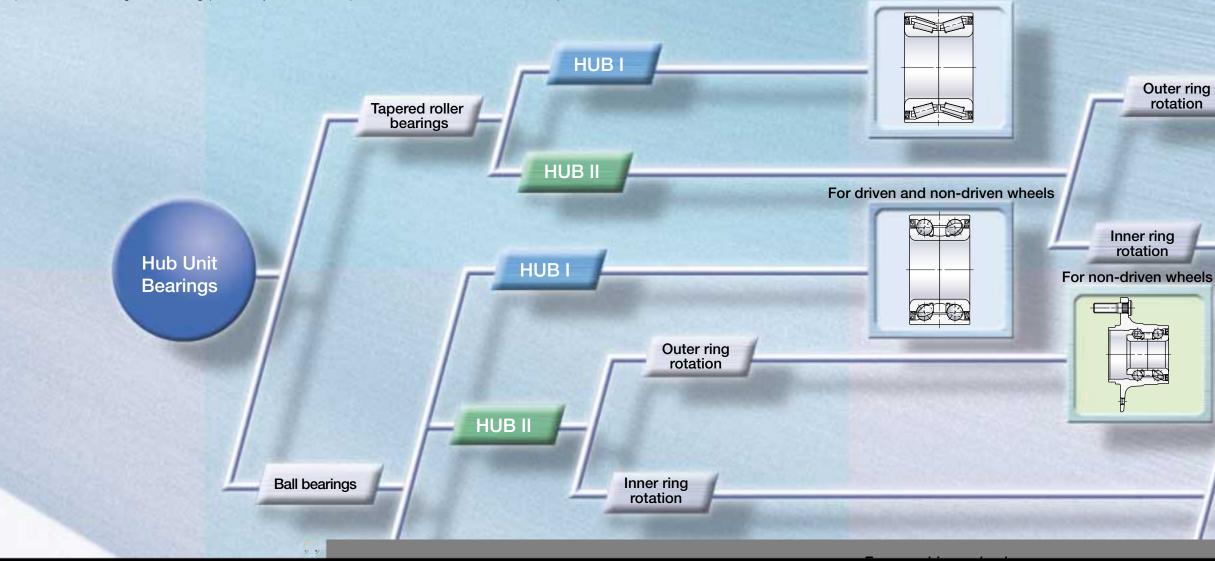
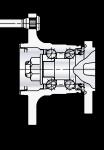


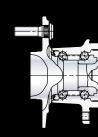
Hub Unit Bearings

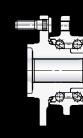
Comfort for the 21st Century Intelligently and reliably meeting the needs of a wide range of vehicle models.

Hub Unit Bearings

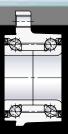

	TENTS	
1. Types	and Characteristics of Hub Unit Bearings	
1-1. Ca	tegories of hub unit bearings	3
1-2. HU	IB I	5
	IB II	
	IB III	9
	ion of Hub Unit Bearings	
	erview of selection	
	lection of hub unit bearings	
	bes and characteristics of bearings	15
	ion of Dimensions of Hub Unit Bearings	
	rvice life calculation	
-	gidity	
	ength	19
	I Preload of Hub Unit Bearings	
	and preload	
	commended fitting measurements	
	ing tests	
	nit Bearing Seals	
	nit Bearing Grease	24
	al for Hub Unit Bearings	
	terial for raceway rings and rolling elements	
	ge material	25
	al for Hub Unit Bearings	00
	Iti-pole magnetic encoders for ABS	
	b unit bearings with integral ABS sensors	
	nit Bearings with Swaging	
	nmended Bearing Reference	28
• HUB I	nit Bearing Dimension Table BWD type	21
	KWD type	
• HUB II	BWK inner ring rotation type	
	(for non-driven wheels)	35
	BWK inner ring rotation type	
	(for driven wheels) BWK inner ring rotation type	36
	(for driven wheels)	37
	KWH inner ring rotation type	07
HUB III	(for driven/non-driven wheels) BWKH inner ring rotation type	37
	(for driven wheels)	40
Appendix	Table	41


1. Types and Features of Hub Unit Bearings


1-1. Categories of hub unit bearings

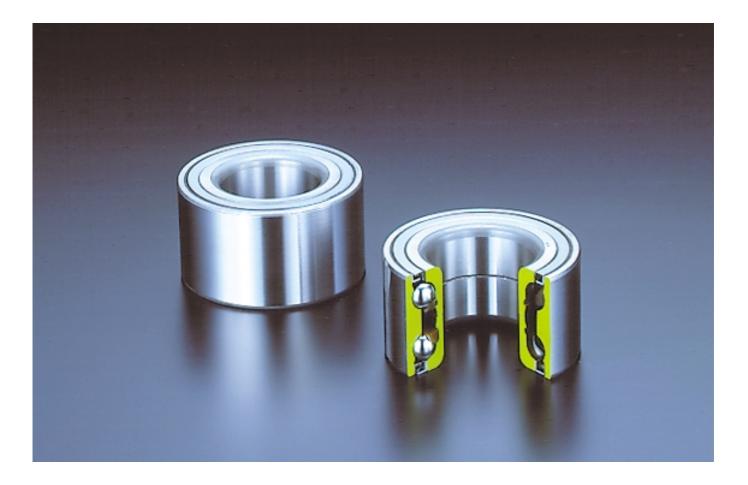

Hub unit bearings for automobile wheels are comprised of bearing rings, rolling elements, and cages, similar to general-purpose rolling bearings. The first-generation hub unit (Hub I), second-generation hub unit (Hub II), and third-generation hub unit (Hub III) vary according to the integration of the bearings and their peripheral components. In addition, the forms are categorized by usage condition (rotations of outer rings or inner rings) and component location (for driven wheels or non-driven wheels).

For driven and non-driven wheels

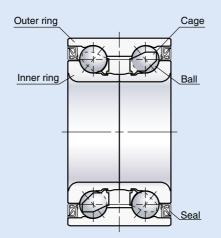


HUB III

Hub Unit Bearings For non-driven wheels Outer ring rotation Ð E.A. For driven and non-driven wheels For non-driven wheels 3-6 ()

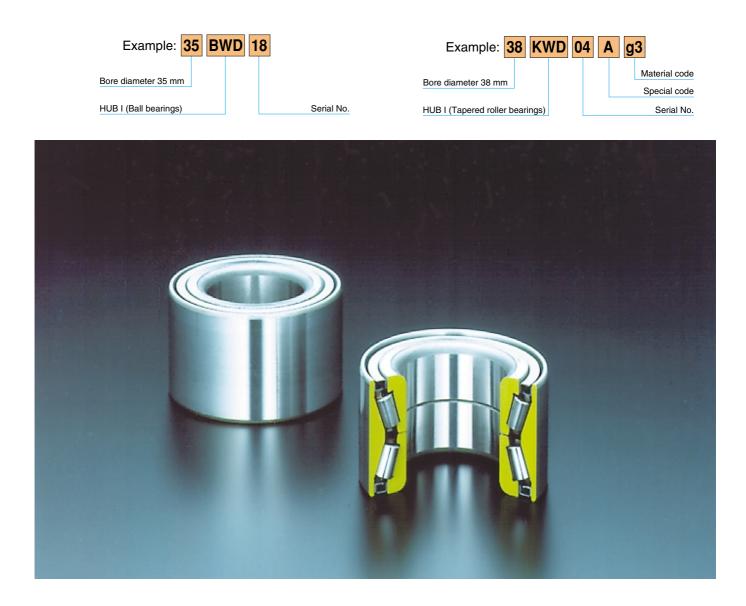


HUB I

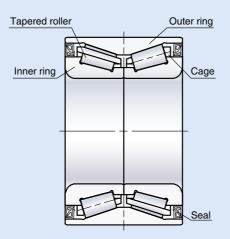

1-2. HUB I

For HUB I, NSK uses proprietary bearing-type designations such as "BWD" for ball bearings and "KWD" for tapered roller bearings. The HUB I units are double-row angular contact ball bearings (BWD) and double-row tapered roller bearings (KWD) with back-to-back duplex outer rings.

No preload adjustments (including dimensional adjustments by shims) are required on the assembly line. The initial axial clearance is properly pre-set for the preload to fall within the specified range after mounting. In addition, the integral seal eliminates the need for automotive makers to externally apply seals.



BWD (Ball bearings) for driven and non-driven wheels



Hub Unit Bearings

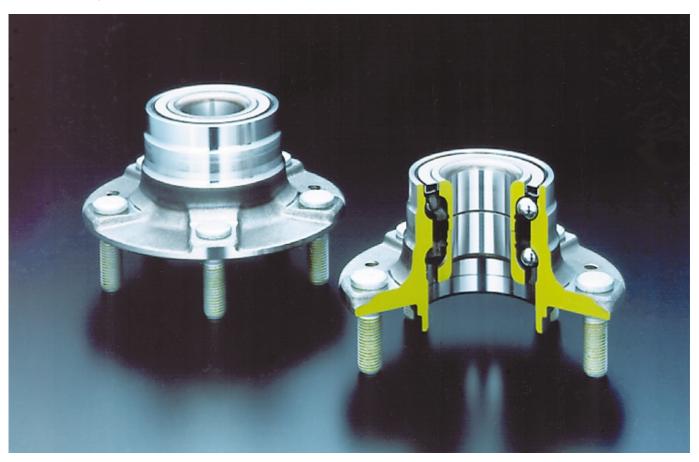
NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:

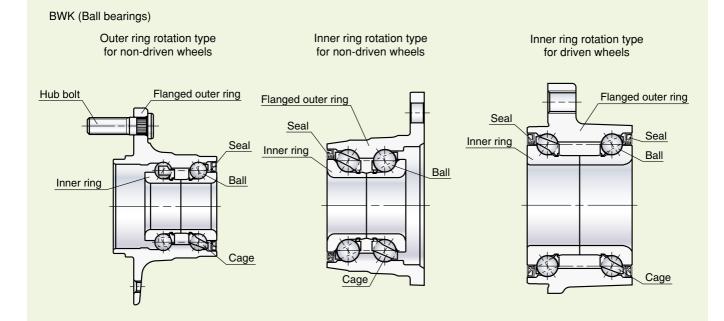
KWD (Tapered roller bearings) for driven and non-driven wheels

HUB II

1-3. HUB II

For HUB II, NSK uses proprietary bearing-type designations such as "BWK" for ball bearings and "KWH" for tapered roller bearings. HUB II configurations are BWD or KWD HUB I with flanged outer rings.

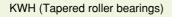

• Outer ring rotation type (for non-driven wheels):


Wheels and brake disks are mounted at the flanges. Spindles are inserted into the inner rings and fixed with nuts.

• Inner ring rotation type (for non-driven wheels): The flanges are fixed to the car body. Hub spindles are pressed into the inner rings and fixed with nuts.

