

LARGE SIZE BALL & ROLLER BEARINGS

General Bearings

	cation 52	lata
68, 69, 160, 62,63, SB, 3	Deep groov	ve ball
SB, 3	be	earings
78, 79, 70, 72, 73 AC 2AC 3	Angular conta	
	Cylindrical	earings
18, 28, 38, 19, 29, 10, 30, 31, 2, 22, 32, 32, 33 NN NNU Tapered	3 ' 199 ' 199	earings
DC48(V), 49(V) DC50(NR) Shielded type	Full complement cylindrical roller I for crane sheaves	bearings
329, 320, 330, 331, 462, 453, 457, 457, 457, 457, 467,	372, 472, 473, 471, 47R, 10ch series 45D, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 47R, 45D, 45D, 45D, 45D, 45D, 45D, 45D, 45D, 45D, 47R, 4	
TDI TDIS (For axial support) TDIT (Tapered bore) TDO, TDOS TNA TO		earings
238, 239, 230, 231, 241, 222, 232, 213, 223 R, RR RH, RHR RHA	a i i i i i i i i i i i i i i i i i i i	earings
	Thrust ball	II
511, 512, 513, 514	ින් වූ	earings
T, THR	Tapered roller	er thrust
For screw d	own spindle For screw down spindle Spherical thrus	
292, 293, 294		earings
	Bearings for	
SC··· SCP··· PBA··· HSC bearing unit	continuous casting mac	
DC	Cylindrical roller for the backing sl multi-roll mills	r bearings shafts of
DTRT 2TR	Slewing rim be for tunnel-borin machine	earings ing
Other products ······ 462 Supplementary table ···· 472	Other produ Supplementary	

CAT. NO. B2002E-1

Koyo

Koyo

Publication of LARGE SIZE BALL & ROLLER BEARINGS

We are pleased to offer you this newly issued Koyo large size rolling bearing catalogue.

The conventional large size rolling bearing catalogue has been thoroughly revised. This catalogue includes information such as the latest bearing types, bearing numbers, and technical data.

We are confident that this catalogue will help every people engaged in design and maintenance of machinery.

This catalogue also shows bearings intended for special purposes. If you have any inquiry for selection of bearings, please contact JTEKT. We are grateful for your patronage and look forward to continuing to serve you in the future.

★ The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Reproduction of this catalog without written consent is strictly prohibited

This publication was made using recycled paper for the protection of forests.

Technical data

1	Selection of bearing dimensions 4	
2	Bearing tolerances	
3	Bearing fits 31	
4	Internal clearance43	
	Bearing specification tables	
	Deep groove ball bearings 84	
	Single-row	
	Angular contact ball bearings 96 Single-row and Matched pair 100	
	Oouble-row and Waterled pair	
	Cylindrical roller bearings 114	
S	Single-row 120	
	Oouble-row	
	Four-row	
	Vide series cylindrical roller bearings 170	
	full complement cylindrical roller bearings	
	or crane sheaves 176	
	Oouble-row, open type 178	
	Oouble-row, shielded type 182	
	Sapered roller bearings 186	
	Single-row	
	louble-row (Face to face, For axial support TDIS type) 250	
D	ouble-row (Face to face, Tapered bore TDIT type) 260	
	Oouble-row (Back to back TDO, TDOS type) 264	
L	Oouble-row (Back to back TNA type) 310	
(Other products	
	•	
• Sp for	pherical roller bearing r wind turbine generator main shaft 462	
• Ba	ack-up roll units for hot leveler 463	
• Ba	ack-up roll units for tension leveler 464	
• La	dder bearing for converter466	
• Tr	unnion split bearing for converter 467	
• Se	ealed bearing for sintered equipment 468	
• Sp	pherical roller bearings for shaker screens 469	
• Re	egrinding jigs for bearings for backing shafts 470	

Oil / air lubricator for steel making and

5	Lubrication	52
	Bearing materials	
7	Examples of failures	66

Four-row (TQO type)	348
Spherical roller bearings	366
Thrust ball bearings	
Tapered roller thrust bearings Single-row	406
Single-row (Screw down spindleTHRtype) Single-row (Screw down spindleTHRX type)	414
Spherical thrust roller bearings	420
Bearings for continuous casting machines SC · SCP bearings	432
Cylindrical roller bearings for the backing shafts of multi-roll mills	444
Slewing rim bearings for tunnel-boring machine Tripel-row combined roller type (DTR···T type) Tripel-row combined roller type (SP/DTR···T type) Double-row tapered roller type (2TR···type)	452 458

Supplementary table

SI units and conversion factors	472
• Inch/millimeter conversion	475
Steel hardness conversion	476
Viscosity conversion	477
Shaft tolerances (deviation from nominal dimensions)	478
Housing bore tolerances (deviation from nominal dimensions)	480

1. Selection of bearing dimensions

1-1 Bearing service life

When bearings rotate under load, material flakes from the surfaces of inner and outer rings or rolling elements by fatigue arising from repeated contact stress.

This phenomenon is called flaking. The total number of bearing rotations until flaking occurs is regarded as the bearing

"(fatique) service life".

"(Fatique) service life" differs greatly depending upon bearing structures, dimensions, materials, and processing methods.

Since this phenomenon results from fatigue distribution in bearing materials themselves, differences in bearing service life should be statistically considered.

When a group of identical bearings are rotated under the same conditions, the total number of revolutions until 90 % of the bearings are left without flaking (i.e. a service life of 90 % reliability) is defined as the basic rating life. In operation at a constant speed, the basic rating life can be expressed in terms of time.

In actual operation, a bearing fails not only because of fatique, but other factors as well. such as wear, seizure, creep, fretting, brinelling, cracking etc.

These bearing failures can be minimized by selecting the proper mounting method and lubricant, as well as the bearing most suitable for the application.

1-2 Calculation of service life

1-2-1 Basic dynamic load rating

The basic dynamic load rating (C) is either pure radial (for radial bearings) or central axial load (for thrust bearings) of constant magnitude in a constant direction, under which the basic rating life of 1 million revolutions can be obtained, when the inner ring rotates while the outer ring is stationary, or vice versa. The basic dynamic load rating, which represents the capacity of a bearing under rolling fatigue, is specified as the basic dynamic radial load rating (C_r) for radial bearings, and basic dynamic axial load rating (C_a) for thrust bearings. These load ratings are listed in the specification table.

These values are prescribed by ISO 281/ 1990, and are subject to change by conformance to the latest ISO standards.

1-2-2 Basic rating life

The basic rating life in relation to the basic dynamic load rating and dynamic equivalent load can be expressed using equation (1-1).

It is convenient to express the basic rating life in terms of time, using equation (1-2), when a bearing is used for operation at a constant speed.

(Time)
$$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p \dots (1-2)$$

where:

10⁶ revolutions L_{10} : basic rating life L_{10h} : basic rating life P: dvnamic equivalent load Ν ...(refer to page 8) C: basic dynamic load rating min^{-1} n: rotational speed

p: for ball bearings p = 3for roller bearings $\cdots p = 10/3$

Accordingly, where the dynamic equivalent load is P, and rotational speed is n, equation (1-3) can be used to calculate the basic dynamic load rating C: the bearing size most suitable for a specified purpose can then be selected, referring to the bearing specification table.

$$C = P \left(L_{10h} \times \frac{60n}{10^6} \right)^{1/p}$$
(1-3)

[Reference]

The equations using a service life coefficient (f_h) and rotational speed coefficient (f_n) respectively, based on equation (1-2), are as follows:

$$L_{10h} = 500 f_h^p$$
 (1-4)

Coefficient of service life:

$$f_{\rm h} = f_n \, \frac{C}{P}$$
(1-5)

Coefficient of rotational speed:

$$f_n = \left(\frac{10^6}{500 \times 60n}\right)^{1/p}$$

$$= (0.03n)^{-1/p}$$
 (1-6)

For reference, the values of f_n , f_h , and L_{10h} can be easily obtained by employing the nomograph attached to this catalog, as an abbreviated method.

[Ball bearing]

Basic

[Reference] Rotational speed (n) and its coefficients (f_n) , and service life coefficient (f_h) and basic rating life (L_{10h})

20 000 30 000 50 000

1-2-3 Correction of basic dynamic load rating for high temperature use and dimension stabilizing treatment

In high temperature operation, bearing material hardness deteriorates, as material compositions are altered. As a result, the basic dynamic load rating is diminished. Once altered, material composition is not recovered, even if operating temperatures return to normal.

Therefore, for bearings used in high temperature operation, the basic dynamic load rating should be corrected by multiplying the basic dynamic load rating values specified in the bearing specification table by the temperature coefficient values in Table 1-1.

Table 1-1 Temperature coefficient values

Bearing temperature, °C	125	150	175	200	250
Temperature coefficient	1	1	0.95	0.90	0.75

Since normal heat treatment is not effective in maintaining the original bearing size in extended operation at 120 °C or higher, dimension stabilizing treatment is necessary. Dimension stabilizing treatment codes and their effective temperature ranges are described in Table 1-2.

Since dimension stabilizing treatment diminishes material hardness, the basic dynamic load rating may be reduced for some types of bearings.

Table 1-2 Dimension stabilizing treatment

Dimension stabilizing treatment code	Effective temperature range
S0	Over 100 °C, up to 150 °C
S1	150 °C 200 °C
S2	200 °C 250 °C

1-2-4 Corrected rating life

The basic rating life (L_{10}) , expressed using equation (1-1), is (fatigue) life, whose estimate of reliability is 90 %. A certain application requires a service life whose reliability is more than 90 %.

Special materials help extend bearing life, and lubrication and other operating conditions may also affect bearing service life.

The corrected rating life can be obtained from the basic rating life using equation (1-7).

$$L_{na} = a_1 a_2 a_3 L_{10}$$
 (1-7)

where:

L_{na}: corrected rating life 10⁶ revolutions estimated reliability (100–n) %: the probability of failure occurrence is expressed by *n*, taking bearing characteristics and operating conditions into consideration.

 L_{10} : basic rating life 10⁶ revolutions (estimated reliability 90 %)

a₁: reliability coefficient

····· refer to section (1)

a2: bearing characteristic coefficient
.....refer to section (2)

*a*₃: operating condition coefficient

·····refer to section (3)

[Remark]

When bearing dimensions are to be selected given L_{na} greater than 90 % in reliability, the strength of shaft and housing must be considered.

(1) Reliability coefficient a₁

Table 1-3 describes reliability coefficient, a_1 , which is necessary to obtain the corrected rating life of reliability greater than 90 %.

Table 1-3 Reliability coefficient a_1

Reliability, %	L_{na}	a_1
90	L 10a	1
95	L 5a	0.62
96	L 4a	0.53
97	L 3a	0.44
98	L 2a	0.33
99	L 1a	0.21

(2) Bearing characteristic coefficient a2

The bearing characteristic in relation to bearing life may differ according to bearing materials (steel types and their quality), and may be altered by production process, design, etc. In such cases, the bearing life calculation can be corrected using the bearing characteristic coefficient *a*₂.

JTEKT has employed vacuum-degassed bearing steel as JTEKT standard bearing material. It has a significant effect on bearing life extension which was verified through studies at JTEKT research & development centers.

The basic dynamic load rating of bearings made of vacuum-degassed bearing steel is specified in the bearing specification table, taking the bearing characteristic coefficient as $a_2 = 1$.

For bearings made of special materials to extend fatigue life, the bearing characteristic coefficient is treated as $a_2 > 1$.

(3) Operating condition coefficient a_3

When bearings are used under operating conditions which directly affect their service life, including improper lubrication, the service life calculation can be corrected by using *a*₃.

Under normal lubrication, the calculation can be performed with $a_3=1$; and, under favorable lubrication, with $a_3>1$.

In the following cases, the operating condition coefficient is treated as $a_3 < 1$:

Operation using lubricant of low kinematic viscosity

Ball bearing 13 mm²/s or less Roller bearing 20 mm²/s or less

- Operation at very slow rotational speed
 Product of rolling element pitch diameter and rotational speed is 10 000 or less.
- Contamination of lubricant is expected
- Greater misalignment of inner and outer rings is present

[Note] When bearing hardness is diminished by heat, the basic dynamic load rating calculation must be corrected (ref. Table 1-1).

[Remark]

When $a_2 > 1$ in employing a special material, if lubrication is not proper, $a_2 \times a_3$ is not always > 1. In such cases, if $a_3 < 1$, bearing characteristic coefficient is normally treated as $a_2 \le 1$.

As the above explanation shows, since a_2 and a_3 are inter-dependent, some calculations treat them as one coefficient, a_{23} .

1-3 Calculation of loads

Loads affecting bearings includes force exerted by the weight of the object the bearings support, transmission force of devices such as gears and belts, loads generated in equipment during operation etc.

Seldom can these kinds of load be determined by simple calculation, because the load is not always constant.

In many cases, the load fluctuates, and it is difficult to determine the frequency and magnitude of the fluctuation.

Therefore, loads are normally obtained by multiplying theoretical values with various coefficients obtained empirically.

1-3-1 Load coefficient

Even if radial and axial loads are obtained through general dynamic calculation, the actual load becomes greater than the calculated value due to vibration and impact during operation.

In many cases, the load is obtained by multiplying theoretical values by the load coefficient as shown below.

$$F = f_{\mathbf{w}} \cdot F_{\mathbf{c}} \quad \dots \qquad (1-8)$$

where:

F: actual load N F_c : calculated load N f_w : load coefficient (refer to Table 1-4)

Table 1-4 Load coefficient fw

Operating condition		Application example	$f_{ m W}$
	Operation with little vibration or impact	Motors Machine tools Measuring instrument	1.0 – 1.2
	Normal operation (slight impact)	Railway rolling stock Automobiles Paper manufacturing equipment Air blowers Compressors Agricultural equipment	1.2 – 2.0
	Operation with severe vibration or impact	Rolling mills Crushers Construction equipment Shaker screens	2.0 – 3.0

1-4 Dynamic equivalent load

Bearings are used under various operating conditions; however, in most cases, bearings receive radial and axial load combined, while the load magnitude fluctuates during operation.

Therefore, it is impossible to directly compare the actual load and basic dynamic load rating.

The two are compared by replacing the loads applied to the shaft center with one of a constant magnitude and in a specific direction, that yields the same bearing service life as under actual load and rotational speed.

This theoretical load is referred to as the dynamic equivalent load (P).

1-4-1 Calculation of dynamic equivalent load

Dynamic equivalent loads for radial bearings and thrust bearings ($\alpha \neq 90^{\circ}$) which receive a combined load of a constant magnitude in a specific direction can be calculated using the following equation.

$$P = XF_{r} + YF_{a}$$
(1-9)

where:

P: dynamic equivalent load [] for radial bearings,

 $\ensuremath{\mathit{P}}_r$: dynamic equivalent radial load for thrust bearings,

 $P_{\rm a}$: dynamic equivalent axial load

 $F_{\rm r}$: radial load N $F_{\rm a}$: axial load N

X: radial load factorY: axial load factor

values of *X* and *Y* are listed in the bearing specification table.

■ When $F_a/F_r \le e$ for single-row radial bearings, it is taken that X = 1, and Y = 0. Hence, the dynamic equivalent load rating is $P_r = F_r$.

Values of e, which designates the limit of F_a/F_r , are listed in the bearing specification table.

■ For single-row angular contact ball bearings and tapered roller bearings, axial component forces (F_{ac}) are generated as shown in Fig. 1-1, therefore a pair of bearings is arranged face-to-face or back-to-back.

The axial component force can be calculated using the following equation.

$$F_{\rm ac} = \frac{F_{\rm r}}{2 \, Y} \quad \dots \tag{1-10}$$

Table 1-5 describes the calculation of the dynamic equivalent load when radial loads and external axial loads (K_a) are applied to bearings.

Load center position is listed in the bearing specification table.

Fig. 1-1 Axial component force

- For thrust ball bearings with contact angle $\alpha = 90^{\circ}$, to which an axial load is applied, $P_a = F_a$.
- The dynamic equivalent load of spherical thrust roller bearing can be calculated using the following equation.

$$P_a = F_a + 1.2 F_r$$
 (1-11)

where : $F_r/F_a \leq 0.55$

Table 1-5	Dynamic equivalent load calculation: when a pair of single-row angular contact ball
	bearings or tapered roller bearings is arranged face-to-face or back-to-back.

