	74	330	(-10)	120	898	(-26)	166		
110	100	(0)	76	400	(-12)	130	925	(-26)	172		
120	100	(0)	78	410	(-12)	130	1 275	(-33)	198		
130	100	(0)	80	712	(-20)	160	1 408	(-35)	209		
140	100	(0)	82	732	(-20)	160	1 508	(-36)	220		
150	200	(0)	110	930	(-20)	185	1 894	(-38)	242		

BER19S Nominal contact angle 25° Steel ball

Nominal		EL			L			М	
Bearing Bore	Preload	Α	xial Rigidity	Preload	Ax	ial Rigidity	Preload	Axi	al Rigidity
(mm)	(N)		(N/ <i>µ</i> m)	(N)		(N/μm)	(N)	1)	V/ <i>μ</i> m)
25	25	(0)	42	150	(-8)	80	300	(-14)	105
30	25	(0)	58	160	(-8)	90	320	(-14)	116
35	50	(0)	61	210	(-8)	100	420	(-15)	132
40	50	(0)	63	220	(-8)	110	440	(-15)	137
45	50	(0)	67	240	(-8)	120	480	(-15)	152
50	50	(0)	72	250	(-8)	130	500	(-15)	164
55	50	(0)	75	260	(-8)	140	520	(-15)	174
60	50	(0)	78	270	(-8)	140	540	(-15)	181
65	50	(0)	82	290	(-8)	150	580	(-15)	196
70	50	(0)	83	290	(-8)	150	598	(-15)	198
75	50	(0)	86	300	(-8)	160	619	(-15)	206
80	50	(0)	88	310	(-8)	170	639	(-15)	214
85	50	(0)	90	310	(-8)	170	889	(-19)	245
90	100	(0)	120	430	(-8)	210	968	(-17)	273
95	100	(0)	130	440	(-8)	210	996	(-17)	282
100	100	(0)	120	520	(-10)	210	1 131	(-20)	279
105	100	(0)	120	530	(-10)	220	1 169	(-20)	290
110	100	(0)	130	550	(-10)	230	1 206	(-20)	301
120	100	(0)	130	680	(-12)	250	1 743	(-26)	351
130	100	(0)	135	972	(-16)	289	1 880	(-27)	368
140	100	(0)	135	1 002	(-16)	300	1 944	(-27)	381
150	200	(0)	175	1 308	(-17)	336	2 555	(-30)	428

The value in () shows a measured axial clearance.

142 **NSK NSK** 143

Preload and Rigidity

Preload and Rigidity (DB and DF Arrangement)
Ultra High Speed Angular Contact Ball Bearing

Calculation of radial rigidity
Multiply axial rigidity by factors
in table A.

BNR19H, BNR19X, BNR19XE Nominal contact angle 18° Ceramic ball

(ROBUST series)

Nominal Bearing Bore (mm)	-									
(mm) (N) (N/μm) (N) (N/μm) (N) (N/μm) 25 25 (0) 29 105 (-8) 51 210 (-15) 67 30 50 (0) 40 110 (-8) 55 220 (-15) 72 35 50 (0) 41 150 (-8) 64 300 (-16) 83 40 50 (0) 42 160 (-8) 66 320 (-17) 87 45 50 (0) 45 170 (-8) 72 340 (-16) 95 50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50	Nominal					L				
25	Bearing Bore	Preload	P	Axial Rigidity	Preload	Ax	kial Rigidity	Preload	Ax	ial Rigidity
30 50 (0) 40 110 (-8) 55 220 (-15) 72 35 50 (0) 41 150 (-8) 64 300 (-16) 83 40 50 (0) 42 160 (-8) 66 320 (-17) 87 45 50 (0) 45 170 (-8) 72 340 (-16) 95 50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 56 200 (-8) 91 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 </td <td>(mm)</td> <td>(N)</td> <td></td> <td>(N/<i>µ</i>m)</td> <td>(N)</td> <td></td> <td>(N/<i>µ</i>m)</td> <td>(N)</td> <td></td> <td>(N/<i>µ</i>m)</td>	(mm)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)
35 50 (0) 41 150 (-8) 64 300 (-16) 83 40 50 (0) 42 160 (-8) 66 320 (-17) 87 45 50 (0) 45 170 (-8) 72 340 (-16) 95 50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 <	25	25	(0)	29	105	(-8)	51	210	(-15)	67
40 50 (0) 42 160 (-8) 66 320 (-17) 87 45 50 (0) 45 170 (-8) 72 340 (-16) 95 50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142	30	50	(0)	40	110	(-8)	55	220	(-15)	72
45 50 (0) 45 170 (-8) 72 340 (-16) 95 50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 190 744 (-24) 162	35	50	(0)	41	150	(-8)	64	300	(-16)	83
50 50 (0) 49 180 (-8) 78 360 (-16) 103 55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 190 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180	40	50	(0)	42	160	(-8)	66	320	(-17)	87
55 50 (0) 51 180 (-8) 82 360 (-15) 106 60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 190 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 <td>45</td> <td>50</td> <td>(0)</td> <td>45</td> <td>170</td> <td>(-8)</td> <td>72</td> <td>340</td> <td>(-16)</td> <td>95</td>	45	50	(0)	45	170	(-8)	72	340	(-16)	95
60 50 (0) 52 190 (-8) 85 380 (-16) 112 65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 18	50	50	(0)	49	180	(-8)	78	360	(-16)	103
65 50 (0) 55 200 (-8) 91 400 (-16) 120 70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 873 (-22) 190 100 100 83 370 (-10) 130 1026 (-26) 188	55	50	(0)	51	180	(-8)	82	360	(-15)	106
70 50 (0) 56 200 (-8) 92 400 (-16) 120 75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 873 (-22) 190 100 100 (0) 83 370 (-10) 130 994 (-26) 188 105 100 (0) 85 450 (-12) 150 1058 (-26)	60	50	(0)	52	190	(-8)	85	380	(-16)	112
75 50 (0) 58 200 (-8) 96 525 (-19) 137 80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1026 (-26) 194 110 100 (0) 85 450 (-12) 150 1058 (-26) 201 120 100 (0) 87 460 (-12) 150 1469 (-33)	65	50	(0)	55	200	(-8)	91	400	(-16)	120
80 50 (0) 59 210 (-8) 99 542 (-19) 142 85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (70	50	(0)	56	200	(-8)	92	400	(-16)	120
85 50 (0) 61 210 (-8) 100 744 (-24) 162 90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744	75	50	(0)	58	200	(-8)	96	525	(-19)	137
90 100 (0) 83 310 (-8) 130 804 (-21) 180 95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	80	50	(0)	59	210	(-8)	99	542	(-19)	142
95 100 (0) 85 310 (-8) 130 873 (-22) 190 100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	85	50	(0)	61	210	(-8)	100	744	(-24)	162
100 100 (0) 81 360 (-10) 130 994 (-26) 188 105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	90	100	(0)	83	310	(-8)	130	804	(-21)	180
105 100 (0) 83 370 (-10) 130 1 026 (-26) 194 110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	95	100	(0)	85	310	(-8)	130	873	(-22)	190
110 100 (0) 85 450 (-12) 150 1 058 (-26) 201 120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	100	100	(0)	81	360	(-10)	130	994	(-26)	188
120 100 (0) 87 460 (-12) 150 1 469 (-33) 233 130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	105	100	(0)	83	370	(-10)	130	1 026	(-26)	194
130 100 (0) 90 809 (-20) 158 1 625 (-35) 245 140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	110	100	(0)	85	450	(-12)	150	1 058	(-26)	201
140 100 (0) 92 833 (-20) 195 1 744 (-36) 259	120	100	(0)	87	460	(-12)	150	1 469	(-33)	233
	130	100	(0)	90	809	(-20)	158	1 625	(-35)	245
150 200 (0) 120 1 040 (-20) 214 2 166 (-38) 284	140	100	(0)	92	833	(-20)	195	1 744	(-36)	259
	150	200	(0)	120	1 040	(-20)	214	2 166	(-38)	284

BER19H, BER19X, BER19XE

Nominal contact angle 25° Ceramic ball

Nominal		EL			L			М	
Bearing Bore	Preload	Α	xial Rigidity	Preload	A	kial Rigidity	Preload	Axial Rigidity	
(mm)	(N)	(N/ <i>µ</i> m)		(N)		(N/μm)	(N) (N/μm)		
25	25	(0)	47	172	(-8)	96	342	(-14)	124
30	50	(0)	65	180	(-8)	100	360	(-14)	134
35	50	(0)	68	240	(-8)	120	480	(-15)	153
40	50	(0)	70	250	(-8)	120	500	(-15)	160
45	50	(0)	75	260	(-8)	140	520	(-15)	174
50	50	(0)	80	280	(-8)	150	560	(-15)	190
55	50	(0)	84	300	(-8)	160	600	(-15)	203
60	50	(0)	87	300	(-8)	160	600	(-14)	209
65	50	(0)	92	320	(-8)	180	640	(-14)	225
70	50	(0)	93	330	(-8)	180	689	(-15)	233
75	50	(0)	96	340	(-8)	190	713	(-15)	243
80	50	(0)	98	350	(-8)	190	738	(-15)	252
85	50	(0)	100	360	(-8)	200	1 032	(-19)	290
90	100	(0)	140	480	(-8)	240	1 110	(-17)	321
95	100	(0)	140	490	(-8)	250	1 143	(-17)	332
100	100	(0)	130	580	(-10)	250	1 302	(-20)	328
105	100	(0)	140	600	(-10)	260	1 346	(-20)	341
110	100	(0)	140	620	(-10)	260	1 390	(-20)	354
120	100	(0)	150	780	(-12)	300	2 023	(-26)	414
130	100	(0)	150	1 115	(-16)	340	2 185	(-27)	434
140	100	(0)	150	1 151	(-16)	353	2 261	(-27)	450
150	200	(0)	198	1 484	(-17)	393	2 948	(-30)	504

The value in () shows a measured axial clearance.

Calculation of preload and axial rigidity for combination bearings
Preload and axial rigidity can be obtained by multipling factors in

table B.
For radial rigidity, multiply the value obtained in table A with factors in table B.

able B	-	DBD	DBB
	Preload factor	1.36	2
	Axial rigidity	1.48	2
	Radial rigidity	1.54	2

BNR10S Nominal contact angle 18° Steel ball

Nominal		EL			L			М	
Bearing Bore	Preload	Α	xial Rigidity	Preload	reload Axial Rigidity		Preload /		ial Rigidity
(mm)	(N)		(N/μm)	(N)		$(N/\mu m)$	(N)		(N/μm)
30	50	(0)	39	110	(-5)	52	220	(-13)	69
35	50	(0)	41	110	(-5)	55	220	(-12)	73
40	50	(0)	44	110	(-5)	60	220	(-11)	77
45	50	(0)	44	110	(-5)	60	220	(-11)	77
50	50	(0)	47	120	(-5)	64	249	(-12)	85
55	50	(0)	48	120	(-5)	67	302	(-14)	95
60	50	(0)	51	130	(-5)	71	345	(-15)	104
65	50	(0)	53	130	(-5)	75	364	(-15)	111
70	50	(0)	53	230	(-10)	93	505	(-20)	125
75	50	(0)	54	240	(-10)	96	520	(-20)	129
80	100	(0)	71	330	(-10)	110	606	(-19)	141
85	100	(0)	73	330	(-10)	110	622	(-19)	145
90	100	(0)	74	340	(-10)	120	823	(-24)	163
95	100	(0)	76	350	(-10)	120	846	(-24)	168
100	100	(0)	78	350	(-10)	120	870	(-24)	174
105	100	(0)	80	420	(-12)	130	1 054	(-27)	195
110	100	(0)	81	540	(-15)	150	1 144	(-29)	200
120	100	(0)	85	560	(-15)	160	1 208	(-29)	213
130	100	(0)	85	732	(-20)	166	1 508	(-36)	220
140	200	(0)	105	775	(-15)	178	1 606	(-30)	236
150	200	(0)	110	916	(-18)	190	1 917	(-35)	253

BER10S Nominal contact angle 25° Steel ball

Nominal		EL			L		M			
Bearing Bore	Preload	Δ	xial Rigidity	Preload	Ax	cial Rigidity	Preload	Preload Axi		
(mm)	(N)		(N/μm)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)	
30	50	(0)	63	220	(-8)	110	440	(-15)	140	
35	50	(0)	67	240	(–8)	120	480	(-15)	153	
40	50	(0)	72	250	(-8)	130	500	(-15)	165	
45	50	(0)	73	250	(–8)	130	500	(-15)	166	
50	50	(0)	77	270	(-8)	140	540	(-15)	180	
55	50	(0)	80	350	(-10)	160	700	(-18)	205	
60	50	(0)	84	380	(-10)	170	760	(-18)	222	
65	50	(0)	88	400	(-10)	180	800	(-18)	235	
70	50	(0)	88	400	(-10)	180	800	(-18)	235	
75	50	(0)	90	510	(-12)	200	1 020	(-21)	263	
80	100	(0)	120	620	(-12)	220	1 240	(-22)	290	
85	100	(0)	120	640	(-12)	230	1 280	(-22)	300	
90	100	(0)	120	650	(-12)	240	1 300	(-22)	305	
95	100	(0)	130	670	(-12)	240	1 340	(-22)	316	
100	100	(0)	130	690	(-12)	250	1 380	(-22)	327	
105	100	(0)	130	910	(-15)	290	1 820	(-26)	369	
110	100	(0)	130	930	(-15)	290	1 860	(-26)	379	
120	100	(0)	140	980	(-15)	310	1 960	(-26)	403	
130	100	(0)	140	1 002	(-16)	310	2 004	(-27)	389	
140	200	(0)	180	1 098	(-13)	325	2 196	(-23)	421	
150	200	(0)	180	1 274	(-15)	345	2 562	(-28)	444	

The value in () shows a measured axial clearance.

eload and Rigidity

Preload and Rigidity (DB and DF Arrangement)
Ultra High Speed Angular Contact Ball Bearing

Calculation of radial rigidity Multiply axial rigidity by factors in table A. Table A EL L M H

15° 6.5 6.0 5.0 4.5

18° 4.5

25° 2.0

30° 1.4

BNR10H, BNR10X, BNR10XE

Nominal contact angle 18° Ceramic ball

(ROBUST series)

Nominal		EL			L			М	
Bearing Bore	Preload	Д	xial Rigidity	Preload	A	xial Rigidity	Preload	Ax	ial Rigidity
(mm)	(N)		(N/μm)	(N)		(N/ <i>µ</i> m)	(N)		(N/ <i>µ</i> m)
30	50	(0)	43	110	(-5)	59	220	(-11)	79
35	50	(0)	46	120	(-5)	63	240	(-12)	83
40	50	(0)	49	120	(-5)	68	240	(-11)	88
45	50	(0)	49	120	(-5)	69	240	(-11)	88
50	50	(0)	52	130	(-5)	73	279	(-12)	99
55	50	(0)	54	130	(-5)	76	341	(-14)	110
60	50	(0)	57	140	(-5)	82	391	(-15)	121
65	50	(0)	60	140	(-5)	87	413	(-15)	130
70	50	(0)	59	260	(-10)	110	578	(-20)	147
75	50	(0)	61	270	(-10)	110	597	(-20)	151
80	100	(0)	80	360	(-10)	130	684	(-19)	164
85	100	(0)	82	370	(-10)	130	703	(-19)	169
90	100	(0)	83	370	(-10)	130	938	(-24)	191
95	100	(0)	85	380	(-10)	140	965	(-24)	197
100	100	(0)	87	390	(-10)	140	993	(-24)	204
105	100	(0)	89	470	(-12)	160	1 209	(-28)	229
110	100	(0)	91	600	(-15)	170	1 315	(-29)	235
120	100	(0)	95	630	(-15)	180	1 391	(-29)	250
130	100	(0)	95	833	(-20)	195	1 745	(-36)	260
140	200	(0)	125	860	(-15)	206	1 829	(-30)	276
150	200	(0)	125	1 025	(-18)	221	2 194	(-35)	297

BER10H, BER10X, BER10XE Nominal contact angle 25° Ceramic ball

Nominal		EL			L		М			
Bearing Bore	Preload	P	xial Rigidity	Preload	Preload Axia		Preload	Ax	ial Rigidity	
(mm)	(N)		(N/μm)	(N)		(N/µm)	(N)		(N/ <i>µ</i> m)	
30	50	(0)	71	250	(-8)	130	500	(-15)	163	
35	50	(0)	75	260	(-8)	140	520	(-15)	175	
40	50	(0)	80	280	(-8)	150	560	(-15)	191	
45	50	(0)	81	280	(-8)	150	560	(-14)	192	
50	50	(0)	86	300	(-8)	160	600	(-14)	208	
55	50	(0)	89	400	(-10)	190	800	(-18)	240	
60	50	(0)	94	430	(-10)	200	860	(-18)	260	
65	50	(0)	99	450	(-10)	210	900	(-17)	275	
70	50	(0)	98	450	(-10)	210	900	(-17)	275	
75	50	(0)	100	580	(-12)	240	1 160	(-21)	306	
80	100	(0)	130	700	(-12)	260	1 400	(-21)	336	
85	100	(0)	130	720	(-12)	270	1 440	(-21)	347	
90	100	(0)	140	740	(-12)	280	1 480	(-21)	355	
95	100	(0)	140	760	(-12)	290	1 520	(-21)	367	
100	100	(0)	150	780	(-12)	300	1 560	(-21)	381	
105	100	(0)	150	1 040	(-15)	330	2 080	(-26)	430	
110	100	(0)	150	1 060	(-15)	340	2 120	(-26)	440	
120	100	(0)	160	1 120	(-15)	370	2 240	(-26)	469	
130	100	(0)	160	1 150	(-16)	370	2 302	(-27)	469	
140	200	(0)	200	1 240	(-13)	380	2 476	(-23)	489	
150	200	(0)	200	1 444	(-15)	403	2 957	(-28)	552	

The value in () shows a measured axial clearance.

Ultra High Precision Angular Contact Ball Bearing (BGR series)

Calculation of preload and axial rigidity for combination bearings
Preload and axial rigidity can be obtained by multipling factors in table B.

table B.
For radial rigidity, multiply the value obtained in table A with factors in table B.

BGR19S Nominal contact angle 15° Steel ball

Naminal Bassing Bass		EL
Nominal Bearing Bore (mm)	Preload	Axial Rigidity
(111111)	(N)	(N/ <i>μ</i> m)
10	25	15.2
12	25	16.8
15	25	16.6
17	25	17.5
20	25	18.1
25	25	20.6

BGR19H, BGR19X Nominal contact angle 15° Ceramic ball

Nominal Bearing Bore (mm)		EL
	Preload	Axial Rigidity
(11111)	(N)	(N/ <i>μ</i> m)
10	25	16.8
12	25	18.5
15	25	18.4
17	25	19.3
20	25	20.1
25	25	22.9

BGR10S Nominal contact angle 15° Steel ball

Naminal Danina Dana	E	L
Nominal Bearing Bore (mm)	Preload (N)	Axial Rigidity (N/ <i>µ</i> m)
6	25	11.0
7	25	12.0
8	25	13.0
10	25	14.0
12	25	15.0
15	25	16.0
17	25	17.0
20	25	18.0
25	25	19.0

BGR10H, BGR10X Nominal contact angle 15° Ceramic ball

Naminal Pagring Para	E	iL .
Nominal Bearing Bore (mm)	Preload (N)	Axial Rigidity (N/ <i>μ</i> m)
6	25	12.6
7	25	13.7
8	25	14.4
10	25	15.9
12	25	16.9
15	25	18.0
17	25	19.0
20	25	20.0
25	25	21.6

BGR02S

Nominal contact angle 15° Steel ball

Nominal Bearing Bore (mm)	Preload (N)	Axial Rigidity (N/ <i>µ</i> m)
10	25	14.5
12	25	15.2
15	25	16.2
17	25	16.7
20	25	17.4
25	50	25.3

BGR02H, BGR02X	
Nominal contact angle 15°	Ceramic ball

Nominal Bearing Bore (mm)	E	L
	Preload	Axial Rigidity
	(N)	(N/ <i>μ</i> m)
10	25	16.0
12	25	17.0
15	25	18.0
17	25	18.6
20	25	19.4
25	50	28.1

146 **NSK** NSK 147

Preload and Rigidity (DB and DF Arrangement)

High Speed Angular Contact Thrust Ball Bearing (ROBUST series)

BAR10S Nominal contact angle 30° Steel ball

Nominal		EL		L
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity
(mm)	(N)	(N/μm)	(N)	(N/μm)
40	210	150	430	200
45	210	150	430	200
50	220	170	460	220
55	230	180	600	250
60	240	190	650	270
65	250	200	690	290
70	250	200	910	320
75	260	210	940	330
80	340	240	1 100	360
85	350	240	1 130	370
90	360	250	1 660	430
95	360	260	1 720	450
100	370	270	1 770	460
105	380	280	1 820	470
110	390	280	1 870	490
120	390	300	1 980	520
130	390	300	2 530	550
140	580	360	3 190	655
150	580	360	3 690	690
160	590	370	4 080	720
170	600	380	4 210	750
180	605	385	5 200	800
190	610	390	5 370	830
200	610	390	5 990	860

BAR10H Nominal contact angle 30° Ceramic ball

Nominal	i	ΞL		L
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity
(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>μ</i> m)
40	230	175	485	230
45	230	180	490	235
50	245	195	525	255
55	255	200	690	290
60	270	220	750	320
65	285	240	800	340
70	285	240	1 060	375
75	290	245	1 090	390
80	380	275	1 260	420
85	390	280	1 280	430
90	400	290	1 930	510
95	405	300	1 970	520
100	420	310	2 060	550
105	420	315	2 090	555
110	440	330	2 180	580
120	455	350	2 310	620
130	455	350	2 960	650

BTR10S Nominal contact angle 40° Steel ball

Nominal	_	EL		L -	
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity	
(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>µ</i> m)	
40	310	260	700	350	
45	310	260	700	350	
50	330	290	760	390	
55	350	310	800	410	
60	370	330	860	440	
65	390	350	910	470	
70	390	350	1 560	560	
75	400	360	1 610	590	
80	510	400	1 820	630	
85	520	420	1 880	650	
90	530	430	2 830	770	
95	550	450	2 930	790	
100	560	460	3 030	820	
105	570	470	3 120	850	
110	580	490	3 210	870	
120	610	520	3 420	930	
130	610	520	4 410	980	
140	810	600	5 310	1 140	
150	820	605	5 370	1 160	
160	830	615	5 480	1 180	
170	850	635	7 280	1 330	
180	855	640	9 080	1 450	
190	875	660	9 390	1 500	
200	875	660	11 290	1 600	

BAR10S Nominal contact angle 30° Ceramic ball

Nominal	Ī	ĒL		L
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity
(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>µ</i> m)
40	350	300	800	410
45	355	310	810	415
50	375	335	875	450
55	395	350	915	475
60	425	390	1 000	520
65	450	415	1 060	560
70	450	415	1 830	670
75	460	430	1 890	700
80	570	475	2 120	745
85	580	475	2 160	780
90	600	505	3 320	910
95	605	505	3 390	940
100	630	540	3 560	980
105	640	540	3 610	1 010
110	665	575	3 770	1 040
120	700	615	4 020	1 115
130	700	615	5 200	1 170

Preload and Rigidity

Double-Direction Angular Contact Thrust Ball Bearing (TAC series)