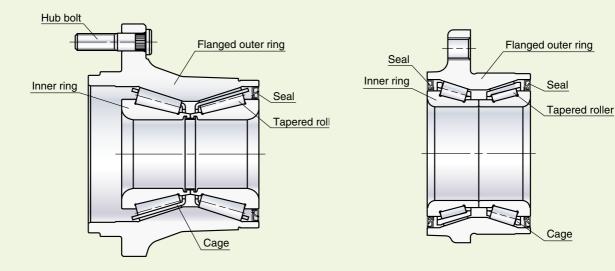
• Inner ring rotation type (for driven wheels): The flanges are fixed to the axle housing. Wheel hubs and drive shafts are engaged to the inner rings.

With all of the HUB II types, the initial axial clearance is properly pre-set for the preload to fall within the specified range after mounting, similar to the HUB I.



Hub Unit Bearings

NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:



Outer ring rotation type for non-driven wheels

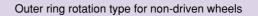
Inner ring rotation type for non-driven and driven wheels

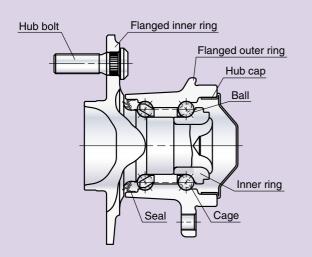
HUB III

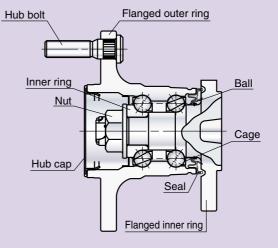
1-4. HUB III

For HUB III, NSK uses proprietary bearing-type designations such as "BWKH" for ball bearings. The HUB III configuration is a BWD HUB I with flanged inner and outer rings. • Outer ring rotation type (for non-driven wheels):

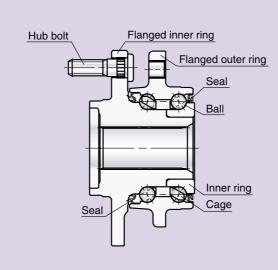
Wheels and brake disks are mounted at the outer ring flanges. The inner ring flanges are mounted on the car body, and the preload is pre-adjusted.


• Inner ring rotation type (for non-driven wheels): Wheels and brake disks are mounted at the inner ring flanges. The outer ring flanges are mounted on the car body,


and the preload is pre-adjusted.


• Inner ring rotation type (for driven wheels): Wheels and brake disks are mounted at the inner ring flanges. A splined bore allows bearings to be engaged to the CVJ shaft end. The outer ring flanges are fixed at the axle housing. The initial axial clearance is properly pre-set for the preload to fall within the specified range after the nuts are fastened.

BWK (Ball bearings) Inner ring rotation type for non-driven wheels



Hub Unit Bearings

NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:

Example: 52 B	WKH 02 y5	Example: 68 BW	/KH S 01 y5
Ball pitch diameter 52 mm	Material code	Ball pitch diameter 68 mm	Material code
HUB III (Ball bearings)	Serial No.	HUB III (Ball bearings)	Serial No. Sensor integral

Inner ring rotation type for driven wheels

BWKH (Ball bearings)

2. Selection of Hub Unit Bearings

2-1. Overview of selection

While higher performance is demanded for hub unit bearings, the constraints and conditions of their application are becoming increasingly diverse. The selection of optimum bearing types satisfying such constraints and conditions requires the examination of various aspects. Please contact NSK for comprehensive technical services, such as functional evaluation, or technical consultations on design specifications in the development process, costs, and scheduling, for suitable selection of hub unit bearings. Fig. 1 shows the sample selection process of hub unit bearing types, and Fig. 2 shows sample specifications of hub unit bearings for automobiles.

Studies on bearing types

among HUB I, HUB II, and

HUB III

• Space allowable for bearings

• Rotating rings (inner/outer rings)

(turning load and inclination angle)

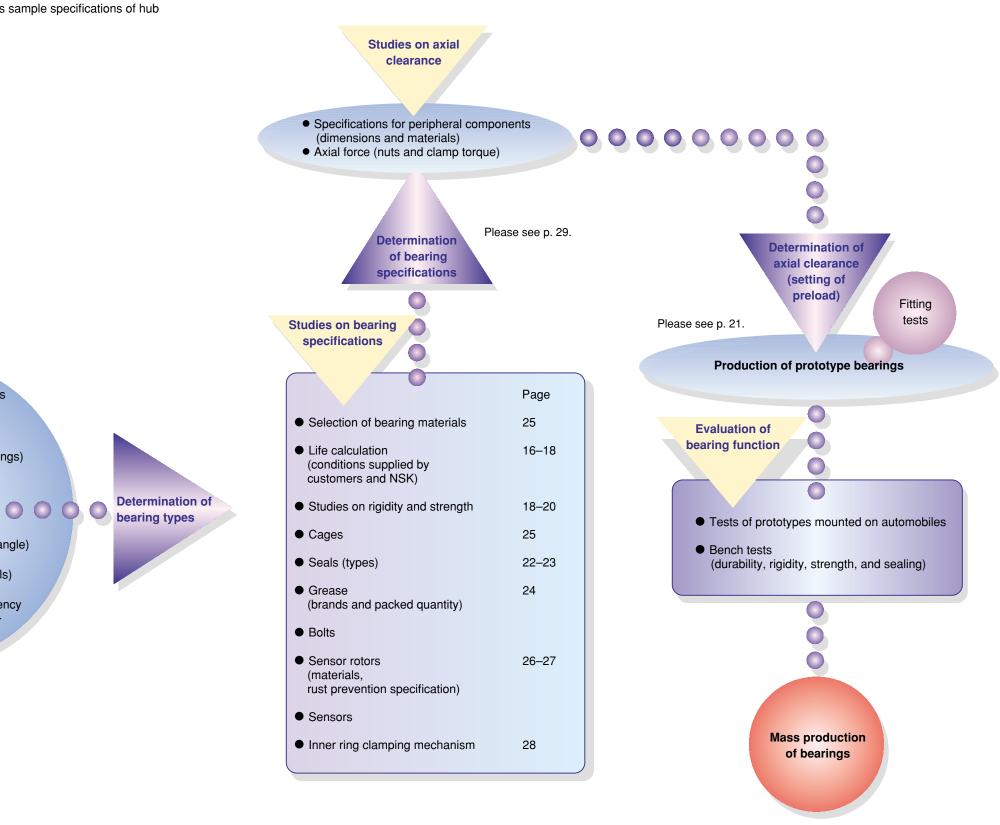
• Seal (with seals/without seals)

Marketability and cost-efficiency

(distribution of processes for

Please see p. 13-15.

peripheral components)

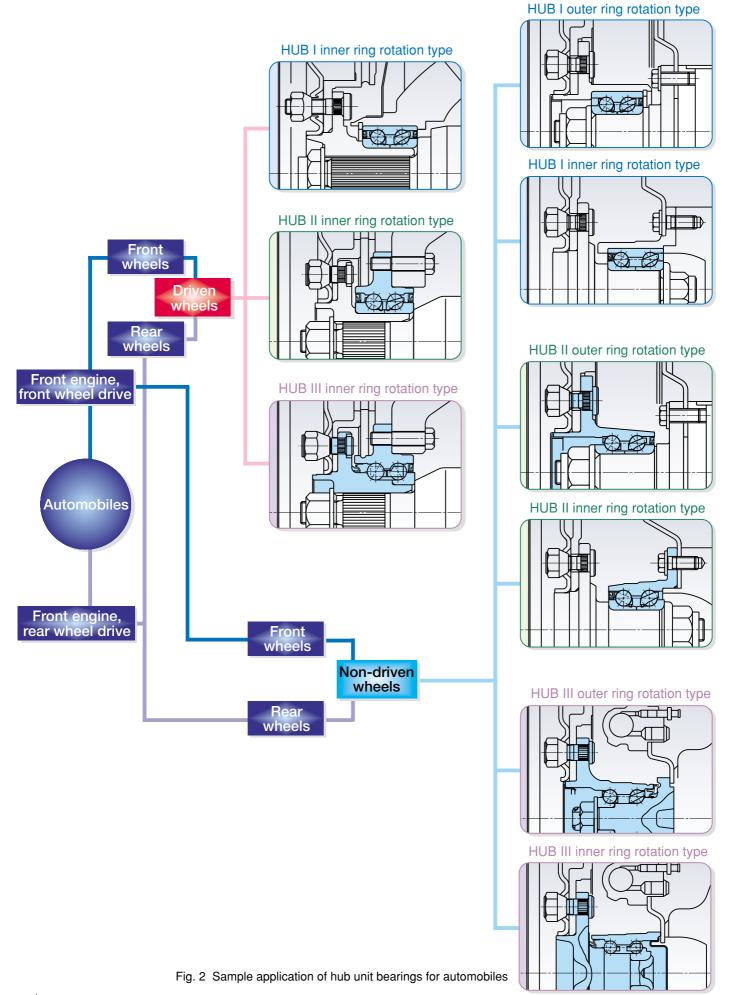

(constraints of peripheral

components)

Rigidity

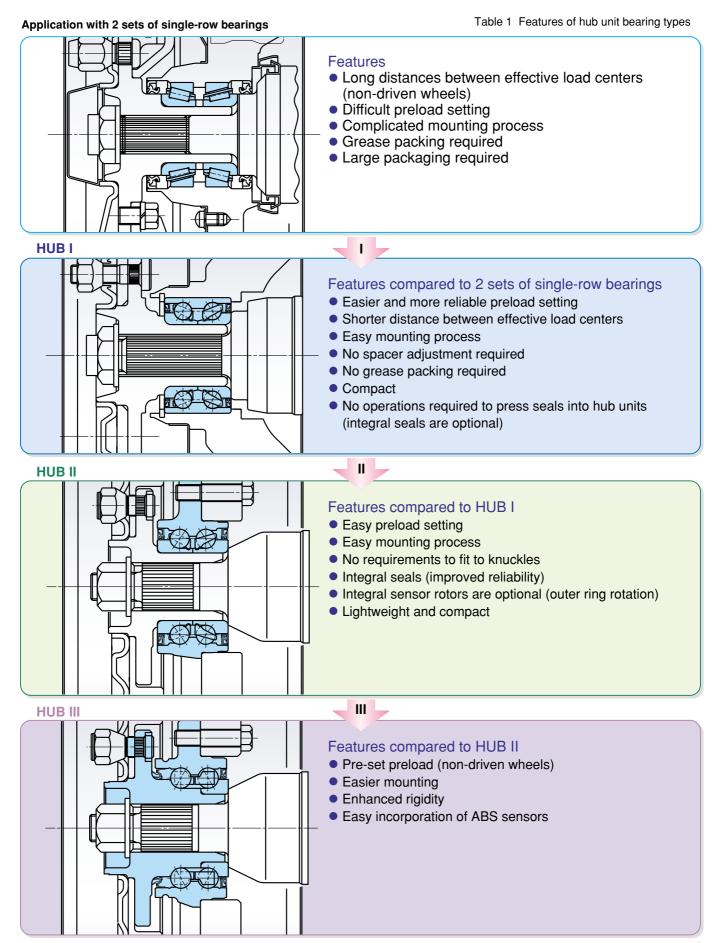
Running conditions

(turning acceleration)


- Requirements for bearings (vehicle types, new development/design modification)
- Usage conditions (front/rear wheels, driven/non-driven wheels, vehicle specifications)
- Dimension specifications for mounting bearings
- Special user preferences (brands and packed quantity of grease, inner-ring separable load, seals, hub bolts, sensor rotors, sensors, and innerring clamping mechanism)
- Evaluation tests/criteria for determination

11 **NSK**

Fig. 1 Sample selection process of hub unit bearing types


NSK 12

2. Selection of Hub Unit Bearings

2-2. Selection of bearing types

Table 1 describes the comparable features of the different bearing types to help customers select the suitable bearing. Carefully consider all aspects, including each type's features, peripheral components, mounting time, and facilities.