Paired mounting		Loading condition		Bearing Axial load		Dynamic equivalent load	
Back-to-back arrangement Face-to-face arrangement			Loading Condition	Bearing	Axiai loau	Dynamic equivalent load	
A B	B A		$\frac{F_{\rm rB}}{2Y_{\rm R}} + K_{\rm a} \ge \frac{F_{\rm rA}}{2Y_{\rm A}}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a}$	$P_{\rm A} = XF_{\rm rA} + Y_{\rm A} \left(\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a} \right)$ $P_{\rm A} = F_{\rm rA}$, where $P_{\rm A} < F_{\rm rA}$	
K_a F_{rA}	K_{a} F_{rB} F_{rA}		$2Y_{\rm B} + K_{\rm a} = 2Y_{\rm A}$	Bearing B	-	$P_{\rm B} = F_{ m rB}$	
A B	B A		$\frac{F_{\rm rB}}{2Y_{\rm R}} + K_{\rm a} < \frac{F_{\rm rA}}{2Y_{\rm A}}$	Bearing A	-	$P_{\mathbf{A}} = F_{\mathbf{r}\mathbf{A}}$	
F_{rA}	F_{rB} K_{a} F_{rA}	2Y _B " 2Y _A	$\frac{2Y_{\rm B}}{2Y_{\rm A}} + K_{\rm a} < \frac{2Y_{\rm A}}{2Y_{\rm A}}$	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a}$	$P_{ m B}=XF_{ m rB}+Y_{ m B}\left(rac{F_{ m rA}}{2Y_{ m A}}-K_{ m a} ight)$ $P_{ m B}=F_{ m rB},$ where $P_{ m B}< F_{ m rB}$	
A B	B A		$\frac{F_{\rm rB}}{2Y_{\rm R}} \le \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	-	$P_{A} = F_{rA}$	
F_{rA} F_{rB}	F_{rB} K_a F_{rA}		2Y _B 2Y _A	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a} \right)$ $P_{\rm B} = F_{\rm rB}, \text{where} P_{\rm B} < F_{\rm rB}$	
A B	B A		$\frac{F_{\text{rB}}}{2Y_{\text{R}}} > \frac{F_{\text{rA}}}{2Y_{\Delta}} + K_{\text{a}}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}$	$P_{\rm A}$ = $XF_{\rm rA}$ + $Y_{\rm A}$ $\left(\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}\right)$ $P_{\rm A}$ = $F_{\rm rA}$, where $P_{\rm A}$ < $F_{\rm rA}$	
F_{rA}	F_{rB} K_{a} F_{rA}		21B 21A	Bearing B	-	$P_{\rm B} = F_{\rm rB}$	

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

2. Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. in Table 1-5.

Koyo

1-4-2 Mean dynamic equivalent load

When load magnitude or direction varies, it is necessary to calculate the mean dynamic equivalent load, which provides the same length

of bearing service life as that under the actual load fluctuation.

The mean dynamic equivalent load (Pm) under different load fluctuations is described using Graphs (1) to (4).

Symbols for Graphs (1) to (4)

[Reference] Mean rotational speed $n_{\rm m}$ can be calculated using the following equation:

$$n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm n} t_{\rm n}}{t_1 + t_2 + \dots + t_{\rm n}}$$

1-5 Basic static load rating and static equivalent load

1-5-1 Basic static load rating

Excessive static load or impact load even at very low rotation causes partial permanent deformation of the rolling element and raceway contacting surfaces. This permanent deformation increases with the load: if it exceeds a certain limit, smooth rotation will be hindered.

The basic static load rating is the static load which responds to the calculated contact stress shown below, at the contact center between the raceway and rolling elements which receive the maximum load.

- Self-aligning ball bearings -- 4 600 MPa
- Other ball bearings 4 200 MPa
- Roller bearings 4 000 MPa

The total extent of contact stress-caused permanent deformation on surfaces of rolling elements and raceway will be approximately 0.000 1 times greater than the rolling element diameter.

The basic static load rating for radial bearings is specified as the basic static radial load rating, and for thrust bearings, as the basic static axial load rating. These load ratings are listed in the bearing specification table, using C_{0r} and C_{0a} respectively.

These values are prescribed by ISO 78/1987 and are subject to change by conformance to the latest ISO standards.

1-5-2 Static equivalent load

The static equivalent load is a theoretical load calculated such that, during rotation at very low speed or when bearings are stationary, the same contact stress as that imposed under actual loading condition is generated at the contact center between raceway and rolling element to which the maximum load is applied.

For radial bearings, radial load passing through the bearing center is used for the calculation; for thrust bearings, axial load in a direction along the bearing axis is used.

The static equivalent load can be calculated using the following equations.

[Radial bearings]

...The greater value obtained by the following two equations is used.

$$P_{0r} = X_0 F_r + Y_0 F_a$$
 (1-16)

$$P_{0r} = F_r$$
 (1-17)

[Thrust bearings]

 $(\alpha \neq 90^{\circ})$

$$P_{0a} = X_0 F_r + F_a$$
 (1-18)

[When $F_a < X_0 F_r$,

the solution becomes less accurate.]

 $(\alpha = 90^{\circ})$

$$P_{0a} = F_a$$
 (1-19)

where:

Por: static equivalent radial load

P_{0a}: static equivalent axial load

 F_r : radial load

 F_a : axial load

X₀: static radial load factor

 Y_0 : static axial load factor

(values of X_0 and Y_0 are listed in the

bearing specification table.)

Ν

Ν

N

N

Koyo

1-5-3 Safety coefficient

The allowable static equivalent load for a bearing is determined by the basic static load rating of the bearing; however, bearing service life, which is affected by permanent deformation, differs in accordance with the performance required of the bearing and operating conditions.

Therefore, a safety coefficient is designated, based on empirical data, so as to ensure safety in relation to basic static load rating.

 $f_{\rm S} = \frac{C_0}{P_0}$ (1-20)

where:

 f_8 : safety coefficient (ref. Table 1-6) C_0 : basic static load rating N P_0 : static equivalent load N

Table 1-6 Values of safety coefficient f_s

		fs (min.)		
Operati	ng condition	Ball bearing	Roller bearing	
	When high running accuracy is required	2	3	
With bearing rotation	Normal operation	1	1.5	
	When impact load is applied	1.5	3	
Without bear-	Normal operation	0.5	1	
(occasional oscillation)	When impact load or uneven distribution load is applied	1	2	

[Remark] For spherical thrust roller bearings, $f_s \ge 4$.

2. Bearing tolerances

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified. These values are prescribed in JIS, ISO, ABMA, etc.

Bearing tolerances are classified into 6, 5, 4 etc., other than ordinary class 0. Class 0 bearings offer adequate performance for general applications, and bearings of class 5, 4, or higher are required for machine tools.

Table 2-1 shows the tolerance classes and JTEKT codes applied to the types of bearings shown in the dimensional tables.

Bearing tolerances of these bearings are shown in Tables 2-2 through 2-8. Table 2-9 shows the allowable limited values of chamfer dimensions, and Table 2-10 includes the tolerances for tapered bore.

Table 2-1 Tolerance class for each bearing type

В	earing type	А	pplied standards	of tolerance clas	ss	Applied tolerance table
Deep groo	ove ball bearing	JIS class 0	JIS class 6	JIS class 5	(JIS class 4)	
Angular co	ontact ball bearing	JIS class 0	JIS class 6	JIS class 5	(JIS class 4)	
Cylindrica	I roller bearing	JIS class 0	JIS class 6	JIS class 5	(JIS class 4)	
Wide serie	es cylindrical ing	Equivalent to class 0	Equivalent to class 6	_	_	Table 2-2
Full compler roller bear	lement cylindrical ing	Equivalent to class 0	Equivalent to class 6	-	_	
	Metric series (single-row)	JIS class 0, 6X	JIS class 6	JIS class 5	(JIS class 4)	Table 2-3
Tapered roller	Metric series (double or four-row)	BAS class 0	-	_	_	Table 2-4
bearing	Metric series (J-series)	Class PK	Class PN	Class PC	(Class PB)	Table 2-6
	Inch series	ABMA Class 4	ABMA Class 2	ABMA Class 3	(ABMA Class 0)	Table 2-5
Spherical	roller bearing	JIS class 0	_	_	-	Table 2-2
Thrust bal	l bearing	JIS class 0	JIS class 6	(JIS class 5)	-	Table 2-7
Metric ser thrust bea	ies taperd roller ring	Equivalent to class 0	-	-	_	Table 2-8
Spherical	thrust roller bearing	JIS class 0	-	_	-	

[Remarks] 1. Products of tolerance classes included in parentheses shown in the table above are required, contact JTEKT.

Thrust tapered roller bearings for screw down, cylindrical roller bearings for multistage rolling mill back-up roll, and bearings for tunneling machine are manufactured with the special tolerances appropriate for their operating conditions.

Table 2-2 (1) Radial bearing tolerances (tapered roller bearings excluded) = JIS B 1514 =

(1) Inner ring (bore diameter)

Unit: µm

Nomina			Single	plane	mean be	ore dia	meter de	viation	1	dian			Single	plane			b	ore dia	meter	variati	on V_{ds}	p			n bore ation	diame	eter	Nomir	nal bore
6	d				Δ	dmp				devi		Dia	meter s	eries 7,	8, 9	Diar	neter	series 0), 1	Diam	eter se	eries 2	, 3, 4		V_a	/mp			d
m	m	cl	lass 0	cla	ass 6	cla	ass 5	cla	ass 4	cla	ass 4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	n	nm
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower		m	ax.	•		ma	ax.			ma	ax.			ma	ax.		over	up to
30	50	0	- 12	0	-10	0	- 8	0	- 6	0	- 6	15	13	8	6	12	10	6	5	9	8	6	5	9	8	4	3	30	50
50	80	0	- 15	0	-12	0	- 9	0	- 7	0	- 7	19	15	9	7	19	15	7	5	11	9	7	5	11	9	5	3.5	50	80
80	120	0	- 20	0	-15	0	-10	0	- 8	0	- 8	25	19	10	8	25	19	8	6	15	11	8	6	15	11	5	4	80	120
120	150	0	- 25	0	-18	0	-13	0	-10	0	-10	31	23	13	10	31	23	10	8	19	14	10	8	19	14	7	5	120	150
150	180	0	- 25	0	-18	0	-13	0	-10	0	-10	31	23	13	10	31	23	10	8	19	14	10	8	19	14	7	5	150	180
180	250	0	- 30	0	-22	0	-15	0	-12	0	-12	38	28	15	12	38	28	12	9	23	17	12	9	23	17	8	6	180	250
250	315	0	- 35	0	-25	0	-18	0	-15	0	-15	44	31	18	15	44	31	14	11	26	19	14	11	26	19	9	8	250	315
315	400	0	- 40	0	-30	0	-23	0	-18	0	-18	50	38	23	18	50	38	18	14	30	23	18	14	30	23	12	9	315	400
400	500	0	- 45	0	-35	0	-28	0	-23	0	-23	56	44	28	23	56	44	21	17	34	26	21	17	34	26	14	12	400	500
500	630	0	- 50	0	-40	0	-35	-	-	-	-	63	50	35	-	63	50	26	-	38	30	26	-	38	30	18	-	500	630
630	800	0	- 75	0	-50	0	-45	-	-	-	-	94	63	45	-	94	63	34	_	56	38	34	-	56	38	23	-	630	800
800	1 000	0	-100	0	-60	0	-60	_	_	-	_	125	75	60	-	125	75	45	-	75	45	45	-	75	45	30	-	800	1 000
1 000	1 250	0	-125	0	-75	0	-75	-	-	-	-	156	94	75	-	156	94	56	-	94	56	56	-	94	56	38	-	1 000	1 250
1 250	1 600	0	-160	-	-	-	-	-	_	-	_	200	-	-	-	200	-	-	-	120	-	-	-	120	-	_	-	1 250	1 600
1 600	2 000	0	-200	-	_	-	-	-	-	-	-	250	-	_	-	250	-	-	-	150	-	-	-	150	-	_	-	1 600	2 000

(2) Inner ring (running accuracy and width)

Unit: µm

15

Nomi	nal bore			of asse	mbled						Single in	nner ri	ng width	devia	tion				Mato	hed pa	air inner	ring w	idth devi	iation		Inner	ring wi	dth vari	ation	Nomin	al bore
diame	ter	bearin	g inner	, •		Å	$S_{\rm d}$	S_{i}	a ²⁾				1								1	Bs ³⁾					V_{i}		Į.	diamet	er
	d		V	ia			1						$\triangle B_{S}$			1				1				1			V	Bs	,	(d
r	nm	class 0	class 6	class 5	class 4	class 5	class 4	class 5	class 4	c	ass 0	С	lass 6	С	lass 5	cla	ass 4	cla	ss 0 ⁴⁾	cla	ss 6 ⁴⁾	cla	ss 5 $^{4)}$	cla	ass 4	class 0	class 6	class 5	class 4	m	nm
over	up to		m	ax.		m	ıax.	m	ax.	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower		ma	ax.		over	up to
30	50	15	10	5	4	8	4	8	4	0	- 120	0	- 120	0	- 120	0	-120	0	-250	0	-250	0	-250	0	-250	20	20	5	3	30	50
50	80	20	10	5	4	8	5	8	5	0	- 150	0	- 150	0	- 150	0	-150	0	-380	0	-380	0	-250	0	-250	25	25	6	4	50	80
80	120	25	13	6	5	9	5	9	5	0	- 200	0	- 200	0	- 200	0	-200	0	-380	0	-380	0	-380	0	-380	25	25	7	4	80	120
120	150	30	18	8	6	10	6	10	7	0	- 250	0	- 250	0	- 250	0	-250	0	-500	0	-500	0	-380	0	-380	30	30	8	5	120	150
150	180	30	18	8	6	10	6	10	7	0	- 250	0	- 250	0	- 250	0	-250	0	-500	0	-500	0	-380	0	-380	30	30	8	5	150	180
180	250	40	20	10	8	11	7	13	8	0	- 300	0	- 300	0	- 300	0	-300	0	-500	0	-500	0	-500	0	-500	30	30	10	6	180	250
250	315	50	25	13	10	13	8	15	9	0	- 350	0	- 350	0	- 350	0	-350	0	-500	0	-500	0	-500	-	-	35	35	13	8	250	315
315	400	60	30	15	13	15	9	20	12	0	- 400	0	- 400	0	- 400	0	-400	0	-630	0	-630	0	-630	-	_	40	40	15	9	315	400
400	500	65	35	20	15	18	11	25	15	0	- 450	0	- 450	0	- 450	0	-450	-	-	-	_	-	-	-	-	50	45	18	11	400	500
500	630	70	40	25	_	25	-	30	-	0	- 500	0	- 500	0	- 500	-	_	_	-	-	_	-	-	-	_	60	50	20	- '	500	630
630	800	80	50	30	_	30	-	35	-	0	- 750	0	- 750	0	- 750	-	_	_	-	-	_	-	-	-	_	70	60	23	-	630	800
800	1 000	90	60	40	-	40	-	45	-	0	-1 000	0	-1~000	0	-1~000	-	-	-	-	-	_	-	-	-	-	80	60	35	-	800	1 000
1 000	1 250	100	70	50	-	50	-	60	-	0	-1 250	0	-1 250	0	-1 250	-	-	-	-	-	-	-	-	-	-	100	60	45	_	1 000	1 250
1 250	1 600	120	-	-	-	-	-	-	-	0	-1 600	-	-	-	-	-	_	-	-	-	_	-	-	_	_	120	-	-	-	1 250	1 600
1 600	2 000	140	-	-	-	-	-	-	-	0	-2 000	-	-	-	-	-	-	-	-	-	_	-	-	-	-	140	-	-	-	1 600	2 000

 $[\]textit{S}_{d} : \text{Perpendicularity of inner ring face with respect to the bore} \quad \textit{S}_{ia} : \text{Axial runout of assembled bearing inner ring}$

[[]Notes] 1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

²⁾ These shall be applied to deep groove ball bearings and angular contact ball bearings.

³⁾ These shall be appplied to individual bearing rings manufactured for matched pair or stack bearings.

⁴⁾ Also applicable to the inner ring with tapered bore of $d \ge 50 \text{ mm}$. [Remark] Values in Italics are prescribed in JTEKT standards.