TAC20 series Nominal contact angle 60° Steel ball

140111111			_			
Nominal	C6			C7		C8
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity	Preload	Axial Rigidity
(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>μ</i> m)	(N)	(N/ <i>µ</i> m)
35	_	-	343	470	588	570
40	_	-	343	510	588	620
45	_	_	343	530	784	700
50	_	-	392	570	882	760
55	_	_	588	680	1 176	865
60	_	-	588	730	1 274	935
65	_	_	588	790	1 274	1 005
70	_	-	882	850	1 568	1 050
75	_	_	882	880	1 568	1 090
80	-	-	980	965	2 156	1 240
85	_	_	980	1 000	2 156	1 285
90	_	-	1 372	1 110	2 646	1 380
95	10	200	1 372	1 150	2 646	1 435
100	10	200	1 470	1 190	2 744	1 485
105	98	500	1 764	1 320	3 234	1 610
110	245	700	1 862	1 365	3 822	1 740
120	490	900	1 960	1 460	4 018	1 860
130	686	980	2 548	1 530	5 194	1 940
140	980	1 200	3 626	1 900	9 310	2 600
150	980	1 210	4 704	2 060	9 408	2 640
160	1 274	1 370	4 802	2 140	10 780	2 830
170	2 058	1 650	6 762	2 450	13 720	3 120
180	2 940	1 875	6 762	2 475	15 680	3 265
190	3 038	1 940	7 056	2 560	18 620	3 560
200	3 038	1 950	7 056	2 570	18 620	3 570

TAC29 series Nominal contact angle 60° Steel ball

Nominal		C6		C7	(C8
Bearing Bore	Preload	Axial Rigidity	Preload	Axial Rigidity	Preload	Axial Rigidity
(mm)	(N)	(N/ <i>µ</i> m)	(N)	(N/ <i>µ</i> m)	(N)	$(N/\mu m)$
100	_	-	1 176	1 150	2 156	1 410
105	_	-	1 274	1 215	2 254	1 490
110	_	-	1 274	1 250	2 254	1 530
120	98	550	1 274	1 310	2 842	1 700
130	98	580	1 764	1 415	3 528	1 915
140	98	750	2 254	1 700	5 194	2 260
150	196	775	4 116	2 150	7 056	2 590
160	196	800	4 410	2 260	7 448	2 720
170	196	800	4 410	2 370	7 742	2 860
180	1 078	1 470	4 410	2 320	9 800	3 040
190	1 078	1 440	4 606	2 440	10 290	3 200
200	1 078	1 500	4 606	2 430	11 760	3 340
220	1 176	1 615	4 900	2 620	12 740	3 615
240	1 176	1 690	5 096	2 750	13 230	3 800
260	1 176	1 670	5 096	2 720	13 230	3 750
280	1 274	1 755	5 390	2 865	13 720	3 950

Preload and Rigidity

Angular Contact Thrust Ball Bearing for Ball Screw Support

TAC B series (for machine tool) Nominal contact angle 60° Steel ball

C9 Preload

	Duplex Se	et Arrangement	(DB or DF)	Triplex Set	Arrangement (D	BD or DFD)	Quadruplex	Set Arrangement	(DBB or DFF)
Bearing Number	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque
	(N)	(N/ <i>µ</i> m)	(N·m)	(N)	(N/ <i>μ</i> m)	(N·m)	(N)	(N/ <i>μ</i> m)	(N·m)
15TAC47B	1 000	555	0.05	1 370	795	0.07	2 010	1 110	0.11
17TAC47B	1 000	555	0.05	1 370	795	0.07	2 010	1 110	0.11
20TAC47B	1 000	555	0.05	1 370	795	0.07	2 010	1 110	0.11
25TAC62B	1 490	733	0.09	2 030	1 050	0.12	2 980	1 465	0.17
30TAC62B	1 563	772	0.09	2 130	1 105	0.12	3 130	1 545	0.18
35TAC72B	1 785	890	0.10	2 430	1 275	0.14	3 570	1 780	0.21
40TAC72B	1 860	930	0.11	2 530	1 330	0.14	3 720	1 860	0.21
40ATC90B	2 365	1015	0.18	3 220	1 465	0.24	4 730	2 030	0.36
45TAC75B	2 005	1005	0.12	2 730	1 445	0.16	4 015	2 015	0.23
45TAC100B	2 880	1160	0.23	3 920	1 670	0.31	5 760	2 320	0.46
50TAC100B	3 010	1210	0.24	4 095	1 745	0.32	6 020	2 425	0.48
55TAC100B	3 010	1210	0.24	4 095	1 745	0.32	6 020	2 425	0.48
55TAC120B	3 520	1430	0.28	4 790	2 055	0.37	7 040	2 855	0.56
60TAC120B	3 520	1430	0.28	4 790	2 055	0.37	7 040	2 855	0.56

C10 Preload

	Duplex S	et Arrangement	(DB or DF)	Triplex Set	Arrangement (D	BD or DFD)	Quadruplex	Set Arrangement	(DBB or DFF)
Bearing Number	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque
	(N)	(N/ <i>µ</i> m)	(N·m)	(N)	(N/ <i>μ</i> m)	(N·m)	(N)	(N/ <i>μ</i> m)	(N·m)
15TAC47B	2 150	750	0.14	2 950	1 080	0.20	4 300	1 470	0.29
17TAC47B	2 150	750	0.14	2 950	1 080	0.20	4 300	1 470	0.29
20TAC47B	2 150	750	0.14	2 950	1 080	0.20	4 300	1 470	0.29
25TAC62B	3 150	1 000	0.23	4 300	1 470	0.31	6 250	1 960	0.46
30TAC62B	3 350	1 030	0.24	4 500	1 520	0.33	6 650	2 010	0.49
35TAC72B	3 800	1 180	0.28	5 200	1 710	0.37	7 650	2 350	0.55
40TAC72B	3 900	1 230	0.28	5 300	1 810	0.38	7 850	2 400	0.57
40ATC90B	5 000	1 320	0.48	6 750	1 960	0.65	10 300	2 650	0.96
45TAC75B	4 100	1 270	0.29	5 600	1 910	0.40	8 250	2 550	0.59
45TAC100B	5 900	1 520	0.58	8 050	2 210	0.78	11 800	3 000	1.16
50TAC100B	6 100	1 570	0.60	8 250	2 300	0.80	12 300	3 100	1.18
55TAC100B	6 100	1 570	0.60	8 250	2 300	0.80	12 300	3 100	1.18
55TAC120B	6 650	1 810	0.64	9 100	2 650	0.86	13 200	3 550	1.27
60TAC120B	6 650	1 810	0.64	9 100	2 650	0.86	13 200	3 550	1.27

TAC 02, 03 series (for electric injection machine) Nominal contact angle 60° Steel ball

C8 Preload

	Duplex Se	et Arrangement	(DB or DF)	Triplex Set	: Arrangement (D	BD or DFD)	Quadruplex	Set Arrangement	(DBT or DFT)
Bearing Number	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque	Preload	Axial Rigidity	Starting Torque
	(N)	(N/ <i>µ</i> m)	(N·m)	(N)	(N/ <i>μ</i> m)	(N·m)	(N)	(N/µm)	(N·m)
15TAC02AT85	365	262	0.017	495	385	0.024	575	490	0.027
25TAC02AT85(1)	1 440	520	0.113	1 960	755	0.153	2 260	950	0.175
TAC35-2T85	2 270	705	0.266	3 100	1 020	0.360	3 550	1 280	0.415
40TAC03AT85	2 270	705	0.266	3 100	1 020	0.360	3 550	1 280	0.415
45TAC03AT85	2 740	775	0.355	3 750	1 120	0.480	4 300	1 410	0.550
TAC45-2T85	3 550	880	0.520	4 850	1 270	0.705	5 600	1 600	0.810
50TAC03AT85	3 550	880	0.520	4 850	1 270	0.705	5 600	1 600	0.810
55TAC03AT85	4 100	945	0.650	5 600	1 370	0.880	6 500	1 720	1.000
60TAC03AT85	4 750	1 020	0.810	6 450	1 480	1.100	7 450	1 850	1.250
80TAC03AM	7 350	1 270	1.550	10 000	1 840	2.100	11 500	2 330	2.450
100TAC03CMC(2)	1 000	830	0.105	1 400	1 240	0.147	1 600	1 575	0.166
120TAC03CMC(2)	1 100	930	0.120	1 500	1 378	0.163	1 800	1 775	0.196

Radial Internal Clearance of Cylindrical Roller Bearings

Clearance in matched bearings with tapered bore

1	Ini	٠.	

Nominal Be	earing Bore					(Clearand	e in Mat	ched Be	arings w	ith Tape	red Bor	е				
(m	m)	CC	9(1)	C	C0	C	C1	C	C2	CC	C(²)	C	C3	C	C4	C	C5
over	incl	min	max	min	max	min	max	min	max	min	max	min	max	min	max	min	max
24	30	5	10	8	15	10	25	25	35	40	50	50	60	60	70	80	95
30	40	5	12	8	15	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	10	20	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	10	20	15	35	35	50	55	75	75	90	90	110	130	150
65	80	10	20	15	30	20	40	40	60	70	90	90	110	110	130	150	170
80	100	10	25	20	35	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	20	35	25	50	50	80	95	120	120	145	145	170	205	230
120	140	15	30	25	40	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	30	50	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	30	50	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	30	50	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	35	60	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	40	65	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	40	70	55	110	110	165	185	240	240	295	295	350	420	475

⁽¹) Applicable to cylindrical roller bearings of ISO accuracy Class 4 and 5 with tapered bores. (²) Denotes normal clearance for matched cylindrical roller bearings.

Clearance in matched bearings with cylindrical bore

Init:	ıım

Nominal Be	earing Bore				Clea	rance in M	atched Bea	irings with	Cylindrical	Bore			
(m	m)	CC	1	CC2		CC	(3)	CC3		CC4		CC5	
over	incl	min	max	min	max	min	max	min	max	min	max	min	max
24	30	5	15	10	25	25	35	40	50	50	60	70	80
30	40	5	15	12	25	25	40	45	55	55	70	80	95
40	50	5	18	15	30	30	45	50	65	65	80	95	110
50	65	5	20	15	35	35	50	55	75	75	90	110	130
65	80	10	25	20	40	40	60	70	90	90	110	130	150
80	100	10	30	25	45	45	70	80	105	105	125	155	180
100	120	10	30	25	50	50	80	95	120	120	145	180	205
120	140	10	35	30	60	60	90	105	135	135	160	200	230
140	160	10	35	35	65	65	100	115	150	150	180	225	260
160	180	10	40	35	75	75	110	125	165	165	200	250	285
180	200	15	45	40	80	80	120	140	180	180	220	275	315
200	225	15	50	45	90	90	135	155	200	200	240	305	350
225	250	15	50	50	100	100	150	170	215	215	265	330	380
250	280	20	55	55	110	110	165	185	240	240	295	370	420

⁽³⁾ Denotes normal clearance for matched cylindrical roller bearings.

150 **NSK NSK** 151

⁽¹⁾ Value of 25TAC02AT85 is based on C9 preload. (2) Values of 100TAC03CMC and 120TAC03CMC are based on C2 preload.

Limiting Speeds

The limiting speeds listed in the Bearing Dimensional Tables are guideline values. They are based on a single bearing that is lightly preloaded by means of a spring and subjected to relatively light loads with good heat dissipation.

The limiting speeds with grease lubrication are determined using high quality grease in appropriate amounts. Those listed for oil lubrication are based on the use of oil-air (or oil mist) lubrication. In situations where the lubricating oil is used as a means to remove heat, higher speed can be achieved, however a large amount of oil must be pressure fed through the bearing, so there is a significant loss of power.

When single bearings are used in two, three or four row combinations, or the preload is increased to improve spindle rigidity, limiting speeds will be lower than those listed.

Speed Factors

The limiting speed of a matched bearing set operating under position preload conditions is calculated by multiplying the limiting speed of a single bearing in the set by the appropriate adjustment factor listed in Table 5.1.

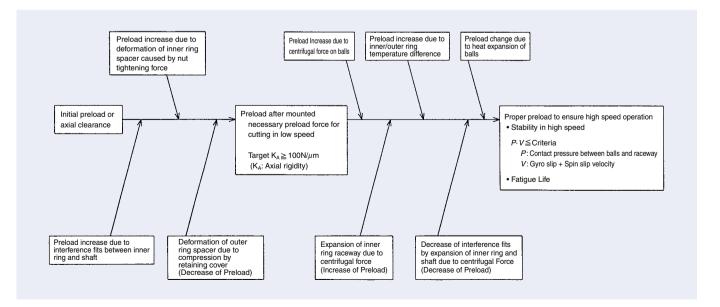

In this table, preloads mean the preload values after the bearing has been attached to the spindle. Preload values after the bearing has been mounted on the spindle will change as a result of the shaft fit requirements of high speed operation and spacer deformation due to tightening force. In such case, particular in high speed applications, it is necessary to adjust the spacer lengths relative to each other in order to compensate for the changes in preload after bearing mounting.

Table 5.1 Speed Factors

	Arrangement	EL	L	М	Н
DB	\varnothing	0.85	0.80	0.65	0.55
DBB	$\emptyset\emptyset$	0.80	0.75	0.60	0.45
DBD	$\emptyset\emptyset$	0.75	0.70	0.55	0.40

Factors that Change Preload

Fig. 5.1 Preload Setting Study Flow

Factors Influencing Limiting Speeds

The limiting speed of the bearing, inside of the spindle, is affected by the following operating conditions.

1. Lubrication Method

The thickness of the lubricating film created by the oil-air or oil mist lubrication replenishment method is larger compared to the thickness created by the grease lubrication method. Therefore the limiting speed is higher when the oil-air or oil mist lubrication method is used.

In the case of jet lubrication, the large volume of oil supplied into the bearing for lubrication also removes heat efficiently so that much higher operating speeds are possible.

2. Combination

If bearings are used as multiple bearing sets, the number of bearings in the set affects the limiting speed. As the number is increased, the limiting speed becomes lower because the ability to dissipate that heat becomes lower

3. Preload

If the preload after mounted is high, the contact surface pressure between the rolling elements and raceways increases, which causes extra heat. As a result of this heat, the preload during operation increases further and the risk of bearing failure will be higher. To avoid this type of bearing failure, the limiting speed is reduced. Also in case of cylindrical roller bearings, when the radial clearance is reduced and the preload increases during operation, the limiting speed is reduced.

4. Drive Method

The limiting speed of a bearing will also change depending on the spindle drive system.

In the case of motor built-in spindles the heat inside of the spindles is higher. If there is also a jacket-cooling system, the temperature difference between the inner ring and the outer ring becomes higher, so the preload is increased and the limiting $\ddot{\phi}$ speed becomes lower. (see Fig. 5.2) Jacket cooling also affects the clearance between the bearing and the housing. (see Fig. 5.3) Therefore, the clearance between the bearing and the housing could become negative, in which case the preload would be increased.

Fig. 5.2 The Influence of The Jacket Cooling on Limiting Speed

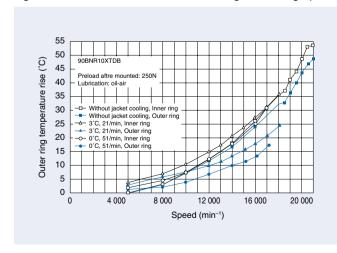
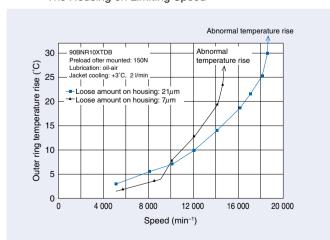



Fig. 5.3 The Influence of The Clearance between The Bearing & The Housing on Limiting Speed

Purposes of Lubrication

The main purposes of lubrication are to reduce friction and wear inside the bearing thet may cause premature failure. The effects of lubrication may be briefly explained as follows:

(1) Reduction of Friction and Wear

Direct metallic contact between the bearing rings, rolling elements, and cage, which are the basic parts of a bearing, is prevented by an oil film which reduces the friction and wear in the contact areas.

(2) Extension of Fatigue Life

The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. A heavy film thickness prolongs the fatigue life, but it is shortened if the viscosity of the oil is too low so the film thickness is insufficient.

(3) Dissipation of Heat

Circulating lubrication may be used to carry away frictional heat or heat transferred from the outside to prevent the bearing from overheating and oil from deteriorating.

(4) Others

Adequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion or

Lubricating Methods

For machine tool spindles in which high accuracy is important. it is necessary to prevent excessive temperature rise of the spindle to reduce thermal deformation.

Bearing heat generation is divided into a load term determined by the bearing type and load, and a speed term determined by the lubricating method and speed.

Generally, the speed term is greater, but if a lubricating method resulting in a small speed term is selected, the influence of the load term cannot be disregarded. Therefore, it is important to select a low heat generating bearing (load term) and lubricating method (speed term).

Regarding heat generation, both the lubrication method and quantity of lubricant have important effects. Lubrication using a small amount of grease is common since this method is economical, maintenance free, and there is little heat generation. At high speeds, to maintain a constant low temperature, the oil-air lubrication method, which requires a minimum quantity of oil, was developed.

The relation between oil quantity and heat generation (frictional loss) and temperature rise is already known as shown in Fig. 6.1 Therefore, for machine tool spindles, to avoid excessive temperature rise, adoption of a lubricating method aiming at either zone A or B is necessary.

The lubricating methods in zones A and B are summarized in Table 6.1

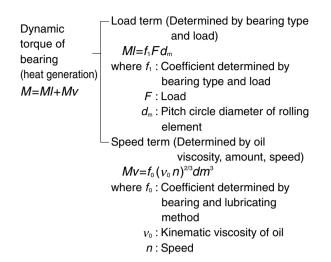


Fig. 6.1 Oil Quantity and Temperature Rise

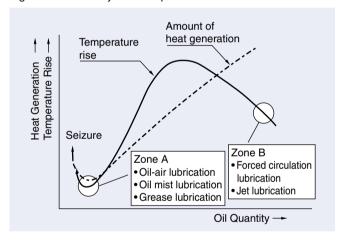


Table 6.1 Comparison of Lubricating Methods

Lubricating Methods	Advantages	Disadvantages
	○Low cost	Olf packed grease deteriorates, seizure may occur.
Grease Lubrication	Climitation of temperature rise is possible.	OMay allow penetration of dust or cutting fluid.
	OMaintenance free	
	Since new oil is always fed, no fear of oil deterioration.	OPollution of environment.
Oil Mist Lubrication	Oust and cutting fluid cannot easily enter.	Oil supply quantity varies depending on the oil viscosity and
Oil Wist Eublication		temperature, so control of a small flow rate is difficult.
		Olt is difficult to confirm that oil is actually fed.
	Since the oil flow rate is high, dust and cutting fluid cannot	○ Frictional loss is high.
Jet Lubrication	enter and seizure hardly ever occurs.	Since oil leaks, it is difficult to use for vertical spindles.
Jet Lubrication	OBecause of cooling by oil, the bearing temperature can be	○Cost is high.
	controlled to some degree.	
	Since oil quantity control is possible, the optimum quantity of	○Cost is rather high.
	oil is fed and heat generation is low.	Oconfirmation of whether oil is actually fed to bearing is difficult.
	OBesides little heat-generation, there is a cooling effect of the air,	
Oil-Air Lubrication	so the temperature is low.	
	Since new oil is always fed, no fear of oil deterioration.	
	Oust, cutting fluid cannot easily enter.	
	○Environmental pollution mist is slight.	

Grease Lubrication

(1) Recommended Greases

Lithium base greases with mineral oil as the base oil have good sticking properties and excellent characteristics for rolling bearings. These are usually usable over a temperature range of -10°C to +110°C.

As grease for high speed machine tool spindles that require low temperature rise and long life, a consistency No.2 grease with a synthetic base oil (diester, diester +mineral oil, etc.) is

Table 6.2 lists the brand names and properties of greases widely used in machine tools main spindles and ball screw support bearings.

(2) Grease Life

Grease life depends greatly upon operating temperature: therefore, it is necessary to keep the temperature of the bearing (including atmospheric temperature) cooler, in order to extend the grease life.

High performance wide range grease is often used for high speed spindle bearings, or spindle motor bearings.

The following equation shows the mean life of wide range grease.

$log t = 6.12 - 1.4 n/N_{max} - (0.018 - 0.006 n/N_{max}) T$

where *t*: Mean Grease life (h)

N_{max}: Limiting speed (min⁻¹)

n: Operating speed (min⁻¹)

T: Bearing running temperature (°C)

(3) Quantity of Grease for High Speed Spindle Bearings

To operate bearings at high speed with grease lubrication, the recommended quantity to be packed is 10 to 20% of internal space. If too much grease is packed, during running in, abnormal heat generation occurs and this may cause the grease to deteriorate. To avoid such a risk, it is necessary to run in spindles for a sufficient time. Based on their experience. NSK determines the packing quantity which allows easy running in and will provide sufficient lubrication. For the amount, please refer to the tables on Page 157.

Table 6.2 Grease Brand Names and Properties

Brand names	Manufacturers	Thickeners	Base oils	Base oils viscosity mm²/s(40°C)	Dropping point (°C)	Working temperature range, (°C)	Main application
MTE	NSK	Barium complex	Ester oil	20	200	-30 - +120	Bearings for high speed spindles, high speed cylindrical roller bearings
MTS	NSK	Urea	Ester+Synthetic hydro carbon oil	22	220	-40 - +130	Bearings for high speed spindles
Isoflex NBU15	Klüber	Barium complex	Diester oil +Mineral oil	20	250	-30 - +120	Bearings for main spindles
Isoflex NCA15	Klüber	Special Ca	Ester oil	23	180	-40 - +130	Bearings for main spindles
Mobilux 2	Mobil	Lithium	Mineral oil	26	190	-10 - +110	Bearings for boring heads, live centers
Multemp LRL3	Kyodo Yushi	Lithium	Tetraester oil	37	208	-30 - +130	Bearings for main spindles
Stabragus NBU8EP	Klüber	Barium complex	Mineral oil	105	220	-30 - +130	Heavy load cylindrical roller bearings
Alvania 2	Shell	Lithium	Mineral oil	130	182	-10 - +110	Ball screw support bearings
ENS	NSK	Diurea	Tetraester oil	32	260	-40 - +160	Bearings for motors

Oil Lubrication

(1) Oil Mist Lubrication and Oil-Air Lubrication (Minimal Oil Quantity Lubrication)

Spray oiling is a method of spraying oil by turning it into a mist using compressed air. It is also called oil mist lubrication.

Oil-air lubrication is a method of feeding oil continuously by injecting oil into a compressed air stream by means of a mixing valve that intermittently discharges the minimum quantity of oil using a constant-quantity piston.

Fig. 6.2 shows the recommended oil quantity for the lubrication methods described above, each quantity is for one bearing.

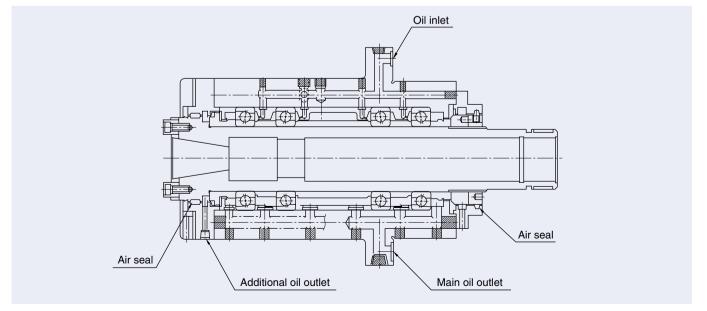
In case of oil mist lubrication, it's necessary to adjust the oil quantity to accommodate for the effects of the branches in path tubing, and leakage from the gaps around the spacers.

Please ask NSK, as the oil quantity should be increased, in cases where the $d_m n$ value is higher than 1 800 000.

For the position of the spray nozzle, please refer to Page 174.