2. Selection of Hub Unit Bearings

2-3. Types and characteristics of bearings

Table 2 shows the characteristics according to the requirements of hub unit bearing types.

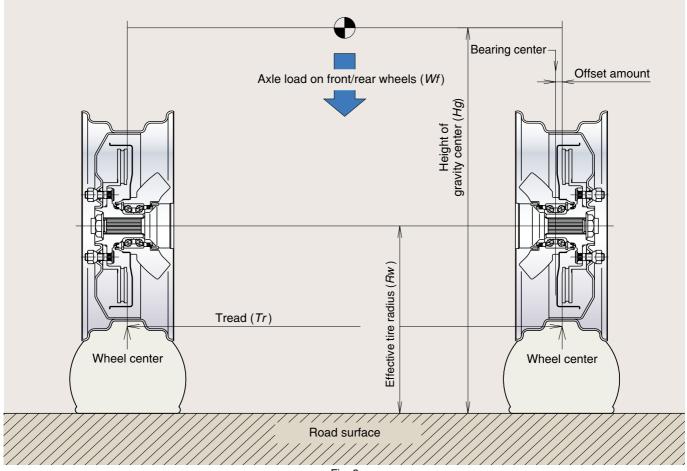
		HL	JB I		HU	B II		HUB III
Characteristics	Items	BWD	KWD	BWK outer ring rotation	BWK inner ring rotation	KWH outer ring rotation	KWH inner ring rotation	BWKH
	Load capacity	0	0	0	0	0	O	0
Functionality	Rigidity	Δ	0			0	0	0
. anotonanty	Rotation torque	0		0	0	\bigtriangleup	\bigtriangleup	0
	Seizure resistance	0		0	0		\bigtriangleup	0
	Axle weight	Δ	Δ	0	0	0	0	0
Compactness	Cross-section space	Δ				0	0	0
	Width space	0	Δ	0	0	0	0	0
	Seals	 △ Without seals ○ With seals 	 △ Without seals ○ With seals 	0	0	0	0	0
Reliability	Preload range under motion	Δ		0	0	0	0	0
	Reliability in service			0	0	0	0	0
	Preload management			0	0	0	0	0
Maintenance	Mounting and serviceability	Δ	Δ	0	0	0	0	0

Table 2 Types and characteristics of hub unit bearings

 \bigcirc Excellent \bigcirc Good \triangle Fair

3. Selection of Dimensions of Hub Unit Bearings Hub Unit Bearings

Selection of the dimensions of hub unit bearings requires consideration of their service life, rigidity, and strength.


3-1. Life calculation

This section shows the method used to calculate the bearing life. NSK performs life calculation using proprietary computer software, so please supply your application condition information to an NSK representative.

(1) Required information

The service life of hub unit bearings is calculated based on the following information:

- Axle load on front wheels or rear wheels \ldots Wf (N)
- Front or rear wheel treadTr (mm)
- Height of gravity center......Hg (mm)
- Effective tire radiusRw (mm)
- Offset amount......S (mm) (External car body is positive (+) from bearing center.)

Fig. 3

(2) Calculation of road reaction

The road reaction on wheels is calculated as follows:

$$R = \frac{f_{w} \cdot Wf}{2} (1 + \frac{2 \cdot Hg \cdot \zeta}{Tr})$$
$$T = \frac{\zeta \cdot Wf}{2} (1 + \frac{2 \cdot Hg \cdot \zeta}{Tr})$$

T: Horizontal road reaction (N)

 $f_{\mbox{\scriptsize w}}$: Vertical load coefficient (coefficient of vertical road reaction)

- ζ : Turning acceleration (G)
 - (Positive (+) in case of outside turning wheels. Negative (-) in case of inside turning wheels.)

(3) Calculation of bearing load

The bearing load is calculated when automobiles take on vertical road reaction R and horizontal road reaction T from the road surface.

(a) Radial load

The radial load is calculated as follows:

$$F_{ri} = \frac{m}{\ell} R + \frac{Rw}{\ell} T$$
$$F_{ro} = \frac{n}{\ell} R - \frac{Rw}{\ell} T$$

- F_{ri} : Radial load on inboard row of bearings (N)
- F_{ro} : Radial load on outboard row of bearings (N)
- *ℓ*: Distance between effective load center (mm)
- *m*: Distance from the effective space rating on outboard row to the wheel center (mm)

$$m = \frac{\ell}{2} - S$$

n: Distance from the point of load application of inboard row to the wheel center (mm)

$$n = \frac{\ell}{2} + S$$

3. Selection of Dimensions for Hub Unit Bearings

(b) Axial load and load factor

Axial load and load factor must satisfy the formulas below. As these formulas are extremely complicated, computers are used. This also allows ease of iterative calculations by modifying the axial clearance and preload.

Balance of axial load

 $F_{ai} = F_{ao} + T$

 F_{ai} : Axial load imposed on inboard row of bearings (N)

 F_{ao} : Axial load imposed on outboard row of bearings (N)

Balance of axial displacement

 $\delta_{\rm ai}$ + $\delta_{\rm ao}$ = $-\delta_{\rm O}$

 δ_{ai} : Axial displacement on inboard row of bearings (mm) δ_{ao} : Axial displacement on outboard row of bearings (mm)

 δ_0 : Axial clearance (mm)

(+ for clearance, - for preload)

Relation between radial load and axial load

$$F_{\rm ai(O)} = F_{\rm ri(O)} \cdot \tan \alpha \cdot \frac{J_{\rm a}}{J_{\rm r}}$$

α : Contact angle of bearings

J_a: Axial integral

$$J_{a} = \frac{1}{\pi} \int_{0}^{\psi_{0}} \{1 - \frac{1}{2\varepsilon} (1 - \cos \psi)\} d\psi$$

Jr: Radial integral

$$J_{r} = \frac{1}{\pi} \int_{0}^{\psi_{0}} \{1 - \frac{1}{2\varepsilon} (1 - \cos \psi)\} \cos \psi \, d \, \psi$$

 ϵ : Load factor

 ψ_0 : Angle indicating load range Where $\varepsilon \le 1 \quad \cos \psi_0 = 1 - 2 \varepsilon$ Where $\varepsilon \le 1 \quad \psi_0 = \pi$

t: Constant (3/2 for ball bearings, and 1/0.9 for roller bearings)

(c) Calculation of bearing life

The following formula produces the relation between the bearing life and load factor:

$$L = \left(\frac{J_1(0.5)}{J_1(0.5)} \cdot \frac{J_r}{J_1}\right)^{\mathsf{p}} \cdot L_{\circ}$$

- L: Calculated bearing life when load factor of ε (per 10⁶ rotations)
- *L*₀: Calculated bearing life when load factor of ε equals 0.5 (per 10^e rotations)

$$L = \left(\frac{C_{\rm r}}{F_{\rm r}}\right)^{\rm p}$$

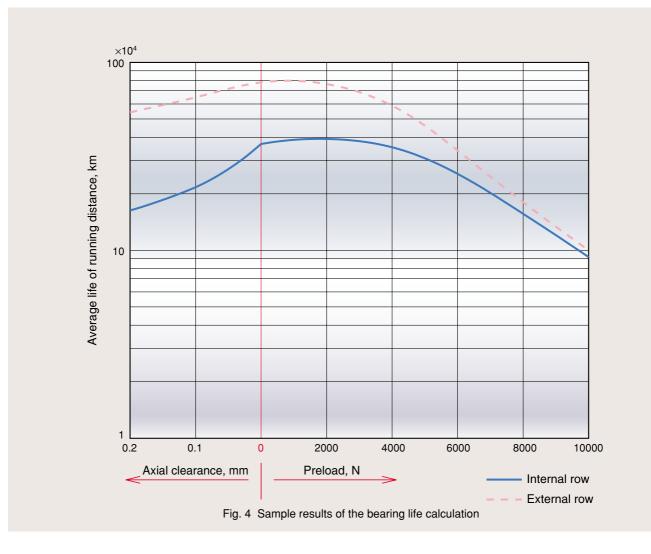
- Cr: Basic dynamic load rating (N)
- Fr: Bearing radial load (N)
- P: Constant (3 for ball bearings, 10/3 for roller bearings)
- J_1 : Radial integral against average rolling element load

$$J_{\rm r} = \left(\frac{1}{\pi} \int_{0}^{\psi_0} \{1 - \frac{1}{2\varepsilon} (1 - \cos\psi)\} \, d\psi \right)^{1/8}$$

- *r*. Constant (4.5 for both of ball bearings and roller bearings)
- s: Constant (3 for ball bearings and 4 for roller bearings)

(d) Average life of running distance

Based on certain running conditions, calculations are made with the service life to obtain the average life of running distance.


$$L_{m} = \frac{1}{\sum \frac{S_{r}(i)}{L(i)}}$$

- *L*_m: Average life (per 10⁶ rotations)
- S_r (i): Ratio under running conditions
- L (i): Calculated life under running conditions (per 10⁶ rotations)

Average life Lm multiplied with running distance per rotation equals average life of running distance Lsm.

 $L_{sm} = 2\pi \cdot R_W \cdot L_m$ (km) Fig. 4 shows a graph of the calculation results.

Please contact NSK for life calculation of hub unit bearings.

3-2. Rigidity

The following elements must be taken into account regarding the rigidity of hub unit bearings:

- (1) Deformation of rolling elements and raceway
- (2) Deformation of outer and inner rings
- (1) for HUB I, and (1), (2) for HUB II and III.