Unit: um

Table 2-2 (2) Radial bearing tolerances (tapered roller bearings excluded)

(3) Outer ring (outside diameter)

Single plane mean outside diameter deviation Single outside Mean outside Nominal Nominal outside diameter variation $V_{D{
m sp}}$ Single plane Shielded/sealed type diameter variation outside dia. outside dia. diameter deviation Diameter series Diameter series 0. 1 Diameter series 2, 3, 4 Diameter series 7, 8, 9 D $\Delta D_{\rm mp}$ $\Delta D_s^{(1)}$ V_{Dmp} 2, 3, 4 0, 1, 2, 3, 4 D mm mm class 45) class 02 class 62 class 55 class 45 Class 0²⁾ Class 6²⁾ Class 5⁵⁾ Class 4⁵⁾ Class 6²⁾ Class 6² Class 6²⁾ Class 6² C class 0 class 6 class 5 class 4 over up to upper lower upper lower upper lower upper lower upper lower max. max. may may may over up to - 13 - 11 3.5 - 15 - 13 -10- 8 - 8 - 18 - 15 -11- 9 - 9 - 25 -13 -10 -10 - 18 - 30 - 20 -15-11-11- 35 - 25 -18 -13-13- 40 - 28 -20 -15-15- 45 - 33 -23 -17 -17- 50 - 38 -28 -20 -20- 75 - 45 -35 1 000 -100- 60 -50 2.5 1 000 - 75 -125-63 1 000 1 250 1 000 1 250 -1601 600 1 250 1 600 - 90 -801 250 1 600 2 000 -200 -1201 600 2 000 2 000 2 500 -250 2 000 2 500

(4) Outer ring (running accuracy and width)

Unit: µm

Nomir outsid			l runout ig outer	of asser ring	nbled	S_{I}	o ⁴⁾	S_{ea}	3) 4)	Δο	3)		er ring w ation	idth
1)		K	ea									$V_{Cs}^{3)}$	
m	m	class 0	class 6	class 5	class 4	class 5	class 4	class 5	class 4	classes	0, 6, 5, 4	classes 0, 6	class 5	class 4
over	up to		ma	ax.		ma	ax.	ma	ax.	upper	lower		max.	-
50	80	25	13	8	5	8	4	10	5				6	3
80	120	35	18	10	6	9	5	11	6				8	4
120	150	40	20	11	7	10	5	13	7				8	5
150	180	45	23	13	8	10	5	14	8			Shall	8	5
180	250	50	25	15	10	11	7	15	10			con-	10	7
250	315	60	30	18	11	13	8	18	10			form to the tol-	11	7
315	400	70	35	20	13	13	10	20	13	Shall co		erance	13	8
400	500	80	40	23	15	15	12	23	15	to the to Δ_{Bs} on a		$V_{B{ m s}}$ on	15	9
500	630	100	50	25	18	18	13	25	18	same be		d of the	18	11
630	800	120	60	30	_	20	_	30	_		_	same	20	-
800	1 000	140	75	40	_	23	_	40	_			bear-	23	-
1 000	1 250	160	85	45	_	30	_	45	_			ing	30	_
1 250	1 600	190	95	60	_	45	_	60	-	1			45	-
1 600	2 000	220	110	_	_	_	_	_	-				_	_
2 000	2 500	250	-	-	-	-	-	-	-				-	_

 S_{D} : Perpendicularity of outer ring outside surface with respect to the face

Sea: Axial runout of assembled bearing outer ring

 $\Delta C_{\rm S}$: Deviation of a single outer ring width

[Note

- 1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.
- 2) Shall be applied when locating snap ring is not fitted.
- 3) These shall be applied to deep groove ball bearings and angular contact ball bearings.
- 4) These shall not be applied to flanged bearings.
- 5) These shall not be applied to shielded bearings and sealed bearings.

[Remark]

Values in Italics are prescribed in JTEKT standards.

d: nominal bore diameter

D: nominal outside diameter

B: nominal assembled bearing width

Table 2-3 (1) Tolerances for metric series tapered roller bearings = JIS B 1514 =

(1) Inner ring

Unit: µm

Nom bore diam					eter c	ne mean leviatior J _{dmp})	dian devi	gle bore neter lation $\Delta d_{ m ds}$		meter	ane bo variat			ation	diam	eter	ass	dial ru semble aring ii K	ed		S	d	S_{ia}		Si	ngle i		g widt	h deviat	on	bore	minal e meter d
m	m	cla	asse	s 0, 6X	clas	ses 6, 5	С	lass 4	cl	ass 4	classes 0, 6X	class 6	class 5	class 4	classes 0, 6X	class 6	class 5	class 4	classes 0, 6X	class 6	class 5	class 4	class 5	class 4	class 4	cl	ass 0	cla	ass 6X	c	ass 6	classes 5, 4	n	nm
over	up t	to upp	per	lower	upper	lower	upper	lower	upper	lower		m	ax.			m	ax.			ma	ax.		ma	ax.	max.	upper	lower	upper	lower	upper	lower	upper lower	over	up to
80	12	20	0	- 20	0	$-15^{2)}$	0	-10	0	-10	20	15	11	8	15	11	8	5	30	13	8	5	9	5	5	0	- 200	0	-50	0	- 200	0 - 400	80	120
120	18	30	0	- 25	0	$-18^{2)}$	0	-13	0	-13	25	18	14	10	19	14	9	7	35	18	11	6	10	6	7	0	- 250	0	-50	0	- 250	0 - 500	120	180
180	25	50	0	- 30	0	$-22^{2)}$	0	-15	0	-15	30	22	17	11	23	16	11	8	50	20	13	8	11	7	8	0	- 300	0	-50	0	- 300	0 - 600	180	250
250	31	L5 (0	- 35	0	-25	0	-18	0	-18	35	25	19	12	26	19	13	9	60	30	13	9	13	8	9	0	- 350	0	-50	0	- 350	0 - 700	250	315
315	40	00	0	- 40	0	-30	-	-	-	-	40	30	23	-	30	23	15	-	70	35	15	-	15	-	-	0	- 400	0	-50	0	- 400	0 - 800 ³)	315	400
400	50	00 0	0	- 45	0	-35	_	-	-	-	45	35	28	-	34	26	17	-	80	40	20	-	17	-	-	0	- 450	0	-50	0	- 450	0 - 900 ³)	400	500
500	63	30	0	- 60	0	-40	-	-	-	_	60	40	35	-	40	30	20	-	90	50	25	-	20	-	-	0	- 500	-	-	0	- 500	0 -1 1003)	500	630
630	80	00 0	0	- 75	0	-50	_	-	-	-	75	50	45	-	45	38	25	-	100	60	30	-	25	-	-	0	- 750	-	-	0	- 750	0 -1 600 ³⁾	630	800
800	1 00	00 0	0	-100	0	-60	_	-	-	-	100	60	60	-	55	45	30	-	115	75	37	-	30	-	-	0	-1 000	-	-	0	-1~000	0 -2 000 ³⁾	800	1 000
1 000	1 25	50	0	-125	0	-75	-	-	-	_	125	75	56	-	941)	56	38	-	1201)	85	28	-	30	-	-	0	-1 250	-	-	0	-1 250	0 -2 5003)	1 000	1 250
1 250	1 60	00	0	-160	0	-90	-	-	-	-	160	-	-	-	$120^{1)}$	_	_	-	1201)	-	-	-	_	-	-	0	-1 600	-	-	-	-		1 250	1 600
1 600	2 00	00	0	-200	_	-	-	-	-	-	200	-	-	-	$150^{1)}$	_	_	-	1401)	-	-	-	_	-	-	0	-2 000	-	-	-	-		1 600	2 000

 $S_{\rm d}$: Perpendicularity of inner ring face with respect to the bore, $S_{\rm ia}$: Axial runout of assembled bearing inner ring

(2-1) Outer ring

Unit: µm

(2-2) Outer ring | Unit : um

Nom outs dian	ide neter	class	-	ter de	e mean of eviation Dmp sses 6, 5	ı	ass 4	diame deviat		diam	eter v V_I	ne outs ariatio	n		an out meter	variat		as be		ed outer ea	ring		class 4	S _{ea} ⁴⁾	1	
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	********	ma		0.000		ma			V	-	ax.	0.000		ax.	max.	over	up to
80	120	0	- 18	0	- 13 ²⁾	0	-10	0	-10	18	13	10	8	14	10	7	5	35	18	10	6	9	5	6	80	120
120	150	0	- 20	0	$-15^{2)}$	0	-11	0	-11	20	15	11	8	15	11	8	6	40	20	11	7	10	5	7	120	150
150	180	0	- 25	0	- 182)	0	-13	0	-13	25	18	14	10	19	14	9	7	45	23	13	8	10	5	8	150	180
180	250	0	- 30	0	- 20 ²⁾	0	-15	0	-15	30	20	15	11	23	15	10	8	50	25	15	10	11	7	10	180	250
250	315	0	- 35	0	$-25^{2)}$	0	-18	0	-18	35	25	19	14	26	19	13	9	60	30	18	11	13	8	10	250	315
315	400	0	- 40	0	$-28^{2)}$	0	-20	0	-20	40	28	22	15	30	21	14	10	70	35	20	13	13	10	13	315	400
400	500	0	- 45	0	- 33	-	-	-	-	45	33	26	-	34	25	17	-	80	40	24	_	17	-	-	400	500
500	630	0	- 50	0	- 38	-	-	_	-	60	38	30	-	38	29	20	-	100	50	30	_	20	-	-	500	630
630	800	0	- 75	0	- 45	-	-	_	-	80	45	38	-	55	34	25	-	120	60	36	_	25	-	-	630	800
800	1 000	0	-100	0	- 60	-	-	-	-	100	60	50	-	75	45	30	-	140	75	43	_	30	-	-	800	1 000
1 000	1 250	0	-125	0	- 80	-	-	-	-	130	75	65	-	90	56	38	-	160	85	52	_	38	-	-	1 000	1 250
1 250	1 600	0	-160	0	-100	-	-	-	-	170	90	90	-	100	68	50	-	180	95	62	-	50	-	-	1 250	1 600
1 600	2 000	0	-200	0	-120	-	-	-	-	2001)	120	90	_	150 ¹⁾	90	60	-	220	¹⁾ 115	45	_	40	-	-	1 600	2 000
[Notes]	1) Thes	e sha	ll be app	lied to	bearing	of tole	rance cl	ass 0.				,		•		,		S_{D}	Perpe	ndicu	larity	of oute	r ring o	utside su	ırface w	/ith

(2	-2) Oi	iter	rıng	Uni	t:μm
Nom bore diam	eter		ngle o	viati	
m	-	clac	s 6X ⁴⁾		s 0, 6, 5, 4
over	up to	upper			lower
80	120	0	-100		
120	180	0	-100	Sha	II
180	250	0	-100		form
250	315	0	-100	to th	
315	400	0	-100		ance on d
400	500	0	-100	of th	
500	630	-	-	sam	
630	800	-	-	bear	irig
800	1 000	300 – – bearing			

d: nominal bore diameter

D: nominal outside diameter

B: nominal inner ring width

C: nominal outer ring width

T: nominal assembled bearing width

2) These shall be applied to bearing of tolerance class 6.

3) These shall be applied to bearing of tolerance class 5.

4) These shall not be applied to flanged bearings.

 S_{ea} : Axial runout of assembled bearing outer ring

respect to the face

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 2-3 (2) Tolerances for metric series tapered roller bearings

(3) Assembled bearing width and effective width

Unit: µm

Nomina diamete	er		-	Actual b	earing	width d	eviation	1				al effect unit wid ∠			
m	m	clas	ss 0	clas	s 6X	clas	ss 6	class	es 5, 4	clas	ss 0		s 6X	classe	es 5, 4
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
80	120	+200	-200	+100	0	+200	-200	+200	-200	+100	-100	+ 50	0	+100	-100
120	180	+350	-250	+150	0	+350	-250	+350	-250	+150	-150	+ 50	0	+150	-150
180	250	+350	-250	+150	0	+350	-250	+350	-250	+150	-150	+ 50	0	+150	-150
250	315	+350	-250	+200	0	+350	-250	+350	-250	+150	-150	+100	0	+150	-150
315	400	+400	-400	+200	0	+400	-400	+400	$-400^{1)}$	+200	-200	+100	0	+200	$-200^{1)}$
400	500	+450	-450	+200	0	+400	-400	+450	$-450^{1)}$	+225	-225	+100	0	+225	$-225^{1)}$
500	630	+500	-500	-	-	+500	-500	+500	-500 ¹⁾	-	-	-	-	-	-
630	800	+600	-600	-	-	+600	-600	+600	$-600^{1)}$	-	-	-	-	-	-
800	1 000	+750	-750	-	-	+750	-750	+750	-750 ¹⁾	-	-	-	-	-	-

Nomina		Actua	effecti	ve oute	r ring w	idth de	viation
diamet	er d			Δ	T2s		
m	m	clas	ss 0	clas	s 6X	classe	es 5, 4
over	up to	upper	lower	upper	lower	upper	lower
80	120	+100	-100	+ 50	0	+100	-100
120	180	+200	-100	+100	0	+200	-100
180	250	+200	-100	+100	0	+200	-100
250	315	+200	-100	+100	0	+200	-100
315	400	+200	-200	+100	0	+200	$-200^{1)}$
400	500	+225	-225	+100	0	+225	$-225^{1)}$
500	630	-	-	-	-	-	-
630	800	-	-	-	-	-	_
800	1 000	-	-	-	-	-	-

[Note] 1) These shall be applied to bearings of tolerance class 5. [Remark] Values in Italics are prescribed in JTEKT standards.

d: nominal bore diameter

T: nominal assembled bearing width

 T_1 : nominal effective width of inner sub-unit

 T_2 : nominal effective width of outer ring

Table 2-4 Tolerances for metric series double-row and four-row tapered roller bearings (class 0) = BAS 1002 =

(1) Inner ring, outer ring width and overall width

Unit: µm

Nomin diamet		Single pla		V_{dsp}	$V_{d\mathrm{mp}}$	Kia	Single ou or inner r	•		overall in vidth devi		/ outer
-	d im	deviation Δa	<i>l</i> mp	V dsp	V dmp	N _{1a}	deviation Δ_{Bs} ,	$\Delta c_{\rm s}$		le-row Ts		r-row ⊿ _{Ws}
over	up to	upper	lower	max.	max.	max.	upper	lower	upper	lower	upper	lower
50	80	0	- 15	15	11	25	0	- 150	+ 300	- 300	-	_
80	120	0	- 20	20	15	30	0	- 200	+ 400	- 400	+ 500	- 500
120	180	0	- 25	25	19	35	0	- 250	+ 500	- 500	+ 600	- 600
180	250	0	- 30	30	23	50	0	- 300	+ 600	- 600	+ 750	- 750
250	315	0	- 35	35	26	60	0	- 350	+ 700	- 700	+ 900	- 900
315	400	0	- 40	40	30	70	0	- 400	+ 800	- 800	+1 000	-1 000
400	500	0	- 45	45	34	80	0	- 450	+ 900	- 900	+1 200	-1 200
500	630	0	- 60	60	40	90	0	- 500	+1 000	-1 000	+1 200	-1 200
630	800	0	- 75	75	45	100	0	- 750	+1 500	-1500	_	-
800	1 000	0	-100	100	55	115	0	-1 000	+1 500	-1500	-	-

 $V_{d\mathrm{sp}}$: Single plane bore diameter variation,

 $V_{d\mathrm{mp}}$: Mean bore diameter variation

 $K_{\rm ia}$: Radial runout of assembled bearing inner ring

(2) Outer ring

Unit : μm

Nominal diameter	, D	Single pla outside d deviation	iameter	$V_{D{ m sp}}$	$V_{D{ m mp}}$	K_{ea}
over	up to	upper	lower	max.	max.	max.
80	120	0	- 18	18	14	35
120	150	0	- 20	20	15	40
150	180	0	- 25	25	19	45
180	250	0	- 30	30	23	50
250	315	0	- 35	35	26	60
315	400	0	- 40	40	30	70
400	500	0	- 45	45	34	80
500	630	0	- 50	60	38	100
630	800	0	- 75	80	55	120
800	1 000	0	-100	100	75	140
1 000	1 250	0	-125	130	90	160
1 250	1 600	0	-160	170	100	180

 $V_{D{
m sp}}$: Single plane outside diameter variation $V_{D{
m mp}}$: Mean outside diameter variation

 $K_{\rm ea}$: Radial runout of assembled bearing outer ring

d: nominal bore diameter

 $D \ \ : {\it nominal outside diameter}$

B: nominal double inner ring width

C: nominal double outer ring width

T, W: nominal overall width of outer rings (inner rings)

Table 2-5 Tolerances for inch series tapered roller bearings = ABMA 19 =

(1) Inner ring

Unit: µm

Applied	Nominal bo	re diameter		De	viation o	f a single	e bore di	ameter ∠	1_{ds}	
bearing	d, mm	(1/25.4)	Cla	ss 4	Cla	ss 2	Cla	ss 3	Cla	ss 0
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower
	-	76.2 (3.0)	+ 13	0	+13	0	+13	0	+13	0
	76.2 (3.0)	266.7 (10.5)	+ 25	0	+25	0	+13	0	+13	0
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+25	0	+13	0	+13	0
All types	304.8 (12.0)	609.6 (24.0)	+ 51	0	+51	0	+25	0	_	-
	609.6 (24.0)	914.4 (36.0)	+ 76	0	_	-	+38	0	_	-
	914.4 (36.0)	1 219.2 (48.0)	+102	0	_	-	+51	0	_	_
	1 219.2 (48.0)	_	+127	0	_	_	+76	0	_	_