(2) Jet Lubrication

Jet lubrication is mainly used for high speed bearings with a $d_{\rm m}n$ value over one million. Through one to several nozzles, jets of lubricating oil under a constant pressure pass through the bearings. At high speed, the air surrounding the bearing rotates together with the bearing and forms an air wall. The speed of the jet from each nozzle must be faster by 20% than the circumferential speed of the inner ring outside surface. Since the jet lubrication uses a large quantity of oil, there is much agitation resistance, so it is necessary to dissipate the heat effectively using a large oil discharge outlet and forced discharge.


For machine tool spindle bearings, this method is used in some applications as a means for stable operation at ultra high speeds (see Fig. 6.3)

For the position of the spray nozzle, please refer to page 174.

Fig. 6.2 Recommended Oil Quantity for Each Bore Size of Bearing (Minimal Oil Quantity Lubrication)

Fig. 6.3 Spindle Structure with Jet Lubrication.

The Recommended Grease Quantities for High-speed Spindle Bearings

Unit: cc/bearing

		BNR19	ACBB : 15% o	f internal space	BNR10		CRB: 10% of	internal space	
Bore number	Bore diameter. (mm)	BGR19 79xx	BGR10 70xx	BGR02 72xx	BAR10 BTR10	NN49	NN39	NN30	N1
	_	X-quantity	X-quantity	X-quantity	X-quantity	X-quantity	X-quantity	X-quantity	X-qua
5	5	_	_	0.03	-	_	_	_	_
6	6	_	0.04	0.07	=	_	-	=	-
7	7		0.07	_	_	_	_	_	_
8	8	_	0.12	0.10	-	_	_	_	_
00	10	0.06	0.13	0.16	-	_	_	_	_
01	12	0.06	0.14	0.23	-	_	-	_	-
02	15	0.11	0.18	0.29	_	_	-	_	-
03	17	0.13	0.24	0.41	-	_	-	_	_
04	20	0.23	0.44	0.68	-	-	-	-	_
05	25	0.27	0.52	0.85	-	_	_	0.4	-
06	30	0.31	0.69	1.2	0.58	_	_	0.6	0.4
07	35	0.48	0.98	1.7	0.78	-	-	0.8	0.6
80	40	0.75	1.2	2.1	0.92	-	-	1.0	0.7
09	45	0.83	1.5	2.6	1.2	-	-	1.3	1.0
10	50	0.91	1.6	3.0	1.2	-	-	1.4	1.
11	55	1.1	2.4	3.9	1.7	-	-	2.0	1.5
12	60	1.2	2.6	4.8	1.8	_	_	2.1	1.6
13	65	1.3	2.6	5.7	1.9	_	_	2.2	1.6
14	70	2.1	3.6	6.5	2.8	_	_	3.2	2.4
15	75	2.3	3.6	7.0	2.9	-	_	3.5	2.
16	80	2.4	5.1	8.7	3.8	_	_	4.7	3.
17	85	3.5	5.3	11	4.0	-	-	4.9	3.7
18	90	3.6	6.6	13	5.5	_	_	6.5	4.5
19	95	3.6	6.8	16	5.7	-	-	6.6	4.7
20	100	4.9	7.2	19	6.1	5.4	4.5	6.8	4.9
21	105	5.1	9.0	23	7.6	5.6	4.6	9.3	5.9
22	110	5.2	12	27	9.1	5.7	4.8	11	7.5
24	120	7.9	12	31	9.8	8.4	6.5	12.5	8.
26	130	9.0	18	34	15	11	8.5	18	12.4
28	140	9.9	20	42	17	12	9.3	20	12.9
30	150	14	25	53	22	24	14	23	-
32	160	16	34	-	26	20	15	29	_
34	170	14	42	-	33	21	15	38	_
36	180	22	51	-	46	28	23	51	_
38	190	27	47	_	50	30	24	54	_
40	200	39	76	-	61	44	35	69	_
44	220	42	_	_	_	_	37	_	_
48	240	41	_	_	_	_	40	_	_
52	260	77	_	_	_	_	70	_	_
56	280	80	_	_	_	_	75	_	

The grease quantity of "xxTAC20(29)X(D)" should be same as the double row cylindrical roller bearing's, which is assembled with this bearing together. Multiply 0.98 (density) to the quantity above, for the weight of the grease.

For the reccomended grease quantity for angular contact thrust ball bearing for ball screw support, please refer to Page 100.

The tolerance for the boundary dimensions and running accuracy of NSK radial bearings are specified by the Accuracies of Rolling Bearings in ISO 492/199/582/1132-1, and Rolling Bearing Tolerances in JIS B 1514. In addition to the above tolerances, NSK manufactures angular contact ball bearings with precision classes ABEC5, 7, and 9 as specified by American Bearing Manufacturers Association (ABMA) Standard 20.

Rough definitions of the items listed for running accuracy and their measuring methods are described in Fig. 7.1 and Table 7.1. Further details are available in ISO 5593, Rolling Bearings Vocabulary in JIS B 0104, and Measuring Methods for Rolling Bearings in JIS B 1515.

Table 7.1

Running Accuracy	Inner Ring	Outer Ring	Dial Gauge
Radial runout of assembled bearing inner ring K_{ia}	Rotating	Stationary	A
Radial runout of assembled bearing outer ring K_{ea}	Stationary	Rotating	Α
Assembled bearing inner ring face (backface) runout with raceway S _{ia}	Rotating	Stationary	B ₁
Assembled bearing outer ring face (backface) runout with raceway Sea	Stationary	Rotating	B ₂
Inner ring reference face (backface, where applicable) runout with raceway S _d	Rotating	Stationary	С
Variation of bearing outside surface generatrix inclination with outer ring reference face (backface) S _D	N/A	Rotating	D

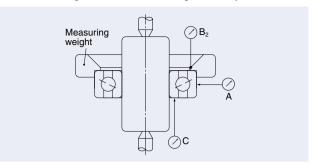
Tolerance for Radial Bearings

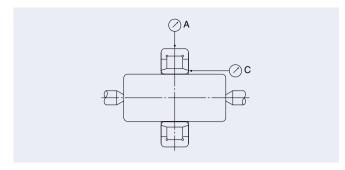
Inner Ring

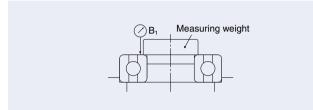
Table 7.2 Inner Ring (Class 5)

Unit: μ m

Nominal Bo	d	Bore Dia.	ane Mean Deviation	V	in a Single Radial Plane dp (²) er Series 0, 2, 3	Mean Bore Dia. Variation V _{dmp} (²)	Radial Runout of Inner Ring K_{ia}		Inner Ring Face Run out with Raceway $S_{ia}(^4)$			Ring Width (¹) Combined Bearing	Inner Ring Width Variation VBs
over	incl	high	low	n	nax	max	max	max	max	high	lo)W	max
2.5	10	0	- 5	5	4	3	4	7	7	0	- 40	-250	5
10	18	0	- 5	5	4	3	4	7	7	0	- 80	-250	5
18	30	0	- 6	6	5	3	4	8	8	0	-120	-250	5
30	50	0	- 8	8	6	4	5	8	8	0	-120	-250	5
50	80	0	- 9	9	7	5	5	8	8	0	-150	-250	6
80	120	0	-10	10	8	5	6	9	9	0	-200	-380	7
120	180	0	-13	13	10	7	8	10	10	0	-250	-380	8
180	250	0	-15	15	12	8	10	11	13	0	-300	-500	10
250	315	0	-18	18	14	9	13	13	15	0	-350	-500	13


Table 7.3 Inner Ring (Class 4)


Unit: μ m


	Nominal Bor d (mr	1	Single plate bore dia. Δ_{dn}		Single B	on of a Bore Dia.	Radial P	iation in a Single lane $V_{dp}(^2)$ er Series $0, 2, 3$		Radial Runout of Inner Ring K_{ia}	'	Face Runout with Raceway	Single Bearing	of Single inner Δ_{Bs} Single Bearing	(1)	Inner Ring Width Variation
Ī	over	incl	high	low	high	low	n	nax	max	max	max	max	high	lo	w	max
	2.5	10	0	- 4	0	-4	4	3	2	2.5	3	3	0	- 40	-250	2.5
	10	18	0	- 4	0	-4	4	3	2	2.5	3	3	0	- 80	-250	2.5
	18	30	0	- 5	0	- 5	5	4	2.5	3	4	4	0	-120	-250	2.5
	30	50	0	- 6	0	-6	6	5	3	4	4	4	0	-120	-250	3
	50	80	0	- 7	0	-7	7	5	3.5	4	5	5	0	-150	-250	4
	80	120	0	- 8	0	-8	8	6	4	5	5	5	0	-200	-380	4
	120	180	0	-10	0	-10	10	8	5	6	6	7	0	-250	-380	5
	180	250	0	-12	0	-12	12	9	6	8	7	8	0	-300	-500	6

- (1) Applicable to individual rings manufactured for combined bearings.
- (2) Applicable to bearings with cylindrical bores.
- (*) Class 3 is NSK's original accuracy. Tolerance of bearing bore diameter and outer ring diameter are Class 4. Other tolerances are Class 2.
- (4) Applicable to ball bearings.
- Remarks: 1. The cylindrical bore diameter tolerance limit (high), as per the no-go side of a plug gage as specified in this table, is not necessarily applicable within a distance of 1.2 times the chamfer dimension r (max) from the ring face.
 - 2. ABMA Standards ABEC5, ABEC7, and ABEC9 are equivalent to ISO (JIS) Classes 5, 4, and 2 respectively. ABMA Standards are applicable to angular contact ball bearings.

Fig. 7.1 Measuring Methods for Running Accuracy

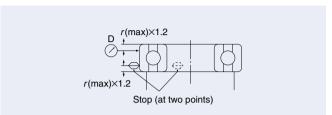


Table 7.4 Inner Ring (Class 3) (3)

Unit: μ m

	Bore Diameter d (mm)	Bore Dia.	ane Mean Deviation	Deviation of a Ω_d	Single Bore Dia.	Bore Dia. Variation in a Single Radial Plane $V_{dp}(^2)$	Mean Bore Dia. Variation V _{dmp} (²)	Radial Runout of Inner Ring K_{ia}		Runout with Raceway		of Single Inner Δ_{Bs} Single Bearing	(1)	Inner Ring Width Variation V_{Bs}
over	incl	high	low	high	low	max	max	max	max	max	high	lc)W	max
2.5	10	0	- 4	0	- 4	2.5	1.5	1.5	1.5	1.5	0	- 40	-250	1.5
10	18	0	- 4	0	- 4	2.5	1.5	1.5	1.5	1.5	0	- 80	-250	1.5
18	30	0	- 5	0	- 5	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5
30	50	0	- 6	0	- 6	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5
50	80	0	- 7	0	- 7	4	2	2.5	1.5	2.5	0	-150	-250	1.5
80	120	0	- 8	0	- 8	5	2.5	2.5	2.5	2.5	0	-200	-380	2.5
120	150	0	-10	0	-10	7	3.5	2.5	2.5	2.5	0	-250	-380	2.5
150	180	0	-10	0	-10	7	3.5	5	4	5	0	-250	-380	4
180	250	0	-12	0	-12	8	4	5	5	5	0	-300	-500	5

Table 7.5 Inner Ring (Class 2)

Unit: μ m

	ore Diameter d nm)	Single Pla Bore Dia. Δ_{dn}		Deviation of a S $arDelta_d$	Single Bore Dia.	Bore Dia. Variation in a Single Radial Plane $V_{dp}(^2)$	Variation	Radial Runout of Inner Ring K_{ia}		Runout with Raceway	Single Bearing	of Single Inner Δ_{Bs} Single Bearing	Ring Width (1) Combined Bearing	Inner Ring Width Variation V _{Bs}	Poloropoo
over	incl	high	low	high	low	max	max	max	max	max	high	lc	w	max	Ş
2.5	10	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	0	- 40	-250	1.5	
10	18	0	-2.5	0	-2.5	2.5	1.5	1.5	1.5	1.5	0	- 80	-250	1.5	ď
18	30	0	-2.5	0	-2.5	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5	
30	50	0	-2.5	0	-2.5	2.5	1.5	2.5	1.5	2.5	0	-120	-250	1.5	
50	80	0	-4	0	-4	4	2	2.5	1.5	2.5	0	-150	-250	1.5	
80	120	0	- 5	0	- 5	5	2.5	2.5	2.5	2.5	0	-200	-380	2.5	
120	150	0	- 7	0	- 7	7	3.5	2.5	2.5	2.5	0	-250	-380	2.5	
150	180	0	- 7	0	- 7	7	3.5	5	4	5	0	-250	-380	4	
180	250	0	-8	0	-8	8	4	5	5	5	0	-300	-500	5	

158 **NSK NSK** 159

Tolerance for Radial Bearing

Outer Ring

Table 7.6 Outer Ring (Class 5)

Nominal Outs)	Outside Dia	ane Mean a. Deviation	1	n in a Single Radial Plane V _{Dp} ter Series 0, 2	Mean Outside Dia. Variation V _{Dmp}	Radial Runout of Outer Ring K_{ea}	Variation of Outside Surface Generatrix Inclination with Face \mathcal{S}_D	Outer Ring Face Runout with Raceway Sea (1)	Deviation of Single Outer Ring Width ${\it \Delta_{Cs}}$	Outer Ring Width Variation V_{Cs}
over	incl	high	low	n	nax	max	max	max	max		max
6	18	0	- 5	5	4	3	5	8	8		5
18	30	0	- 6	6	5	3	6	8	8		5
30	50	0	- 7	7	5	4	7	8	8		5
50	80	0	- 9	9	7	5	8	8	10	Equal to the value of	6
80	120	0	- 10	10	8	5	10	9	11	inner ring (Δ_{Bs}) of the	8
120	150	0	-11	11	8	6	11	10	13	same bearing	8
150	180	0	-13	13	10	7	13	10	14	number.	8
180	250	0	-15	15	11	8	15	11	15		10
250	315	0	-18	18	14	9	18	13	18		11
315	400	0	-20	20	15	10	20	13	20		13

Table 7.7 Outer Ring (Class 4)

Nominal Outs)		ane Mean a. Deviation	Outsic	of Single le Dia.	V	ina Single Radial Plane Y _{Dp} er Series 0, 2	Mean Outside	Radial Runout of Outer Ring K_{ea}	Variation of Outside Surface Generatrix Inclination with Face \mathcal{S}_D	Outer Ring Face Runout with Raceway $S_{ea}(^1)$	Deviation of Single Outer Ring Width $\Delta_{C\mathrm{S}}$	Outer Ring Width Variation $oldsymbol{V_{Cs}}$
over	incl	high	low	high	low	m	ıax	max	max	max	max		max
6	18	0	- 4	0	- 4	4	3	2	3	4	5		2.5
18	30	0	- 5	0	- 5	5	4	2.5	4	4	5		2.5
30	50	0	- 6	0	- 6	6	5	3	5	4	5		2.5
50	80	0	- 7	0	- 7	7	5	3.5	5	4	5	Equal to the value	3
80	120	0	- 8	0	- 8	8	6	4	6	5	6	of inner ring (Δ_{Bs}) of	4
120	150	0	- 9	0	- 9	9	7	5	7	5	7	the same bearing	5
150	180	0	-10	0	-10	10	8	5	8	5	8	number.	5
180	250	0	-11	0	-11	11	8	6	10	7	10		7
250	315	0	-13	0	-13	13	10	7	11	8	10		7
315	400	0	-15	0	-15	15	11	8	13	10	13		8

⁽¹⁾ Applicable to ball bearings.

Remarks: 1. The cylindrical bore diameter tolerance limit (high), as per the no-go side of a plug gage as specified in this table, is not necessarily applicable within a distance of 1.2 times the chamfer dimension r (max) from the ring face.

Table 7.8 Outer Ring (Class

Unit: μ m

Unit: μ m

s 3)(²)		Unit:
- / (/		Ornit.

	side Diameter D nm)	Single Pla Outside Dia Δ_D	a. Deviation	Outsid	of Single le Dia.	Outside Dia. Variation in a Single Radial Plane V_{Dp}		Radial Runout of Outer Ring K_{ea}	Variation of Outside Surface Generatrix Inclination with Face \mathcal{S}_D	Outer Ring Face Runout with Raceway Sea (1)	Deviation of Single Outer Ring Width $\Delta_{C\mathrm{S}}$	Outer Ring Width Variation V_{Cs}
over	incl	high	low	high	low	max	max	max	max	max		max
6	18	0	- 4	0	- 4	2.5	1.5	1.5	1.5	1.5		1.5
18	30	0	- 5	0	- 5	4	2	2.5	1.5	2.5		1.5
30	50	0	- 6	0	- 6	4	2	2.5	1.5	2.5		1.5
50	80	0	- 7	0	- 7	4	2	4	1.5	4	Equal to the value	1.5
80	120	0	- 8	0	- 8	5	2.5	5	2.5	5	of inner ring (Δ_{Bs})	2.5
120	150	0	- 9	0	- 9	5	2.5	5	2.5	5	of the same	2.5
150	180	0	-10	0	-10	7	3.5	5	2.5	5	bearing number.	2.5
180	250	0	-11	0	-11	8	4	7	4	7		4
250	315	0	-13	0	-13	8	4	7	5	7		5
315	400	0	-15	0	-15	10	5	8	7	8		7

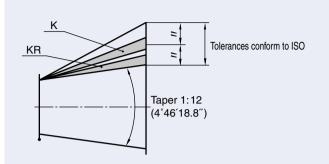
Table 7.9 Outer Ring (Class 2)

Unit: μ m

Nominal Outsid	le Diameter	Single Pla Outside Dia		Deviation Outsid		Outside Dia. Variation in a Single Radial Plane		Radial Runout of Outer Ring	Curtago Congratriy	Outer Ring Face Runout with Raceway	Deviation of Single Outer Ring Width	Outer Ring Width Variation
(mm	1)	$\Delta_{\mathcal{D}}$	mp	Δ	Ds	V_{Dp}	V_{Dmp}	K _{ea}	S_D	S _{ea} (1)	$\it \Delta_{Cs}$	V _{Cs}
over	incl	high	low	high	low	max	max	max	max	max		max
6	18	0	- 2.5	0	- 2.5	2.5	1.5	1.5	1.5	1.5		1.5
18	30	0	- 4	0	- 4	4	2	2.5	1.5	2.5		1.5
30	50	0	- 4	0	- 4	4	2	2.5	1.5	2.5		1.5
50	80	0	- 4	0	- 4	4	2	4	1.5	4	Equal to the value	1.5
80	120	0	- 5	0	- 5	5	2.5	5	2.5	5	of inner ring (Δ_{Bs})	2.5
120	150	0	- 5	0	- 5	5	2.5	5	2.5	5	of the same	2.5
150	180	0	- 7	0	- 7	7	3.5	5	2.5	5	bearing number.	2.5
180	250	0	- 8	0	- 8	8	4	7	4	7		4
250	315	0	- 8	0	- 8	8	4	7	5	7		5
315	400	0	-10	0	-10	10	5	8	7	8		7

⁽²) Class 3 is NSK's original accuracy. Tolerance of bearing bore diameter and outer ring diameter are Class 4. Other tolerances are Class 2.

^{2.} ABMA Standards ABEC5, ABEC7, and ABEC9 are equivalent to ISO (JIS) Classes 5, 4, and 2 respectively. ABMA Standards are applicable to angular contact ball bearings.

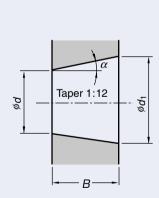

Unit: μ m

Tolerances for Tapered Bores of Cylindrical Roller Bearing

Tolerances of tapered bores

The bore accuracy of tapered bore cylindrical roller bearings is specified by ISO. However, in this standard, the tolerances are rather wide. For precision-class cylindrical roller bearings, NSK established its own narrower tolerances. As is customary, however, two taper angles are available within the tolerance range specified by ISO (see Fig. 7.2).

Fig. 7.2 Tolerances

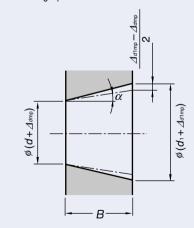


- K: NSK's original tolerance for tapered bore has a very narrow range that is positioned midrange of the ISO standard. Bore dimensional tolerances are identical to those of ISO.
- KR: Newly created tolerance for tapered bores has a very narrow range that is positioned towards the lower limit of the standard ISO range. This NSK tolerance is narrower than that of ISO, which enhances easier mounting.

Fig. 7.3 Tapered Bore Tolerances

Nominal tapered bore

Tapered bore with a single plan mean bore diameter deviation from basic bore diameter



d: Nominal bore diameter

 d_1 : Theoretical large bore end of tapered bore $d_1 = d + \frac{1}{12}B$

 Δ_{dmp} : Single plane mean bore diameter deviation in the theoretical small bore end of the bore

 Δ_{d1mp} : Single plane mean bore diameter deviation in the theoretical large bore end of the bore

B: Nominal inner ring width

 α : Half of taper angle of tapered bore α =2°23′9.4″

=2.38594°

=0.041643rad

Table 7.10 KR Tapered Bores

(m	d m)	Δ_o	<i>l</i> mp	(Refere $\Delta_{d1 ext{mp}}$ -	nce) (²) — ${\it \Delta}_{\rm dmp}$	V _{dp} (¹)
over	incl	high	low	high	low	max
18	30	+13	0	+3	0	4
30	50	+16	0	+3	0	5
50	80	+19	0	+4	0	6
80	120	+22	0	+5	0	7
120	180	+25	0	+7	0	9

- +29 (1) Bore diameter variation in an single radial plane, which is applicable to all radial planes of tapered bores.
- (2) Taper angular tolerance, 4°46′18.8″ +25°

250

Table 7.11 K Tapered Bores

Unit: μ m

(m		Δ_{a}	mp	$\it \Delta_{d1mp}$ –	$-\Delta_{dmp}$	$V_{dp}(^{\scriptscriptstyle 1})$
over	incl	high	low	high	low	max
18	30	+21	0	+21	0	4
30	50	+25	0	+25	0	5
50	80	+30	0	+30	0	6
80	120	+35	0	+35	0	7
120	180	+40	0	+40	0	9
180	250	+46	0	+46	0	12
250	315	+52	0	+52	0	14
315	400	+57	0	+57	0	16
400	500	+63	0	+63	0	18

(1) Bore diameter variation in an single radial plane, which is applicable to all radial planes of tapered bores.