(1) Deformation of rolling elements and raceway

Rigidity of bearings (relative inclination angle θ) are calculated based on axial displacement $\delta_{\text{ai(o)}}$ derived from the life calculation, and radial displacement $\delta_{\rm ri(o)}$ derived from the load factor.

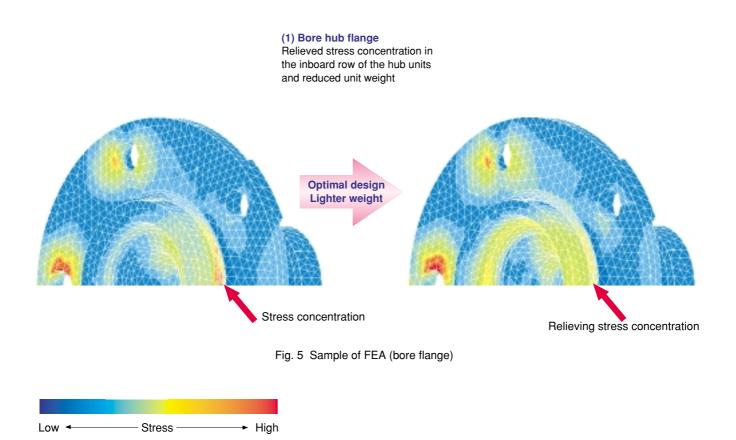
$$1 + \frac{\delta_{ai(0)}}{\delta_{i(0)}} = 2 \cdot \varepsilon$$
$$\theta = \tan^{-1} \frac{\delta_{i} - \delta}{\epsilon}$$

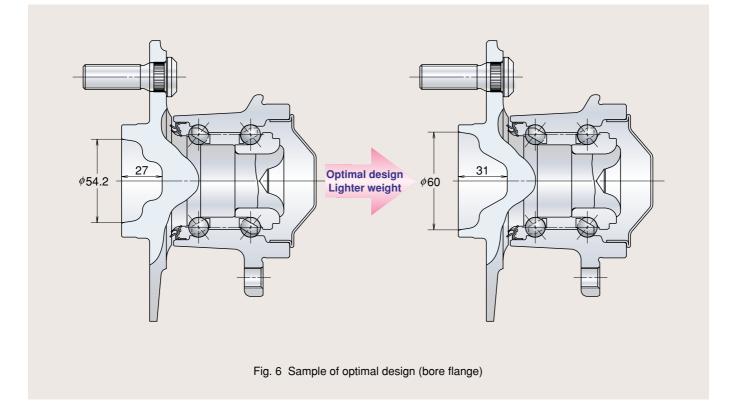
 δ_{n} : Radial displacement on inboard row (mm)

0

- δ_{ro} : Radial displacement on outboard row (mm)
- θ : Relative inclination angle between inboard and outboard rows

(2) Deformation of outer and inner rings


For HUB II and III, the Finite Element Analysis (FEA) is used to calculate deformation considering the flange rigidity of outer and inner rings.


Please contact NSK for rigidity calculations with FEA.

2. Selection of Measurements for Hub Unit Bearings

3-3. Strength

FEA is used for the analysis of flange strength and rigidity in hub unit bearings for optimal design. NSK applies this technology to reduce the weight of hub units when proposing highly rigid and lightweight shapes to automobile manufacturers.

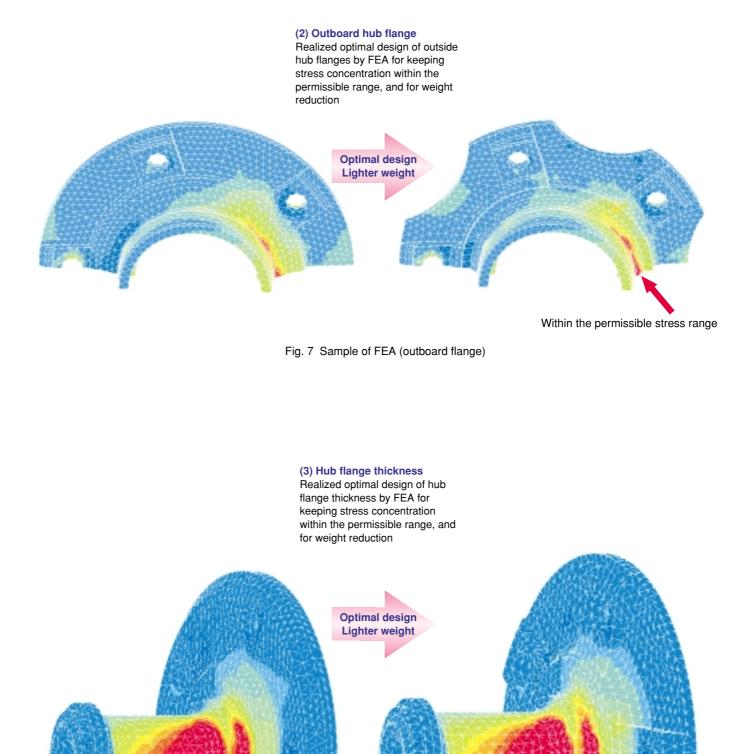


Fig. 8 Sample of FEA (flange thickness)

4. Fit and Preload of Hub Unit Bearings

Axial clearance and fit are specified to allow hub unit bearings to operate within an optimal preload range (life, rigidity, creep, and heat generation).

4-1. Fit and preload

The preload must be pre-adjusted based on the fit with other components and nut clamping force, which reduces axial clearance.

For calculating tolerances NSK has standard preload settings of zero to negative clearance using the 3σ method and maximum preload of 9800N using direct the sum method.

4-2. Recommended fitting measurements

Table 3 indicates the fitting measurements recommended for each type.

unit: mm

Ту	vpe	Housing	Shaft		
	Inner ring rotations	T7 -0.064 -0.094	+0.025 m6 +0.009		
HUB I	Outer ring rotations	-0.061 -0.088	-0.018 -0.034		
HUB II	Inner ring rotations		+0.025 m6 +0.009		
	Outer ring rotations		Loose		
HUB III	Inner ring rotations				
	Outer ring rotations				

Table 3 Recommended fitting measurements

Notes: 1) The dimensional tolerance of the diameter between inner rings and outer rings of hub unit bearings is in compliance with JISO.

2) Excessive fastening by fitting bearing inner rings may cause defects (high pressure, deformation of pressed surface, plastic deformation, cracking of inner rings). Check to see that the maximum stress on the inner rings does not exceed 147 MPa.

4-3. Fitting tests

When mounting bearings on vehicles, use actual components to confirm that the axial clearance is properly set and the preload is within the appropriate range as specified

by the users.

Table 4 lists the actual components required for fitting tests.

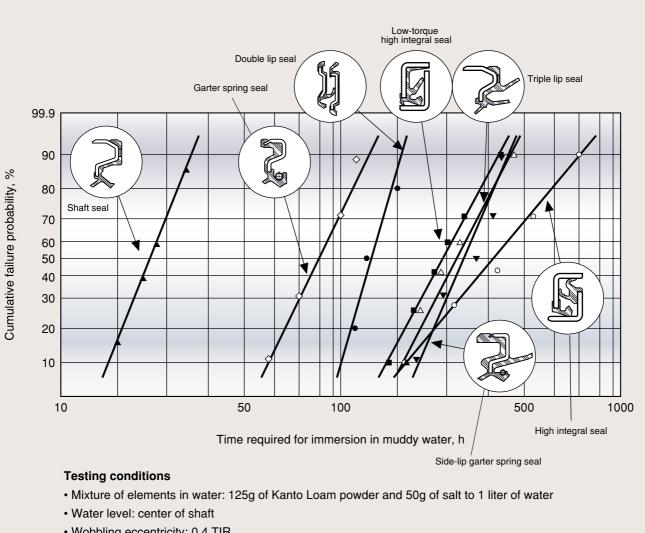
									unit: mm
	Components	Usage conditions	Knuckle (housing)	Hub	CVJ	Spindle (shaft)	Nut washer	Snap ring	Others (sensor rotors, etc.)
HUB I	Driven wheels	Inner ring rotations	6	6	6	-	18	6	-
	Non-driven wheels	Inner ring rotations	6	6	-	-	18	6	-
		Outer ring rotations	-	6	-	6	18	6	6
	Driven wheels	Inner ring rotations	-	6	6	-	18	-	-
HUB II	Non-driven	Inner ring rotations	-	6	-	-	18	-	-
	wheels	Outer ring rotations	-	-	-	6	18	-	6
HUB III	Driven wheels	Inner ring rotations	_	-	6	_	18	-	_

Table 4 Components required for fitting tests

unit: mm

5. Hub Unit Bearing Seals

Hub Unit Bearings


NSK offer customers a flexible choice of seals (illustrated in Table 5 and Fig. 9) that vary in capabilities and cost.

Please submit your specific requirements for muddy water resistance, rotation torque, and cost to us for design evaluation.

Seal type	Seal configuration	Muddy water resistance	Friction torque	Cost
High-integral seal	Stainless steel plate Stainless steel plate	AA	С	С
Low-torque high integral seal	Low-carbon steel plate Stainless steel plate	A	BB	В
Side-lip garter spring seal	Low-carbon steel plate Stainless steel spring	A	BB	В
Triple lip seal	Stainless steel plate	A	A	BB
Garter spring seal	Low-carbon steel plate Stainless steel spring	В	A	BB
Double seal	Low-carbon steel plate Low-carbon steel plate	BB	AA	A
Shaft seal	Low-carbon steel plate	С	AA	AA

Table 5 Hub unit bearing seals

[Symbols] The ratings of AA > A > BB > B > C are ranked from AA (highest) to C (lowest).

- Wobbling eccentricity: 0.4 TIR
- Number of rotations: 1000 rpm

• Cycle patterns:
$$\begin{pmatrix} \text{immersion} \\ + \\ \text{rotations} \end{pmatrix} \begin{pmatrix} \text{immersion} \\ + \\ \text{stop} \end{pmatrix} \begin{pmatrix} \text{dry-up} \\ + \\ \text{stop} \end{pmatrix} \begin{pmatrix} \text{dry-up} \\ + \\ \text{rotations} \end{pmatrix}$$

```
Fig. 9 Muddy water resistance performance of hub unit bearing seals
```

6. Hub Unit Bearing Grease

Hub Unit Bearings

Grease is used to lubricate hub unit bearings. Lubrication is applied to prevent metal contact between the hub unit's raceway rings and rolling elements, reducing friction and wear in order to extend its fatigue life. Grease with urea as a thickener is especially recommended during transportation by rail, when strong vibrations may cause fretting damage to the hub unit raceway.