(2) Outer ring

Unit: µm

Applied	Nominal outs	side diameter		Devi	ation of	a single	outside d	liameter	$\Delta D_{\rm S}$	
bearing	D, mm	1 (1/25.4)	Cla	ss 4	Cla	ss 2	Cla	ss 3	Cla	ss 0
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower
	-	266.7 (10.5)	+ 25	0	+25	0	+13	0	+13	0
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+25	0	+13	0	+13	0
All turnes	304.8 (12.0)	609.6 (24.0)	+ 51	0	+51	0	+25	0	_	-
All types	609.6 (24.0)	914.4 (36.0)	+ 76	0	+76	0	+38	0	_	_
	914.4 (36.0)	1 219.2 (48.0)	+102	0	-	-	+51	0	_	-
	1 219.2 (48.0)	-	+127	0	-	-	+76	0	_	-

(3) Radial runout of assembled bearing inner ring / outer ring

Unit : μm

Applied	Nominal outs	ide diameter	Radial	runout of inner r	ing / outer ring $\it K$	$_{ m ia}$, $K_{ m ea}$
bearing	D , mm	(1/25.4)	Class 4	Class 2	Class 3	Class 0
type	over	up to	max.	max.	max.	max.
	-	266.7 (10.5)	51	38	8	4
	266.7 (10.5)	304.8 (12.0)	51	38	8	4
All tumos	304.8 (12.0)	609.6 (24.0)	51	38	18	-
All types	609.6 (24.0)	914.4 (36.0)	76	51	51	-
	914.4 (36.0)	1 219.2 (48.0)	76	-	76	-
	1 219.2 (48.0)	-	76	_	76	-

(4) Assembled bearing width and overall width

Unit: µm

Applied	Nomin diamet		Nominal diamete							ctual be					r̄s, ⊿	Ws
bearing type	d, mm	(1/25.4)	D, mm	(1/25.4)	C	Clas	ss 4		Cla	ss 2		Cla	ss 3		Clas	ss 0
турс	over	up to	over	up to	upp	er	lower	up	per	lower	up	per	lower	up	per	lower
	-	101.6 (4.0)	-	-	+ 2	03	0	+	203	0	+	203	- 203	+	203	- 203
	101.6 (4.0)	266.7 (10.5)			+ 3	56	- 254	+	203	0	+	203	- 203	+	203	- 203
Cinalo row	266.7 (10.5)	304.8 (12.0)	-	-	+ 3	56	- 254	+	203	0	+	203	- 203	+	203	- 203
Single-row	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-		-	+	381	- 381	+	203	- 203		-	-
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-		-	+	381	- 381	+	381	- 381		-	-
	609.6 (24.0)		-	-	+ 3	81	- 381		-	-	+	381	- 381		_	-
	-	101.6 (4.0)	ı	-	+ 4	06	0	+	406	0	+	406	- 406	+	406	- 406
	101.6 (4.0)	266.7 (10.5)	_	-	+ 7	11	- 508	+	406	- 203	+	406	- 406	+	406	- 406
Double-row	266.7 (10.5)	304.8 (12.0)	-	-	+ 7	11	- 508	+	406	- 203	+	406	- 406	+	406	- 406
Double-low	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-		-	+	762	- 762	+	406	- 406		_	_
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-		-	+	762	- 762	+	762	- 762		_	-
	609.6 (24.0)		-	-	+ 7	62	- 762		-	-	+	762	- 762		_	-
Double-row	ı	127.0 (5.0)	1	_	-		_	+	254	0	+	254	0		-	_
(TNA type)	127.0 (5.0)		-	-	-		-	+	762	0	+	762	0		_	-
Four-row	Total dimen	sional range	_	_	+1 5	24	-1 524	+1	524	-1 524	+1	524	-1 524	+1	524	-1 524

d: nominal bore diameter

D: nominal outside diameter

T, W: nominal assembled bearing width and

nominal overall width of outer rings (inner rings)

 $\begin{tabular}{ll} \textbf{Table 2-6} & \textbf{Tolerances for metric J series tapered roller bearings} \end{tabular} \label{eq:table 2-6}$

(1) Bore diameter and width of inner ring and assembled bearing width

Unit: µm

Nom bore diam			Devi	ation o	fasin ⊿		re diam	eter			Devia	ition of	a sing ⊿		er ring	width			Devia	ation of	1	tual be	earing	width		Nom bore diam	eter
n	nm	Class	s PK	Class	PN	Class	s PC	Class	s PB	Class	s PK	Class	s PN	Class	s PC	Clas	s PB	Class	s PK	Class	s PN	Clas	s PC	Class	s PB	m	m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	over	up to
80	120	0	-20	0	-20	0	-15	0	-10	0	-150	0	-50	0	-300	0	-300	+200	-200	+100	0	+200	-200	+200	-200	80	120
120	180	0	-25	0	-25	0	-18	0	-13	0	-200	0	-50	0	-300	0	-300	+350	-250	+150	0	+350	-250	+200	-250	120	180
180	250	0	-30	0	-30	0	-22	0	-15	0	-200	0	-50	0	-350	0	-350	+350	-250	+150	0	+350	-250	+200	-300	180	250
250	315	0	-35	0	-35	0	-22	0	-15	0	-200	0	-50	0	-350	0	-350	+350	-250	+200	0	+350	-300	+200	-300	250	315

(2) Outside diameter and width of outer ring and radial runout of assembled bearing inner ring / outer ring

Unit: µm

Nomi outsi diam	de		Devia	tion of	1	le outs	ide dia	meter			Devia	ition of	1	jle out e	er ring	width		Radia	I runout of ini $K_{ m ia}$,	•	er ring	Nom outs diam	ide
m	n	Class	s PK	Class	s PN	Class	s PC	Class	s PB	Class	s PK	Class	PN	Clas	s PC	Class	s PB	Class PK	Class PN	Class PC	Class PB		nm
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	max.	max.	max.	max.	over	up to
120	150	0	-20	0	-20	0	-15	0	-11	0	-200	0	-100	0	-200	0	-200	40	40	7	4	120	150
150	180	0	-25	0	-25	0	-18	0	-13	0	-200	0	-100	0	-250	0	-250	45	45	8	4	150	180
180	250	0	-30	0	-30	0	-20	0	-15	0	-250	0	-100	0	-250	0	-250	50	50	10	5	180	250
250	315	0	-35	0	-35	0	-25	0	-18	0	-250	0	-100	0	-300	0	-300	60	60	11	5	250	315
315	400	0	-40	0	-40	0	-28	-	-	0	-250	0	-100	0	-300	-	-	70	70	13	-	315	400

d: nominal bore diameter D: nominal outside diameter

B: nominal inner ring width

C: nominal outer ring width

T: nominal assembled bearing width

[Note] 1) Bearings with supplementary code "J" attached at the front of bearing number.

Ex. JHM720249/JHM720210, and the like

Table 2-7 Tolerances for thrust ball bearings = JIS B 1514 =

(1) Shaft washer

Unit: µm

Nomina diamet	er	diameter de	e mean bore viation dmp	Single plane bore diameter variation $V_{d\mathrm{sp}}$		er raceway to $S_{ m i}^{11}$		bearing he	of the actual ight Ts
m	m	classe	s 0, 6, 5	classes 0, 6, 5	class 0	class 6	class 5	classe	s 0, 6, 5
over	up to	upper	lower	max.		max.		upper	lower
80	120	0	- 20	15	15	8	4	0	-150
120	180	0	- 25	19	15	9	5	0	-175
180	250	0	- 30	23	20	10	5	0	-200
250	315	0	- 35	26	25	13	7	0	-225
315	400	0	- 40	30	30	15	7	0	-300
400	500	0	- 45	34	30	18	9	0	-375
500	630	0	- 50	38	35	21	11	0	-450
630	800	0	- 75	55	40	25	13	0	-525
800	1 000	0	-100	75	45	30	15	0	-600
1 000	1 250	0	-125	95	50	35	18	0	-675

[Note] 1) Applies only to thrust ball bearings with 90° contact angle.

[Remark] Values in Italics are prescribed in JTEKT standards.

(2) Housing washer

Unit: µm

Nominal diameter		diameter dev		Single plane outside diameter variation	Washer raceway to back face thickness variation
m	ım		Dmp	$V_{D\mathrm{sp}}$	$S_{\rm e}^{1)2)}$
		classes	s 0, 6, 5	classes 0, 6, 5	classes 0, 6, 5
over	up to	upper	lower	max.	max.
80	120	0	- 22	17	
120	180	0	- 25	19	
180	250	0	- 30	23	
250	315	0	- 35	26	
315	400	0	- 40	30	Shall conform to
400	500	0	- 45	34	the tolerance S_i on d of the same
500	630	0	- 50	38	bearing
630	800	0	- 75	55	
800	1 000	0	-100	75	
1 000	1 250	0	-125	95	
1 250	1 600	0	-160	120	

d : shaft washer nominal bore diameter

D: housing washer nominal outside diameter

T : nominal bearing height (single direction)

Table 2-8 Accuracies of spherical thrust roller bearings (class 0) = JIS B 1514 =

(1) Shaft washer

Unit: µm

Nominal bo	re diameter		e mean bore	Single plane bore		Refer.	
	d	diameter de	eviation dmp	diameter variation $V_{d m sp}$	$S_{ m d}$	bearing he	of the actual ight
over	up to	upper	lower	max.	max.	upper	lower
80	120	0	- 20	15	25	+200	-200
120	180	0	- 25	19	30	+250	-250
180	250	0	- 30	23	30	+300	-300
250	315	0	- 35	26	35	+350	-350
315	400	0	- 40	30	40	+400	-400
400	500	0	- 45	34	45	+450	-450
500	630	0	- 50	38	60	+500	-500
630	800	0	- 75	55	70	+550	-550
800	1 000	0	-100	75	80	+600	-600
1 000	1 250	0	-125	95	100	+650	-650

 S_d : Perpendicularity of inner ring face with respect to the bore [Remark] Values in Italics are prescribed in JTEKT standards.

(2) Housing washer

Unit: µm

	side diameter	Single plane i diameter devi	
over	up to	upper	lower
120	180	0	- 25
180	250	0	- 30
250	315	0	- 35
315	400	0	- 40
400	500	0	- 45
500	630	0	- 50
630	800	0	- 75
800	1 000	0	-100

d: shaft washer nominal bore diameter

 ${\it D\,}$: housing washer nominal outside diameter

T: nominal bearing height

[Notes] 1) These shall be applied to washer with flat back face only.

2) Applies only to thrust ball bearings with 90° contact angle.

Table 2-9 Permissible values for chamfer dimensions = JIS B 1514 =

(1) Radial bearing (tapered roller bearings excluded)

Unit: mm

$r_{ m min}$ or		ore diameter	c	nax Dr max
r _{1 min}	over	up to	Radial direction	Axial direction
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
1	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
1.5	-	120	2.3	4
1.5	120	_	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	_	3.8	6
	_	280	4	6.5
2.1	280	_	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
	280	_	5	7
	-	280	5	8
3	280	-	5.5	8
4	-	-	6.5	9
5	-	-	8	10
6	-	-	10	13
7.5	-		12.5	17
9.5	-	-	15	19
12	-	-	18	24
15	-	-	21	30
19	-	_	25	38

[Remarks]

- 1. Value of $r_{\rm max}$ or $r_{\rm 1~max}$ in the axial direction of bearings with nominal width lower than 2 mm shall be the same as the value in radial direction.
- 2. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{\rm min}$ or $r_{\rm 1 \, min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(2) Radial bearings with locating snap ring (snap ring groove side) and cylindrical roller bearings (separete thrust collar and loose rib side)

Unit: mm

r _{1 min}	nominal o	ore dia. or utside dia.	r_1	max
, 1 111111	d o	r D up to	Radial direction	Axial direction
0.6	-	40	1	1.5
0.0	40	_	1.3	1.5
1	-	50	1.5	2.2
1	50	_	1.9	2.2
1.1	-	120	2	2.7
1.1	120	_	2.5	2.7
1.5	-	120	2.3	3.5
1.5	120	_	3	3.5
	-	80	3	4
2	80	220	3.5	4
	220	-	3.8	4
2.1	-	280	4	4.5
2.1	280	_	4.5	4.5
	-	100	3.8	5
2.5	100	280	4.5	5
	280	_	5	5
3	-	280	5	5.5
J	280	_	5.5	5.5
4	-	_	6.5	6.5
5	-	_	8	8
6	_	_	10	10

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{1 min} which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(3) Cylindrical roller bearings (non-rib side) and angular contact ball bearings (front face side) Unit: mm

201	nominal o	ore dia. or utside dia.	r_1	max
r _{1 min}	d o	r D	Radial	Axial
	over	up to	direction	direction
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
1	50	_	1.9	3
1.1	-	120	2	3.5
1.1	120	_	2.5	4
1.5	-	120	2.3	4
1.5	120	_	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	_	3.8	6

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_1 \min$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(4) Metric series tapered roller bearing

Unit: mm

$r_{ m min}$ or	nominal o	ore dia. or utside dia.), mm	c	nax or max
r _{1 min}	over	up to	Radial direction	Axial direction
0.6	-	40	1.1	1.7
0.0	40	-	1.3	2
1	-	50	1.6	2.5
1	50	-	1.9	3
	-	120	2.3	3
1.5	120	250	2.8	3.5
	250	-	3.5	4
	-	120	2.8	4
2	120	250	3.5	4.5
	250	-	4	5
	-	120	3.5	5
2.5	120	250	4	5.5
	250	-	4.5	6
	-	120	4	5.5
3	120	250	4.5	6.5
3	250	400	5	7
	400	-	5.5	7.5
	-	120	5	7
4	120	250	5.5	7.5
4	250	400	6	8
	400	-	6.5	8.5
-	-	180	6.5	8
5	180	-	7.5	9
6	-	180	7.5	10
6	180	-	9	11
7.5	-	-	12.5	17
9.5	-	-	15	19

[Note] 1) Inner ring shall be included in division d, and outer ring, in division D.

[Remarks]

- 1. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of rmin or r1 min which contacts the inner ring back face and bore, or the outer ring back face and outside surface.
- 2. Values in Italics are provided in JTEKT standards.

(5) Thrust bearing

Unit: mm

r_{\min} or $r_{1 \min}$	$r_{ m max}$ or $r_{ m 1 max}$
, min or , i min	Radial and axial direction
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8
6	10
7.5	12.5
9.5	15
12	18
15	21
19	25

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1 \min}$ which contacts with the shaft washer back face and bore, or the housing washer back face and outside surface.

Axial direction

 $\begin{pmatrix}
\text{(A)} : r_{\min} \text{ or } r_{1 \min} \\
\text{(B)} : r_{\max} \text{ or } r_{1 \max}
\end{pmatrix}$

Table 2-10 Tolerances for tapered bores of radial bearings (class 0 ··· JIS B 1514)

Theoretical tapered bore

Tapered bore with single plane mean bore diameter deviation

(1) Basically tapered bore (taper 1:12) Unit : µm

Nominal bore diameter d, mm		Δ	<i>l</i> mp	Δ_{d1mp}	$V_{d\mathrm{sp}}^{(1)}$	
over	up to	upper	lower	upper	lower	max.
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+110	0	+ 70	0	70
630	800	+125	0	+ 80	0	_
800	1 000	+140	0	+ 90	0	-
1 000	1 250	+165	0	+105	0	_
1 250	1 600	+195	0	+125	0	-

(2) Basically tapered bore (taper 1:30) Unit : µm

Nominal bore diameter d, mm		Δ	<i>l</i> mp	Δ_{d1mp}	$V_{dsp}^{1)}$	
over	up to	upper	lower	upper	lower	max.
50	80	+15	0	+30	0	19
80	120	+20	0	+35	0	22
120	180	+25	0	+40	0	40
180	250	+30	0	+46	0	46
250	315	+35	0	+52	0	52
315	400	+40	0	+57	0	57
400	500	+45 0		+63	0	63
500	630	+50	0	+70	0	70

[Note] 1) These shall be applied to all radial planes with tapered bore, not be applied to bearings of diameter series 7, 8. [Remark] 1) Symbols of quantity d1: reference diameter at theoretical large end of tapered bore

$$d_1 = d + \frac{1}{12}B$$
 or $d_1 = d + \frac{1}{30}B$

 Δ_{dmp} : single plane mean bore diameter deviation at theoretical small end of tapered bore Δ_{d1mp} : single plane mean bore diameter deviation at theoretical large end of tapered bore

 $V_{
m dsp}$: single plane bore diameter variation (a tolerance for the diameter variation given by

a maximum value applying in any radial plane of the bore)

B: nominal inner ring width

 $\alpha: \frac{1}{2}$ of nominal tapered angle of tapered bore

3. Bearing fits

3-1 Purpose of fit

The purpose of fit is to securely fix the inner or outer ring to the shaft or housing, to preclude detrimental circumferential sliding on the fitting surface.