7. BEARING TOLERANCES

Tolerances for Angular Contact Thrust Ball Bearing

Tolerances for high speed angular contact thrust ball bearing (Class 4A(1) of BAR and BTR types)

Table 7.12 Inner ring Unit: μ m

	Nomina	al Bore	Single	Plane	Deviati	on of a	Bore Dia. \	/ariation in	Mean Bore	Radial	Inner Ring	Inner Ring	Inner Ring	Devia	ition of
	Diam	neter	Mean	Bore	Single E	Bore Dia.	a Single Ra	adial Plane	Dia.	Runout of	Runout	Face Runout	Width	Single	e Inner
			Dia. De	eviation			V	<i>d</i> p	Variation	Inner Ring	with Bore	with Raceway	Variation	Ring	Width
	a	1	Δ_d	/mp	Δ	ds	Diamete	r Series	V_{dmp}	K_{ia}	S_d	S_{ia}	V _{Bs}	Δ_{Bs}	(Δ_{Cs})
	(mr	m)					9	0							
(over	incl	high	low	high	low	max	max	max	max	max	max	max	high	low
	_	50	0	- 6	0	- 6	6	5	3	4	4	4	3	0	- 300
	50	80	0	- 7	0	- 7	7	5	3.5	4	5	5	4	0	- 500
	80	120	0	- 8	0	- 8	8	6	4	5	5	5	4	0	- 500
	120	150	0	-10	0	-10	10	8	5	6	6	7	5	0	- 750
	150	180	0	-10	0	-10	10	8	5	6	6	7	5	0	- 750
	180	250	0	-12	0	-12	12	9	6	8	7	8	6	0	-1000

Table 7.13 Outer ring

Unit: μ m

Nominal	Outside	Single	Plane	Devia	tion of	Outside dia	a. Variation	Mean Outside	Radial	Variation of Outside	Outer Ring	Outer Ring
Diam	neter	Mean C	Outside	Single Ou	tside Dia.	in a Single F	Radial Plane	Dia. Variation	Runout of	Surface Generatrix	Face Runout	Width
		Dia. De	viation			V	Dp		Outer Ring	Inclination with Face	with Raceway	Variation
E)	Δ_{D}	mp	Δ	Ds	Diamete	r Series	V_{Dmp}	K_{ea}	S_D	${\cal S}_{ extsf{ea}}$	V_{Cs}
(mr	m)		•		Δ _{Ds}		0	·				
over	incl	high	low	high	low	max	max	max	max	max	max	max
_	80	-30	-37	-30	-37	7	5	3.5	5	4	5	3
80	120	-40	-48	-40	-48	8	6	4	6	5	6	4
120	150	-50	-59	-50	-59	9	7	5	7	5	7	5
150	180	-50	-60	-50	-60	10	8	5	8	5	8	5
180	250	-50	-61	-50	-61	11	8	6	10	7	10	7
250	315	-60	-73	-60	-73	13	10	7	11	8	10	7

Tolerance of double direction angular contact thrust ball bearing (Class 7(2) of TAC type)

Table 7.14 Tolerances of inner ring, outer ring, and bearing height

Table 7.15 Tolerance of outer ring Unit: μ m

									Onit: μ m				Onit: μ m
	Nomina	al Bore	Deviation	of a Single	Deviati	on of the	Radial Runout of Assembled	Inner Ring	Inner ring (Outer Ring)	Nominal	Outside	Devia	tion of
	Diam	neter	Bore D	iameter	Actual Be	aring Height	Bearing Inner ring (Outer Ring)	Runout	Face Runout with Raceway	Diam	neter	Single Ou	utside Dia.
	C	d	Δ	ds		$\Lambda_{T_{S}}$	K _{ia}	with Bore	S_{ia}	L)	Δ	Ds
	(m	m)					(K _{ea})	$S_{\sf d}$	(S_{ea})	(m	m)		
	over	incl	high	low	high	low	max	max	max	over	incl	high	low
	_	30	0	- 5	0	- 300	5	4	3	30	50	-25	- 41
	30	50	0	- 5	0	- 400	5	4	3	50	80	-30	- 49
	50	80	0	- 8	0	- 500	6	5	5	80	120	-36	- 58
	80	120	0	- 8	0	- 600	6	5	5	120	180	-43	- 68
	120	180	0	-10	0	- 700	8	8	5	180	250	-50	- 79
	180	250	0	-13	0	- 800	8	8	6	250	315	-56	- 88
	250	315	0	-15	0	- 900	10	10	6	315	400	-62	- 98
	315	400	0	-18	0	-1200	10	12	7	400	500	-68	-108
(1) NSK sp	ecification	Fauivaler	nt to ISO C	lass 4 ex	cent for tol	erance of outer ring (nutside d	iameter	500	630	-76	-120

⁽¹⁾ NSK specification. Equivalent to ISO Class 4 except for tolerance of outer ring outside diameter

Tolerances for Angular Contact Ball Bearing for Ball Screw Support

Machine Tool Applications

Table 7.16 TAC B series

Unit: μ m

		D	viction of E	Bore Diamet	or	Do	iotion of O	ıtside Diam	otor	Deviation	n of Inner	Inner or Outer Ring
Nomin	al Bore or	DE	eviation of E	bore Diamet	.eı	Dev	nation of Ot	ilside Diam	eter	Ring	Width	Runout with Raceway
Outside	Diameters		Tolerance	e Classes			Tolerance	e Classes		Toleranc	e Classes	Tolerance Classes
(1	mm)	DNI	71	PN	7D	PN	7.1	DI	17B	PN	17A	PN7A
		PN7A		FIN	/ D	FIN	/ A	FIV	170	PN	17B	PN7B
over	incl	high	low	high	low	high	low	high	low	high	low	max
10	18	0	-4	0	-4	_	_	_	_	0	-120	2.5
18	30	0	- 5	0	-4	_	_	_	-	0	-120	2.5
30	50	0	-6	0	-4	0	-6	0	-4	0	-120	2.5
50	80	0	- 7	0	- 5	0	- 7	0	-5	0	-150	2.5
80	120	0	-8	0	-6	0	-8	0	-6	0	-200	2.5

Remark: Variation of outer ring width is the same as that for the inner ring of the same bearing.

Class PN7A is the standard tolerance for these bearings. This corresponds to ISO Class 4 for radial ball bearings, but for the runout of the inner and outer rings, more stringent values are applied.

The stricter Class PN7B applies to the dimensional tolerances of the bores and outside diameters of single-row universal arrangement bearings (SU).

Electrical Injection Molding Machine

Table 7.17 TAC 02 and 03 series

Unit: um

Nominal Outside I		Deviation of E	Bore Diameter	Deviation of C	outside Diameter	Deviation of Ir	nner Ring Width	Inner or outer Ring Runout with Raceway
					Tolerance Class			
(m	111)				PN5D			
over	incl	high	low	high	low	high	low	max
10	18	0	- 5	_	-	0	- 80	5
18	30	0	- 6	-	_	0	-120	5
30	50	0	- 8	0	- 7	0	-120	8
50	80	0	- 9	0	- 9	0	-150	8
80	120	0	-10	0	-10	0	-200	8
120	150	-	_	0	-11	_	-	_
150	180	-	_	0	-13	_	-	_
180	250	-	_	0	–15	_	-	_
250	315	_	_	0	-18	_	_	_

Remark: Variation of outer ring width is the same as that for the inner ring of the same bearing.

Class PN5D is the standard tolerance for these bearings. This corresponds to ISO Class 5 for radial ball bearings, but for the runout of the inner and outer rings, more stringent values are applied.

164 **NSK NSK** 165

⁽²⁾ NSK specification

Fitting of Shaft and Housing

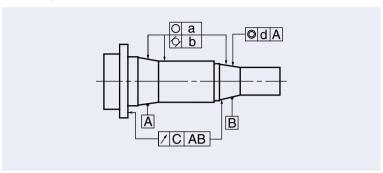
It is of utmost importance that shafts and housings are accurately and precisely mated in order to take full advantage of the precision bearings' capabilities, which include rotational accuracy, high speed performance, and low heat generation.

When the inner ring or outer ring is mounted onto a shaft or into a housing with some interference, the shape of shaft or housing (out of roundness) is transferred to the bearing raceway surfaces and affects running accuracy. When multiple angular contact ball bearings are used, cylindricality affects the distribution of preload for each bearing. Therefore, the mating parts should be as accurate as possible.

Inaccurate mating of parts can cause the formation of peaks or ridges along the shaft of a precision lathe, which can affect the quality of finished work.

Table 8.1 Fits on Shafts (1)

Pooring Type	Shaft Outer D	Diameter (mm)	Tolerance of Shaft (2)	Outer Diameter (mm)	Target Interfere	ence (²) (⁴) (mm)
Bearing Type	over	incl	min	max	min	max
	10	18	-0.003	0	0	0.002 T
	18	50	-0.004	0	0	0.0025T
Machine tool	50	80	-0.005	0	0	0.003 T
spindle bearing (3)	80	120	-0.003	0.003	0	0.004 T
	120	180	-0.004	0.004	0	0.004 T
	180	250	-0.005	0.005	0	0.005 T
	10	18	-0.008	0	_	_
Angular contact thrust	18	30	-0.009	0	_	_
ball bearing for ball	30	50	-0.011	0	_	_
screw support	50	80	-0.013	0	_	_
	80	120	-0.015	0	_	_


Table 8.2 Fits on Housings (1)

Bearing Type	Housing Bore	Diameter (mm)	Tolerance of Housing (²) Bore Diameter (mm)	Target Clearar	nce (²) (⁴) (mm)
Bearing Type	over	incl	min	max	min	max
	18	50	-0.002	0.002	0.002L	0.006L
Angular contact hall	50	80	-0.0025	0.0025	0.002L	0.006L
Angular contact ball	80	120	-0.003	0.003	0.003L	0.008L
bearing (Fixed end)	120	180	-0.004	0.004	0.003L	0.008L
	180	250	-0.005	0.005	0.005L	0.010L
	18	50	0	0.004	0.006L	0.011L
Angular contact hall	50	80	0	0.005	0.006L	0.011L
Angular contact ball bearing (Free end)	80	120	0	0.006	0.009L	0.015L
bearing (Free end)	120	180	0	0.008	0.009L	0.015L
	180	250	0	0.010	0.015L	0.022L
	18	50	-0.006	0	0.002L	0.002T
	50	80	-0.007	0	0.002L	0.002T
Cylindrical roller	80	120	-0.008	0	0.002L	0.002T
bearing	120	180	-0.009	0	0.002L	0.002T
	180	250	-0.011	0	0.002L	0.002T
	10	18	_	_	_	_
Angular contact thrust	18	30	_	_	_	_
ball bearing for ball	30	50	0	0.016	-	-
screw support	50	80	0	0.019	-	_
	80	120	0	0.022	-	_

⁽¹⁾ The fitting data above provides general recommendations for machine tool spindles operating under normal conditions and for $d_{m}n$ values of less than 800,000. For high speeds, heavy loads, or outer ring rotation, please contact NSK for assistance.

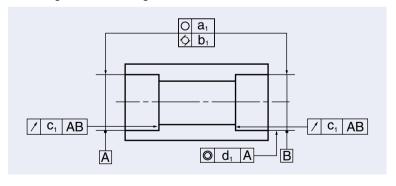

If the taper of the inner ring for a double row cylindrical roller bearing with a tapered bore does not match that of the shaft, the residual clearance will be different for two of the rows. Therefore, load will not be sustained normally, and will impair rigidity or cause irregular movement of the rollers due to taper of the inner ring groove. We recommend that you gauge the tapered parts to be mated with bearings. Contact should cover more than 80% of the total surface area that is dyed blue. The recommended accuracy and surface roughness of bearing mounting seats are shown in following tables:

Table 8.3 Tolerance for and Mean Roughness of Shafts

					Tolerance	Grades and	Mean Rough	nness (µm)			
Shaft D	Diameter	Out-of-rour	ndness (〇)	Cylindri	city (🗘)	Runo	ut (↗)	Coaxia	lity (◎)	Roug	hness
(m	nm)	í	<u> </u>	ŀ)	(2	(t	F	R_a
		Bearing	Accuracy	Bearing A	Accuracy	Bearing	Accuracy	Bearing A	Accuracy	Bearing	Accuracy
over	incl	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2
_	10	0.7	0.5	0.7	0.5	2	1.2	4	2.5	0.2	0.1
10	18	1	0.6	1	0.6	2.5	1.5	5	3	0.2	0.1
18	30	1.2	0.7	1.2	0.7	3	2	6	4	0.2	0.1
30	50	1.2	0.7	1.2	0.7	3.5	2	7	4	0.2	0.1
50	80	1.5	1	1.5	1	4	2.5	8	5	0.2	0.1
80	120	2	1.2	2	1.2	5	3	10	6	0.4	0.2
120	180	2.5	1.7	2.5	1.7	6	4	12	8	0.4	0.2
180	250	3.5	2.2	3.5	2.2	7	5	14	10	0.4	0.2
250	315	4	3	4	3	8	6	16	12	0.4	0.2

Table 8.4 Tolerance for and Mean Roughness of Housings

					Tolerance	Grades and	Mean Rough	nness (µm)			
Housing Bo	re Diameter	Out-of-rour	ndness (()	Cylindri	city (🗘)	Runo	ut (↗)	Coaxia	lity (◎)	Roug	hness
(m	m) [а	l ₁	b)1	С	1	С	l ₁	F	R_a
		Bearing /	Accuracy	Bearing A	Accuracy	Bearing A	Accuracy	Bearing A	Accuracy	Bearing	Accuracy
over	incl	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2	P5, P4	P3, P2
10	18	1	0.6	1	0.6	2.5	1.5	5	3	0.4	0.2
18	30	1.2	0.7	1.2	0.7	3	2	6	4	0.4	0.2
30	50	1.2	0.7	1.2	0.7	3.5	2	7	4	0.4	0.2
50	80	1.5	1	1.5	1	4	2.5	8	5	0.4	0.2
80	120	2	1.2	2	1.2	5	3	10	6	0.8	0.4
120	180	2.5	1.7	2.5	1.7	6	4	12	8	0.8	0.4
180	250	3.5	2.2	3.5	2.2	7	5	14	10	0.8	0.4
250	315	4	3	4	3	8	6	16	12	1.6	0.8
315	400	4.5	3.5	4.5	3.5	9	6.5	18	13	1.6	0.8

166 NSK NSK 167

⁽²) Use the target interference when the bearing can be matched to the shaft or housing, Otherwise, use the shaft outer diameter and housing bore min and max for random matching.

^(°) Applies to angular contact ball bearings: 70XX, 79XX, 72XX, BNR and BER Angular contact thrust ball bearings: BAR, BTR and TAC

Cylindrical rollers bearings: N10XX, NN30XX, NN39XX, NN49XX and NNU49XX.

⁽⁴⁾ T=Interference or tight fit

L=Clearance or loose fit

Shoulder and Fillet Dimensions

Table 8.5 Shoulder and Fillet Dimensions for Angular Contact Ball Bearings

Unit: mm

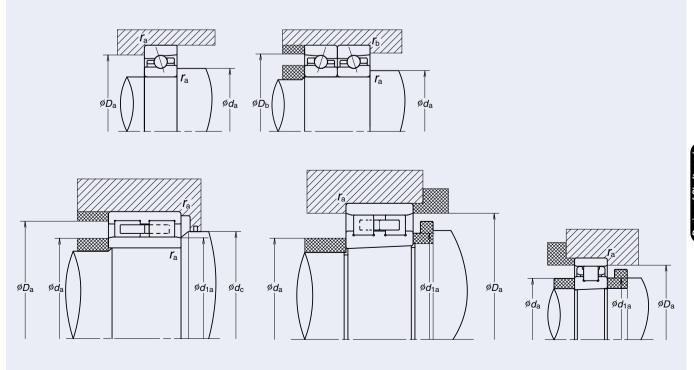

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nominal Bore	79	XX, BNR	nsion Seri 119, BER1 BGR19, 1	19, BAR1	9,	70	XX, BNF	nsion Seri R10, BER BGR10,	10, BAR1	0,			nsion Seri XX, BGR		
6 - - - - - - - - 7 - - 0.3 - 8.5 16.5 - 0.3 -	Diameter	d _a	D _a	D _b	r _a	r _b	d _a	Da	D_{b}	r _a	r _b	d _a	D _a	D_{b}	r _a	r _b
66 - - - - - 8.5 14.5 - 0.3 - 8.5 16.5 - 0.3 -		(min)	(max)	(max)	(max)	(max)	(min)	(max)	(max)	(max)	(max)	(min)		(max)	(max)	(max)
8 -		_	-	_	_	_	-	-	-		-			-	0.3	_
No. No.		-	-	-	-	-			-	0.3	-	8.5	16.5	-	0.3	_
10			-	-		-						-				_
12 14.5 21.5 22.8 0.3 0.15 14.5 25.5 26.8 0.3 0.15 17.5 29.5 30.8 0.3 0.15 20 30 32.5 0.6 0.3 17 19.5 27.5 28.8 0.3 0.15 19.5 32.5 33.8 0.3 0.15 22 35 37.5 0.6 0.3 20 22.5 34.5 35.8 0.3 0.15 25 37 39.5 0.6 0.3 26 41 42 1.0 0.5 25 27.5 39.5 40.8 0.3 0.15 36 49 50 1.0 0.5 36 56 57 1.0 0.5 30 32.5 44.5 44.5 46.8 0.3 0.15 36 49 50 1.0 0.5 56 67 1.0 0.6 40 45 57 59.5 0.6 0.3 51																
15 17.5 25.5 26.8 0.3 0.15 19.5 29.5 30.8 0.3 0.15 20 30 32.5 36.6 0.3 17 19.5 27.5 28.8 0.3 0.15 19.5 32.5 33.8 0.3 0.15 22 35 37.5 0.6 0.3 25 27.5 39.5 40.8 0.3 0.15 36 42 44.5 0.6 0.3 31 46 47 1.0 0.5 30 32.5 44.5 45.8 0.3 0.15 36 49 50 1.0 0.5 36 56 57 1.0 0.5 36 56 67 1.0 0.5 42 65 67 1.0 0.5 42 65 67 1.0 0.6 43 50 66 63 65.5 0.6 0.3 46 62 63 1.0 0.5 42 65 67 1												_				
17																
20 22.5 34.5 35.8 0.3 0.15 25 37 39.5 0.6 0.3 26 41 42 1.0 0.5 25 27.5 39.5 40.8 0.3 0.15 30 42 44.5 0.6 0.3 31 46 47 1.0 0.5 35 40 50 52.5 0.6 0.3 41 56 57 1.0 0.5 42 65 67 1.0 0.6 40 45 57 59.5 0.6 0.3 41 56 57 1.0 0.5 42 65 67 1.0 0.6 45 50 63 65.5 0.6 0.3 51 69 70 1.0 0.5 57 83 85 1.0 0.6 55 67 69.5 0.6 0.3 56 74 75 1.0 0.5 77 83 85 1.0	_	-					-					-				
25 27.5 39.5 40.8 0.3 0.15 30 42 44.5 0.6 0.3 31 46 47 1.0 0.5 30 32.5 44.5 45.8 0.3 0.15 36 49 50 1.0 0.5 36 57 1.0 0.5 35 40 50 52.5 0.6 0.3 41 56 57 1.0 0.5 42 65 67 1.0 0.6 40 45 57 59.5 0.6 0.3 56 70 1.0 0.5 47 73 75 1.0 0.6 50 55 67 69.5 0.6 0.3 56 74 75 1.0 0.5 72 78 80 1.0 0.6 55 67 78 80 1.0 0.5 62 83 85 1.0 0.6 49 11 1.5 0.8																
30																
35													_			
40 45 57 59.5 0.6 0.3 46 62 63 1.0 0.5 47 73 75 1.0 0.6 45 50 63 65.5 0.6 0.3 51 69 70 1.0 0.5 52 78 80 1.0 0.6 55 61 74 75 1.0 0.5 62 83 85 1.0 0.6 64 91 94 1.5 0.8 60 66 79 80 1.0 0.5 67 88 90 1.0 0.6 69 101 104 1.5 0.8 65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 69 101 104 1.5 0.8 75 81 99 100 1.0 0.5 87 118 120 1.0 0.6 79 116 119 1																
45 50 63 65.5 0.6 0.3 51 69 70 1.0 0.5 52 78 80 1.0 0.6 50 55 67 69.5 0.6 0.3 56 74 75 1.0 0.5 57 83 85 1.0 0.6 55 61 74 75 1.0 0.5 62 83 85 1.0 0.6 64 91 94 1.5 0.8 60 66 79 80 1.0 0.5 67 88 90 1.0 0.6 69 101 104 1.5 0.8 65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 74 111 114 1.5 0.8 70 76 94 95 1.0 0.5 87 118 120 1.0 0.6 99 130 134 2.																
50 55 67 69.5 0.6 0.3 56 74 75 1.0 0.5 57 83 85 1.0 0.6 55 61 74 75 1.0 0.5 62 83 85 1.0 0.6 64 91 94 1.5 0.8 60 66 79 80 1.0 0.5 67 88 90 1.0 0.6 69 101 104 1.5 0.8 65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 74 111 114 1.5 0.8 70 76 94 95 1.0 0.5 87 103 105 1.0 0.6 84 121 124 1.5 0.8 80 86 104 105 1.0 0.6 89 1131 134 1.5 0.8 100 150 134	_						-						_	-		
55 61 74 75 1.0 0.5 62 83 85 1.0 0.6 64 91 94 1.5 0.8 60 66 79 80 1.0 0.5 67 88 90 1.0 0.6 69 101 104 1.5 0.8 65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 74 111 114 1.5 0.8 70 76 94 95 1.0 0.5 77 103 105 1.0 0.6 79 116 119 1.5 0.8 80 86 104 105 1.0 0.5 87 118 120 1.0 0.6 99 130 134 2.0 1.0 85 92 113 115 1.0 0.6 92 123 125 1.0 1.0 1.0 1.0 1.0							-									
60 66 79 80 1.0 0.5 67 88 90 1.0 0.6 69 101 104 1.5 0.8 65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 74 111 114 1.5 0.8 70 76 94 95 1.0 0.5 77 103 105 1.0 0.6 79 116 119 1.5 0.8 80 86 104 105 1.0 0.5 87 118 120 1.0 0.6 90 130 134 2.0 1.0 85 92 113 115 1.0 0.6 92 123 125 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 95 102 123 125 1.0 0.6 109 141 144 <td></td>																
65 71 84 85 1.0 0.5 72 93 95 1.0 0.6 74 111 114 1.5 0.8 70 76 94 95 1.0 0.5 77 103 105 1.0 0.6 79 116 119 1.5 0.8 75 81 99 100 1.0 0.5 82 108 110 1.0 0.6 84 121 124 1.5 0.8 80 86 104 105 1.0 0.6 92 113 115 1.0 0.6 92 123 125 1.0 0.6 95 140 144 2.0 1.0 90 97 118 120 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 100 107 133 135 1.0 0.6 109 141 14														-		
70 76 94 95 1.0 0.5 77 103 105 1.0 0.6 79 116 119 1.5 0.8 75 81 99 100 1.0 0.5 82 108 110 1.0 0.6 84 121 124 1.5 0.8 80 86 104 105 1.0 0.5 87 118 120 1.0 0.6 90 130 134 2.0 1.0 90 97 118 120 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 107 158 163 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168																
75 81 99 100 1.0 0.5 82 108 110 1.0 0.6 84 121 124 1.5 0.8 80 86 104 105 1.0 0.5 87 118 120 1.0 0.6 90 130 134 2.0 1.0 85 92 113 115 1.0 0.6 92 123 125 1.0 0.6 95 140 144 2.0 1.0 95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 100 150 154 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 107 158 163 2.0 1.0 105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178																
80 86 104 105 1.0 0.5 87 118 120 1.0 0.6 90 130 134 2.0 1.0 85 92 113 115 1.0 0.6 92 123 125 1.0 0.6 95 140 144 2.0 1.0 90 97 118 120 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 107 158 163 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168 173 2.0 1.0 105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178	-	-	_										_			
85 92 113 115 1.0 0.6 92 123 125 1.0 0.6 95 140 144 2.0 1.0 90 97 118 120 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 107 158 163 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168 173 2.0 1.0 105 112 138 140 1.0 0.6 150 154 2.0 1.0 117 178 183 2.0 1.0 110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193<																
90 97 118 120 1.0 0.6 99 131 134 1.5 0.8 100 150 154 2.0 1.0 95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 107 158 163 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168 173 2.0 1.0 105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178 183 2.0 1.0 110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 112 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 142																
95 102 123 125 1.0 0.6 104 136 139 1.5 0.8 107 158 163 2.0 1.0 100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168 173 2.0 1.0 105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178 183 2.0 1.0 110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 <																
100 107 133 135 1.0 0.6 109 141 144 1.5 0.8 112 168 173 2.0 1.0 105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178 183 2.0 1.0 110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154		-												_		
105 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178 183 2.0 1.0 110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164																
110 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174		-														
120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188																
130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198																
140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208																
150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218							-		_							
160 170 210 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 - - - - - - -		-														
170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 - <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				-				_								
180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 -																
190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 - </td <td></td>																
200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 - <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-						_	-						
220 242 282 287 2.0 1.0 -																
240 263 301 306 2.0 1.0 -											-		-			
260 283 341 345 2.0 1.0 - - - - - - - - -																
																_
200 007 000 000 2.0 1.0	280	304	300	305	2.0	1.0	_	_	_	_	_	_	_	_	_	_