Table 6 Hub unit bearing grease

Grease Brands	Manufacturers	Thickener	Base Oil
RareMax AF-1	Kyodo Yushi Co., Ltd.	Urea	Mineral oil
6459 Grease N	Showa Shell Sekiyu, K.K.	Urea	Mineral oil
Pyronoc Universal N-6C	Nisseki Mitsubishi Oil Corporation	Urea	Mineral oil
HB-1	Kyodo Yushi Co., Ltd.	Urea	Mineral oil
Ronex MP	Exxon/Mobil	Lithium	Mineral oil

7. Material for Hub Unit Bearings

7-1. Material for raceway rings and rolling elements

NSK offers customers various types of steel for raceway rings and rolling elements according to their usage conditions and locations, including its most popular, high quality (*1) steel SUJ2 (SAE52100).

*1: Unlike general-purpose steel, the steel used for bearings contains fewer non-metallic inclusions, improving the subsurface-originated rolling fatigue life.

(1) SUJ2

For many years NSK has been striving to improve the quality of steel with the cooperation of bearing-steel makers. Through advances in the technology and facilities of steel mills and accumulated test data on bearing life, we have developed a high-quality, long-life bearing steel. This steel is a long-life material that is largely free of harmful non-metallic inclusions, and it is frequently adopted in hub unit bearings. It is used for the rollers and contact balls, the outer and inner rings of HUB I (BWD), the outer ring of HUB I (KWD), and as the standard material of the inner rings for HUB II and HUB III.

(2) SUJ2 (EP Steel)

Please refer to EP Steel Catalog CAT. NO. 5001 (super-long life, highly reliable bearing steel) for detailed information. Based on NSK's proprietary evaluation method, the technology for mass production of high-purity steel was established, and resulted in SUJ2 (EP Steel), which has a subsurface-originated roller fatigue life that is even longer than that of SUJ2.

This material is used for the outer and inner rings of HUB I (BWD) and the inner rings of HUB I (KWD), HUB II, and HUB III.

(3) NSJ2

The debut of a new bearing material, NSJ2, is the result of NSK's research and analysis efforts based on its proprietary fatigue analysis technology. It is the most popular material on the market, surpassing SUJ2 in its resistance to the surfaceoriginated fatigue that shortens bearing life. This material is used for the outer and inner rings of HUB I (BWD), HUB II, and HUB III.

(4) S53CG (in compliance with SAE1055)

This is an induction heat-treated material, which can be inexpensively die-forged into complex shapes. It is mainly used for parts such as axle components, which require impact-load resistance. Induction heat treatment allows NSK to control the hardness of the component parts. This material is used for the outer rings of HUB II and III, and the flanged inner rings of HUB III.

(5) Carburizing Steel (SCr420H)

Carburizing allows proper hardening depth, a dense structure, and appropriate surface and core hardness of materials in order to extend the fatigue life of bearings. This material is used for the inner rings of HUB I (KWD), HUB II, and HUB III.

(6) Hi-TF Steel

Please refer to Super TF Bearings, Hi-TF Bearings Catalog CAT. No. 399 for detailed information.

Hi-TF steel was developed in order to extend service life under conditions in which lubricants become mixed with foreign matter, providing excellent resistance against wear and seizure at a reasonable cost. This material is used for the inner rings of HUB II (KWH).

(7) New-TF Steel

Please refer to New-TF Bearings Catalog CAT. No. 1213 for detailed information.

New-TF steel has the advantage of long service life under conditions in which lubricants become mixed with foreign matter, maintaining excellent resistance against wear and seizure at a reasonable cost. This material is used for the inner rings of HUB II (KWH).

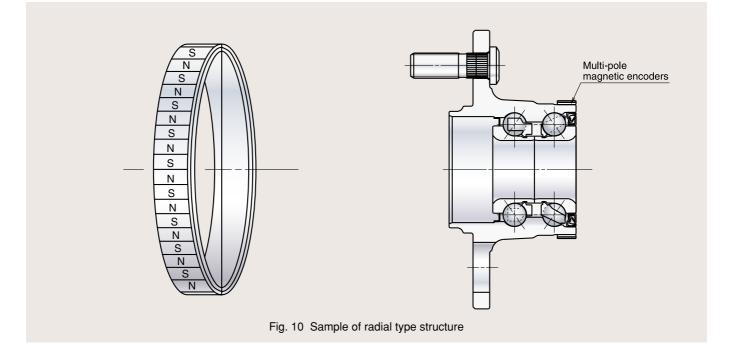
7-2. Cage material

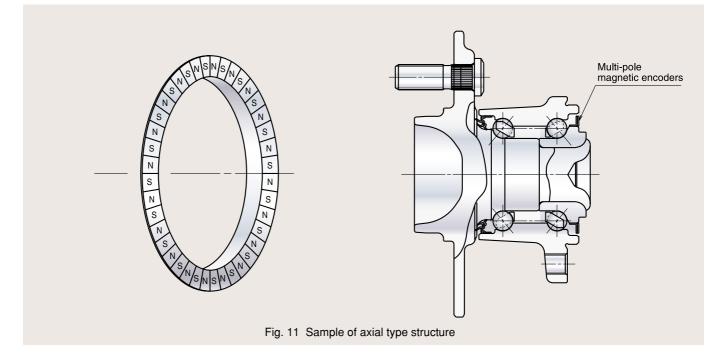
The cage for hub unit bearings is made from Nylon 66 with glass fiber. Pressed cages for HUB I (KWD) are made of low-carbon steel.

8. Hub Unit Bearings with Integral ABS Sensors Hub Unit Bearings

Now that improved automotive safety has become a primary goal of manufacturers, the Antilock Brake System (ABS) has become widely used in automobiles, ensuring safe braking on slippery and icy roads.

NSK has been active in the research and development of ABS-related products.


8-1. Multi-pole magnetic encoder for ABS


The next-generation ABS uses annular magnets for multipole encoding, instead of the conventional magnetic sensor rotor. The semiconductor magnetic sensor (active sensor) fixed on the car body detects the rotation speed of the wheel. (1) Types

There are two types of multi-pole magnetic encoder: the radial type, for setting the sensor close to the radius; and the axial type, for setting the sensor close to the axle. (2) Features

By using the active sensor, the multi-pole magnetic encoder allows constant output without the sensor's output voltage relying on the rotation speed of the sensor rotor.

As a result, the encoder can detect the rotation speed of the wheel running at low speed. The active sensor requires no magnet, reducing cost and weight.

8-2. Hub unit bearings with integral ABS sensors

(1) Structure

Hub unit bearings with integral ABS sensors incorporate rotation-detecting sensors and the sensor rotors of magnetic rings or multi-pole magnetic encoders. Assembly with electromagnetic sensors (passive sensors) limits the sensor mounting space, making it difficult to mount sensors. NSK has solved these space issues by adopting annular passive sensors with highly efficient magnetic circuits.

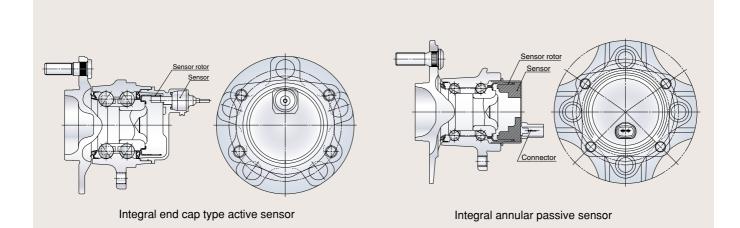
(2) Features

Lightweight and compact

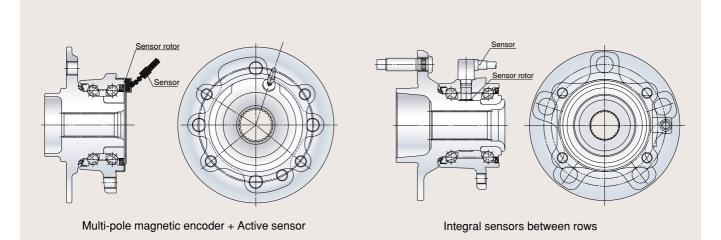
Bearings with integral sensors and sensor rotors result in lighter, more compact hub units. Incorporating sensor rotors and high integral seals further reduces the size of hub units, increasing the flexibility of the design in the axial direction.

Easier mounting of hub units

Incorporating sensors and sensor rotors eliminates air gap adjustments between the sensors and sensor rotors, which are normally performed on automobile assembly lines, thereby facilitating the mounting of hub units.


• Prevents the harmful effects of foreign objects on hub unit performance

Incorporating sensors and sensor rotors prevents lower performance caused by the intake of gravel from the road. • High output sensors

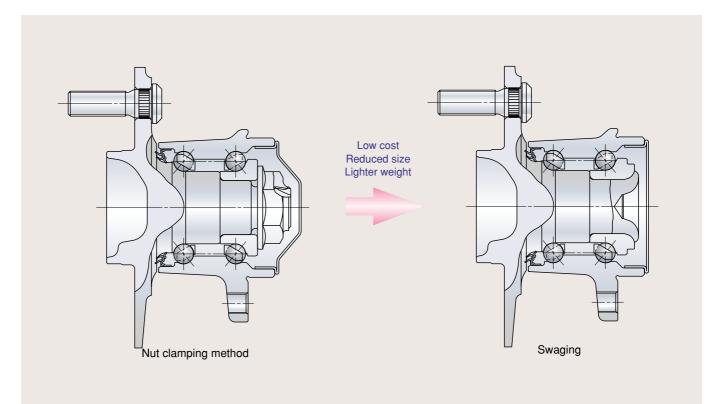

Higher sensor output values even at low driving speeds enable stable control.

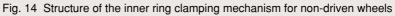
Structures of hub unit bearings with integral sensors for nondriven wheels (Fig. 12) and for driven wheels (Fig. 13) are described below.

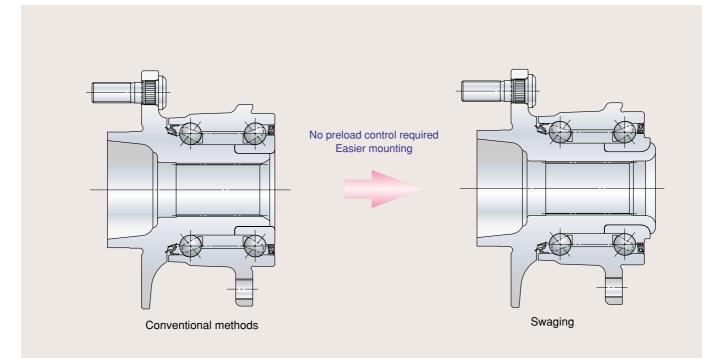
Please contact NSK for hub unit bearings with integral ABS sensors.

Fig. 12 Structure of HUB III for non-driven wheels with integral ABS sensors

9. Hub Unit Bearings with Swaging


Hub Unit Bearings


NSK's latest proposals are hub unit bearings with swaging as a HUB III inner ring clamping mechanism.