Such detrimental sliding (referred to as "creep") will cause abnormal heat generation, wear of the fitting surface, infiltration of abrasion metal particles into the bearing, vibration, and many other harmful effects, which cause a deterioration of bearing functions.

Therefore, it is necessary to fix the bearing ring which is rotating under load to the shaft or housing with interference.

3-2 Tolerance and fit for shaft & housing

For metric series bearings, tolerances for the shaft diameter and housing bore diameter are standardized in JIS B 0401 "limits and fits for engineering" (based on ISO 286; shown in Appendixes at the back of this catalog).

Bearing fits on the shaft and housing are determined based on the tolerances specified in the above standard.

Fig. 3-1 shows the relationship between tolerances for shaft and housing bore diameters and fits for bearings of class 0 tolerance.

Fig. 3-1 Relationship between tolerances for shaft/housing bore diameters and fits (bearings of class 0 tolerance)

3-3 Fit selection

In selecting the proper fit, careful consideration should be given to bearing operating conditions.

Major specific considerations are:

- Load characteristics and magnitude
- Temperature distribution in operating
- Bearing internal clearance
- Surface finish, material and thickness of shaft and housing
- Mounting and dismounting methods
- Necessity to compensate for shaft thermal expansion at the fitting surface
- Bearing type and size

In view of these considerations, the following paragraphs explain the details of the important factors in fit selection.

1) Load characteristics

Load characteristics are classified into three types: rotating inner ring load; rotating outer ring load and indeterminate direction load.

Table 3-1 tabulates the relationship between these characteristics and fit.

Table 3-1 Load characteristics and fits

			F	Typical	
Rotation pattern	Direction of load	Loading conditions	Innerring & shaft	Outer ring & housing	application
Inner ring : rotating Outer ring : stationary	Stationary	Rotating inner ring load	Interference fit necessary	Clearance fit acceptable	Spur gear boxes, motors
Inner ring : stationary Outer ring : rotating	Rotating with outer ring	Stationary outer ring load	(k, m, n, p, r)	(F, G, H, JS)	Greatly unbalanced wheels
Inner ring : stationary Outer ring : rotating	Stationary	Stationary inner ring load	Clearance fit acceptable	Interference fit necessary	Running wheels & pulleys with stationary shaft
Inner ring : rotating Outer ring : stationary	Rotating with inner ring	Rotating outer ring load	(f, g, h, js)	(K, M, N, P)	Shaker screens (unbalanced vibration)
Indeterminate	Rotating or stationary	Indeterminate direction load	Interference fit	Interference fit	Cranks

2) Effect of load magnitude

When a radial load is applied, the inner ring will expand slightly. Since this expansion enlarges the circumference of the bore minutely, the initial interference is reduced.

The reduction can be calculated by the following equations:

[In the case of
$$F_{\rm r} \le$$
 0.25 C_0]
$$\varDelta_{d\rm F} = 0.08 \ \sqrt{\frac{d}{B} \cdot F_{\rm r}} \times 10^{-3} \ \cdots (3-1)$$

[In the case of $F_r > 0.25 C_0$]

$$\Delta_{dF} = 0.02 \frac{F_r}{B} \times 10^{-3}$$
(3-2)

where

 $\Delta d_{\rm F}$: reduction of inner ring interference mm d: nominal bore diameter of bearing mm d: nominal inner ring width mm

 $F_{\rm r}$: radial load N

 C_0 : basic static load rating N

Consequently, when the radial load, exceeds the ${\it C}_0$ value by more than 25 %, greater interference is needed.

Much greater interference is needed, when impact loads are expected.

3) Effect of fitting surface roughness

The effective interference obtained after fitting differs from calculated interference due to plastic deformation of the ring fitting surface. When the inner ring is fitted, the effective interference, subject to the effect of the fitting surface finish, can be approximated by the following equations:

[In the case of a ground shaft]

$$\Delta_{\text{deff}} \doteq \frac{d}{d+2} \Delta_d$$
 (3-3)

[In the case of a turned shaft]

$$\Delta_{\text{deff}} \doteq \frac{d}{d+3} \Delta_d \dots (3-4)$$

where:

 $\Delta_{d ext{eff}}$: effective interference mm Δ_{d} : calculated interference mm

d: nominal bore diameter of bearing $\,$ mm

4) Effect of temperature

A bearing generally has an operating temperature, higher than the ambient temperature. When the inner ring operates under load, its temperature generally becomes higher than that of the shaft and the effective interference decreases due to the greater thermal expansion of the inner ring.

If the assumed temperature difference between the bearing inside and surrounding housing is $\varDelta_{\rm t}$, the temperature difference at the fitting surfaces of the inner ring and shaft will be approximately (0.10 to 0.15) × $\varDelta_{\rm t}$.

The reduction of interference (Δd) due to temperature difference is then expressed as follows:

$$\Delta_{dt} = (0.10 \text{ to } 0.15) \Delta_{t} \cdot \alpha \cdot d$$

 $= 0.001 5 \Delta_{t} \cdot d \times 10^{-3} \dots (3-5)$

where:

 Δ_{dt} : reduction of interference due to temperature difference mm

 α : linear expansion coefficient of bearing steel ($= 12.5 \times 10^{-6}$) 1/°C

d: nominal bore diameter of bearing mm

Consequently, when a bearing is higher in temperature than the shaft, greater interference is required.

However, a difference in temperature or in the coefficient of expansion may sometimes increase the interference between outer ring and housing. Therefore, when clearance is provided to accommodate shaft thermal expansion, care should be taken.

5) Maximum stress due to fit

When a bearing is fitted with interference, the bearing ring will expand or contract, generating internal stress.

Should this stress be excessive, the bearing ring may fracture.

The maximum bearing fitting-generated stress is determined by the equation in Table 3-2

In general, to avoid fracture, it is best to adjust the maximum interference to less than 1/1 000 of the shaft diameter, or the maximum stress (σ) , determined by the equation in Table 3-2, should be less than 120 MPa.

6) Other considerations

When a high degree of accuracy is required, the tolerance of the shaft and housing must be improved. Since the housing is generally less easy to machine precisely than the shaft, it is advisable to use a clearance fit on the outer ring.

With hollow shafts or thin section housings, greater than normal interference is needed.

With split housings, on the other hand, smaller interference with outer ring is needed.

When the housing is made of aluminum or other light metal alloy, relatively greater than normal interference is needed.

In such a case, consult with JTEKT.

Fits recommended for radial bearings and thrust bearings are shown in Tables 3-3 through 3-6. Fits for rolling mill roll neck bearings are described in section 3-4.

Table 3-2 Maximum fitting-generated stress in bearings

Shaft & inner ring	Housing bore & outer ring
(In the case of hollow shaft)	(In the case of $D_{ m h} eq \infty$)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{\text{deff}}}{d} \cdot \frac{\left(1 - \frac{d_0^2}{d^2}\right) \left(1 + \frac{d^2}{D_i^2}\right)}{\left(1 - \frac{d_0^2}{D_i^2}\right)}$	$\sigma = E \cdot \frac{\Delta_{Deff}}{D} \cdot \frac{\left(1 - \frac{D^2}{D_h^2}\right)}{\left(1 - \frac{D_e^2}{D_h^2}\right)}$
(In the case of solid shaft)	(In the case of $D_{ m h}$ = ∞)
$\sigma = \frac{E}{2} \cdot \frac{\Delta deff}{d} \cdot \left(1 + \frac{d^2}{D_i^2} \right)$	$\sigma = E \cdot \frac{\Delta Deff}{D}$

where:

 d_0 : bore diameter of hollow shaft

 $\begin{array}{llll} & D_e \colon \text{raceway contact diameter of outer ring} & \text{mm} \\ & & \left\{\begin{array}{lll} \text{ball bearing} \cdots \cdots D_e \doteqdot 0.2 & (4D+d) \\ \text{mm} & \left\{\begin{array}{lll} \text{roller bearing} \cdots D_e \doteqdot 0.25 & (3D+d) \\ \end{array}\right. \\ \text{mm} & D \colon \text{nominal outside diameter} \\ & \left(\text{bore diameter of housing}\right) & \text{mm} \\ & \Delta_{Deff} \colon \text{effective interference of outer ring} & \text{mm} \\ \text{mm} & D_h \colon \text{outside diameter of housing} & \text{mm} \\ \\ \text{mm} & E \colon \text{young's modulus} & 2.08 \times 10^5 \, \text{MPa} \\ \end{array}$

[Remark] The above equations are applicable when the shaft and housing are steel
When other materials are used, JTEKT should be consulted.

Table 3-3 (1) Recommended shaft fits for radial bearings (classes 0, 6X, 6)

С	Conditions 1)		Ball bearing Tapered roller bearing		Sphe rolle bear		Class of shaft tolerance range	Remarks	Applications (for reference)	
					meter (-		
		over up to over up to over up to Cylindrical bore bearing (classes 0.)		6V 6)						
	Light load or fluctuating load $\left(\frac{P_{\rm T}}{C_{\rm r}} \leqq 0.06\right)$	18 100	100 200	- 40 140	40 140 200	- - -	- - -	js 6 k 6 m 6	For applications requiring high accuracy, js 5,k 5 and m 5 should be used in place of js 6, k 6 and m 6.	Electric appliances, machine tools, pumps, blowers, carriers etc.
Rotating inner ring load or indeterminate direction load	Normal load $\left[0.06 < \frac{P_{\rm r}}{C_{\rm r}} \le 0.12\right]$	18 100 140 200 - -	100 140 200 280 -	- 40 100 140 200 -	40 100 140 200 400 —	- 40 65 100 140 280 500	40 65 100 140 280 500	k 5 m 5 m 6 n 6 p 6 r 6	For single-row tapered roller bearings and angular contact ball bearings, k 5 and m 5 may be replaced by k 6 and m 6, because internal clearance reduction due to fit need not be considered.	Electric motors, turbines, internal combustion engines, wood-working machines etc.
	Heavy load or impact load $\left(\frac{P_{\rm r}}{C_{\rm r}} > 0.12\right)$	- - -	- - -	50 140 200 —	140 200 —	50 100 140 500	100 140 500	n 6 p 6 r 6 r 7	Bearings with larger internal clearance than standard are required.	Railway rolling stock axle journals, traction motors
Stationary inner ring load	Inner ring needs to move smoothly on shaft.		All shaft diameters					g 6	For applications requiring high accuracy, g 5 should be used. For large size bearing, f 6 may be used for easier movement.	Stationary shaft wheels
Stationary inner ring	Inner ring does not need to move smoothly on shaft.	All shaft diameters		h 6	For applications requiring high accuracy, h 5 should be used.	Tension pulleys, rope sheaves etc.				
Centra	Central axial load only A		All	shaft	diamete	ers		js 6	-	
	Tapered	bore b	earing	(class	0) (with	n adap	ter or w	vithdrawal slee	eve)	
	All loads		All	shaft	diamete	ers		h 9 / IT 5 ²⁾	For transmission shafts, h 10 / IT 7 ²⁾ may be applied.	_

[[]Notes] 1) Light, normal, and heavy loads refer to those with dynamic equivalent radial loads (P_r) of 6 % or lower, over 6 % up to 12 % inclusive, and over 12 % respectively in relation to the basic dynamic radial load rating (C_r) of the bearing concerned.

[Remark] This table is applicable to solid steel shafts.

²⁾ IT 5 and IT 7 mean that shaft roundness tolerance, cylindricity tolerance, and other errors in terms of shape should be within the tolerance range of IT 5 and IT 7, respectively. For numerical values for standard tolerance grades IT 5 and IT 7, refer to supplementary table at end of this catalog.

Table 3-3 (2) Recommended housing fits for radial bearings (classes 0, 6X, 6)

	С	onditions				
Housing	Load type etc. ¹⁾		Outer ring axial displace- ment 2)	Class of housing bore tolerance range	Remarks	Applications (for reference)
		All load types		Н7	G 7 may be applied when a large size bearing is used, or if the temperature dif- ference is large between the outer ring and housing.	Ordinary bearing devices, railway rolling stock axle boxes, power trans- mission equipment etc.
One-piece or split type		Light or normal load	Easily displaceable	H 8	-	
Spill type	Stationary outer ring load	High temperature at shaft and inner ring		G 7	F 7 may be applied when a large size bearing is used, or if the temperature dif- ference is large between the outer ring and housing.	Drying cylinders etc.
		Light or normal load, requiring	Not displaceable in principle	K 6	Mainly applied to roller bearings.	
		high running accuracy	Displaceable	JS 6	Mainly applied to ball bearings.	
		Requiring low-noise rotation	Easily displaceable	H 6	-	
		Light or normal load	Normally displaceable	JS 7	For applications requiring high	Electric motors,
One-piece type	Indetermi- nate direction load	Normal or heavy load	Not displaceable in principle	K 7	accuracy, JS 6 and K 6 should be used in place of JS 7 and K 7.	pumps, crankshaft main bearings etc.
туре		High impact load	Not displaceable	M 7	-	Traction motors etc.
		Light or fluctuating load		M 7	-	Conveyor rollers, ropeways, tension pulleys etc.
	Rotating	Normal or heavy load	Not	N 7	Mainly applied to ball bearings.	Wheel hubs with ball bearings etc.
	outer ring load	Thin section housing, heavy or high impact load	displaceable	P 7	Mainly applied to roller bearings.	Wheel hubs with roller bearings, bearings for large end of connecting rods etc.

[Notes] 1) Loads are classified as stated in Note 1) to Table 3-3 (1).

Indicating distinction between applications of non-separable bearings permitting and not permitting axial displacement of the outer rings.

[Remarks] 1. This table is applicable to cast iron or steel housings.

If only central axial load is applied to the bearing, select such tolerance range class as to provide clearance in the radial direction for outer ring.

Table 3-4 Recommended shaft and housing fits for inch series tapered roller bearings (classes 4, 2)

(1) Fits for shaft

Load type		Nomina diamet mm (1	Deviation a single diameter Δd_{ds} ,	e bore er	Dimensional tolerance of shaft diameter		Remarks	
		over	up to	upper	lower	upper	lower	
		76.2 (3.0)	304.8 (12.0)	+25	0	+ 64	+ 38	
	Normal load	304.8 (12.0)	609.6 (24.0)	+51	0	+127	+ 76	
Rotating		609.6 (24.0)	914.4 (36.0)	+76	0	+190	+114	
inner ring load	Heavy load	76.2 (3.0)	304.8 (12.0)	+25	0	Should b	e such	Generally, bearing
	Impact load High speed	304.8 (12.0)	609.6 (24.0)	+51	0			internal clearance should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+76	0	0.000 5 × a		than standard.
	Normal load	76.2 (3.0)	304.8 (12.0)	+25	0	+ 25	0	
	without	304.8 (12.0)	609.6 (24.0)	+51	0	+ 51	0	
	impact	609.6 (24.0)	914.4 (36.0)	+76	0	+ 76	0	
Rotating	Normal load	76.2 (3.0)	304.8 (12.0)	+25	0	0	- 25	Inner ring is
outer ring	without	304.8 (12.0)	609.6 (24.0)	+51	0	0	- 51	displaceable in
load	impact	609.6 (24.0)	914.4 (36.0)	+76	0	0	- 76	axial direction.
	Heavy load	76.2 (3.0)	304.8 (12.0)	+25	0	Should b		Generally, bearing
	Impact load	304.8 (12.0)	609.6 (24.0)	+51	0	that avera		internal clearance
-	High speed rotation	609.6 (24.0)	914.4 (36.0)	+76	0	0.000 5 × a		should be larger than standard.