Table 8.6 Shoulder and Fillet Dimension for Cylindrical Roller Bearings

Unit: mm

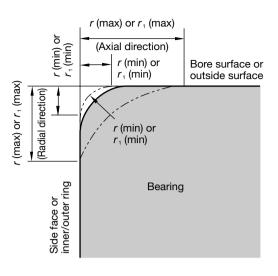

Nominal				Series 1 49, NNU			Dime		eries 10 (NN30XX	Double	row)	Dim	ension S	Series 10 N10XX	(Single	row)
Bore	d _a	d _{1a}	$d_{\rm c}$	E		r _a	d _a	d _{1a}	D)_	r _a	d _a	d _{1a}	D)	r _a
Diameter	(min)	(min)	(min)	(max)	(min)	(max)	(max)	(min)	(max)	a (min)	(max)	(min)	(min)	(max)	(min)	(max)
25							29	29	43	42	0.6					
30	-	-	_	_	-	_	35	36	50	50	1.0	35	36	51	49	0.5
35	-	_	_	_	-	_	40	41	57	56	1.0	40	41	57	56	0.5
40	_	_	_	_	_	_	45	46	63	62	1.0	45	46	63	62	0.6
45	-	-	_	_	-	_	50	51	70	69	1.0	50	51	70	69	0.6
50	-	_	_	_	-	-	55	56	75	74	1.0	55	56	75	74	0.6
55	-	-	_	_	-	_	61.5	62	83.5	83	1.0	61.5	61	83.5	83	1.0
60	-	-	_	_	-	_	66.5	67	88.5	88	1.0	66.5	66	88.5	88	1.0
65	-	-	_	_	-	_	71.5	72	93.5	93	1.0	71.5	71	93.5	93	1.0
70	-	-	_	_	-	-	76.5	77	103.5	102	1.0	76.5	76	103.5	102	1.0
75	-	-	_	_	-	_	81.5	82	108.5	107	1.0	81.5	81	108.5	107	1.0
80	-	-	_	_	-	-	86.5	87	118.5	115	1.0	86.5	86	118.5	115	1.0
85	-	-	_	_	-	_	91.5	92	123.5	120	1.0	91.5	91	123.5	120	1.0
90	-	-	_	_	-	-	98	99	132	129	1.5	98	97	132	129	1.0
95	-	_	_	_	-	_	103	104	137	134	1.5	103	102	137	134	1.0
100	106.5	108	115	133.5	131	1.0	108	109	142	139	1.5	108	107	142	139	1.0
105	111.5	113	120	138.5	136	1.0	114	115	151	148	2.0	114	114	151	148	1.0
110	116.5	118	125	143.5	141	1.0	119	121	161	157	2.0	119	119	161	157	1.0
120	126.5	128	137	158.5	154.5	1.0	129	131	171	167	2.0	129	129	171	167	1.0
130	138	140	148	172	169	1.5	139	141	191	185	2.0	139	140	191	185	1.0
140	148	150	158	182	180	1.5	149	151	201	195	2.0	149	150	203.5	194	1.0
150	159	162	171	201	197	2.0	161	162	214	209	2.0	_	_	_	_	-
160	169	172	182	211	207	2.0	171	172	229	222	2.0	_	_	_	_	-
170	179	182	192	221	217	2.0	181	183	249	239	2.0	_	_	_	_	-
180	189	193	205	241	234	2.0	191	193	269	258	2.0	_	_	_	_	_
190	199	203	217	251	245.5	2.0	201	203	279	268	2.0	-	_	-	-	-
200	211	214	228	269	261	2.0	211	214	299	285	2.0	_	_	_	_	_
220	231	234	_	289	281	2.0	-	-	_	-	_	_	_	_	-	_
240	251	254	_	309	302	2.0	_	_	_	_	_	_	_	_	_	_
260	271	275	_	349	338	2.0	-	-	-	-	_	-	_	-	-	_
280	291	295	_	369	358	2.0	_	-	_	-	_	_	_	_	-	_

Fig. 8.1 Figure of Shoulder and Fillet Dimension

Chamfer Dimension Limits and Corner Radius of Shaft or Housing

Fig. 8.2 Chamfer Dimension

Remarks: The precise shape of chamfer surfaces has not been specified but its profile in the axial plane shall not intersect an arc of radius r (min) or r₁ (min) touching the side face of an inner ring and bore surface, or the side face of an outer ring and outside surface.

r: chamfer dimension of inner/outer ring

Table 8.7 Chamfer Dimension Limits

Unit: mm

. 0.0.0	o				Orne. min
Permissible Chamfer Dimension for Inner/Outer Rings <i>r</i> (min)		re Diameter	Permissible Chamfer Dir Inner/Outer r (max) or r_1	Reference Corner Radius of Shaft or Housing r _a	
or r_1 (min)	over	incl	Radial Direction	Axial Direction (1)	max
0.05	_	_	0.1	0.2	0.05
0.08	_	_	0.16	0.3	0.08
0.1	_	_	0.2	0.4	0.1
0.15	-	_	0.3	0.6	0.15
0.2	_	_	0.5	0.8	0.2
0.3	-	40	0.6	1	0.3
0.3	40	-	0.8	1	0.3
0.6	_	40	1	2	0.6
0.6	40	_	1.3	2	0.6
1	-	50	1.5	3	1
1	50	-	1.9	3	1
1.1	_	120	2	3.5	1
1.1	120	-	2.5	4	1
1.5	-	120	2.3	4	1.5
1.5	120	_	3	5	1.5

Unit: mm

Permissible Chamfer			Permissible		Reference
Dimension	Nominal Bo	re Diameter	Chamfer Dir		Corner Radius of
for Inner/Outer	(d	Inner/Outer	Shaft or	
Rings r (min)			r (max) or r_1	Housing r _a	
or r_1 (min)	over	incl	Radial Direction	Axial Direction (1)	max
2	_	80	3	4.5	2
2	80	220	3.5	5	2
2	220	_	3.8	6	2
2.1	_	280	4	6.5	2
2.1	280	_	4.5	7	2
2.5	_	100	3.8	6	2
2.5	100	280	4.5	6	2
2.5	280	-	5	7	2
3	_	280	5	8	2.5
3	280	-	5.5	8	2.5
4	_	-	6.5	9	3
5	_	_	8	10	4
6	_	-	10	13	5
7.5	-	-	12.5	17	6
9.5	_	_	15	19	8
12	-	-	18	24	10
15	-	_	21	30	12
19	_	_	25	38	15

Note(') For bearings with nominal widths less than 2 mm, the value of *r* (max) in the axial direction is the same as that in the radial direction.

Spacer Dimension

The dimensions of standard spacers for angular contact ball bearings (19, 10, and 02 series) are listed below:

Additional information:

Material of spacer: Steel (SUJ2) or S##C steel

When using spacers, parallelism of spacer end surfaces should be less than 0.003 mm.

19 Series

Standard Spacers for Dimension Series 19 (79, BNR19, BER19, BGR19)

Unit: mm

	Nominal Bore		Outer Rin	g Spacer	Inner Rin	g Spacer	
Bore Numbers	Diameter	Outer Diameter	Outer Diameter (1)	Bore	Outer Diameter	Bore (2)	Spacer Chamfer
00	10	22	21.5	17.5	14.5	10.5	0.2
01	12	24	23.5	19.5	16.5	12.5	0.2
02	15	28	27.5	23.5	19.5	15.5	0.2
03	17	30	29.5	25.5	21.5	17.5	0.2
04	20	37	36.5	31.5	26	20.5	0.2
05	25	42	41.5	36	31	25.5	0.2
06	30	47	46.5	41	36	30.5	0.2
07	35	55	54.5	48	42	35.5	0.3
08	40	62	61.5	54.5	47.5	40.5	0.3
09	45	68	67.5	60	53	45.5	0.3
10	50	72	71.5	66	56	50.5	0.3
11	55	80	79.5	72	64	55.5	0.5
12	60	85	84.5	77	68	60.5	0.5
13	65	90	89.5	82	73	65.5	0.5
14	70	100	99.5	91.5	79	70.5	0.5
15	75	105	104.5	96.5	84	75.5	0.5
16	80	110	109.5	101.5	89.5	80.5	0.5
17	85	120	119.5	110	95	85.5	0.5
18	90	125	124.2	116	100	90.5	0.5
19	95	130	129.2	120	106	95.5	0.5
20	100	140	139.2	129	112	100.5	0.5
21	105	145	144.2	133	117	105.5	0.5
22	110	150	149.2	138	122	110.5	0.5
24	120	165	164.2	152	133	120.5	0.5
26	130	180	179.2	166	144	130.8	0.8
28	140	190	189.2	176	154	140.8	0.8
30	150	210	209.2	193	167	150.8	1.0
32	160	220	219.2	213	175	160.8	1.0
34	170	230	229.2	214	188	170.8	1.0
36	180	250	249.2	231	200	180.8	1.0
38	190	260	259.2	242	206	190.8	1.0
40	200	280	279.2	255	225	200.8	1.0

^{(&#}x27;) For outer ring spacers operating under oil mist lubrication or jet lubrication, the outer diameter of the outer ring spacer is the same as that of the bearing outside diameter. Recommend maintaining a tolerance of g5 or better.

*r*₁: chamfer dimension of inner/outer ring (Front side)

⁽²⁾ For high speed operations exceeding a $d_m n$ value of 700 thousands, the bore diameter of the inner ring spacer is the same as that of the bearing bore. Recommend maintaining a tolerance of F6 or better.

When using spacers, parallelism of spacer end surfaces should be less than 0.003 mm.

10 Series Standard spacers for dimension series 10 (70, BNR10, BER10, BGR10)

Unit: mm

	Nominal Bore		Outer Rin	g Spacer	Inner Rin	g Spacer	
Bore Numbers	Diameter	Outer Diameter	Outer Diameter (1)	Bore	Outer Diameter	Bore (²)	Spacer Chamfer
00	10	26	25.5	21.5	14.5	10.5	0.2
01	12	28	27.5	23.5	17	12.5	0.2
02	15	32	31.5	27	20	15.5	0.2
03	17	35	34.5	29.5	23	17.5	0.2
04	20	42	41.5	35	27	20.5	0.3
05	25	47	46.5	40.5	32	25.5	0.3
06	30	55	54.5	47.5	38	30.5	0.5
07	35	62	61.5	54	43	35.5	0.5
08	40	68	67.5	60	48	40.5	0.5
09	45	75	74.5	66	55	45.5	0.5
10	50	80	79.5	71	60	50.5	0.5
11	55	90	89.5	81	66	55.5	0.5
12	60	95	94.5	86	69	60.5	0.5
13	65	100	99.5	91	74	65.5	0.5
14	70	110	109.5	98	83	70.5	0.5
15	75	115	114.5	105	85	75.5	0.5
16	80	125	124.2	112	93	80.5	0.5
17	85	130	129.2	117	99	85.5	0.5
18	90	140	139.2	126	104	90.5	0.8
19	95	145	144.2	131	109	95.5	0.8
20	100	150	149.2	136	114	100.5	0.8
21	105	160	159.2	144	121	105.5	1.0
22	110	170	169.2	153	128	110.5	1.0
24	120	180	179.2	166	136	120.5	1.0
26	130	200	199.2	177	150	130.8	1.0
28	140	210	209.2	190	160	140.8	1.0
30	150	225	224.2	203	172	150.8	1.2
32	160	240	239.2	217	183	160.8	1.2
34	170	260	259.2	230.5	199.5	170.8	1.2
36	180	280	279.2	250	210	180.8	1.2
38	190	290	289.2	261	221	190.8	1.2
40	200	310	309.2	278	232	200.8	1.2

⁽¹⁾ For outer ring spacers operating under oil mist lubrication or jet lubrication, the outer diameter of the outer ring spacer is the same as that of the bearing outside diameter. Recommend maintaining a tolerance of g5 or better.

02 Series Standard spacers for dimension series 10 (70, BNR10, BER10, BGR10)

Unit: mm

	Nominal Bore		Outer Rin	g Spacer	Inner Ring	g Spacer	
Bore Numbers	Diameter	Outer Diameter	Outer Diameter (1)	Bore	Outer Diameter	Bore (²)	Spacer Chamfe
00	10	30	29.5	25	17	10.5	0.3
01	12	32	31.5	27	18	12.5	0.3
02	15	35	34.5	29	21	15.5	0.3
03	17	40	39.5	33	24	17.5	0.3
04	20	47	46.5	39	28	20.5	0.5
05	25	52	51.5	44	33	25.5	0.5
06	30	62	61.5	53	40	30.5	0.5
07	35	72	71.5	62	46	35.5	0.5
08	40	80	79.5	68	52	40.5	0.5
09	45	85	84.5	75	56	45.5	0.5
10	50	90	89.5	80	60	50.5	0.5
11	55	100	99.5	90	65	55.5	0.8
12	60	110	109.5	95	75	60.5	0.8
13	65	120	119.5	105	80	65.5	0.8
14	70	125	124.2	110	85	70.5	0.8
15	75	130	129.2	115	90	75.5	0.8
16	80	140	139.2	125	95	80.5	1.0
17	85	150	149.2	135	105	85.5	1.0
18	90	160	159.2	140	110	90.5	1.0
19	95	170	169.2	150	115	95.5	1.0
20	100	180	179.2	160	125	100.5	1.0
21	105	190	189.2	170	132	105.5	1.0
22	110	200	199.2	175	135	110.5	1.0
24	120	215	214.2	190	145	120.5	1.0
26	130	230	229.2	203	157	130.8	1.2
28	140	250	249.2	220	170	140.8	1.2
30	150	270	269.2	233	189	150.8	1.2

⁽¹⁾ For outer ring spacers operating under oil mist lubrication or jet lubrication, the outer diameter of the outer ring spacer is the same as that of the bearing outside diameter. Recommend maintaining a tolerance of g5 or better.

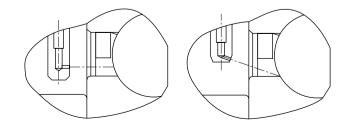
⁽²⁾ For high speed operations exceeding a $d_m n$ value of 700 thousands, the bore diameter of the inner ring spacer is the same as that of the bearing bore. Recommend maintaining a tolerance of F6 or better.

⁽²⁾ For high speed operations exceeding a $d_m n$ value of 700 thousands, the bore diameter of the inner ring spacer is the same as that of the bearing bore. Recommend maintaining a tolerance of F6 or better.

Position of The Spray Nozzle

The following table lists positions of a spray nozzle for oil-air, oil mist, and oil jet lubricating systems.

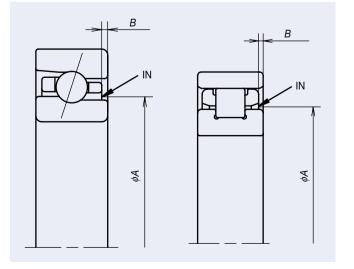
Unit: mm


											Unit: mm
Bore Numbers	Nominal Bearing Bore	79 S	eries	70 S	eries	72 Series			(XMR d series)		XXR T series)
	Dearing Dore	φA (¹)	В	φA (¹)	В	φA (¹)	В	φA	В	ϕA	В
00	10	14.5	0.4	16.1	0.5	18.1	0.5	_	_	_	_
01	12	16.5	0.4	18.3	0.5	19.6	0.5	_	_	_	_
02	15	20.0	0.5	21.3	0.5	22.6	0.7	_	_	_	_
03	17	21.8	0.5	23.5	1.0	25.9	0.7	_	_	_	_
04	20	26.1	0.5	28.2	1.0	30.5	1.0	_	_	_	_
05	25	31.1	0.5	32.9	1.0	35.5	1.0	_	_	_	_
06	30	36.1	0.5	39.5	1.0	42.4	1.0	39.7	1.2	_	_
07	35	42.6	0.5	44.6	1.0	49.2	0.7	45.4	1.5	_	_
08	40	47.9	0.5	50.0	1.0	55.5	0.7	50.6	1.5	_	_
09	45	53.4	0.5	55.6	1.0	60.2	0.7	56.5	2.0	60.0	0.6
10	50	57.9	0.5	60.6	1.0	65.2	1.0	61.5	2.0	64.5	1.3
11	55	64.0	0.5	67.3	1.0	72.0	1.0	69.2	2.5	71.0	1.2
12	60	69.0	0.5	72.5	1.0	79.0	0.7	74.3	2.5	76.5	1.2
13	65	74.0	0.5	77.5	1.0	86.2	0.7	79.2	2.5	81.5	1.2
14	70	80.9	0.7	83.7	1.0	90.9	0.7	86.6	3.0	89.0	1.5
15	75	85.5	0.7	89.4	1.0	95.9	0.7	90.0	2.5	94.5	1.5
16	80	90.5	0.7	96.5	1.0	102.8	0.7	98.5	3.0	101.0	2.0
17	85	98.8	0.7	101.5	1.0	109.8	1.0	103.5	3.0	106.0	2.0
18	90	102.8	0.7	108.6	1.0	116.7	1.0	109.0	3.0	_	_
19	95	107.7	0.7	113.3	1.0	123.6	1.0	115.5	2.5	_	_
20	100	116.0	0.7	118.6	1.0	130.6	1.0	119.0	2.5	_	_
21	105	119.5	0.7	125.1	0.7	137.4	1.0	125.5	3.0	_	_
22	110	124.5	0.7	131.9	0.7	144.4	1.0	134.0	3.0	_	_
24	120	136.3	0.7	142.3	0.7	156.3	1.0	142.0	3.0	_	_
26	130	149.3	0.7	156.2	1.0	168.9	1.0	156.0	4.5	_	_
28	140	158.1	0.7	165.7	2.5	182.6	1.0	168.0	4.5	_	_
30	150	171.8	0.7	178.1	2.5	196.5	1.0	_	_	_	_
32	160	181.8	0.7	190.4	2.5	_	-	_	-	-	_
34	170	191.8	0.7	203.4	2.5	_	_	_	_	_	_
36	180	205.6	0.7	217.1	2.5	_	_	_	-	_	_
38	190	215.4	0.7	227.1	2.5	_	_	_	_	_	_
40	200	229.0	0.7	240.9	2.5	_	_	_	_	_	_
/1\ In a populia	noo with DIN	Ctondord CC	20.6								

(1) In compliance with DIN Standard 628-6.

Attention

- For bearings operating under normal operating speed, proper lubrication can be achieved by positioning the nozzle bore along the side of the bearing and aiming directly into the bearing interior at the level of the inner ring. For constant high speed operations, it is advantageous to position the nozzle bore so that the lubricant is directed into the bearing interior at an angle of about 15° or 20°. Please contact NSK for further details.
- An appropriate means of draining oil sump is necessary to prevent severe oil shear friction, which can result in bearing damage at the sliding section.
- Recommend using a maximum 5 micron filter to provide filtration of oil entering the lubricating system.


Fig. 9.1 Angle of nozzle

Unit: mm

Nominal Bearing Bore	BNI BEI		BNI BEI		BGI	R19	BG	R10	BGI	R02	BAF BTF	
bearing bore	ϕA	В	φA	В	φA	В	φA	В	φA	В	ϕA	В
6	_		-	-	-	-	9.0	0.4	-	-	_	_
7	_	_	_	_	_	_	10.5	0.4	_	_	_	_
8	_	_	_	-	_	_	12.0	0.5	_	_	_	_
10	-	-	_	-	13.5	0.4	14.5	0.5	17.0	1.0	_	-
12	_	_	_	_	15.5	0.4	16.5	0.5	18.0	0.5	_	_
15	-	-	_	-	18.5	0.5	20.0	1.0	21.0	1.0	_	-
17	_	_	_	_	20.5	0.5	22.5	1.5	24.0	0.5	_	_
20	-	-	-	-	25.0	0.8	26.5	0.8	28.3	0.5	_	_
25	31.0	0.5	_	_	30.0	0.8	31.5	0.8	33.2	1.0	_	_
30	35.5	0.5	39.0	1.0	_	_	_	_	_	_	_	_
35	42.0	0.5	44.5	1.2	_	_	_	_	_	_	_	_
40	48.0	0.5	50.0	1.5	_	_	_	_	_	_	_	_
45	53.0	0.5	55.5	1.7	_	_	_	_	_	_	_	_
50	57.5	0.5	60.5	1.7	_	_	_	_	_	_	60.5	0.9
55	63.5	0.5	67.5	1.5	_	_	_	_	_	_	67.5	0.7
60	68.5	0.5	73.0	1.5	_	_	_	-	_	_	73.5	0.7
65	73.5	0.5	77.5	1.5	_	_	_	_	_	_	77.5	0.7
70	80.5	0.7	84.0	1.7	_	_	_	_	_	_	84.0	0.7
75	85.0	0.7	89.0	1.7	_	_	_	_	_	_	89.0	0.7
80	90.5	0.7	96.0	1.7	_	_	_	_	_	_	96.0	0.9
85	98.5	0.7	102.0	1.7	_	_	_	_	_	_	102.0	0.9
90	102.0	0.7	109.0	1.7	_	_	_	_	_	_	108.5	1.2
95	107.0	0.7	112.0	1.7	_	_	_	_	_	_	112.5	1.2
100	113.5	0.7	118.5	2.5	_	_	_	_	_	_	118.5	1.7
105	119.0	0.7	125.0	1.7	_	_	_	_	_	_	126.0	1.4
110	124.0	0.7	132.5	1.7	_	_	_	_	_	_	132.5	1.2
120	136.0	0.7	143.0	1.7	_	_	_	_	_	_	142.5	1.2
130	149.0	0.7	156.5	1.7	_	_	_	_	_	_	155.5	1.7
140	157.5	0.7	166.0	1.7	_	_	_	_	_	_	167	1.7
150	171.5	0.7	178.5	1.7	_	_	_	_	_	_	179.5	1.9
160	_	_	_	_	_	_	_	_	_	_	190	2.0
170	_	_	_	_	_	_	_	_	_	_	205	1.7
180	_	_	_	_	_	_	_	_	_	_	218	2.0
190	_	_	_	_	_	_	_	_	_	_	228	2.0
200	_	_	_	_	_	_	_	_	_	_	242	2.2

Fig. 9.2 Position and Direction of Spray Nozzle

174 **NSK NSK** 175 BEARING HANDLING

Part 6

Bearing Handling

. Mounting	Р	178-	191	
------------	---	------	-----	--

1. Cleaning Bearings and Related Parts

2. Checking Dimensions of Related Parts

3. Mounting Procedures

4. Inspection after Mounting

2. Initial Running in Procedures ·····P192-193

3. Maintenance and Inspection ·····P194-197

Bearing Handling

Introduction

Mounting Procedure

The method of mounting rolling bearings strongly affects their accuracy, life, and performance. It is recommended that the handling procedures for bearings be fully analyzed by design and engineers and that standards be established with respect to following items:

- 1. Cleaning the bearings and related parts
- 2. Checking the dimensions of related parts
- 3. Mounting procedures
- 4. Inspection after mounting

Bearings should not be unpacked until immediately before mounting. However, bearings for instruments or for high speed operations must first be cleaned with clean filtered oil in order to remove the anti-corrosion agent.

After the bearings are cleaned with filtered oil, they should be protected to prevent corrosion. Prelubricated bearings must be used without cleaning.

Bearing mounting procedures vary according to the type of bearing and type of fit.

Since precision bearing are widely used for rotating shafts, their inner rings require a tight fit.

Bearings with cylindrical bores are usually mounted by fitting with a press (press fit), or by heating them to expand their inner ring (shrink fit). The outer ring is usually inserted into the housing with a loose fit. In case where the outer ring has an interference fit, a press may be used.