Hub unit bearings for non-driven wheels require fewer components compared to the conventional nut-clamping method, and manufacturers can benefit from their lower cost, reduced size, and lighter weight. Hub unit bearings for driven wheels require no preload control at mounting, making it easier to mount them to axles.

Figs. 14 and 15 shows samples of the inner ring clamping mechanism.

Please contact NSK for further information about the swaging technique.

10. Recommended Bearing Nomenclatures Hub Unit Bearings

The following table indicates our recommended list of well-established bearings according to vehicle models, displacement, front/rear wheels, and axle load:

Table 7 Bearings reference recommended

(1) For front engine, front wheel drive automobiles

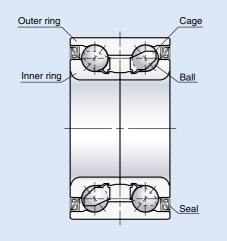
Displacement	HL	IB I	HU	BII	HUE	3 III
(cc)	Front wheels	Rear wheels	Front wheels	Rear wheels	Front wheels	Rear wheels
۲ 660	35BWD19E	25BWD01		27BWK02A*	☆	☆
ک 1300	38BWD22	Ŷ	27BWK06* 公 28BWK12**		58BWKH03	44BWKH10B
1300 2 1800	Ŷ	Ŷ	☆	Ŷ	Ŷ	ſ
1500 2 2000	40BWD12	30BWD04	43BWK07**	BWK07** 30BWK13A* 66BWKI 30BWK17**		49BWKH04A
2000 2 3000	43BWD06B	32BWD05	¢	30BWK18*	ſ	55BWKH01

(2) For front engine, rear wheel drive automobiles

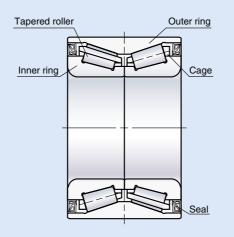
Displacen	nent HU	JB I	HU	B II	HUB III		
(cc)	Front wheels	Rear wheels	Front wheels	Rear wheels	Front wheels	Rear wheels	
2000 2 2500	32BWD05	43BWD06B	30BWK18*	43BWK07**	49BWKH04A	66BWKH02A	
2500 2	38BWD23A 38KWD04A	43BWD06B 46KWD04	Ţ	ŵ	55BWKH01	ſ	

Notes: 1) Please contact NSK for products with the c symbol.

2) In the columns under HUB II, * indicates outer ring rotation types, ** indicates inner ring rotation types.

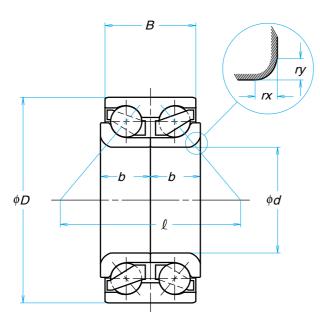

3) All HUB III are inner ring rotation types.

Hub Unit Bearing Dimension Table

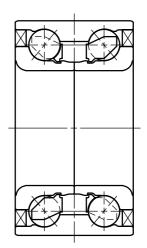

ø

HUB I Dimension Table

BWD type



KWD type

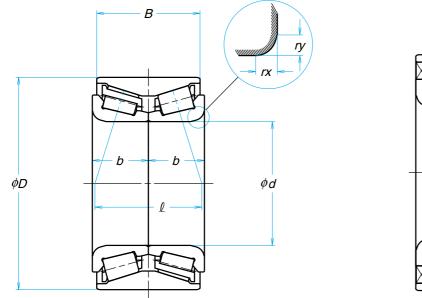


HUB I

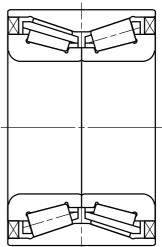
BWD type for driven/non-driven wheels

Standard type

Seal integral type


	Bo	oundary di	mensions	(mm)		Distance between effective load	Bearing	Basic load		Seal integral	Mass (kg)
d	D	В	b	rx (Min.)	ry (Min.)	centers <i>l</i> (mm)	reference	Doubl Cr	e row C _{or}	type	(appròx.)
25	52	42	21	2.6	2.6	52.0	25BWD01	28 500	21 400	0	0.36
27	60	50	25	3.6	3.6	52.8	27BWD01J	42 500	32 500	0	0.36
	58	42	21	2.8	2.8	54.1	28BWD03A	33 500	25 700	0	0.40
28	61	42	21	3.6	3.6	55.5	28BWD01A	38 500	29 800	_	0.53
	55	26	13	1.2	1.2	39.1	30BWD08	15 600	14 700	0	0.26
30	63	42	21	3.6	3.6	57.3	30BWD01A	40 500	33 000	-	0.55
	68	45	22.5	3.6	3.6	53.5	30BWD04	52 500	40 000	0	0.69
32	72	45	22.5	3.6	3.6	61.4	32BWD05	58 500	45 000	0	0.80
	64	37	18.5	2	1.2	52.5	34BWD04B	36 500	31 000	0	0.82
	64	37	18.5	3.3	2.4	50.7	34BWD11	36 500	31 000	0	0.46
34	66	37	18.5	3.3	2.4	51.0	34BWD10B	40 500	33 500	0	0.51
	68	42	21	3.5	2.5	55.7	34BWD09A	44 000	35 000	0	0.64
	68	37	18.5	2	1.2	55.7	34BWD09A	44 000	35 000	0	0.54
	65	37	18.5	3	3	51.0	35BWD19E	36 500	31 000	0	0.48
	68	30	16.5	3.5	3.5	52.4	35BWD07	42 500	36 500	-	0.48
35	68	30	16.5	3.5	3.5	59.6	35BWD07A	40 500	34 500	-	0.48
	68	36	19.5	3.5	3.5	58.4	35BWD16	42 500	36 500	-	0.48
	72	31	16.5	3.5	3.4	53.0	35BWD06A	50 000	40 000	_	0.55
	68	33	16.5	3.5	3.1	52.4	36BWD04	42 500	36 500	-	0.48
36	72	42	21	3	3	61.1	36BWD03	50 000	40 000	-	0.68
	72.041	34	17	2.5	2	51.6	36BWD01B	50 000	40 000	-	0.57
37	74	45	22.5	2.4	2.4	60.9	37BWD01	52 500	44 000	0	0.79

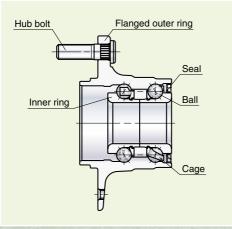
Hub Unit Bearing Dimension Table


	Bou	Boundary dimensions (mm)				Distance between effective load	веагілд	Basic load Double	,	Seal integral	
d	D	В	b	<i>rx</i> (Min.)	<i>ry</i> (Min.)	centers ℓ (mm)	reference		C_{or}	type	(approx.)
	70	37	18.5	3	3	51.0	38BWD19	44 500	39 500	0	0.48
	70	38	19	4	3.5	55.2	38BWD21	44 500	39 500	0	0.57
	71	30	16.5	3.5	3.4	61.7	38BWD09A	45 500	39 000	_	0.50
	71	39	19.5	3.5	3.4	65.9	38BWD22	42 000	37 500	0	0.62
	72	33	18	3.5	3.4	56.5	38BWD12	48 500	42 000	-	0.56
	72.041	34	17	2.5	2	55.9	38BWD04	47 500	41 000	_	0.55
38	74	33	18	3.5	3.5	57.2	38BWD01A	52 500	44 000	-	0.60
	74	50	25	4.5	3.6	57.2	38BWD06D	52 500	44 000	0	0.82
	74	40	20	3.8	3.8	56.7	38BWD10B	52 500	44 000	0	0.69
	74	33	18	4	3.5	57.2	38BWD15A	52 500	44 000	_	0.61
	74	33	18	3.5	3.5	67.2	38BWD24	48 000	43 000	-	0.62
	76	43	21.5	4.8	3.8	71.9	38BWD23A	48 000	43 500	0	0.82
	80	33	18	3.5	3.5	64.1	38BWD18	47 500	46 000	-	0.79
76 43 21.5 4.8 3.8 71.9 38BWD23A 48 000 43 80 33 18 3.5 3.5 64.1 38BWD18 47 500 46 68 37 18.5 3.6 3.6 54.5 39BWD03 38 000 34 39 72 37 18.5 3.3 2.4 53.9 39BWD01L 47 500 44 74 39 19.5 3.8 3.8 56.4 39BWD05 48 500 42 74 40 20 3.8 3.8 57.4 40BWD06D 54 000 43 74 42 21 3.5 3.5 70.1 40BWD12 48 000 43 74 36 18 4.8 3.8 64.1 40BWD15A 48 000 43	34 000	0	0.5								
39	72	37	18.5	3.3	2.4	53.9	39BWD01L	47 500	41 000	0	0.60
	74	39	19.5	3.8	3.8	56.4	39BWD05	48 500	42 500	0	0.66
	74	40	20	3.8	3.8	57.4	40BWD06D	54 000	47 000	0	0.66
	74	42	21	3.5	3.5	70.1	40BWD12	48 000	43 000	0	0.71
	74	36	18	4.8	3.8	64.1	40BWD15A	48 000	43 000	0	0.62
	74	34	18	2.6	2.6	58.8	40BWD16	50 500	45 500	_	0.59
40	76	38	20.5	3	1.8	55.0	40BWD05	52 500	44 500	0	0.70
	76	33	16.5	3.6	3.6	54.3	40BWD08A	51 500	48 000	0	0.61
	80	34	18	2.6	2.6	60.3	40BWD07A	65 500	56 000	_	0.73
	80	34	18	3.5	3	57.8	40BWD14	47 500	46 000	0	0.77
	76	33	16.5	3.6	3.6	54.3	42BWD12	46 000	43 000	0	0.65
	76	35	19	3.6	3.5	62.1	42BWD06	50 500	46 000	-	0.64
42	78	38	19	3.5	2.5	57.0	42BWD09	55 000	48 500	0	0.72
	80	45	22.5	3.8	3.8	63.9	42BWD11	59 000	50 500	0	0.90
39	80	34	18	3.5	3	57.8	42BWD13	47 500	46 000	0	0.76
	76	43	21.5	4.8	3.8	71.9	43BWD12A	48 000	43 500	0	0.71
	79	38	20.5	4	3	58.7	43BWD08	55 000	48 500	0	0.77
43	79	45	22.5	4.8	3.1	76.4	43BWD13A	49 500	47 000	0	0.87
	80	45	25	3.5	3	73.1	43BWD03	55 000	48 500	_	0.91
	82	45	22.5	3.5	3.4	65.5	43BWD06B	62 000	54 500	0	0.94
	83	45	22.5	3.8	3.8	66.8	45BWD06	57 500	52 500	0	0.95
	84	39	20.5	2.6	2.6	72.9	45BWD03	58 500	52 500	0	0.88
45	84	40	21	4.5	3.5	62.8	45BWD07B	69 000	61 000	0	0.89
	84	40	21	4.5	3.5	62.9	45BWD09	64 500	57 500	0	0.90
	84	45	22.5	3.5	3.35	76.8	45BWD10	58 500	52 500	0	0.98
46	79	45	22.5	4.8	3.1	76.4	46BWD01A	49 500	47 000	0	0.79
48	89	42	22	4.5	3.5	67.2	48BWD01	69 000	62 000	0	0.9
	84	50	25	3.5	2	87.1	49BWD02	46 000	47 000	0	1.00
49	88	46	23	3.7	3.7	71.1	49BWD01B	64 500	60 000	0	1.05