(2) Fits for housing

Load type		Nomina diamete / mm (1	Deviation a single diameter Δ_{Ds} ,	outside	Dimensional tolerance of housing bore diameter μm		Remarks	
		over	up to	upper	lower	upper	lower	
		76.2 (3.0)	127.0 (5.0)	+ 25	0	+ 76	+ 51	Outer ring is easily
	Used for free or fixed side.	127.0 (5.0)	304.8 (12.0)	+ 25	0	+ 76	+ 51	displaceable in
	of fixed side.	304.8 (12.0) 609.6 (24.0)	609.6 (24.0) 914.4 (36.0)	+ 51 + 76	0	+152 +229	+105 +152	axial direction.
		` '	. ,					
	Position of	76.2 (3.0)	127.0 (5.0)	+ 25	0	+ 25	0	Outor ring is
Rotating	outer ring is adjust-	127.0 (5.0)	304.8 (12.0)	+ 25	0	+ 51	0	Outer ring is displaceable in
inner ring load	able (in axial	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 76	+ 25	axial direction.
load	direction).	609.6 (24.0)	914.4 (36.0)	+ 76	0	+127	+ 51	
	Position of outer ring	76.2 (3.0)	127.0 (5.0)	+ 25	0	- 25	- 51	
	is not	127.0 (5.0)	304.8 (12.0)	+ 25	0	- 25	- 51	Outer ring is fixed in
	adjustable	304.8 (12.0)	609.6 (24.0)	+ 51	0	- 25	- 76	axial direction.
	(in axial direction).	609.6 (24.0)	914.4 (36.0)	+ 76	0	- 25	-102	
	Position of outer ring	76.2 (3.0)	127.0 (5.0)	+ 25	0	- 25	- 51	
Rotating	is not	127.0 (5.0)	304.8 (12.0)	+ 25	0	- 25	- 51	Outer ring is fixed in
outer ring load	adjustable	304.8 (12.0)	609.6 (24.0)	+ 51	0	- 25	- 76	axial direction.
	(in axial direction).	609.6 (24.0)	914.4 (36.0)	+ 76	0	- 25	-102	

Table 3-5 Recommended shaft and housing fits for metric J series tapered roller bearings (classes PK, PN)

(1) Fits for shaft

L	Load type		al bore er d	Class of shaft tolerance range	Remarks
		over	up to		
Rotating	Normal load	10 120	120 500	m 6 n 6	
inner ring load	Heavy load Impact load High speed rotation	10 120 180 250	120 180 250 500	n 6 p 6 r 6 r 7	Generally, bearing internal clearance should be larger than standard.
Rotating	Normal load without impact	80	315	h 6 or g 6	
outer ring load	Heavy load Impact load High speed rotation	10 120 180 250	120 180 250 500	n 6 p 6 r 6 r 7	Generally, bearing internal clearance should be larger than standard.

(2) Fits for housing

Load type		Nominal outside diameter D mm		Class of housing bore diameter	Remarks
			up to	tolerance range	
	Used for free or fixed side	18 315	315 400	G 7 F 6	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction)	18	400	J 7	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction)	18	400	P 7	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction)	18 120 180	120 180 400	R 7	Outer ring is fixed in axial direction.

Table 3-6 Recommended shaft and housing fits for thrust bearings (classes 0, 6)
(1) Fits for shaft

Las	al tropa	Shaft diar	neter, mm	Class of shaft	Domonico
Loa	d type	over	up to	tolerance range	Remarks
Central axial lo (generally for t	oad hrust bearings)	All shaft of	diameters	js 6	h 6 may also be used.
Combined load (spherical)	Stationary shaft washer load	All shaft of	diameters	js 6	-
thrust roller bearing	Rotating shaft washer load or indeterminate direction load	- 200 200 400 400 -		k 6 m 6 n 6	js 6, k 6 and m 6 may be used in place of k 6, m 6 and n 6, respectively.

(2) Fits for housing

Loa	d type	Class of housing bore diameter tolerance range	Remarks				
Central axial load (generally for thrust bearings)		-	Select such tolerance range class as provides clearance in the radial direction for housing washer.				
(gonorany for a	maor boarings)	H 8	In case of thrust ball bearings requiring high accuracy				
Combined load	Stationary housing washer load	H 7	-				
thrust	Indeterminate direction load or	K 7	In case of application under normal operating conditions.				
bearing	rotating housing washer load	M 7	In case of comparably large radial load.				

[Remark] This table is applicable to cast iron or steel housings.

3-4 Recommended fits for rolling mill roll neck bearing

A rolling mill roll neck bearing is subject to inner ring rotating load. Its inner ring always receives a load on its entire circumference, and a load is applied to the outer ring at only one location.

Thus, interference fit is required for the inner ring to prevent any creep, and clearance fit should be used for the outer ring, in principle. For easy attachment, clearance fit has been used for roll neck bearings (because recombination and replacement must be frequently done for roll grinding).

However, with more increase in rolling speed and rolling load, interference fit has been more

commonly used to prevent danger of creep to be generated when clearance fit is used and improve in accuracy of products.

Clearance fit is used for the inner rings of deep groove ball bearings and angular ball bearings used as bearings receiving axial load. Between the outer ring and the chock, adequate clearance should be provided in order to prevent any radial load applied to the outer ring.

Tables 3-7 through 3-10 show the recommended fits for roll neck bearings.

When machining a roll neck or chock, its roundness must not exceed 50 % of the allowable tolerances shown in Tables 3-7 through 3-10. If its roundness is poor, fretting corrosion may frequently occur.

Table 3-7 Recommended fits for roll neck metric series four-row tapered roller bearing

	Double co	one and i	roll neck	(shaft)		Cup and chock (housing)						
Nominal bore diameter		Single plane mean bore diameter deviation Δ _{dmp} μm		Roll neck diameter deviation μm		diamete	outside r	Single mean d diamet deviation ∠Dm	utside er	Chock bore diameter deviation µm		
over	up to	upper lower u		upper	lower	over	up to	upper	lower	upper	lower	
80	120	0	- 20	-120	-150	120	150	0	- 20	+ 57	+ 25	
120	180	0	- 25	-150	-175	150	180	0	- 25	+100	+ 50	
180	250	0	- 30	-175	-200	180	250	0	- 30	+120	+ 50	
250	315	0	- 35	-210	-250	250	315	0	- 35	+115	+ 50	
315	400	0	- 40	-240	-300	315	400	0	- 40	+110	+ 50	
400	500	0	- 45	-245	-300	400	500	0	- 45	+105	+ 50	
500	630	0	- 50	-250	-300	500	630	0	- 50	+100	+ 50	
630	800	0	- 75	-325	-400	630	800	0	- 75	+150	+ 75	
800	1 000	0	-100	-350	-425	800	1 000	0	-100	+150	+ 75	
1 000	1 250	0	-125	-425	-500	1 000	1 250	0	-125	+175	+100	
1 250	1 600	0	0 -160		-600	1 250	1 600	0	-160	+215	+125	
						1 600	2 000	0	-200	+250	+150	

Table 3-8 Recommended fits for roll neck inch series four-row tapered roller bearing

	Double co	one and i	roll neck	(shaft)			Cup a	nd choc	k (housi	ng)	
Nominal bore diameter d mm (1/25.4)		Single bore diameter deviation Δ_{ds} μm		Roll neck diameter deviation μm		diamete	outside r) /25.4)	diamete		Chock bore diameter deviation μm	
over	up to	upper	lower	upper	lower	over	up to	upper	lower	upper	lower
76.2 (3.0)	101.6 (4.0)	+ 25	0	- 75	-100	-	304.8 (12.0)	+ 25	0	+ 75	+ 50
101.6 (4.0)	127.0 (5.0)	+ 25	0	-100	-125	304.8 (12.0)	609.6 (24.0)	+ 51	0	+150	+100
127.0 (5.0)	152.4 (6.0)	+ 25	0	-125	-150	609.6 (24.0)	914.4 (36.0)	+ 76	0	+225	+150
152.4 (6.0)	203.2 (8.0)	+ 25	0	-150	-175	914.4 (36.0)	1 219.2 (48.0)	+102	0	+300	+200
203.2 (8.0)	304.8 (12.0)	+ 25	0	-175	-200	1 219.2 (48.0)	1 524.0 (60.0)	+127	0	+375	+250
304.8 (12.0)	609.6 (24.0)	+ 51	0	-200	-250	1 524.0 (60.0)	(00.0)	+127	0	+450	+300
609.6 (24.0)	914.4 (36.0)	+ 76	0	-250	-325						
914.4 (36.0)	1 219.2 (48.0)	+102	0	-300	-400						
1 219.2 (48.0)	(.0.0)	+127	0	-375	-475						

Table 3-9 Recommended fits for roll neck four-row cylindrical roller bearing (inner ring interference fit)

	Inner rir	ng and ro	II neck (shaft)		Outer ring and chock (housing)						
diamet	al bore er	Single plane mean bore diameter deviation Δ_{dmp} μm		dia	I neck meter riation μm	diamete	outside r	Single pla outside d deviation	iameter	Chock bore diameter deviation μm		
over	up to	upper	lower	upper	lower	over	up to	upper	lower	upper	lower	
80	120	0	- 20	+ 59	+ 37 (p6)	120	150	0	- 18	+ 40	0 (H7)	
120	180	0	- 25	+ 68	+ 43 (p6)	150	180	0	- 25	+ 40	0 (H7)	
180	250	0	- 30	+ 79	+ 50 (p6)	180	250	0	- 30	+ 46	0 (H7)	
250	280	0	- 35	+126	+ 94 (r6)	250	315	0	- 35	+ 52	0 (H7)	
280	315	0	- 35	+130	+ 98 (r6)	230	313		- 33	+ 32	0 (117)	
315	355	0	- 40	+144	+108 (r6)	315	400	0	- 40	+ 75	+ 18 (G7)	
355	400	0	- 40	+150	+114 (r6)	313	400	0	- 40	+ /3	+ 10 (d/)	
400	450	0	- 45	+166	+126 (r6)	400	500	0	- 45	+ 83	+ 20 (G7)	
450	500	0	- 45	+172	+132 (r6)	700	300	0	- 43	+ 00	+ 20 (u/)	
500	560	0	- 50	+194	+150 (r6)	500	630	0	- 50	+ 92	+ 22 (G7)	
560	630	0	- 50	+354	+310 (s6)	300	030		- 30	+ 32	+ 22 (u/)	
630	710	0	- 75	+390	+340 (s6)	630	800	0	- 75	+160	+ 80 (F7)	
710	800	0	- 75	+430	+380 (s6)	030	800	0	- 73	+100	+ 60 (17)	
800	900	0	-100	+486	+430 (s6)	800	1 000	0	-100	+176	+ 86 (F7)	
900	1 000	0	-100	+526	+470 (s6)	000	1 000		-100	+170	+ 00 (17)	
1 000	1 120	0	-125	+588	+520 (s6)	1 000	1 250	0	-125	+203	+ 98 (F7)	
1 120	1 250	0	-125	+646	+580 (s6)	1 000	1 230	0	-123	+203	+ JO (17)	
						1 250	1 400	0	-160	+235	+110 (F7)	
						1 400	1 600	0	-160	+345	+220 (E7)	

[Note] The table above shows general values. JTEKT determines recommended fit on a case by case basis according to bearing materials and operating conditions to prevent the inner ring from creeping.
Consult with JTEKT when referring to this table.

Table 3-10 Recommended fits of bearing types for support of axial loading

	Inner ring and roll neck (shaft)	Outer ring and	chock (housing)	
Bearing type		Mounted to chock	Mounted to sleeve	
2009 1, po	Shaft tolerance range class	Chock bore tolerance range class	Sleeve bore tolerance range class	
Deep groove ball bearing				
Angular ball bearing		Nominal chock bore (mm) = Outer ring outer dia.		
Double row tapered roller bearing (bearings for support of axial loading) ··· TDIS type	e6 or f6	+ [0.5 to 1.0] H8	G7	
Thrust tapered roller bearing		G7		
Spherical thrust roller bearing		α <i>i</i>		

[Remark] When installing a sleeve, clearance of 0.5 mm or more should be provided between the outer diameter of the sleeve and the bore of the chock.

4. Internal clearance

Bearing internal clearance is defined as the total distance either inner or outer ring can be moved when the other ring is fixed.

If movement is in the radial direction, it is called **radial internal clearance**; if in the axial direction, **axial internal clearance**. (Fig. 4-1)

Bearing performance depends greatly upon internal clearance during operation (also referred to as operating clearance); inappropriate clearance results in short rolling fatigue life and generation of heat, noise or vibration.

Radial internal clearance

Fig. 4-1 Bearing internal clearance
[Refer.] Relation to radial internal clearance
and axial internal clearance

(1) Deep groove ball bearing

$$\Delta_{\rm a} = \sqrt{\Delta_{\rm r} (4m_{\rm o} - \Delta_{\rm r})}$$
(4-1)

(2) Double-row angular contact ball bearing

$$\Delta_{\rm a} = 2\sqrt{m_{\rm o}^2 - (m_{\rm o}\cos\alpha - \frac{\Delta_{\rm r}}{2})^2} - 2m_{\rm o}\sin\alpha$$
.....(4-2)

(3) Matched pair angular contact ball bearing

$$\Delta_{a} = 2m_{0}\sin\alpha - 2\sqrt{m_{0}^{2} - (m_{0}\cos\alpha + \frac{\Delta_{r}}{2})^{2}}$$
.....(4-5)

(4) Double/four-row and matched pair taperd roller bearing

$$\Delta_{\rm a} = \Delta_{\rm r} \cot \alpha = \frac{1.5}{e} \Delta_{\rm r} \dots$$
 (4-4)

where:

e: Limited value of F_a/F_r (shown in the bearing specification table)

$$\begin{array}{ccc} m_{\text{O}}: r_{\text{e}} + r_{\text{i}} - D_{\text{W}} & \text{mm} \\ & r_{\text{e}} \colon \text{Outer ring raceway groove} \\ & \text{radius} & \text{mm} \\ & r_{\text{i}} \colon \text{Inner ring raceway groove} \\ & \text{radius} & \text{mm} \\ & D_{\text{W}} \colon \text{Ball diameter} & \text{mm} \end{array}$$

The term **residual clearance** is defined as the original clearance decreased owing to expansion or contraction of a raceway due to fitting, when the bearing is mounted in the shaft and housing.

The term **effective clearance** is defined as the residual clearance decreased owing to dimensional change arising from temperature differentials within the bearing.

The term **operating clearance** is defined as the internal clearance present while a bearing mounted in a machine is rotating under a certain load, or, the effective clearance increased due to elastic deformation arising from bearing loads.

Operating clearance gives great influences on the performance and service life of bearings. Thus, it is recommended to select the operating clearance of a ball bearing so that the operating clearance is slightly positive, while the lower limited value of the operating clearance range of a roller bearing is slightly positive.

It is important to take specific operating conditions into consideration and select a clearance suitable for the conditions.

For example, when high rigidity is required, or when the noise must be minimized, the operating clearance must be reduced. On the other hand, when high operating temperature is expected, the operating clearance must be increased.

Table 4-1 shows how to determine the operating clearance in the case of shaft and housing made of steel. The standard values of bearing internal clearance before mounting are shown in Tables 4-2 through 4-6.

Table 4-1 How to determine operating clearance

Operating clearance (S)	$S = S_{o} - (S_{f} + S_{t1} + S_{t2}) + S_{w}^{*}$	$ \begin{cases} S_{\rm w} \text{ (increase of clearance due to load)} \\ \text{is generally small, and thus may be} \\ \text{ignored, although there is a equation} \\ \text{for determining the value.} \end{cases} $
Decrease of clearance due to fitting (S_f)	(In the case of hollow shaft) $S_{\mathrm{fi}} = \varDelta_{d\mathrm{eff}} \frac{d}{D_{\mathrm{i}}} \cdot \frac{\left[1 - \frac{d_0^2}{d^2}\right]}{\left[1 - \frac{d_0^2}{D_{\mathrm{i}}^2}\right]}$ (In the case of solid shaft) $S_{\mathrm{fi}} = \varDelta_{d\mathrm{eff}} \frac{d}{D_{\mathrm{i}}}$	(In the case of $D_{\rm h} \neq \infty$) $S_{\rm fo} = \varDelta_{D\rm eff} \; \frac{D_{\rm e}}{D} \cdot \frac{\left(1 - \frac{D^2}{D_{\rm h}^2}\right)}{\left(1 - \frac{D_{\rm e}^2}{D_{\rm h}^2}\right)}$ (In the case of $D_{\rm h} = \infty$) $S_{\rm fo} = \varDelta_{D\rm eff} \; \frac{D_{\rm e}}{D}$
Decrease of clearance due to temperature differentials between inner and outer rings (St1)	The amount of decrease varies depending on the state of housing; however, generally the amount can be approximated by the following equation on the assumption that the outer ring will not expand : $S_{t1} = \alpha \ (D_i \cdot t_i - D_e \cdot t_e)$	$\begin{aligned} &\text{where}: D_{e} = D_{i} + 2D_{w} \\ &\text{Consequently, } S_{t1} + S_{t2} \text{ will be determined} \\ &\text{by the following equation:} \\ &S_{t1} + S_{t2} = \alpha \cdot D_{i} \cdot t_{1} + 2\alpha \cdot D_{w} \cdot t_{2} \\ &\text{Temperature differential between the} \\ &\text{inner and outer rings, } t_{1}, \text{ can be expressed as follows:} \end{aligned}$
Decrease of clearance due to temperature rise of rolling element (S_{12})	$S_{12} = 2\alpha \cdot D_{\mathbf{w}} \cdot t_{\mathbf{w}}$	$t_1 = t_{\rm i} - t_{\rm e}$ Temperature differential between the rolling element and outer ring, t_2 , can be expressed as follows : $t_2 = t_{\rm W} - t_{\rm e}$

In Table 4-1,

■Bearings are sometimes used with a non-steel shaft or housing.