Precautions for Proper Handling of Bearings

Since rolling bearings are high precision machine parts, they must be handled accordingly.

Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly. The main precautions to be observed are as follows:

Keep bearings and surrounding area clean

Foreign particles, even if invisible to the naked eye, have harmful effects on bearings. Take care to prevent the entry of dirt and debris into the bearing by maintaining a clean working environment.

Handle bearings carefully

Avoid any heavy shocks during handling. Shock loads can scratch or otherwise damage a bearing, possibly resulting in failure. An excessively strong impact may cause brinelling, breakage, or cracks.

Use proper tools

Always use the proper equipment when handling bearing. Do not use general purpose tools.

Prevent corrosion

Handling bearings with bare hands can corrode the bearing surfaces because of the acidic moisture or other contaminations on the hands.

Keep your hands clean when handling bearings, and wear dust free gloves whenever possible. Take measures to prevent rusting of bearing caused by moisture and corrosive gasses.

Storage method

- Although bearings are coated with an anti-corrosion agent, and then wrapped and packed, it is impossible to completely avoid exposure to the air surrounding the bearings. Store the bearings in a dry location and avoid exposure to moisture and humidity.
- Bearings should be stored in a clean, dry, and well-ventilated location that also provides protection from direct sunlight. Store the bearings in a locker or on shelves that are at least 30 cm from the floor.
- When bearings are unpacked for acceptance inspection, take measure to prevent rusting and contamination. After inspection, follow the guidelines given above to ensure proper storage.

1. Cleaning the Bearings

Delivered bearings are coated with an anti-corrosion agent for dustproofing and prevention during transportation.

After opening the package, bearings need to be cleaned in order to remove the anti-corrosion agent.

Some bearings, such as sealed or pregreased bearings, can be used without cleaning.

■ Cleaning method

- 1. Use kerosene or light oil to clean the bearings.
- 2. Use separate tanks for rough cleaning and final cleaning. Each tank should be equipped with a wire rack to prevent direct contact of the bearing with any contamination that may have settled at the bottom.
- In the rough cleaning tank, avoid rotating the bearings.
 After cleaning the outside surfaces with a brush, move the bearings to the final cleaning tank.
- 4. In the final cleaning tank rotate the bearing by hand. Make sure that the cleaning fluid in the final cleaning tank is kept clean.
- 5. Remove excess cleaning fluid from the bearings after cleaning.

Bearings using ordinary grease lubrication need to be packed with grease. Oil lubricated bearings should be mounted on the machine tool spindle while take care not to rotate the bearing. Prior to mounting, slightly coat the bearing inner and outer surface areas with a thin film of lubrication oil.

2. Checking Dimension of Related Parts Inspection of shaft and housing

- Mating housing and shaft surfaces should be cleaned and checked for flows or burrs.
- The dimensions of the shafts and housing bores should be checked to confirm a matching fit with the bearing bore and outer diameter. Recommended fits for shafts and housing bores are listed on Page 166.
- Take measurements and mount the bearings in a thermostatic chamber. Parts should be left until they have

reached a constant and stable temperature. Using a micrometer or cylinder gauge, take measurements at several different points to confirm there are no significant differences in measurement values. Recommended measurements for accuracy of the shafts and housing bores are listed on Page 167.

Inspection of spacers

For main spindle, a spacer parallelism of less than 0.003mm is recommended. Spacer parallelism exceeding this recommendation will tilt the bearings, thus causing inaccuracies and bearing noise.

3. Mounting of Procedures

Grease lubricated bearings and oil-air (oil mist) lubricated bearings which are cleaned are mounted on the shaft and housing bore. Procedures for mounting vary according to the fit requirements of the inner and outer rings. Primarily, it is the inner ring of a machine tool bearing that rotates, thus bearings with cylindrical bores are usually mounted by heating them to expand the inner ring (shrink fit).

Bearing with tapered bores can be mounted directly onto a tapered shaft. For high speed operations, GN gauges are recommended for attaining accurate radial clearance when mounting. Page 184 provides details on how to use GN gauges.

Outer rings are mounted with some clearance; so mounting tool are not usually required. The housing can be heated to make mounting much easier.

178 NSK NSK 179

3.1. Mounting of Bearings with Cylindrical Bores (1) Press fit

Fitting with a press is widely used for small bearings. First, apply a thin coat of oil to the mating shaft surface before mounting to help reduce the amount of force required for press fitting.

Next, place a mounting tool against the inner rings as shown in Fig. 1.1. Apply steady pressure from the mounting tool to drive the bearing firmly against the shoulder of the shaft.

Avoid press fitting onto a shaft by applying pressure to the outer rings as this may damege the bearing.

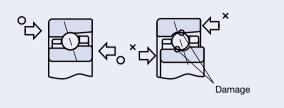
Also, avoid using a hammer when mounting precision

For separable bearings, such as cylindrical roller bearings, the inner and outer rings can be mounted onto the shaft and into the housing as separate units. When assembling the two units, When assembling the two units, take extra care to align the inner and outer rings correctly. Careless or forced assembly may cause scratches on the rolling contact surfaces

Since press fitting large bearings requires a great deal of force, the shrink fitting method is widely used. The bearing are first heated to expand the inner ring before mounting onto the shaft. This method prevents excessive force from being imposed on the bearings and enables mounting them in a short time.

The expansion of the inner ring for various temperature differences and bearing size is shown in Fig. 1.2

The following precautions need to be taken when shrink


- 1. Do not heat bearings to more than 120°C.
- 2. Heat the bearings to a temperature 20°C to 30°C higher than the lowest temperature required for mounting without interference since the inner ring will cool a little during mounting.
- 3. After mounting, the bearings will shrink in the axial direction as well as the radial direction while cooling. Therefore, drive the bearing firmly up against the shaft shoulder using locating methods to eliminate any clearance between the bearing and shoulder.

3.2. Precautions for Mounting Angular **Contact Ball Bearings**

Due to design restriction, an angular contact ball bearing can sustain loads in only one direction. Therefore, when mounting angular contact ball bearings onto the shaft or into the housing, it is imposing any loads in the wrong direction.

Pay special attention to the order of mounting for combination bearings. Mounting onto the shaft and into the housing is different for back-to-back and face-to-face arrangements.

Fig. 1.3 Direction of Load for Angular Contact Ball Bearings

Load applied in direction "x" results in damage to the bearing.

Back-to-back arrangement:

- ① Press the bearing onto the shaft.
- 2 Tighten the bearing locknut for preloading.
- 3 Insert the bearing and the shaft into the housing, and attach the retaining cover.

Fig. 1.4 Mounting of Back-to-back Arrangement

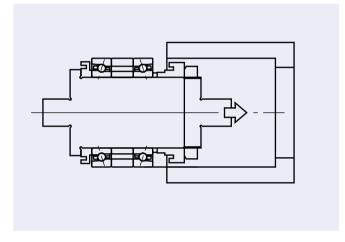
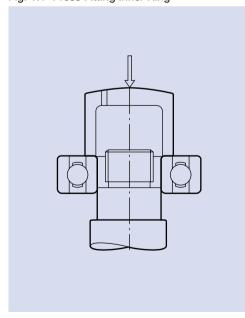
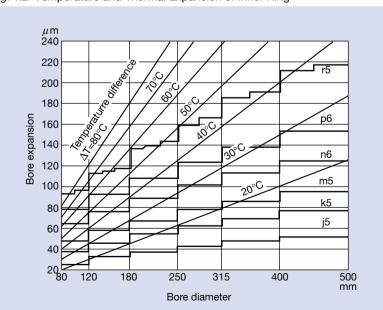
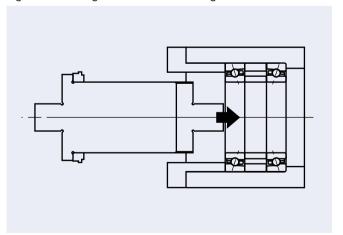


Fig. 1.1 Press Fitting Inner Ring


Fig. 1.2 Temperature and Thermal Expansion of Inner Ring

Face-to-face arrangement:

- ① Press the bearing into the housing.
- 2 Secure the retaining cover for preloading.
- 3 Insert the shaft into the inner ring and tighten the bearing locknut.

Fig. 1.5 Mounting of Face-to-face Arrangement

Reverse the order of each step for dismounting.

3.3. Securing the bearing

(1) Securing the inner ring

The inner ring is usually secured onto the shaft by tightening the bearing locknut, which explains why perpendicularity of the threads and end face are very important. Even if accuracy as a single component is good, the gap between the shaft and locknut can result in runout of the locknut, causing the shaft and bearing to bend. (see Fig. 1.21, Page 189) Therefore, making adjustments are necessary to ensure constant running accuracy.

It is also important that the locknut be completely tightened so as to eliminate any possibility of it becoming loose. Seating torque information for bearing locknuts is shown in Table 1.1.

There is a risk of unbalance due to face and runout of the locknut or a minor inaccuracy of the mating parts. Here, sleeves are widely used in high speed, high precision machine tool spindles to secure the bearing to the shaft by a large interference fit between the shaft and sleeve bore. However, the sleeve tends to become loose after continuous operation, so it must be checked periodically.

When a wide spacer is used between combined angular contact ball bearings, and the seating torque of the locknut is excessive, the inner ring spacer may become deformed and alter the preload to a level higher than expected. It is necessary to consider this deformation when the preload is set.

(2) Securing the outer ring

A retaining cover held by bolts is generally used to secure the bearing outer ring axially. If a bolt is tightened excessively or a combination of bolts is tightened unevenly, the bearing outer ring may become deformed.

For example, Fig. 1.6 shows possible deformation of the outer diameter of the outer ring caused by uneven tightening of the retaining cover, when the outer ring end face is pressed as a pilot ring.

Fig. 1.7 shows an example of poor retaining cover tightening for a fixed end bearing resulting in outer ring deformation.

Fig. 1.8 shows deformation of an outer ring raceway surface caused by tightening of a double row cylindrical roller bearing.

The amount of deformation depends on the clearance of the mating parts. It is recommended that the clearance between the retaining cover and housing end face be adjusted to about 0.01 to 0.05 mm before the bolts are completely tightened.

Fig. 1.6 Raceway Surface Deformation Caused by Excessive Tightening

Fig. 1.7 Raceway Surface Deformation Caused by Excessive Tightening

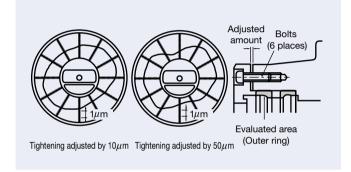


Fig. 1.8 Deformation of the Outer Ring of a Double Row Cylindrical Roller Bearing Caused Excessive Tightening

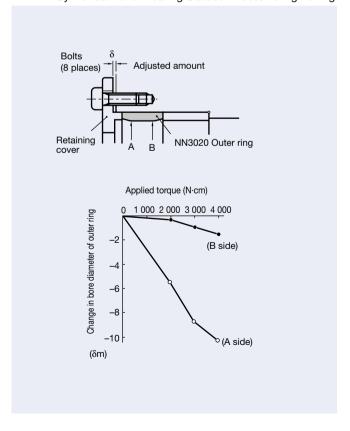


Table 1.1 Bearing Locknut Tightening Torque and Clearance between Retaining Cover and Housing

Nominal bearing bore | Locknut tightening | Locknut tightening | Clearance between retaining

(mm)	force (N)	torque Reference (N·m)	cover and housing (mm)
6		2	
8	1 500	2	
10		3	
12		7	
15	3 000	8	
17		9	
20		17	
25	4 900	21	
30		25	
35		57	
40	9 800	64	
45		72	
50		80	0.01
55		132	-0.03
60		142	
65	14 700	153	
70		166	
75		176	
80		251	
85		267	
90 95		281 296	
100	19 600	311	
105	19 000	327	
110		343	
120		371	
130		403	
140		649	
150		695	
160		745	
170	29 400	796	
180		841	
190		886	0.03
200		932	-0.05
220		_	
240		_	
260	39 200	_	
280		_	
300			

When interference fit of the shaft increases under high speed operations. the amount of tightening torque applied to the locknut must also be

The tightening force of Angular contact thrust ball bearing for ball screw support should be 2.5-3.0 times of the preload.

Conversion equation of locknut tightening

$$T=0.5F \ \left\{ d_{p} \cdot \tan (p^{*}+\beta) + d_{w} \cdot \mu_{w} \right\}$$
 [N·mm]

The values of locknut tightening torque in the table are calculated by friction coefficient of 0.15.

:Locknut tightening torque [N·mm]

:Locknut tightening force [N]

:Effective diameter of locknut [mm]

p* :Friction angle of locknut surface p*=tan-1 μs

 $\mu_{\rm S}$:Friction coefficient of locknut surface

d_w: Frictional torque equivalent diameter at locknut surface [mm]

:Friction coefficient of locknut surface

:Lead angle of nut $\beta = \tan^{-1}(\text{pitch}/(3.142 \cdot dp))$

Equation of push up force

$$K = \mu \cdot p_m \cdot \pi \cdot d \cdot B$$
 [N]

$$p_{\rm m} = \frac{E}{2} \frac{\Delta d}{d} \frac{(1-k^2)(1-k_0^2)}{1-k^2 k_0^2}$$

:Friction coefficient at fitting surface [=0.12]

p_m:Surface pressure [MPa]

:Shaft diameter [mm] d

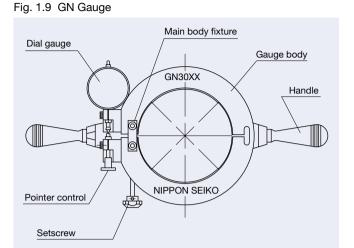
:Bearing width [mm]

:Effective interference [mm]

:Young's modulus of steel [MPa]

:Wall thickness ratio $(k=d/D_i)$

:Raceway diameter of inner ring [mm]


:Wall thickness ratio of hollow shaft $(k_0=d_0/d)$

d₀:Bore diameter of hollow shaft [mm]

3.4. Mounting of Cylindrical Roller Bearings (1) Measuring radial clearance of cylindrical roller bearings

A GN gauge is an instrument for matching the tapered section of a shaft to the tapered bore of a bearing when mounting a cylindrical roller bearing with a tapered bore onto a machine tool spindle. After mounting, the GN gauge is used for precise control of the bearing's radial internal clearance. This instrument is especially effective when a cylindrical roller bearing is used with radial preload.

Fig. 1.9 describes the GN gauge components.

How to use a GN gauge

1 Insert outer ring into housing.

The recommended fit between outer ring and housing is: Clearance 2μ m - Interference 2μ m

2 Zero setting of cylinder gauge

Confirm that the temperatures are the same for the outer ring (inserted into the housing), the inner ring, and the shaft. Then, measure the bore diameter of the outer ring at about four different locations. Determine the average for the measurements and the cylinder gauge to zero (see Fig. 1.10).

3 Adjust the inscribed diameter of GN gauge

Loosen the bolt of the main body fixture on the GN gauge. Apply the cylinder gauge to the inscribed diameter surface of the GN gauge and adjust the setscrew to the setting of the dial on the cylinder gauge to zero (see step 2)

(Use the GN gauge in an upright position to avoid inaccuracies due to its own weight.)

4 Correction of GN gauge

Using the results from step 3, use the pointer control on the dial gauge to adjust the pointer on the GN gauge to the red mark for gauge correction. Confirm that the short needle is near 2 on the dial.

(Gauge correction corrects for elastic deformation of the roller due to measuring pressure on the gauge. The amount of correction for each gauge is determined upon shipment a gauge.)

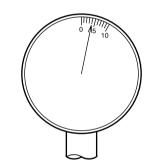
Fig. 1.10 Zero Setting of Cylinder Gauge

Fig. 1.11 Adjust the Inscribed Diameter of the GN Gauge

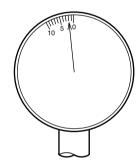
5 Mounting of inner ring

Mount the inner ring onto the shaft and tighten the locknut lightly. Art this time, the bearings should be cleaned, but not yet coated with grease.

6 Setting of GN gauge


Adjust the setscrew on the GN gauge (0.2mm to 0.3mm on the dial face) to spread open the dial on the GN gauge. The GN gauge is placed in the center of inner ring and the setscrew is loosened.

? Reading of the scale


Read the scale on the dial gauge of the GN gauge at this time.

Example 1: A half-shift of the dial from zero in the clockwise direction indicates positive clearance.

Example 2: A half-shift of the dial from zero in the counter-clockwise direction indicates negative clearance.

Example 1: Pointing to "4" in the clockwise direction indicates a radial crealance of +0.002mm

Example 2: Pointing to "2" in the counter-clockwise direction indicates a radial clearance of -0.001mm

8 Adjustment

In addition to procedures given in step 6, use the screw to spread the dial of the GN gauge. Remove the gauge from inner ring and tighten the locknut. Repeat steps 6 through 8 until the scale of the dial gauge reaches the target clearance value.

Adjustment of spacer

Measure the clearance between the shaft shoulder and the end face on the large diameter side of NN30XXKR by using block gauge. Measure more than three places on circumference to both an average and the finish width of spacer for that average.

Fig. 1.12 Insertion of Inner Ring

Fig. 1.13 Setting of GN Gauge

Fig. 1.14 Reading of the Scale

Fig. 1.15 Measurement of Spacer Width

(2) Measuring radial clearance of cylindrical roller bearings (GN gauge is not used)

When the GN gauge is not used, it is necessary to adjust the spacer width by considering the following two items:

- · Shrinkage of outer ring raceway diameter due to fitting in housing (Δr_a)
- \cdot Expansion of the inner ring raceway diameter due to fitting, which includes a hollow shaft ratio. (Δr_i)

Calculation of Ar

The finish dimension (La) of the spacer, which is used for setting the post-mounting radial clearance of Δr , can be calculated as follows:

$$L_a = L - K (\Delta r_m - \Delta r + \Delta r_e)$$

Table 1.2 Hollow Shaft Ratio and Coefficient K

Hollow shaft Ratio k_0	Coefficient K
45–55%	14
55–65%	15
65–75%	16

 \blacksquare Calculation of Δr_{a}

 $\Delta r_{\rm e} = (D_{\rm h} - D) \times h$

when $\Delta r_{\rm e} \ge 0$ assume $\Delta r_{\rm e} = 0$

L_a: Finish dimension of spacer for setting post mounting radial

L: Width of block gauge (Measured result from step (5) on Page 187.)

 $\Delta r_{\rm m}$: Movement of the outer ring in radial direction (Measured result from step 4 on Page 187.)

 Δr : Radial clearance after mounting

 $\Delta r_{\rm e}$: Shrinkage of outer ring raceway diameter due to fitting

K :Coefficient (Converted value which includes shrinkage of a hollow shaft with a 1/12 tapered hole)

 k_0 :A/B×100

A: Shaft bore diameter B: Shaft outer diameter

 $D_{\rm h}$:Housing bore diameter

:Outer diameter of outer ring (Refer to bearing inspection sheet)

:Shrinkage rate of the outer ring raceway diameter

(0.62 for NN30 and N10 series)

(0.7 for NN39 and NN49 series)

Measuring of radial clearance of ∆r_m

- 1) Mount the inner ring onto the tapered section of the shaft. (At this point, degrease the tapered section of the shaft and internal surface of the inner ring with organic solvent.)
- 2 Place the outer ring on circumscribing part of the rollers and apply the dial gauge to outer diameter of the outer ring.
- 3 Tighten the spacer and the locknut now to expand the inner ring. (see Fig. 1.16)
- 4 Push the outer ring in up and down and measure the radial movement of the outer ring with dial gauge (*1). Repeat steps 3 and 4 until play of the outer ring $(\Delta r_{\rm m})$ becomes about 0.005mm. (*2) (Fig. 1.17)
- 5 When Δr_{m} is set at about 0.005mm, measure the distance from shaft shoulder to the inner ring end face (Dimension L) with block gauge and the thickness gauge. (*3) (see Fig. 1.18)

Remarks

- (*1) If the measurement takes too long, the temperature of the outer ring may have risen to body temperature resulting in an erroneous measurement. Wearing gloves is recommended to for making a quick measurement
- (*2) If there is an excessive amount of play, the outer ring may have deformed into an ellipse when pressed by hand. This would result in an erroneous measurement. Therefore, 0.005mm of play is acceptable. (0.005mm is the target value, but 0.001mm to 0.002mm is also acceptable.)
- (*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Fig. 1.18 (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)

Fig. 1.16 Insertion of Outer Ring

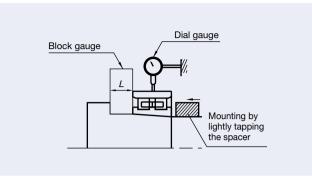


Fig. 1.17 Measuring Outer Ring Movement

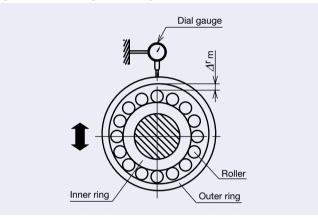
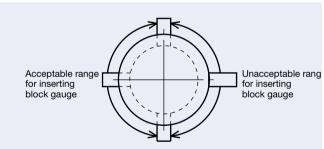



Fig. 1.18 Measuring Width Dimension with Block Gauge

(Example of calculation)

Setting radial clearance to Δr =-0.002mm for NN3020MBKR after mounting.

Shrinkage of outer ring raceway diameter due to fitting: $\Delta r_e = -0.004$ (Interference) (When $\Delta r_e \ge 0$ assume $\Delta r_e = 0$)

Movement of outer ring (Measured value in step 4) Block gauge width (Measured value in step ⑤)

Finish spacer width dimension

 $\Delta r_{\rm m}$ =0.007mm L=20.55mm $L_a = 20.55 - 15 \times (0.007 - (-0.002) - 0.004)$ =20.55-0.075 =20.475 Note the code!

3.5. Grease Packing

Procedure for packing grease after cleaning bearings

A rapid rise in temperature may occur during initial running in due to improper packing of grease. This can result in a long running in period, or lead to seizure and bearing failure. Following proper procedures for packing grease and using the correct amount of grease deserves careful attention. Recommended procedures are as follows:

(1) Pre-inspection

Check to ensure there is no foreign matter in the bearing interior. Bearings for high speed spindle shafts should be cleaned, degreased, and packed with grease. For other applications, remove any anticorrosion agent adhering to interior surfaces of the bearings.

(2) Grease dispensers

Use a grease dispenser, such as a plastic syringe for precision grease dispensing. If possible, use a dispenser that comes with a gauge for packing accurate amounts of grease.

(3) Amount of grease

Recommended amounts of grease packing for precision bearings:

Angular contact ball bearings for high speed machine tool spindles: 15%±2% of internal space

Cylindrical roller bearings for high speed machine tool spindle: 10%±2% of internal space

Ball bearings for motors: 20% to 30% of internal space Recommendation of grease amount for various bearing types and numbers is shown on Page 157.

Packing method for ball bearings

- (1) Pack grease evenly between the balls. If an outer ring guided cage is used, such as a phenolic resin cage, apply a light coating of grease on the guided surface.
- (2) Rotate the bearing by hand to spread grease evenly on the surfaces of the raceway, ball, and cage.

Packing method for cylindrical roller bearings

- (1) Coat about 80% of the grease amount evenly on roller rolling surface. Avoid putting too much grease on the cage bore. Grease on the cage bore is difficult disperse during the running in period, which can result in a rapid rise in temperature or a long running in period.
- (2) Coat roller surfaces with a thin film of grease, including the roller end faces, roller cage contact points, and along the face edges of each cage pocket.
- (3) Using the remaining 20% of grease, apply a thin film of grease to the raceway surface of the outer ring.