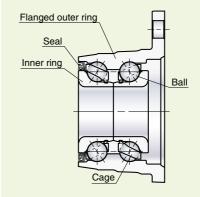
HUB I

KWD type for driven/non-driven wheels

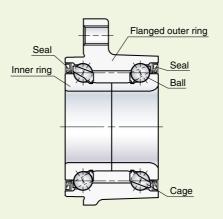
Standard type

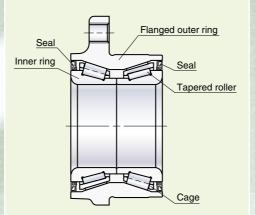

Seal integral type

	Во	undary dir	nensions ((mm)		Distance between	Bearing		ratings (N)	Seal integral	I Mass (kg)
d	D	В	Ь	rx (Min.)	rv (Min.)	effective load centers ℓ (mm)	reference	Double Cr	e row C _{or}	type	(approx.)
27	52	43	21.5	3.3	3.3	36.9	27KWD02	53 000	73 500	_	0.41
30	58	42	21	3.3	3.3	31.8	30KWD01A	62 000	89 000	0	0.50
34	67.8	43	21.5	5	3.6	37.4	34KWD03D	89 500	120 000	-	0.73
35	60	32.4	16.2	2.5	2.5	27.6	35KWD02	60 000	93 500	-	0.38
37	74	45	22.5	2.4	2.4	36.9	37KWD01	89 000	123 000	0	0.84
	64	37	18.5	3	3	31.2	38KWD01A	60 500	88 000	0	0.46
38	68	37	18.5	3	3	31.2	38KWD02	63 000	92 500	-	0.56
	76	43	21.5	5	4	38.1	38KWD04A	92 500	138 000	-	0.94
38.993	72.011	37	18.5	3.3	2.4	32.5	39KWD02	68 500	92 500	0	0.63
	72	38	19	4.75	3.6	36.3	42KWD02A	76 500	108 000	-	0.58
42	72	38	19	4.7	3.6	36.3	42KWD02D	76 500	108 000	-	0.58
	80	38	19	3.5	3.5	32.8	42KWD08	95 000	128 000	-	0.82
	76	43	21.5	3.6	3.5	38.3	43KWD02	94 000	138 000	-	0.82
43	77	42	21	3.5	3.5	38.9	43KWD04	79 500	111 000	-	0.81
	77	50	25	3.5	3.5	40.6	45KWD04	96 000	142 000	-	0.89
45	78	40	20	3.5	3.5	37.3	45KWD03	91 000	130 000	-	0.73
	80	50	25	3.8	3.8	42.5	45KWD05	99 500	153 000	0	1.02
	77	45	22.5	4.8	3.8	35.8	46KWD04	82 500	138 000	-	0.84
46	78	49	24.5	5	4	35.8	46KWD03	82 500	138 000	0	0.97
47	82	57.5	28.75	3.5	3.5	57.5	EP47KWD01	95 000	138 000	0	1.10

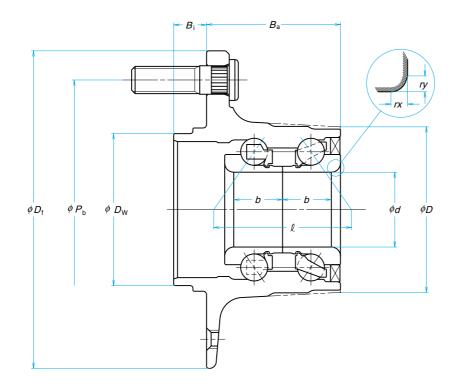

Hub Unit Bearing Dimension Table

HUB II Dimension Table

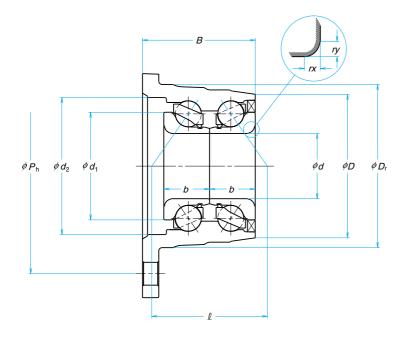

BWK outer ring rotation type for non-driven wheels

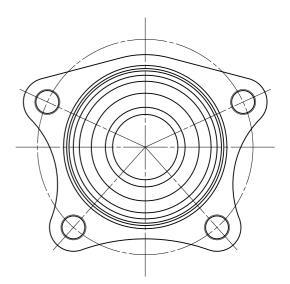

BWK inner ring rotation type for non-driven wheels

BWK inner ring rotation type for driven wheels



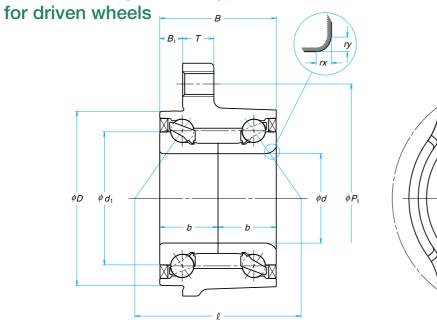
KWH inner ring rotation type for driven/non-driven wheels

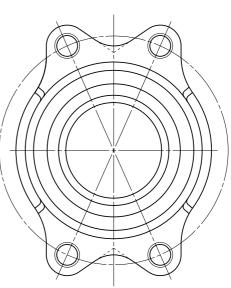

HUB II


BWK outer ring rotation type for non-driven wheels

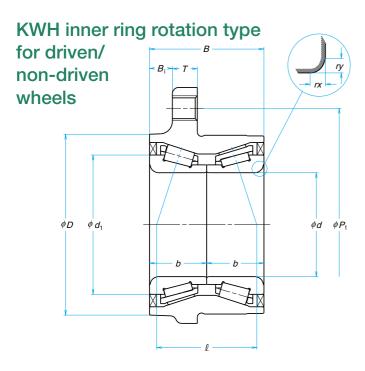
			Bounda	rv dime	nsions	(mm)				Distance between		Basic load	ratings (N)	No. of	
				,						effective	Bearing reference	Doub	e row	outer ring flange	Mass (kg) (approx.)
d	D	B _i	b	B _a	D _f	D_{w}	$P_{\scriptscriptstyle \mathrm{b}}$	<i>rx</i> (Min.)	<i>ry</i> (Min.)	load centers ℓ (mm)	101010100	<i>C</i> ,	$C_{\rm or}$	bolts	(
	60	15	20	45	134	59	100	3.5	3.5	49.8	27BWK02A	38 500	29 600	4	1.33
07	63.2	15.5	27.5	57.5	148	66	114.3	4.5	3.6	61.8	27BWK03J	41 500	30 500	4	1.9
27	64.7	15	25	52.5	134	59	100	4.5	3.6	59.8	27BWK04D2a	38 500	29 600	4	1.45
	65.4	15.5	25	52.5	148	66	114.3	4.5	3.6	59.8	27BWK06	38 500	29 600	4	1.9
	63	14	24	56.5	125	56	100	4	3.3	56.8	28BWK08J	41 500	30 500	4	1.75
00	64	14	25.25	57	141	56	100	3.5	3.5	59.3	28BWK06D	38 500	29 600	4	1.74
28	64	6	20	49.5	120	60	100	3.5	2.5	49.8	28BWK15J	38 500	29 600	4	1.38
	69	10.35	24	57.5	135	56.9	100	3.5	3.5	58.9	28BWK16	44 000	34 500	5	1.8
	66.1	15.5	27.5	57.5	148	66	114.3	4.5	3.6	64.3	30BWK13A	44 000	34 500	4	1.93
	67	11.5	20.5	55	136	56	100	3.5	2.5	51.2	30BWK02J	41 500	31 000	4	1.8
30	67	14	25	56.5	125	56	100	4	3.5	61.3	30BWK11	44 000	34 500	4	1.91
	73.8	15.5	24	49	148	66	114.3	4.5	3.6	59.7	30BWK18	55 000	40 000	4	1.98
33	73	14.5	25.5	59	140	67	114.3	4	4	60.7	33BWK02S	50 000	39 500	5	2.17
41	86.5	17.5	20	37	170	105	139.7	3.6	3.6	71.0	41BWK03	52 000	46 500	5	2.69

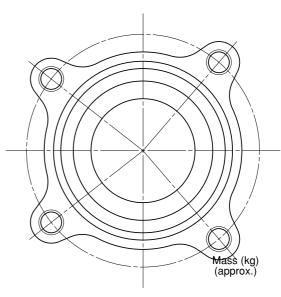
BWK inner ring rotation type for non-driven wheels





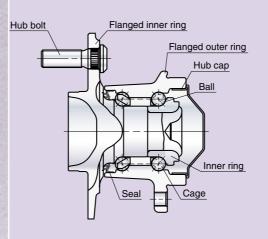
			Bounda	rv dime	nsions (mm)				Distance between	Decision	Basic load	ratings (N)	No. of	
	-			-		,	-			effective load centers	Bearing reference	Doub	e row	outer ring flange	Mass (kg) (approx.)
d	В	b	D	D _r	<i>d</i> ₁	d ₂	P _h	<i>rx</i> (Min.)	<i>ry</i> (Min.)	ℓ (mm)		<i>C</i> ,	${\cal C}_{ m or}$	bolts	, , ,
28	51.8	21	66	73	46.2	61	97	3.6	3.6	62.9	28BWK12	35 000	29 300	4	1.03
	51.8	21	60.5	75	49.5	63	99	3.6	3.6	53.1	EP30BWK16	47 000	35 500	4	1.06
	51.8	21	66	75	45.5	63	99	3.6	3.6	53.1	30BWK03B	47 000	35 500	4	1.05
30	51.8	21	66	75	49.5	63	99	3.6	3.6	63.7	30BWK17	38 500	31 500	4	1.15
	51.8	21	67	75	45.5	63	99	3.6	3.6	54.3	30BWK10	40 500	33 000	4	1.01
	46.3	21	67	80	49.5	71	106	3.6	3.6	53.1	EP30BWK14	47 000	35 500	4	1.35