In the automotive industry, a statistical method is often incorporated for selection of clearance.

In these cases, or when other special operating conditions are involved, JTEKT should be consulted.

Table 4-2 Radial internal clearance of deep groove ball bearings (cylindrical bore)

Unit: µm

Nomin						Clea	rance				
	mm	С	2	С	N	С	3	C	4	C 5	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	510
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	690
630	710	20	130	110	260	240	400	380	570	540	760
710	800	20	140	120	290	270	450	430	630	600	840
800	900	20	160	140	320	300	500	480	700	670	940
900	1 000	20	170	150	350	330	550	530	770	740	1 040
1 000	1 120	20	180	160	380	360	600	580	850	820	1 150
1 120	1 250	20	190	170	410	390	650	630	920	890	1 260
1 250	1 400	-	_	180	440	420	700	680	1 000	_	-

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 4-3 (1) Axial internal clearance of matched pair angular contact ball bearings (measurement clearance)¹⁾

Orantast analla : 000	
ement clearance)1)	Unit: µm

Nominal bore diameter d, mm		Contact angle : 15°				Contact angle : 30°							
		C 2		CN		С	C 2		CN		C 3		C 4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	35	60	85	110	10	30	50	75	80	105	130	155
100	120	40	65	100	125	12	37	65	90	100	125	150	175
120	140	45	75	110	140	15	40	75	105	120	150	180	210
140	160	45	75	125	155	15	40	80	110	130	160	210	240
160	180	50	80	140	170	15	45	95	125	140	170	235	265
180	200	50	80	160	190	20	50	110	140	170	200	275	305

[Note] 1) Including increase of clearance caused by measurement load.

Table 4-3 (2) Axial internal clearance of matched pair angular contact ball bearings (measurement clearance)¹⁾

Unit: µm

Nominal bore diameter d, mm			Contact angle : 40°										
		C 2		С	N	С	3	C 4					
over	up to	min. max.		min.	max.	min.	max.	min.	max.				
80	100	6	20	20	45	55	80	85	110				
100	120	6 25		25	50	60	85	100	125				
120	140	7	30	30	60	75	105	125	155				
140	160	7	30	35	65	85	115	140	170				
160	180	7 31		45	75	100	130	155	185				
180	200	7	37	60	90	110	140	170	200				

[Note] 1) Including increase of clearance caused by measurement load.

Table 4-4 Radial internal clearance of cylindrical roller bearings

(1) Cylindrical bore bearings

Unit: µm

											O me i peri
Nomin diamet						Clea	rance				
	mm	C	2	С	N	C	3	С	4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735
500	560	110	225	220	330	335	470	440	575	-	-
560	630	110	245	220	360	375	520	490	635	-	-
630	710	115	275	245	405	420	580	550	710	-	-
710	800	130	305	275	450	470	675	615	790	-	-
800	900	140	340	300	500	520	720	680	880	-	-
900	1 000	160	380	340	560	580	800	760	980	-	

Table 4-4 Radial internal clearance of cylindrical roller bearings

(2) Tapered bore bearings

Unit : µm

Nomin						No	n-inte	chang	eable c	learan	се				
	mm	C 9	$NA^{1)}$	C 1	NA	C 2	NA	C N	NA	C 3	NA	C 4	NA	C 5	NA
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	10	25	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	25	50	50	80	95	120	120	145	145	170	205	230
120	140	15	30	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	55	110	110	165	185	240	240	295	295	350	420	475
280	315	30	60	60	120	120	180	205	265	265	325	325	385	470	530
315	355	30	65	65	135	135	200	225	295	295	360	360	430	520	585
355	400	35	75	75	150	150	225	255	330	330	405	405	480	585	660
400	450	45	85	85	170	170	255	285	370	370	455	455	540	650	735
450	500	50	95	95	190	190	285	315	410	410	505	505	600	720	815
500	560	-	-	105	210	210	315	350	455	455	560	560	665	_	-
560	630	-	-	115	230	230	345	390	505	505	620	620	735	_	-
630	710	-	-	130	260	260	390	435	565	565	695	695	825	_	-
710	800	-	_	145	290	290	435	485	630	630	775	775	920	-	_
800	900	-	-	160	320	320	480	540	700	700	860	860	1 020	_	-
900	1 000	-	_	180	360	360	540	600	780	780	960	960	1 140	-	

[Note] 1) Clearance C9NA should be applied to tapered cylindrical roller bearings of JIS tolerance classes 5 and 4.

Table 4-5 Radial internal clearance of double / four-row and matched pair tapered roller bearings

(1) Cylindrical bore bearings

Unit: µm

Nomin diamet	al bore					Clea	rance				
	mm	C	: 1	С	2	С	N	С	3	C	4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	0	20	20	45	45	70	70	100	100	130
100	120	0	25	25	50	50	80	80	110	110	150
120	140	0	30	30	60	60	90	90	120	120	170
140	160	0	30	30	65	65	100	100	140	140	190
160	180	0	35	35	70	70	110	110	150	150	210
180	200	0	40	40	80	80	120	120	170	170	230
200	225	0	40	40	90	90	140	140	190	190	260
225	250	0	50	50	100	100	150	150	210	210	290
250	280	0	50	50	110	110	170	170	230	230	320
280	315	0	60	60	120	120	180	180	250	250	350
315	355	0	70	70	140	140	210	210	280	280	390
355	400	0	70	70	150	150	230	230	310	310	440
400	450	0	80	80	170	170	260	260	350	350	490
450	500	0	90	90	190	190	290	290	390	390	540
500	560	0	100	100	210	210	320	320	430	430	590
560	630	0	110	110	230	230	350	350	480	480	660
630	710	0	130	130	260	260	400	400	540	540	740
710	800	0	140	140	290	290	450	450	610	610	830
800	900	0	160	160	330	330	500	500	670	670	920
900	1 000	0	180	180	370	370	550	550	730	730	990
1 000	1 250	0	200	200	420	420	610	610	790	790	1 050
1 250	1 600	0	220	220	460	460	650	650	850	850	1 100
1 600	2 000	0	240	240	480	480	680	680	900	900	1 150

(2) Tapered bore bearings

Unit: µm

					•		0				O me i pem
	inal bore neter					Clea	rance				
	d, mm	С	1	C	C 2		N	C	3	C	: 4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	20	45	45	70	70	100	100	130	130	170
100	120	25	50	50	80	80	110	110	150	150	200
120	140	30	60	60	90	90	120	120	170	170	230
140	160	30	65	65	100	100	140	140	190	190	260
160	180	35	70	70	110	110	150	150	210	210	280
180	200	40	80	80	120	120	170	170	230	230	310
200	225	40	90	90	140	140	190	190	260	260	340
225	250	50	100	100	150	150	210	210	290	290	380
250	280	50	110	110	170	170	230	230	320	320	420
280	315	60	120	120	180	180	250	250	350	350	460
315	355	70	140	140	210	210	280	280	390	390	510
355	400	70	150	150	230	230	310	310	440	440	580
400	450	80	170	170	260	260	350	350	490	490	650
450	500	90	190	190	290	290	390	390	540	540	720
500	560	100	210	210	320	320	430	430	590	590	790
560	630	110	230	230	350	350	480	480	660	660	880
630	710	130	260	260	400	400	540	540	740	740	990
710	800	140	290	290	450	450	610	610	830	830	1 100
800	900	160	330	330	500	500	670	670	920	920	1 240

4. Internal clearance —

Table 4-6 Radial internal clearance of spherical roller bearings

(1) Cylindrical bore bearings

Unit : µm

Nomin diamet						Clear	ance				
	nm	C	2	С	N	С	3	С	4	С	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1 100
630	710	190	350	350	530	530	700	700	920	920	1 190
710	800	210	390	390	580	580	770	770	1 010	1 010	1 300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570
1 000	1 120	290	530	530	780	780	1 020	1 020	1 330	1 330	1 720
1 120	1 250	320	580	580	860	860	1 120	1 120	1 460	1 460	1 870
1 250	1 400	350	640	640	950	950	1 240	1 240	1 620	1 620	2 060
1 400	1 600	400	720	720	1 060	1 060	1 380	1 380	1 800	1 800	2 300
1 600	1 800	450	810	810	1 180	1 180	1 550	1 550	2 000	2 000	2 550

(2) Tapered bore bearings

Unit : µm

Nomina						Clear	ance				
d, 1		C	2	С	N	С	3	С	4	С	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
80	100	55	80	80	110	110	140	140	180	180	230
100	120	65	100	100	135	135	170	170	220	220	280
120	140	80	120	120	160	160 200		200	260	260	330
140	160	90	130	130	180	180	230	230	300	300	380
160	180	100	140	140	200	200	260	260	340	340	430
180	200	110	160	160	220	220	290	290	370	370	470
200	225	120	180	180	250	250	320	320	410	410	520
225	250	140	200	200	270	270	350	350	450	450	570
250	280	150	220	220	300	300	390	390	490	490	620
280	315	170	240	240	330	330	430	430	540	540	680
315	355	190	270	270	360	360	470	470	590	590	740
355	400	210	300	300	400	400	520	520	650	650	820
400	450	230	330	330	440	440	570	570	720	720	910
450	500	260	370	370	490	490	630	630	790	790	1 000
500	560	290	410	410	540	540	680	680	870	870	1 100
560	630	320	460	460	600	600	760	760	980	980	1 230
630	710	350	510	510	670	670	850	850	1 090	1 090	1 360
710	800	390	570	570	750	750	960	960	1 220	1 220	1 500
800	900	440	640	640	840	840	1 070	1 070	1 370	1 370	1 690
900	1 000	490	710	710	930	930	1 190	1 190	1 520	1 520	1 860
1 000	1 120	530	770	770	1 030	1 030	1 300	1 300	1 670	1 670	2 050
1 120	1 250	570	830	830	1 120	1 120	1 420	1 420	1 830	1 830	2 250
1 250	1 400	620	910	910	1 230	1 230	1 560	1 560	2 000	2 000	2 450
1 400	1 600	680	1 000	1 000	1 350	1 350	1 720	1 720	2 200	2 200	2 700
1 600	1 800	750	1 110	1 110	1 500	1 500	1 920	1 920	2 400	2 400	2 950

5. Lubrication

Lubrication is one of the most important factors determining bearing performance. The suitability of the lubricant and lubrication method have a dominant influence on bearing life.

Functions of lubrication:

- To lubricate each part of the bearing, and to reduce friction and wear
- To carry away heat generated inside bearing due to friction and other causes
- To cover rolling contact surface with the proper oil film in order to prolong bearing fatigue life
- To prevent corrosion and contamination by dirt

Bearing lubrication is classified broadly into two categories: grease lubrication and oil lubrication. Table 5-1 makes a general comparison between the two.

Table 5-1 Comparison between grease and oil lubrication

Item	Grease	Oil
· Sealing device	Easy	Slightly complicated and special care required for maintenance
 Lubricating ability 	Good	Excellent
· Rotation speed	Low/medium speed	Applicable at high speed as well
 Replacement of lubricant 	Slightly troublesome	Easy
· Life of lubricant	Relatively short	Long
· Cooling effect	No cooling effect	Good (circulation is necessary)
· Filtration of dirt	Difficult	Easy

5-1 Grease lubrication

Grease lubrication is widely applied since there is no need for replenishment over a long period once grease is filled, and a relatively simple structure can suffice for the lubricant sealing device.

There are two methods of grease lubrication. One is the closed lubrication method, in which grease is filled in advance into shielded/sealed bearing; the other is the feeding method, in which the bearing and housing are filled with grease in proper quantities at first, and refilled at a regular interval via replenishment or replacement.

Devices with numerous grease inlets sometimes employ the centralized lubricating method, in which the inlets are connected via piping and supplied with grease collectively.

1) Amount of grease

In general, grease should fill approximately one-third to one-half the inside space, though this varies according to structure and inside space of housing.

It must be borne in mind that excessive grease will generate heat when churned, and will consequently alter, deteriorate, or soften.

When the bearing is operated at low speed, however, the inside space is sometimes filled with grease to two-thirds to full, in order to preclude infiltration of contaminants.

2) Replenishment/replacement of grease

The method of replenishing/replacing grease depends largely on the lubrication method. Whichever method may be utilized, care should be taken to use clean grease and to keep dirt or other foreign matter out of the housing.

In addition, it is desirable to refill with grease of the same brand as that filled at the start.

When grease is refilled, new grease must be injected inside bearing.

Fig. 5-1 gives one example of a feeding method.

Fig. 5-1 Example of grease feeding method (using grease sector)

In the example, the inside of the housing is divided by grease sectors. Grease fills one sector, then flows into the bearing.

On the other hand, grease flowing back from the inside is forced out of the bearing by the centrifugal force of the grease valve. When the grease valve is not used, it is necessary to enlarge the housing space on the discharge side to store old grease.

The housing is uncovered and the stored old grease is removed at regular intervals.

3) Grease feeding interval

In normal operation, grease life should be regarded roughly as shown in Fig. 5-2, and replenishment/replacement should be carried out accordingly.

[Notes] 1) [A]: radial ball bearing

[B] : cylindrical roller bearing, needle roller bearing

[C]: tapered roller bearing, spherical roller bearing, thrust ball bearing 2) Temperature correction

When the bearing operating temperature exceeds 70 $^{\circ}$ C, t_f ', obtained by multiplying t_f by correction coefficient a, found on the scale below, should be applied as the feeding interval.

 $t_{\rm f}' = t_{\rm f} \times a$

Temperature correction coefficient a

Bearing operating temperature $\,T\,^{\circ}\mathrm{C}$

Fig. 5-2 Grease feeding interval

5-2 Oil lubrication

Oil lubrication is usable even at high speed rotation and somewhat high temperature, and is effective in reducing bearing vibration and noise.

Thus oil lubrication is used in many cases where grease lubrication does not work.

Table 5-2 shows major types and methods of oil lubrication.

Table 5-2 Type and method of oil lubrication

• Simplest method of bearing immersion in oil for operation. (1) • Suitable for low/medium speed. Oil bath • Oil level gauge should be furnished to adjust the amount of oil. (In the case of horizontal shaft) About 50 % of the lowest rolling element should be immersed. (In the case of vertical shaft) About 70 to 80 % of the bearing should be a magnetic immersed. plug • It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. • Oil is dripped with an oiling device, and the inside of the housing is filled with oil mist by the action of rotat-(2) ing parts. This method has a cooling effect. Oil drip Applicable at relatively high speed and up to medium load. • In general, 5 to 6 drops of oil are utilized per minute. (It is difficult to adjust the dripping in 1 mL/h or smaller • It is necessary to prevent too much oil from being accumulated at the bottom of housing. • This type of lubrication method makes use of a gear or simple flinger attached to shaft in order to splash oil. (3) This method can supply oil for bearings located away Oil splash from the oil tank. • Usable up to relatively high speed. • It is necessary to keep oil level within a certain range. • It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. It is also advisable to set up a shield or baffle board to prevent contaminants from entering the bearing.

(4) Forced oil circulation

- This method employs a circulation-type oil supply system. Supplied oil lubricates inside of the bearing, is cooled and sent back to the tank through an oil escape
- The oil, after filtering and cooling, is pumped back.
- Widely used at high speeds and high temperature con-
- It is better to use an oil escape pipe approximately twice as thick as the oil supply pipe in order to prevent too much lubricant from gathering in housing.
- Required amount of oil: see Remark 1 (on page 56).

(5) Oil jet lubrication

- This method uses a nozzle to jet oil at a constant pressure (0.1 to 0.5 MPa), and is highly effective in cooling.
- Suitable for high speed and heavy load.
- Generally, the nozzle (diameter 0.5 to 2 mm) is located 5 to 10 mm from the side of a bearing. When a large amount of heat is generated, 2 to 4 nozzles should be used.
- · Since a large amount of oil is supplied in the jet lubrication method, old should be discharged with an oil pump to prevent excessive residual oil.
- Required amount of oil: see Remark 1 (on page 56).

(6) Oil mist lubrication (spray lubrication)

- This method employs an oil mist generator to produce dry mist (air containing oil in the form of mist). The dry mist is continuously sent to the oil supplier, where the mist is turned into a wet mist (sticky oil drops) by a nozzle set up on the housing or bearing, and is then sprayed onto bearing.
- Required amount of mist : see Remark 2 (on page 57).