Fig. 1.19 Grease Packed Angular Contact **Ball Bearing**

Fig. 1.20 Grease Packed Cylindrical Roller Bearing

4. Inspection after Mounting

4.1. Runout accuracy

Accurate mounting and related parts are indispensable to ensure precision and accuracy of the machine tool spindle.

- 1: Assembled bearing outer ring face runout with raceway for angular contact ball bearings
 - Adjust to 0.002mm or less by tapping on the outer ring end face.
- 2: Variation of bearing outside surface generatrix inclination with outer ring reference face for angular contact ball

Adjust to 0.005mm or less tilting the locknut. (see Fig. 1.21)

3. Concentricity of rear side housing 0.010mm or less

If these accuracies cannot be met, disassembled the bearings and check the accuracy of parts again.

Fig. 1.21 Tilting the Shaft Locknut

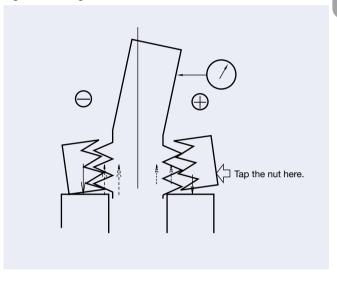
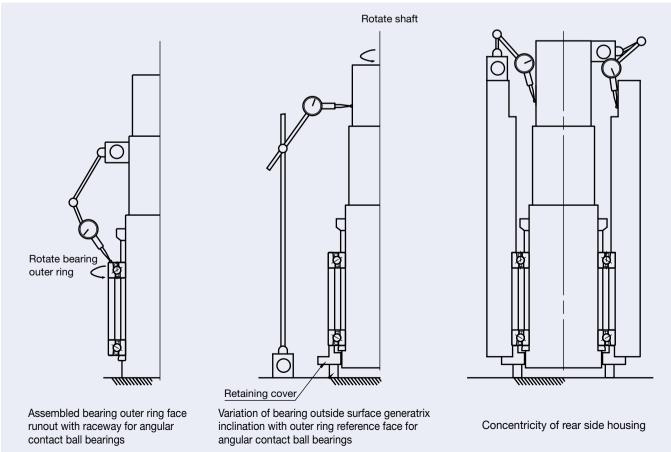



Fig. 1.22 Runout Accuracy of Machine Tool Spindle

4.2. Control of Preload after Mounting of Bearing

If the preload of rolling bearing is set larger, the rigidity of bearing is increased, but heat generation is also increased, and in extreme cases, seizure may occur. Therefore, it is necessary to control optimum preload carefully in response to operating condition. Measuring method of preload for angular contact ball bearing is introduced below. For the preload of cylindrical roller bearing, it is recommended to control by using GN gauge at mounting process. (see Page 184)

Measuring of preload for angular contact ball bearing

There are three methods for checking preload of bearings after mounting onto main shaft, such as starting torque method, thrust static rigidity method, and natural frequency method.

Features of these methods are summarized in Table 1.3.

Table 1.3

	Starting torque method	Thrust static rigidity method	Natural frequency method
Advantage	Used for heavy preload, If starting torque is high, measurement error is small.	Used for light preload	Measurement accuracy is high. Good repeatability.
Disadvantage	Not good for light preload. If starting torque is small, variation of measurement is large.	Not good for heavy preload. Loading equipment is too large scale. Affected easily by deformation of contact part other than bearing.	Influence of spindle fixing condition should not be ignored.

(1) Starting torque method

[Characteristic]

High speed main shaft spindle bearings are often used with light preload so that starting torque is low and measurement error is large.

[Method]

Starting torque is obtained mainly by measuring tangential force. (see Fig. 1.23)

Preload is obtained from the relationship between measured starting torque and preload. (see Fig. 1.24)

When oil film formation in rolling contact area is unstable during measurement, sticking occurs. (Rotation does not start even under tangential force and rotation starts suddenly when tangential force is increased gradually). The torque at such occasion tends to be higher than predicted calculated torque so that excessive measurement result needs to be excluded.

Fig. 1.23 Starting Torque Method

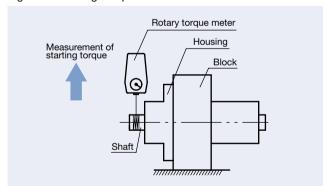
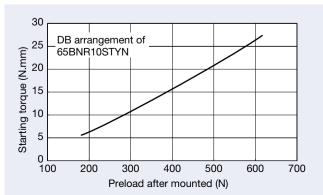



Fig. 1.24 Relation between Starting Torque and Preload

(2) Thrust static rigidity method

[Characteristic]

When axial rigidity of the bearing is high, axial force necessary for measurement becomes very high and loading equipment is necessary. (Example: If axial rigidity is $200\text{N}/\mu\text{m}$, 2 000N load is needed to generate $10\mu\text{m}$ displacement.) When measurement load is large, besides elastic deformation of bearing interior, effect of surface deformation and elastic deformation of other related parts are added. Measured rigidity tends to be lower than theoretical value and error often occurs.

[Method]

Thrust load is applied to shaft and its axial displacement is measured for obtaining preload. (see Fig. 1.25 1.26)

(3) Natural frequency method

[Characteristic]

Measuring sensitivity is the highest and repeatability is good, but tend to be affected by spindle fixing condition.

[Method]

Shaft is vibrated in axial direction and resonance frequency of shaft is measured at the same time. Preload can be obtained by the resonance frequency. (see Figs. 1.27 and 1.28)

Fig. 1.25 Thrust Static Rigidity Method

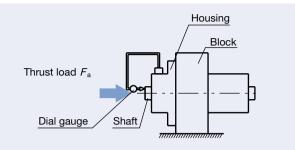


Fig. 1.26 Relation between Axial Displacement and Preload

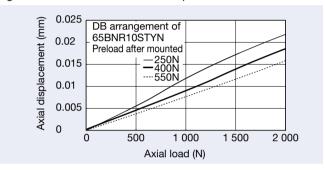


Fig. 1.27 Natural Frequency Method



Fig. 1.28 Relation between Resonance Frequency of Main Shaft and Spring Constant

Axial spring constant (N/μm)

Preload Axial spring constant (N/μm)

Measurement of resonance frequency (Fz) for main shaft in axial direction

Convert

Axial spring constant of main shaft

Conve

Preload after mounted

 K_{a} : Axial spring constant of bearing

 $F_z = \frac{1}{2\pi} \sqrt{\frac{K_a}{m}} \times 1000$

F_z: Resonance frequency (Hz)m: Mass of rotating body (kg)

Preparations

The following running in procedures are necessary after properly mounting of bearing.

■ Balance of Shaft and Assmbly

Any unbalance of rotating components will cause repeated stress or excessive vibrations due to centrifugal force. This is especially true for spindles, which are operated at a $d_m n$ value of 1 000 000 or higher. Therefore, it is imperative that both the shaft assembly are well balanced.

■ Spindle Assembly

Spindle assemblies with a V-belt drive should have misalignment of the spindle pulley center and motor pully center corrected to a target of 0.1mm or less. Coupling joints should have misalignment of the spindle shaft center and motor shaft center corrected to a target of 0.01mm or less.

Initial Running Procedure Method

If operating speed is suddenly increased after the bearing is mounted, the operating temperature will rise abruptly and bearing failure may occur. Grease lubricated bearings, especially, require that you follow proper running in procedures. Increase operating speed gradually to completely orient the initially filled grease on each contact surface raceway. Running should be conducted under ambient temperature conditions (15°C to 25°C) while monitoring bearing temperature.

Maximum operating temperature of the spindle housing exterior should be targeted at about 50°C. Do not to exceed 55°C. If a rapid temperature increase occurs, temporarily stop the running in process or decelerate to lower the temperature. Some spindle assemblies incorporate both cylindrical roller bearings and angular contact ball bearing. Since cylindrical roller bearings tend to experience a more rapid temperature increase in comparison with ball bearings, timing of speed increases must be set to correspond with the roller bearings.

[Caution]

Spindle assemblies operating under oil mist and oil air lubricating conditions risk a sudden temperature rise at initial operation, or after the spindle assembly has not been operated for a long time. Excess oil that has collected in the oil lines of the lubrication system may suddenly flood the bearing interior, causing a temperature spike. Performing running in procedures for bearings with these lubricating systems require much less time than grease-based systems, and is highly recommended.

(1) Continuous running procedure

[Feature]

Continuous running works by gradually increasing operating speed from the low speed zone. Although somewhat time

consuming, this procedure helps machine operators to detect potential problems related to the main shaft, thus avoiding costly damege to the bearings.

[Method]

Maximum operating speed of the application is achieved by repeating several steps in a cycle.

- Step 1. Begin at a reasonably low operating speed.
- Step 2. Monitor for temperature rise.
- Step 3. Stable temperature is reached.

Step 4. Continue incremental increases of operating speed.

Continue repeating the above cycle until an equilibrium temperature is reached at the maximum operating speed and divide it into ten stages to determine the target speed for each stage. Then, repeat above cycle for one or two hours until the target speed is reached for that stage. Move up to the next stage and repeat the above cycle until you reach the next target speed.

Fig. 2.1 Temperature Change of Constant Speed running Operation

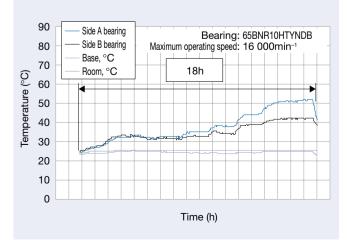
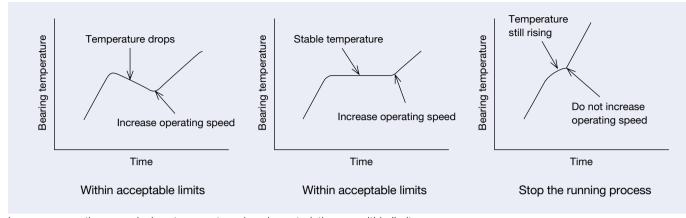



Fig. 2.2 Increase of Operating Speed Continuous Running

Increase operating speed when temperature rise characteristics are within limits.

(2) Intermittent Running procedure

[Feature]

Intermittent Running in works by stopping operation and stabilizing temperatures before there is a rapid temperature rise, which is caused by a sudden supply of grease to the bearing interior during initial operation. This procedure allows us to shorten the amount of time required for running in. Procedures for intermittent running in vary from machine to machine and bearing arrangements. Be sure to confirm the bearing arrangement for each spindle application.

[Method]

First, take the maximum operating speed and divide it into eight or ten stages to determine the maximum target speed for each stage. Each stage is divided into 10 cycles that are approximately one minute long.

During each cycle, rapidly accelerate the spindle assembly to the target speed for the current stage decelerate back to zero. Repeat this cycle about 10 times. Move up to the next stage and repeat the above cycle 10 times for the target speed of that stage.

Fig. 2.3 shows temperature rise data for a bearing with a maximum operating speed of 16 000min⁻¹. The maximum speed was divided into 8 stages with 10 cycles each of rapid acceleration and deceleration. Fig. 2.4 shows an example of 1 cycle. And it is desirable to make it rotate slowly by about 500min⁻¹ for 15 minutes, and to familiarize grease and before operating start. As for after an operation end, it is desirable to perform fixed operation about 1 hour at maximum speed.

Fig. 2.3 Temperature Change of Intermittent Running Operation

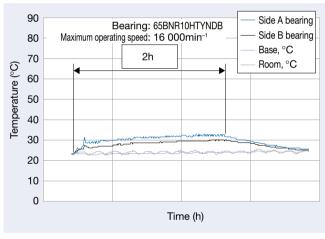
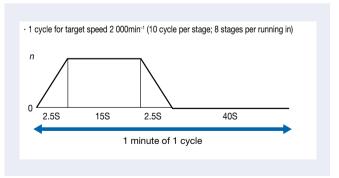



Fig. 2.4 One Cycle for Intermittent Running in Procedure

Operating Inspection

After mounting has been completed, a test run should be conducted to determine if the bearing has been mounted correctly. Small equipment may be manually operated to assure that they rotate smoothly. Items to be checked include sticking due to foreign matter, visible flaws, uneven torque caused by improper mounting, or an improper mounting surface. Other items include excessive torque caused by an inadequate clearance, mounting errors, or seal friction.

If there are no abnormalities, then a powered test run can be started. For high-speed equipment, perform running in procedures before a powered test run (Page 192-193). A powered test run should be started slowly without load. Make close observations to determine whether or not abnormalities exist. If everything seems satisfactory, then gradually increase the speed, load, erc., until normal operating conditions are reached.

During a test run operation, check for abnormal noise, excessive rise of bearing temperature, leakage and contamination of lubricants, etc. If any abnormality is found, stop the test run immediately and inspect the machinery. If necessary, the bearing should be dismounted for examination as well. Although the temperature of the outside surface of the housing can generally help determine bearing temperature, it is

better to directly measure the temperature of the outer ring using oil holes for access. The bearing temperature should rise gradually to a steady level within one or two hours after operation starts. If the bearing experiences trouble, or if an error was made in mounting, the bearing temperature may increase rapidly and become abnormally high. The cause of this abnormal temperature may be an excessive amount of lubricant, insufficient bearing clearance, incorrect mounting, or excessive friction of the seals. In the case of high speed operations, an incorrect selection of bearing type or lubricating method may also cause an abnormal temperature rise.

Bearing noise can be checked with an acoustic or other instruments. Abnormal conditions are indicated by a loud metallic sound, or other irregular noise. Possible causes include incorrect lubrication, poor alignment of the shaft and housing, or the entry of foreign matter into the bearing. Possible causes and countermeasures for irregularities are listed in Table 3.1.

■NSK Bearing Monitor■

Bearing abnormality detector

It is important to detect signs of irregularities early on during operations before damege becomes severe. The NSK Bearing Monitor is an instrument that monitors the condition of bearing and issues a warning of possible abnormalities. It can prevent serious trouble. The NSK Bearing Monitor enhances proper maintenance and reduces costs.

Table 3.1 Cause and Countermeasures for Operating Irregularities

Irr	egularities	Possible cause	Countermeasures		
		Abnormal load	Improve the fit, internal clearance, preload, position of housing shoulder, etc.		
	Loud metallic	Incorrect mounting	Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method.		
	sound (1)	Insufficient or improper lubricant	Replenish the lubricant or select another lubricant.		
		Contact of rotating parts	Modify the labyrinth seal, etc.		
	Loud rogular	Dents generated by foreign matters, corrosion, flaws, or scratches on raceways	Replace or clean the bearing, improve the seals, and use clean lubricant.		
Noise	Loud regular sound	Brinelling	Replace the bearing, and use care when handling bearings.		
		Flaking on raceway	Replace the bearing.		
		Excessive clearance	Improve the fit, clearance, and preload.		
	Irregular sound	Penetration of foreign particles	Replace or clean the bearing, improve the seals, and use clean lubricant.		
		Flaws or flaking on balls	Replace the bearing.		
	Excessive amount of lubricant		Reduce amount of lubricant, or select stiffer grease.		
		Insufficient or improper lubricant	Replenish lubricant or select a better one.		
	Abnormal Abnormal load emperature rise		Improve the fit, internal clearance, preload, or position of housing shoulder.		
33.7.		Incorrect mounting	Improve the machining accuracy and alignment of the shaft and housing, accuracy of mounting, or mounting method.		
		Creep on fitted surface, excessive seal friction	Correct the seals, replace the bearing, or correct the fitting or mounting.		
		Brinelling	Replace the bearing and use care when handling bearing.		
\	/ibration	Flaking	Replace the bearing.		
(Radial ı	runout of shaft)	Incorrect mounting	Correct the squareness between the shaft and housing shoulder or side of spacer		
		Penetration of foreign particles	Replace or clean the bearing, improve the seals.		
Leakage or discoloration of lubricant		Too much lubricant. Penetration by foreign matter or abrasion chips	Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts.		

Note (') Squeaking may arise from grease lubricated ball bearings or cylindrical roller bearings (medium to large sized). This is especially true during winter when temperatures are low. In general, even though squeaking may occur, the bearing temperature will not rise, leaving fatigue or grease life unaffected. Consequently, such a bearing can continue to be used. If you concerns regarding squeaking noise, please contact NSK.

Maintenance, Inspection and Correcting Irregularities

In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If proper procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection.

Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to Table 3.1.

If necessary, the bearing should be dismounted and examined in detail.

Bearing Failure and Countermeasures

In general, if rolling bearings are used correctly they will survive to their predicted fatigue life.

However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example, use of improper lubricant, faulty lubricant system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft, or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at that time of failure and previous to the time of failure are known, including the application, the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the possibility of similar future failures can be reduced. The most frequent types of bearing failure, along with their causes and corrective actions, are listed in Table 3.2.

Table 3.2 Causes and Countermeasure for Bearing Failure

Type of failure	Probable causes	Countermeasures
Flaking Flaking of one-side of the raceway of radial bearing	Abnormal axial load.	A loose fit should be used when mounting the outer ring of free-end bearings to allow axial expansion of the shaft.
Flaking pattern inclined relative to the raceway in radial ball bearings Flaking near the edge of the raceway and rolling surface in roller bearing	Improper mounting, deflection of shaft, inadequate tolerances for shaft and housing.	Use care in mounting and centering, select a bearing with a large clearance, and correct the shaft and housing shoulder.
Flaking of raceway with same spacing as rolling element	Large shock load during mounting, rusting while bearing is out of operation for prolonged period.	Use care in mounting and apply a rust preventive when machine operation is suspended for a long time.
Premature flaking of raceway and rolling element	Insufficient clearance, excessive load, improper lubrication, rust, etc.	Select proper fit, bearing clearance, and lubricant.
Premature flaking of duplex bearings	Excessive preload.	Adjust the preload.

Type of failure	Probable causes	Countermeasures			
Scoring					
Scoring or smearing between raceway and rolling surface	Inadequate initial lubrication, excessively hard grease and high acceleration when starting.	Use a softer grease and avoid rapid acceleration.			
Scoring or smearing between the end face of the end face of the rollers and guide rib	Inadequate lubrication, incorrect mounting and large axial load.	Select proper lubricant and modify the mounting.			
Cracks Crack in outer or inner ring	Excessive shock load, excessive interference in fitting, poor surface cylindricity, improper sleeve taper, large fillet radius, development of thermal cracks and advancement of flaking.	Examine the loading conditions, modify the fit of bearing and sleeve. The fillet radius must be smaller than the bearing chamfer.			
Crack in rolling element Broken rib	Advancement of flaking, shock applied to the rib during mounting or dropped during handling.	Be careful in handling and mounting.			
Fracture cage	Abnormal loading of cage due to incorrect mounting and improper lubrication.	Reduce the mounting error and review the lubricating method and lubricant.			
Indentations					
Indentations in raceway in same pattern as rolling elements	Shock load during mounting or excessive load when not rotating.	Use care in handling.			
Indentations in raceway and rolling elements.	Foreign matter such as metallic chips or sand.	Clean the housing, improve the seals, and use a clean lubricant.			
Abnormal wear					
False brinelling (phenomenon similar to brinelling)	Vibration of the bearing without rotation during shipment or rocking motion of small amplitude.	Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying a preload.			
Fretting Limited part wear with reddish- brown wear dust at fitting surface	Slight wear of the fitting surface.	Increase interference and apply oil.			
Wearing of raceway, rolling elements, rib, and cage	Penetration by foreign matter, incorrect lubrication, and rust.	Improve the seals, clean the housing, and use a clean lubricant.			
Creep Scoring wear at fitting surface	Insufficient interference, Insufficient tightened sleeve.	Increase interference, proper tightening of sleeve.			
Seizure					
Discoloration and melting of raceway, rolling elements and ribs	Insufficient clearance, incorrect lubrication, or improper mounting.	Review the internal clearance and bearing fit, supply an adequate amount of the proper lubricant and improve the mounting method and related parts.			
Corrosion & Rust	Condensation of water from the air, or fretting.	Use care in storing and avoid high temperature and high humidity, treatmer			
Rust and corrosion of fitting surfaces and bearing interior	Penetration by corrosive substance (especially vanish-gas, etc).	for rust prevention is necessary when operation is stopped for long time. Selection of vanish and grease.			

APPENDICES

Appendices

Tolerances for Shaft Diameters	·P200
Tolerances for Housing Bore Diameter	·P202
Values of Standard Tolerances for IT Grades	·P204
Hardness Conversion Table	·P206
Physical and Mechanical Properties of Material	·P207
Request for Specification Investigation	·P209
Old and New Number Contrast Table	·P210

Appendices

Tolerances for Shaft Diameters

Diameter class	ssification (mm)	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 48	± 2.5	± 4
6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 - 14	0 - 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4.5
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	0 - 8	0 –11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	0 - 9	0 –13	0 - 21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 -11	0 –16	0 - 25	0 - 39	0 - 62	0 -100	± 5.5	± 8
50	80	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 –19	0 - 30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 –22	0 - 35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 –18	0 <i>–</i> 25	0 - 40	0 - 63	0 -100	0 –160	± 9	±12.5
180	250	–170 –199	-100 -129	- 50 - 79	–15 –35	- 15 - 44	0 –20	0 –29	0 - 46	0 - 72	0 –115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 –130	0 –210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 –36	0 - 57	0 - 89	0 –140	0 –230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 –27	0 –40	0 - 63	0 - 97	0 –155	0 –250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 –44	0 –70	0 –110	0 –175	0 –280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 –50	0 - 80	0 -125	0 –200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 –56	0 - 90	0 -140	0 –230	0 –360	_	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	-	- 28 - 94	-	0 –66	0 –105	0 –165	0 –260	0 -420	-	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	-	0 -78	0 –125	0 –195	0 –310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 –150	0 –230	0 –370	0 –600	_	±46