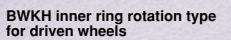

HUB II

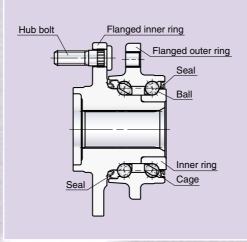

BWK inner ring rotation type

			Bounda	ry dime	nsions	(mm)				Distance between	- ·	Basic load	ratings (N)	No. of	
	-				-		-			effective	Bearing reference	Doub	e row	outer ring flange	Mass (kg) (approx.)
d	D	В	b	<i>d</i> ₁	T	B _i	P _t	<i>rx</i> (Min.)	<i>ry</i> (Min.)	ℓ (mm)		<i>C</i> ,	$C_{\rm or}$	bolts	(-1-1)
38	87.4	54.8	18	55.2	10	3.2	106	3.5	3.5	57.3	38BWK01J	59 000	49 500	4	1.25
	83	42.5	22	58.6	14	16.5	102	5	3.5	58.7	43BWK03D	55 000	48 500	4	1.22
43	83	47.5	24.5	58.6	14	21.5	102	5	3.5	63.7	43BWK04	55 000	48 500	4	1.32
	84	56	28	64	15	11	-	4.8	3.1	79.9	43BWK07	52 500	50 000	4	1.67

			Bounda	ry dimer	nsions (mm)				Distance between	Deerier	Basic load		No. of	
						,				effective	Bearing reference	Doubl	e row	outer ring flange	Mass (kg) (approx.)
d	D	В	b	d_1	Т	B_{i}	P_{t}	<i>rx</i> (Min.)	<i>ry</i> (Min.)	load centers	Telefende	C,	${\cal C}_{ m or}$	bolts	(approva)
50	86	55	27.5	67	12	32	112	5.5	5.5	49.2	NTF50KWH01B	98 000	157 000	4	1.488
51	87	55	27.5	68.4	15.5	19.5	112	5	5	50.0	51KWH01A	101 000	164 000	4	1.533

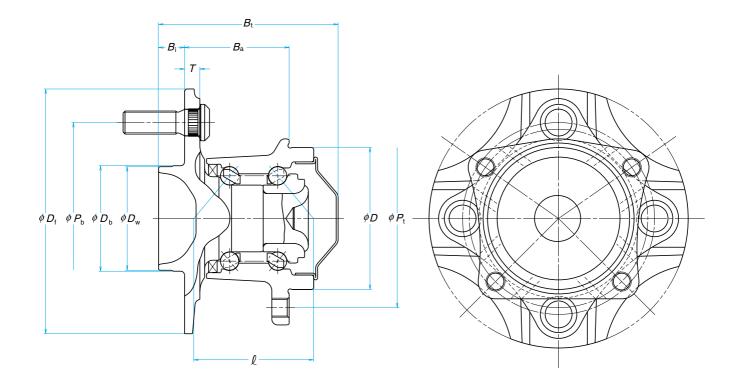

Hub Unit Bearing Dimension Table

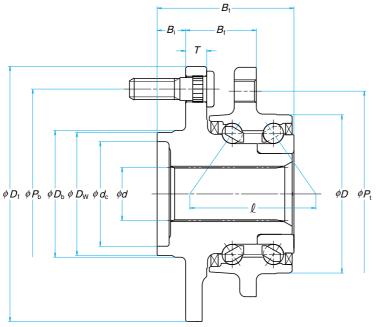

Cintern

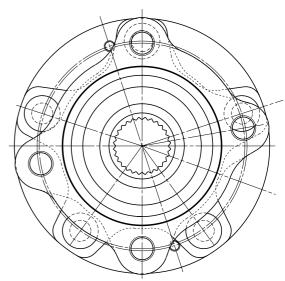

HUB III Dimension Table

BWKH inner ring rotation type for non-driven wheels

4




HUB III


BWKH inner ring rotation type for non-driven wheels

			Bour	ndary d	imensio	ons (mn	n)			Distance between effective load	Bearing reference	Basic rating	ıs (N)	No. of flanged inner ring	No. of outer ring flange	Mass (kg)	ABS Sensor integral
D _w	D	$D_{\rm b}$	B,	Т	B	В,	$P_{\scriptscriptstyle m b}$	P,	D,	centers ℓ (mm)	1010101100	Doubl Cr	e row Cor	hub bolts	tapped holes	(approx.)	type
54	67	55	54.5	8	13.5	93.5	100	92	135	62.3	44BWKH09	3 500	26 800	4	4	2.3	0
54	74	55	54.5	8	13.5	93.5	100	93	135	62.3	44BWKH10B	33 500	26 800	4	4	2.34	0
54	74	55	54.5	10	13.5	93.3	100	93	135	66.1	49BWKH04A	50 500	38 000	5	4	2.96	0
56.8	86	57.3	48	9	14.5	100.8	100	-	126	57.4	52BWKH01	61 000	44 500	5	4	3.4	-
60	74	62	74.5	11	13.5	100.8	114.3	99	152	66.1	49BWKH17	50 500	38 000	5	4	3.68	0
60	84	62	69	10	13.5	108.3	114.3	106	152	77.6	49BWKH11	50 500	38 000	5	4	3.94	0
69.5	76	71.5	43	10.4	25	86.1	120	108	140	63.0	55BWKH01	50 000	41 500	5	3	3.8	0
71.4	86	71.9	48	9	14.5	100.8	114.3	_	140	57.5	53BWKH01	66 500	49 000	5	4	3.6	-

BWKH inner ring rotation type for driven wheels

				Boun	dary d	limens	ions (mm)				Distance between effective load			c load gs (N)	No. of flanged inner ring	No. of outer ring flange	(kg)
												centers	relefende	Doub	le row	hub bolts	lappeu	(approx.)
<i>d</i> *1	D	B_{t}	$B_{\rm f}$	$d_{\rm c}$	D_{w}	$D_{\rm w} = D_{\rm b} = T = B_{\rm i} = P_{\rm b} = P_{\rm t}$				P_{t}	$D_{\rm f}$	ℓ (mm)		C,	${\cal C}_{\sf or}$		holes	
26	74	81.5	54.5	45	54	55	10	13.5	100	93	135	80.6	55BWKH02A	42 000	37 500	4	4	2.7
26	84	98.5	69	51	60	62	10	13.5	114.3	106	152	81.7	58BWKH03	48 000	43 500	5	4	3.32
27	87	74.5	38.5	57	67	69	11.5	15.5	114.3	112	139	68.6	66BWKH02A	53 500	52 000	5	4	3.58
31.75	84	102.5	67.5	50	60	62	11	14	114.3	112	154	98.6	64BWKH02A	46 500	46 500	5	4	3.84

*1: Pitch circle diameter of spline

classifica	meter ation (mm)	Single plane mean bore diameter deviation	e7	e8	e9	f6	f7	f8	g5	g6	h5
Over	Incl.	(class normal)									
10	18	0	-32	- 32	- 32	-16	-16	-16	- 6	- 6	0
		- 8	-50	- 59	- 75	-27	-34	-43	-14	-17	- 8
18	30	0	-40	- 40	- 40	-20	-20	-20	- 7	- 7	0
10	00	-10	-61	- 73	- 92	-33	-41	-53	-16	-20	- 9
30	50	0	-50	- 50	- 50	-25	-25	-25	- 9	- 9	0
		-12	-75	- 89	-112	-41	-50	-64	-20	-25	-11
50	65	0	-60	- 60	- 60	-30	-30	-30	-10	-10	0
65	80	-15	-90	-106	-134	-49	-60	-76	-23	-29	-13

Table 1 Tolerances for shaft diameters

Table 2 Tolerances for housing bore diameters

	neter ttion (mm)	Single plane mean outside diameter deviation	F6	F7	F8	G6	G7	H6	H7	H8	JS6
Over	Incl.	(class normal)									
18	24	0	+33	+41	+53	+20	+28	+13	+21	+33	±6.5
24	30	- 9	+20	+20	+20	+ 7	+ 7	0	0	0	10.5
30	40	0	+41	+50	+64	+25	+34	+16	+25	+39	± 8
40	50	-11	+25	+25	+25	+ 9	+ 9	0	0	0	± 0
50	65	0	+49	+60	+76	+29	+40	+19	+30	+46	±9.5
65	80	-13	+30	+30	+30	+10	+10	0	0	0	19.5
80	100	0	+58	+71	+90	+34	+47	+22	+35	+54	±11
100	120	–15	+36	+36	+36	+12	+12	0	0	0	

Unit : μ m

									_		_	-	
h6	h7	h8	h9	js5	js6	js7	k5	k6	m5	m6	n6	p6	r6
0	0	0	0			1.0	+ 9	+12	+15	+18	+23	+29	+34
-11	-18	-27	-43	±4	±5.5	± 9	+ 1	+ 1	+ 7	+ 7	+12	+18	+23
0	0	0	0				+11	+15	+17	+21	+28	+35	+41
-13	-21	-33	-52	±4.5	±6.5	±10.5	+ 2	+ 2	+ 8	+ 8	+15	+22	+28
0	0	0	0		1.0		+13	+18	+20	+25	+33	+42	+50
-16	-25	-39	-62	±5.5	±8	±12.5	+ 2	+ 2	+ 9	+ 9	+17	+26	+34
0	0	0	0	+ 6 5	±9.5	±15	+15	+21	+24	+30	+39	+51	+60 +41
-19	-30	-46	-74	±6.5	±9.5	±13	+ 2	+ 2	+11	+11	+20	+32	+62 +43

Unit : μ m

JS7	K6	K7	M6	M7	N6	N7	P6	P7	R7	S7	T7	U7
±10.5	+ 2	+ 6	- 4	0	-11	- 7	-18	-14	-20	- 27	_	- 33 - 54
±10.5	-11	-15	-17	-21	-24	-28	-31	-35	-41	- 48	- 33 - 54	- 40 - 61
±12.5	+ 3	+ 7	- 4	0	-12	- 8	-21	-17	-25	- 34	- 39 - 64	- 51 - 76
÷12.5	-13	-18	-20	-25	-28	-33	-37	-42	-50	- 59	- 45 - 70	- 61 - 86
±15	+ 4	+ 9	- 5	0	-14	- 9	-26	-21	-30 -60	- 42 - 72	- 55 - 85	- 76 -106
115	-15	-21	-24	-30	-33	-39	-45	51	-32 -62	- 48 - 78	- 64 - 94	- 91 -121
	+ 4	+10	- 6	0	-16	-10	-30	-24	-38 -73	- 58 - 93	- 78 -113	-111 -146
±17.5	-18	-25	-28	-35	-38	-45	-52	-59	-41 -76	- 66 -101	- 91 -126	-131 -166