													Unit: μ m
:=	:0	:7	LE.	1.0	L-7	E	C				7	Diameter cla	ssification (mm)
j5	j6	j7	k5	k6	k7	m5	m6	n6	p6	r6	r7	over	incl
+ 3	+ 6	+ 8	+ 6	+ 9	+13	+ 9	+ 12	+ 16	+ 20	+ 23	+ 27	3	6
_ 2	- 2	- 4	+ 1	+ 1	+ 1	+ 4	+ 4	+ 8	+ 12	+ 15	+ 15	,	
+ 4	+ 7	+10	+ 7	+10	+16	+12	+ 15	+ 19	+ 24	+ 28	+ 34	6	10
<u> </u>	- 2 + 8	- 5 +12	+ 1 + 9	+ 1 +12	+ 1 +19	+ 6 +15	+ 6 + 18	+ 10 + 23	+ 15 + 29	+ 19 + 34	+ 19 + 41		
- 3	- 3	- 6	+ 1	+ 1	+ 1	+ 7	+ 7	+ 12	+ 18	+ 23	+ 23	10	18
+ 5	+ 9	+13	+11	+15	+23	+17	+ 21	+ 28	+ 35	+ 41	+ 49	10	20
- 4	- 4	- 8	+ 2	+ 2	+ 2	+ 8	+ 8	+ 15	+ 22	+ 28	+ 28	18	30
+ 6	+11	+15	+13	+18	+27	+20	+ 25	+ 33	+ 42	+ 50	+ 59	30	50
<u> </u>	- 5 +12	-10 +18	+ 2	+ 2	+ 2	+ 9 +24	+ 9 + 30	+ 17 + 39	+ 26 + 51	+ 34 + 60	+ 34 + 71		
- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 41	+ 41	50	65
+ 6	+12	+18	+15	+21	+32	+24	+ 30	+ 39	+ 51	+ 62	+ 73	65	80
_ 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 43	+ 43	0.5	
+ 6	+13	+20	+18	+25	+38	+28	+ 35	+ 45	+ 59	+ 73	+ 86	80	100
<u> </u>	- 9 +13	-15 +20	+ 3	+ 3 +25	+ 3	+13 +28	+ 13 + 35	+ 23 + 45	+ 37 + 59	+ 51 + 76	+ 51 + 89		
- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 54	+ 54	100	120
+ 7	+14	+22	+21	+28	+43	+33	+ 40	+ 52	+ 68	+ 88	+103	120	140
<u>–11</u>	-11	-18	+ 3	+ 3	+ 3	+15	+ 15	+ 27	+ 43	+ 63	+ 63	120	140
+ 7	+14	+22	+21	+28	+43	+33	+ 40	+ 52	+ 68	+ 90	+105	140	160
<u>-11</u> +7	-11 +14	-18 +22	+ 3	+ 3	+ 3	+15	+ 15 + 40	+ 27 + 52	+ 43 + 68	+ 65 + 93	+ 65 +108		
-11	-11	-18	+ 3	+ 3	+ 3	+15	+ 15	+ 27	+ 43	+ 68	+ 68	160	180
+ 7	+16	+25	+24	+33	+50	+37	+ 46	+ 60	+ 79	+106	+123	180	200
-13	-13	-21	+ 4	+ 4	+ 4	+17	+ 17	+ 31	+ 50	+ 77	+ 77	100	200
+ 7	+16	+25	+24	+33	+50	+37	+ 46	+ 60	+ 79	+109	+126	200	225
<u>-13</u> + 7	<u>–13</u> +16	-21 +25	+ 4	+ 4	+ 4	+17	+ 17 + 46	+ 31 + 60	+ 50 + 79	+ 80 +113	+ 80 +130		
-13	-13	-21	+ 4	+ 4	+ 4	+17	+ 17	+ 31	+ 50	+ 84	+ 84	225	250
+7	±16	±26	+27	+36	+56	+43	+ 52	+ 66	+ 88	+126	+146	250	280
<u>–16</u>	±16	±26	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+ 94	+ 94	200	200
+7 –16	±16 ±16	±26 ±26	+27 + 4	+36 + 4	+56 + 4	+43 +20	+ 52 + 20	+ 66 + 34	+ 88 + 56	+130 + 98	+150 + 98	280	315
+7	±18	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+144	+165		
-18	±18	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+108	+108	315	355
+7	±18	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+150	+171	355	400
-18	±18	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+114	+114		
+7 –20	±20 ±20	+31 -32	+32 + 5	+45 + 5	+68 + 5	+50 +23	+ 63 + 23	+ 80 + 40	+108 + 68	+166 +126	+189 +126	400	450
+7	±20	+31	+32	+45	+68	+50	+ 63	+ 80	+108	+172	+195	450	500
-20	±20	-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+132	+132	450	500
-	-	_	_	+44	+70	_	+ 70	+ 88	+122	+194	+220	500	560
			_	<u>0</u> +44	0 +70	_	+ 26 + 70	+ 44	+ 78 +122	+150 +199	+150 +225		
_	_	_	_	+44 0	+70 0	_	+ 70	+ 44	+ 78	+155	+225	560	630
-	-	_	_	+50	+80	_	+ 80	+100	+138	+225	+255	630	710
_	_	_	_	0	0	_	+ 30	+ 50	+ 88	+175	+175	630	710
-	-	-	_	+50	+80	_	+ 80	+100	+138	+235	+265	710	800
_	_	_	_	+56	+90	_	+ 30 + 90	+ 50 +112	+ 88 +156	+185 +266	+185		
_	_	_	_	0	0	_	+ 34	+ 56	+100	+210	+210	800	900
_	_	_	_	+56	+90	_	+ 90	+112	+156	+276	+310	900	1 000
_	_	_	_	0	0	_	+ 34	+ 56	+100	+220	+220	300	1 000
_	_	_	_	+66 0	+105	_	+106	+132	+186	+316 +250	+355	1 000	1 120
	_		_	+66	<u>0</u> +105	_	+ 40 +106	+ 66 +132	+120 +186	+250	+250 +365		
		_	_	0	0	_	+ 40	+ 66	+120	+260	+260	1 120	1 250
-	-	-	_	+78	+125	_	+126	+156	+218	+378	+425	1 250	1 400
_	_	_	_	0	0	_	+ 48	+ 78	+140	+300	+300	. 200	00
_	_	_	_	+78 0	+125 0	_	+126 + 48	+156 + 78	+218 +140	+408 +330	+455 +330	1 400	1 600
_	_	_	_	+92	+150	_	+ 40	+ 76	+262	+462	+520	4.655	4 000
_	_	_	_	0	0	_	+ 58	+ 92	+170	+370	+370	1 600	1 800
-	_	-	-	+92	+150	-	+150	+184	+262	+492	+550	1 800	2 000
		_	_	0	0	_	+ 58	+ 92	+170	+400	+400	. 505	

APPENDICES Part 7

Tolerances for Housing Bore Diameters

Diameter class	sification (mm)	FC	ГС	F-7	06	07	110	117	110	10	17	100	107
over	incl	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21 0	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35 0	+ 54 0	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63 0	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29 0	+ 46 0	+ 72 0	+22 - 7	+30 -16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32 0	+ 52 0	+ 81 0	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36 0	+ 57 0	+ 89 0	+29 - 7	+39 -18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97 0	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44 0	+ 70 0	+110 0	-	-	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80	+125 0	-	-	±25	±40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90 0	+140 0	-	-	±28	±45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165 0	-	-	±33	±52.5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78	+125 0	+195 0	-	-	±39	±62.5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230	-	-	±46	±75
2 000	2 500	+370 +260	+240 +130	+305 +130	+144 + 34	+209 + 34	+110	+175 0	+280	-	-	±55	±87.5

fication (mm)	Diameter class	D7	Do	N 1-7	NO	NIC	147	MO	NAT.	1/7	1/0	W.F.
incl	over	P7	P6	N7	N6	N5	M7	M6	M5	K7	K6	K5
18	10	- 11 - 29	- 15 - 26	- 5 - 23	- 9 - 20	- 9 -17	0 - 18	- 4 - 15	- 4 -12	+ 6 - 12	+ 2 - 9	+ 2 - 6
30	18	- 14 - 35	- 18 - 31	- 7 - 28	- 11 - 24	-12 -21	0 - 21	- 4 - 17	- 5 -14	+ 6 - 15	+ 2 -11	+ 1 - 8
50	30	- 17 - 42	- 21 - 37	- 8 - 33	- 12 - 28	-13 -24	0 - 25	- 4 - 20	- 5 -16	+ 7 - 18	+ 3 -13	+ 2 - 9
80	50	- 21 - 51	- 26 - 45	- 9 - 39	- 14 - 33	-15 -28	0 - 30	- 5 - 24	- 6 -19	+ 9 - 21	+ 4 –15	+ 3 -10
120	80	- 24 - 59	- 30 - 52	- 10 - 45	- 16 - 38	-18 -33	0 - 35	- 6 - 28	- 8 -23	+ 10 - 25	+ 4 -18	+ 2 -13
180	120	- 28 - 68	- 36 - 61	- 12 - 52	- 20 - 45	-21 -39	0 - 40	- 8 - 33	- 9 -27	+ 12 - 28	+ 4 –21	+ 3 -15
250	180	- 33 - 79	- 41 - 70	- 14 - 60	- 22 - 51	-25 -45	0 - 46	- 8 - 37	-11 -31	+ 13 - 33	+ 5 -24	+ 2 -18
315	250	- 36 - 88	- 47 - 79	- 14 - 66	- 25 - 57	-27 -50	0 - 52	- 9 - 41	-13 -36	+ 16 - 36	+ 5 -27	+ 3 -20
400	315	- 41 - 98	- 51 - 87	- 16 - 73	- 26 - 62	-30 -55	0 - 57	- 10 - 46	-14 -39	+ 17 - 40	+ 7 - 29	+ 3 -22

Unit: μ m

+ 8 + 18 -16 - 10 0 -33 - 27 - 17 - 55 - 45 + 2 400 500 -25 - 32 - 45 -43 - 50 - 63 -60 - 67 - 80 - 95 -108 0 - 26 500 630 -44 - 70 - 70 - 88 -114 -122-148 0 0 - 30 - 30 - 50 - 50 - 88 - 88 630 - 50 - 80 - 80 -100 -130-138 -168 0 - 34 - 34 - 56 - 56 -100 -100 800 1 000 - 56 - 90 - 90 -124 -112 -146-156 -190 0 - 40 - 66 -120 -120 1 000 1 250 - 66 -105 -106 -145 -132 -171 -186 -225 - 48 -1401 250 1 600 - 78 -125 -126 -173 -156 -203 -218 -265 - 58 -170 0 - 58 - 92 - 92 -170 1 600 2 000 - 92 -150 -150 -208 -242 -262 -320 -184 - 68 - 68 -195 -110 -110 -195 2 000 2 500 -110 -175 -178 -243 -220 -285 -305 -370

NSK 203 202 **NSK**

APPENDICESPart

Values of Standard Tolerance for IT Grade

Basic size				Standard grade										
(n	nm)	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9				
over	incl				Toleran	ces (µm)								
-	3	0.8	1.2	2	3	4	6	10	14	25				
3	6	1	1.5	2.5	4	5	8	12	18	30				
6	10	1	1.5	2.5	4	6	9	15	22	36				
10	18	1.2	2	3	5	8	11	18	27	43				
18	30	1.5	2.5	4	6	9	13	21	33	52				
30	50	1.5	2.5	4	7	11	16	25	39	62				
50	80	2	3	5	8	13	19	30	46	74				
80	120	2.5	4	6	10	15	22	35	54	87				
120	180	3.5	5	8	12	18	25	40	63	100				
180	250	4.5	7	10	14	20	29	46	72	115				
250	315	6	8	12	16	23	32	52	81	130				
315	400	7	9	13	18	25	36	57	89	140				
400	500	8	10	15	20	27	40	63	97	155				
500	630	9	11	16	22	30	44	70	110	175				
630	800	10	13	18	25	35	50	80	125	200				
800	1 000	11	15	21	29	40	56	90	140	230				
1 000	1 250	13	18	24	34	46	66	105	165	260				
1 250	1 600	15	21	29	40	54	78	125	195	310				
1 600	2 000	18	25	35	48	65	92	150	230	370				
2 000	2 500	22	30	41	57	77	110	175	280	440				
2 500	3 150	26	36	50	69	93	135	210	330	540				

	4 0: 1 1: 1	IT4.4.1 IT40 1 II 11 14	
Remarks	 Standard tolerance grades 	S I I 14 to I I 18 shall not be used for	basic sizes less than or equal to 1mm.

^{2.} Values for standard tolerance grades IT1 to IT5 for basic size over 500mm are included for experimental use.

		Basic size								
IT10	IT11	IT12	IT13	IT14	IT15	IT16	IT17	IT18	(mı	m)
			Tole	erances (µm)					over	incl
40	60	0.10	0.14	0.26	0.40	0.60	1.00	1.40	-	3
48	75	0.12	0.18	0.30	0.48	0.75	1.20	1.80	3	6
58	90	0.15	0.22	0.36	0.58	0.90	1.50	2.20	6	10
70	110	0.18	0.27	0.43	0.70	1.10	1.80	2.70	10	18
84	130	0.21	0.33	0.52	0.84	1.30	2.10	3.30	18	30
100	160	0.25	0.39	0.62	1.00	1.60	2.50	3.90	30	50
120	190	0.30	0.46	0.74	1.20	1.90	3.00	4.60	50	80
140	220	0.35	0.54	0.87	1.40	2.20	3.50	5.40	80	120
160	250	0.40	0.63	1.00	1.60	2.50	4.00	6.30	120	180
185	290	0.46	0.72	1.15	1.85	2.90	4.60	7.20	180	250
210	320	0.52	0.81	1.30	2.10	3.20	5.20	8.10	250	315
230	360	0.57	0.89	1.40	2.30	3.60	5.70	8.90	315	400
250	400	0.63	0.97	1.55	2.50	4.00	6.30	9.70	400	500
280	440	0.70	1.10	1.75	2.80	4.40	7.00	11.00	500	630
320	500	0.80	1.25	2.00	3.20	5.00	8.00	12.50	630	800
360	560	0.90	1.40	2.30	3.60	5.60	9.00	14.00	800	1 000
420	660	1.05	1.65	2.60	4.20	6.60	10.50	16.50	1 000	1 250
500	780	1.25	1.95	3.10	5.00	7.80	12.50	19.50	1 250	1 600
600	920	1.50	2.30	3.70	6.00	9.20	15.00	23.00	1 600	2 000
700	1 100	1.75	2.80	4.40	7.00	11.00	17.50	28.00	2 000	2 500
860	1 350	2.10	3.30	5.40	8.60	13.50	21.00	33.00	2 500	3 150

APPENDICESPar

Hardness Conversion Table (Reference)

Rockwell		Brinell h	ardness	Rockwell	Rockwell hardness			
C scale hardness (1471N)	Vickers hardness	Standard ball	Tungsten Carbide ball	A scale Load 588.4N Brale indenter	B scale Load 980.7N 1.588mm Ball	Shore hardness		
68	940	_	-	85.6	-	97		
67	900	_	_	85.0	_	95		
66	865	_	_	84.5	_	92		
65	832	_	739	83.9	_	91		
64	800	-	722	83.4	_	88		
63	772	_	705	82.8	_	87		
62	746	_	688	82.3	_	85		
61	720	_	670	81.8	_	83		
60	697	_	654	81.2	_	81		
59	674	_	634	80.7	_	80		
58	653	_	615	80.1	_	78		
57	633	-	595	79.6	-	76		
56	613	_	577	79.0	_	75		
55	595	-	560	78.5	-	74		
54	577	_	543	78.0	_	72		
53	560	_	525	77.4	-	71		
52	544	500	512	76.8	_	69		
51	528	487	496	76.3	_	68		
50	513	475	481	75.9	_	67		
49	498	464	469	75.2	_	66		
48	484	451	455	74.7	_	64		
47	471	442	443	74.1	_	63		
46	458	432	432	73.6	_	62		
45	446	421	421	73.1	_	60		
44	434	409	409	72.5	_	58		
43	423	400	409	72.0	_	57		
	412							
42		390	390	71.5	_	56		
41	402	381	381	70.9	-	55		
40	392	371	371	70.4	-	54		
39	382	362	362	69.9	-	52		
38	372	353	353	69.4	_	51		
37	363	344	344	68.9	-	50		
36	354	336	336	68.4	(109.0)	49		
35	345	327	327	67.9	(108.5)	48		
34	336	319	319	67.4	(108.0)	47		
33	327	311	311	66.8	(107.5)	46		
32	318	301	301	66.3	(107.0)	44		
31	310	294	294	65.8	(106.0)	43		
30	302	286	286	65.3	(105.5)	42		
29	294	279	279	64.7	(104.5)	41		
28	286	271	271	64.3	(104.0)	41		
27	279	264	264	63.8	(103.0)	40		
26	272	258	258	63.3	(102.5)	38		
25	266	253	253	62.8	(101.5)	38		
24	260	247	247	62.4	(101.0)	37		
23	254	243	243	62.0	100.0	36		
22	248	237	237	61.5	99.0	35		
21	243	231	231	61.0	98.5	35		
20	238	226	226	60.5	97.8	34		
(18)	230	219	219	-	96.7	33		
(16)	222	212	212	_	95.5	32		
(14)	213	203	203	_	93.9	31		
(12)	204	194	194		92.3	29		
(10)	196	187	187	_	90.7	28		
(8)	188	179	179	_	89.5	27		
(6)	180	179	179	_	87.1	26		
				_				
(4)	173	165	165	-	85.5	25		
(2)	166	158	158	-	83.5	24		
(0)	160	152	152	_	81.7	24		

Physical and Mechanical Properties of Material

Application	Material code	Heat treatment	Density g/cm³	Specific heat KJ/ (kg·K)	Thermal conductivity W/(m·K)		Coefficient of linear expansion (0°-100°C) ×10-6/°C	Young's modulus MPa	Yield point MPa	Tensile strength MPa	Elong ation %	Hard ness HB	Remarks
	SUJ2	Hardening, tempering	7.83		46	22	12.5		1 370	1 570 –1 960	Max. 0.5	650 -740	High-carbon chromium bearing steel type 2
	SUJ2	Spheroidizing tempering	7.86				11.9		420	647	27	180	
	SCr420	Hardening, low temperature tempering	- 7.83	0.47	48	21	12.8	208 000	882	1 225	15	370	Chromium steel
n g	SAE4320 (SNCM420)	Hardening, low temperature tempering	7.03		44	20	11.7		902	1 009	16	**293 -375	Nickel-chromium- molybdenum steel
a i	SNCM815	Hardening, low temperature tempering	7.89		40	35	-		_	Min. *1 080	Min. *12	*311 -375	Nickel-chromium- molybdenum steel
В	SUS440C	Hardening, low temperature tempering	7.68	0.46	24	60	10.1	200 000	1 860	1 960	_	**580	Martensitic stainless steel
	SPCC	Annealing	7.86	0.47	59	15	11.6	206 000	_	Min. *275	Min. *32	_	Cold-rolled steel
	S25C	Annealing		0.48	50	17	11.8		323	431	33	120	Carbon steel for machine structure use
	HB _S C1		8.5	0.38	123	6.2	19.1	103 000	_	Min. *431	Min. *20	_	High-strength brass casting

Notes *Standard value of JIS or reference value.

**The hardness is usually expressed using the Rockwell C scale, but for comparison, it is converted into Brinell hardness.

Reference Proportional limits of SUJ2 and Scr420 are 833MPa (85kgf/mm²) and 440MPa (45kgf/mm²) respectively.

				1	1					ı				
Application	Material code	Heat treatment	Density g/cm³	Specific heat KJ/ (kg·K)	Thermal conductivity W/(m·K)		Coefficient of linear expansion (0°-100°C) ×10 ⁻⁶ /°C	Young's modulus MPa	Yield point MPa	Tensile strength MPa	Elong ation %	Hard ness HB	Remarks	
Shaft	S45C	Hardening, 650 tempering	7.83	0.48	47	18	12.8	207 000	440	735	25	217	Carbon steel for machine structure use	
	SCr430	Hardening, 520-62 quenching				22	- 12.5	208 000	Min. *637	Min. *784	Min. *18	*229 –293	Chromium steel	
	SCr440	Hardening, 520-620 quenching			45	23			Min. *784	Min. *930	Min. *13	*269 -331	Chromium steel	
	SCM420	Hardening, 150-200 quenching		0.47	48	21	12.8		-	Min. *930	Min. *14	*262 -352	Chromium- molybdenum steel	
	SNCM439	Hardening, 650 tempering			38	30	11.3	207 000	920	1 030	18	320	Nickel-chromium- molybdenum steel	
	SC46	Normalizing	_	_	_	_	_	206 000	294	520	27	143	Low carbon steel	
	SUS420J2	1038 oil cooling, 400 air cooling	7.75	0.46	22	55		200 000	1 440	1 650	10	400	Martensitic stinless steel	
	FC200	N/A	7.3	0.50	43	_	10.4	00.000	_	Min. *200	_	Max. *217	Gray iron	
n g	FCD400	N/A	7.0	0.48	20	-	11.7	98 000	Min. *250	Min. *400	Min. *12	Max. *201	Ductile iron	
i s n o H	A1100	Annealing	2.69	0.90	222	3.0	23.7	70 000	34	78	35	-	Engineering pure aluminum	
	AC4C	N/A	2.68	0.88	151	4.2	21.5	72 000	88	167	7	-	Sand casting aluminum alloy	
	ADC10	N/A	2.74	0.96	96	7.5	22.0	71 000	167	323	4	-	Die casting aluminum alloy	
	SUS304	Annealing	8.03	0.50	15	72	15.7– 16.8	193 000	245	588	60	150	Austenitic stainless steel	

Notes *Standard value of JIS or reference value.

Request for Specification Investigation

To request specification investigation, please contact the nearest NSK office and provide us with the following information:

	Name of company	investigation regardir							
Operating conditions	Type of machine Machining Center, Lathe, Internal Grinding Machine, Motor, Others () Model number								
	Position of bearing Main shaft spindle, Ball screw support								
	Main shaft position	Vertical, Horizontal, Other	()						
	Bearing type	Please circle all that apply	:						
		Angular contact ball bearing	Standard series, ROBUST BNR series, ROBUST BE series, ROBUST BGR series	R					
		Cylindrical roller bearing	Single row cylindrical roller bearing, Ultra high speed ROBUST series Double row cylindrical roller bearing						
		Angular contact thrust ball bearing	Main shaft TAC, ROBUST BAR series ROBUST BTF series	3					
		Deep groove ball bearing	High precision deep groove ball bearing for spindle m						
		Ball screw support bearing	For machine tool, For electric injection molding mach	ine					
	Arrangement	DB · DBD · DBB · DF · DF	D · DFF · Other ()						
	NSK bearing numb	er							
	Other maker numb	er							
		·							
	Bore	Outer diameter	Overall widemm						
Out	ter ring width	Inner ring width	Accuracy class class						
(Clearance								
Load conditi									
Ro	tating speed	min ⁻¹ Radial load	Axial load <u>N</u>						
	Moment	N-mm Unclamp force	<u>N</u>						
Shaft and ho	· ·								
To	olerance of shaft	Tolerance of housing	Outer diameter of housing _{mm}						
		Material of	Bore diameter						
N	Material of shaft	housing	of hollow shaftm						
	Driving method	Cooling method (External of	Preload type (Position preload or constant pressure	preloa					
Sp	pacer length	Ambient temperature	<u>°C</u>						
Requiremen	t value								
	Rigidity	Preload N/μm	Life h						
Comments									
P	lease indicate any s	pecial requests, questions, o	or comments here: Attachments: (Yes)	(No					
			/ (tao/iiiionio. (100)	,					

^{**}Hardness is usually expressed using the Rockwell C Scale, but for comparison, it is converted into Brinell hardness.

Reference Proportional limits of SUJ2 and Scr420 are 833MPa (85kgf/mm²) and 440MPa (45kgf/mm²) respectively.

Old and new number contrast table

Bearings	New name	Old name	Notes		
High precision ACBB	79xxCTYNDBL	79xxCTYDBC7	TYN: Ball guided polyamide 46 resin cage TY: Ball guided polyamide 66 resin cage		
	70xxCTYNDBL	70xxCTYDBC7			
	72xxCTYNDBL	72xxCTYDBC7			
	70xxATYNDBL	70xxATYDBC7	EL←C2, L←C7		
	72xxATYNDBL	72xxATYDBC7	- M←C8, H←C9		
	79xxA5TYN	79xxA5TY	TALE 1 1 1 1 1 1 1 1 1		
	70xxA5TYN	70xxA5TY	TYN: Ball guided polyamide 46 resin cage		
	72xxA5TYN	72xxA5TY	TY: Ball guided polyamide 66 resin cage		
Ultra high-speed ACBB	xxBNR19STYN	xxBNC19TY	TYN: Ball guided polyamide 46 resin cage		
	xxBNR10STYN	xxBNC10TY			
	xxBNR19HTYN	xxBNC19SN24TY	TY: Ball guided polyamide 66 resin cage		
	xxBNR10HTYN	xxBNC10SN24TY			
Ultra high precision ACBB	xxBGR10S	xxBNT10F	BGR: Non-separable type		
	xxBGR10H	xxBNT10FSN24	BNT: separable type		
Double row CRB	NN30xxTB	NN30xxT	TB: Roller guided PPS resin cage		
Ultra high-speed single row CRB	N10xxRSTP	N10xxBT	TP: Outer ring guided PEEK resin cage T: Roller guided polyamide66 resin cage		
High-speed thrust ACBB	xxBAR10STYN	xxBA10XTY	TYN: Ball guided polyamide 46 resin cage		
	xxBTR10STYN	xxBT10XTY	TY: Ball guided polyamide 66 resin cage		

Please contact NSK for assistance regarding any other number.

MEMC