• This method provides and sustains the smallest amount of oil film necessary for lubrication, and has the advantages of preventing oil contamination, simplifying bearing maintenance, prolonging bearing fatigue life, reducing oil consumption etc.

(7) Oil / air lubrication

- A proportioning pump sends forth a small quantity of oil, which is mixed with compressed air by a mixing valve. The admixture is supplied continuously and stably to the bearing.
- This method enables quantitative control of oil in extremely small amounts. always supplying new lubricating oil. It is thus suitable for machine tools and other applications requiring high speed.
- Compressed air and lubricating oil are supplied to the spindle, increasing the internal pressure and helping prevent dirt. cutting-liquid. etc. from entering. As well, this method allows the lubricating oil to flow through a feeding pipe, minimizing atmospheric pollution.

(Example of spindle unit incorporating oil / air lubrication system)

(Example of rolling mill roll neck bearing)

Remark 1

Required oil supply in forced oil circulation; oil jet lubrication methods

$$G = \frac{1.88 \times 10^{-4} \,\mu \cdot d \cdot n \cdot P}{60 \,c \cdot r \cdot \Delta_T}$$

where:

G: required oil supply	L/min
μ : friction coefficient (see table at right)	
d: nominal bore diameter	mm
n: rotational speed	\min^{-1}
P: dynamic equivalent load of bearing	N
c: specific heat of oil 1.88–2.09	kJ/kg⋅K
r: density of oil	g/cm ³
Δ_T : temperature rise of oil	K

Values of friction coefficient μ

Bearing type	μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Cylindrical roller bearing	0.000 8 - 0.001 2
Tapered roller bearing	0.001 7 - 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5

The values obtained by the above equation show quantities of oil required to carry away all the generated heat, with heat release not taken into consideration. In reality, the oil supplied is generally half to

Heat release varies widely according to the application and operating conditions.

two-thirds of the calculated value.

To determine the optimum oil supply, it is advised to start operating with two-thirds of the calculated value, and then reduce the oil gradually while measuring the operating temperature of bearing, as well as the supplied and discharged oil.

Remark 2 Notes on oil mist lubrication

1) Required amount of mist (mist pressure : 5 kPa)

> 0.11dR(In the case of a bearing)

 $0.028d_1$ In the case of two oil seals combined

where:

Q: required amount of mist L/min d: nominal bore diameter mm R: number of rolling element rows d_1 : inside diameter of oil seal mm

In the case of high speed $(d_m n \ge 400 \times 10^3)$, it is necessary to increase the amount of oil and heighten the mist pressure.

2) Piping diameter and design of lubrication hole/groove

When the flow rate of mist in piping exceeds 5 m/s, oil mist suddenly condenses into an oil liauid.

Consequently, the piping diameter and dimensions of the lubrication hole/groove in the housing should be designed to keep the flow rate of mist, obtained by the following equation, from exceeding 5 m/s.

$$V = \frac{0.167Q}{A} \le 5$$

where:

V: flow rate of mist m/s Q: amount of mist L/min A: sectional area of piping or lubrication groove cm² 3) Mist oil

Oil used in oil mist lubrication should meet the following requirements.

- ability to turn into mist
- has high extreme pressure resistance
- good heat/oxidation stability
- rust-resistant
- unlikely to generate sludge
- superior demulsifier

Oil mist lubrication has a number of advantages for high speed rotation bearings. Its performance, however, is largely affected by surrounding structures and bearing operating conditions.

If contemplating the use of this method, please contact with JTEKT for advice based on JTEKT long experience with oil mist lubrication.

Remark 3

Required oil supply in oil / air lubrication (Rolling mill roll neck bearing)

Horizontal roll

Vertical roll

where:

cm³/h Q: Required oil supply d: Nominal bore diameter mm

R: Number of rolling element rows

A: Coefficient (low speed: 10. high speed: 5)

5-3 Lubricant

5-3-1 Grease

Grease is made by mixing and dispersing a solid of high oil-affinity (called a thickener) with lubricant oil (as a base), and transforming it into a semi-solid state.

As well, a variety of additives can be added to improve specific performance.

(1) Base oil

Mineral oil is usually used as the base oil for grease. When low temperature fluidity, high temperature stability, or other special performance is required, diester oil, silicon oil, polyglycolic oil, fluorinated oil, or other synthetic oil is often used.

Generally, grease with a low viscosity base oil is suitable for applications at low temperature or high rotation speed; grease with high viscosity base oils are suitable for applications at high temperature or under heavy load.

(2) Thickener

Most greases use a metallic soap base such as lithium, sodium, or calcium as thickeners. For some applications, however, non-soap base thickeners (inorganic substances such as bentone, silica gel, and organic substances such as urea compounds, fluorine compounds) are also used.

In general, the mechanical stability, bearing operating temperature range, water resistance, and other characteristics of grease are determined by the thickener.

(Lithium soap base grease)

Superior in heat resistance, water resistance and mechanical stability.

(Calcium soap base grease)

Superior in water resistance; inferior in heat resistance.

(Sodium soap base grease)

Superior in heat resistance; inferior in water resistance.

(Non-soap base grease)

Superior in heat resistance.

(3) Additives

Various additives are selectively used to serve the respective purposes of grease applications.

- Extreme pressure agents
 When bearings must tolerate heavy or impact loads.
- Oxidation inhibitors
 When grease is not refilled for a long period.
 Structure stabilizers, rust preventives, and corrosion inhibitors are also used.

(4) Consistency

Consistency, which indicates grease hardness, is expressed as a figure obtained, in accordance with ASTM (JIS), by multiplication by 10 the depth (in mm) to which the coneshaped metallic plunger penetrates into the grease at 25 $^{\circ}\mathrm{C}$ by deadweight in 5 seconds. The softer the grease, the higher the figure.

Table 5-4 shows the relationships between the NLGI scales and ASTM (JIS) penetration indexes, service conditions of grease.

(NLGI: National Lubricating Grease Institute)

Table 5-4 Grease consistency

NLGI scale	ASTM (JIS) penetration index (25 °C, 60 mixing operations	Service conditions/ applications
0	355 – 385	For centralized lubricating
1	310 – 340	For centralized lubricating, at low temperature
2	265 – 295	For general use
3	220 – 250	For general use, at high temperature
4	175 – 205	For special applications

(5) Mixing of different greases

Since mixing of different greases changes their properties, greases of different brands should not be mixed.

If mixing cannot be avoided, greases containing the same thickener should be used. Even if the mixed greases contain the same thickener, however, mixing may still produce adverse effects, due to difference in additives or other factors.

Thus it is necessary to check the effects of a mixture in advance, through testing or other methods.

Table 5-3 Characteristics of respective greases

		Lithium grease		Calcium grease (cup grease)	Sodium grease (fiber grease)		Complex b	ase grease	N	Non-soap base greas	e	
Thickener		Lithium soap		Calcium soap	Sodium soap	Lithium	complex soap	Calcium complex soap	Bentone	Urea compounds	Fluorine compounds	Thickener
Base oil	Mineral oil	Synthetic oil (diester oil)	Synthetic oil (silicon oil)	Mineral oil	Mineral oil	Mi	ineral oil	Mineral oil	Mineral oil	Mineral/ synthetic oil	Synthetic oil	Base oil
Dropping point (°C)	170 to 190	170 to 230	220 to 260	80 to 100	160 to 180	250	or higher	200 to 280	-	240 or higher	250 or higher	Dropping point (°C)
Operating temperature range (°C)	- 30 to + 120	- 50 to + 130	- 50 to + 180	- 10 to + 70	0 to + 110	- 30	0 to + 150	- 10 to + 130	- 10 to + 150	- 30 to + 150	- 40 to + 250	Operating temperature range (°C)
Rotation speed range	Medium to high	High	Low to medium	Low to medium	Low to high	Lov	w to high	Low to medium	Medium to high	Low to high	Low to medium	Rotation speed range
Mechanical stability	Excellent	Good to excellent	Good	Fair to good	Good to excellent	Good	to excellent	Good	Good	Good to excellent	Good	Mechanical stability
Water resistance	Good	Good	Good	Good	Bad	Good	to excellent	Good	Good	Good to excellent	Good	Water resistance
Pressure resistance	Good	Fair	Bad to fair	Fair	Good to excellent		Good	Good	Good to excellent	Good to excellent	Good	Pressure resistance
Remarks	Most widely usable for various rolling bearings.	Superior low temperature and friction characteristics. Suitable for bearings for measuring instruments and extra-small ball bearings for small electric motors.	Superior high and low temperature characteristics.	Suitable for applica- tions at low rotation speed and under light load. Not applicable at high temperature.	Liable to emulsify in the presence of water. Used at relatively high temperature.	cal stab resistan Used at	oility and heat nce.	Superior pressure resistance when extreme pressure agent is added. Used in bearings for rolling mills.	Suitable for applications at high temperature and under relatively heavy load.	Superior water resistance, oxidation stability, and heat stability. Suitable for applications at high temperature and high speed.	Superior chemical resistance and solvent resistance. Usable at up to 250 °C.	Remarks

5-3-2 Lubricating oil

For lubrication, bearings usually employ highly refined mineral oils, which have superior oxidation stability, rust-preventive effect, and high film strength.

With bearing diversification, however, various synthetic oils have been put into use.

These synthetic oils contain various additives (oxidation inhibitors, rust preventives, antifoaming agents, etc.) to improve specific properties. Table 5-5 shows the characteristics of lubricating oils.

Mineral lubricating oils are classified by applications in JIS and MIL.

Table 5-5 Characteristics of lubricating oils

Type of	Highly		Ma	ajor synthetic o	ils	
lubricating oil	refined mineral oil	Diester oil	Silicon oil	Polyglycolic oil	Polyphenyl ether oil	Fluorinated oil
Operating temperature range (°C)	- 40 to + 220	- 55 to + 150	- 70 to + 350	- 30 to + 150	0 to + 330	- 20 to + 300
Lubricity	Excellent	Excellent	Fair	Good	Good	Excellent
Oxidation stability	Good	Good	Fair	Fair	Excellent	Excellent
Radioactivity resistance	Bad	Bad	Bad to fair	Bad	Excellent	_

[Selection of lubricating oil]

The most important criterion in selecting a lubricating oil is whether the oil provides proper viscosity at the bearing operating temperature.

Standard values of proper kinematic viscosity can be obtained through selection by bearing type according to Table 5-6 first, then through selection by bearing operating conditions according to Table 5-7.

When lubricating oil viscosity is too low, the oil film will be insufficient. On the other hand, when the viscosity is too high, heat will be generated due to viscous resistance.

In general, the heavier the load and the higher the operating temperature, the higher the lubricating oil viscosity should be; whereas, the higher the rotation speed, the lower the viscosity should be.

Fig. 5-3 illustrates the relationship between lubricating oil viscosity and temperature.

Table 5-6 Proper kinematic viscosity by bearing type

Bearing type	Proper kinematic viscosity at operating temperature
Ball bearing Cylindrical roller bearing	13 mm ² /s or higher
Tapered roller bearing Spherical roller bearing	20 mm ² /s or higher
Spherical thrust roller bearing	32 mm ² /s or higher

Table 5-7 Proper kinematic viscosities by bearing operating conditions

-30 ~ 0 °C All rd 300 0 ~ 60 °C 300 0	d _m n value rotation speeds 0 000 or lower 000 to 600 000	Light/norm ISO VG 15, 22, 46 ISO VG 46	Refrigerating machine oil Bearing oil Turbine oil	Heavy/impa - ISO VG 68 SAE 30	Bearing oil
0 ~ 60 °C 300 €	0 000 or lower	ISO VG 46	(machine oil)		(Bearing oil
0 ~ 60 °C 300 C					Bearing oil
300 0	000 to 600 000			SAE 30	Turbine oil
600		ISO VG 32	Bearing oil Turbine oil	ISO VG 68	Bearing oil Turbine oil
	0 000 or higher	ISO VG 7, 10, 22	(Bearing oil)	_	
300	0 000 or lower	ISO VG 68	(Bearing oil)	ISO VG 68, 100 SAE 30	(Bearing oil)
60 ~ 100 °C	000 to 600 000	ISO VG 32, 46	Bearing oil Turbine oil	ISO VG 68	Bearing oil Turbine oil
600	0 000 or higher	ISO VG 22, 32, 46	Bearing oil Turbine oil Machine oil	_	
300 100 ~ 150 °C	0 000 or lower	ISO VG 68, 100 SAE 30, 40	(Bearing oil)	ISO VG 100 ~ 460	Bearing oil Gear oil
	000 to 600 000	ISO VG 68 SAE 30	Bearing oil Turbine oil	ISO VG 68, 100 SAE 30, 40	(Bearing oil)

[Remarks] 1.
$$d_{\rm m} n = \frac{D+d}{2} \times n \cdots \{D : \text{nominal outside diameter (mm)}, d : \text{nominal bore diameter (mm)}, n : \text{rotational speed (min}^{-1})\}$$

- Refer to refrigerating machine oil (JIS K 2211), turbine oil (JIS K 2213), gear oil (JIS K 2219), machine oil (JIS K 2238) and bearing oil (JIS K 2239).
- 3. Please contact with JTEKT if the bearing operating temperature is under –30 $^{\circ}\text{C}$ or over 150 $^{\circ}\text{C}$.

Mo

0.15 ~

0.30

0.15 ~

0.30

0.15 ~

0.30

0.15 ~

0.30

0.15 ~

0.25

0.20 ~

0.30

6. Bearing materials

Bearing materials include steel for bearing rings and rolling elements, as well as steel sheet, steel, copper alloy and synthetic resins for cages.

These bearing materials should possess the following characteristics :

Bearing

rings

Rollina

Bearing

Rolling

Cages

rinas

elements

High elasticity, durable under high partial contact stress.
 High strength against rolling

contact fatigue due to large repetitive contact load.

Strong hardness
 High abrasion resistance

4) High abrasion resistance5) High toughness against

impact load

6) Excellent dimension

6) Excellent dimensional stability

2) Case carburizing bearing steel (case hardened steel)

When a bearing receives heavy impact loads, the surface of the bearing should be hard and the inside soft.

Such materials should possess a proper amount of carbon, dense structure, and carburizing case depth on their surface, while having proper hardness and fine structure internally.

For this purpose, chromium steel and nickel-chromium-molybdenum steel are used as materials.

Typical steel materials are shown in Table 6-2.

These materials also undergo vacuum degassing in order to reduce non-metallic inclusions and oxygen content which leads to higher reliability.

6-1 Bearing rings and rolling elements materials

1) High carbon chromium bearing steel

High carbon chromium bearing steel specified in JIS is used as a general material in bearing rings (inner rings, outer rings) and rolling elements (balls, rollers).

Their chemical composition classified by steel type is given in Table 6-1.

Among these steel types, SUJ 2 is generally used. SUJ 3, which contains additional Mn and Si, possesses high hardenability and is commonly used for thick section bearings.

SÚJ 5 has increased hardenability, because it was developed by adding Mo to SÚJ 3.

For small and medium size bearings, SUJ 2 and SUJ 3 are used, and for large size and extra-large size bearings with thick sections, SUJ 5 is widely used.

Generally, these materials are processed into the specified shape and then undergo hardening and annealing treatment until they attain a hardness of 57 to 64 HRC.

3) Others

For special applications, the following materials are used, according to operational conditions.

(When very high reliability is required)

- · high refining steel ··· developed by JTEKT
- · vacuum arc remelted steel
- · electro slag remelted steel

(When heat resistance is required)

high speed steel for high temperature bearings --- refer to Table 6-3

(When high corrosion resistance is required) stainless steel ··· refer to Table 6-4

(When high heat, corrosion, and chemical resistance are required)

· ceramics

Table 6-3 Chemical composition of high speed steel for high temperature bearings

Table 6-2 Chemical composition of case carburizing bearing steel

Mn

0.60 ~

0.85

0.60 ~

0.85

0.60 ~

0.85

0.60 ~

0.90

0.40 ~

0.70

0.30 ~

0.60

0.70 ~

0.90

0.70 ~

0.90

0.45 ~

0.65

Chemical composition (%)

Not more

than 0.030

Not more

than 0.040

Not more

than 0.025

Not more

than 0.030

Not more

than 0.035

Not more

than 0.025

Ni

0.40 ~

0.70

1.60 ~

2.00

4.00 ~

0.40 ~

0.70

1.65 ~

2.00

4.50

Cr

0.90 ~

1.20

0.90 ~

1.20

0.90 ~

0.40

0.40 ~

0.70 ~

0.70 ~

0.40 ~

0.40

0.60

0.60

0.90

1.00

0.65

0.65

1 20

Standard	Code	Chemical composition (%)											
Staridard	Code	С	Si	Mn	Р	S	Cr	Mo	٧	Ni	Cu	Co	W
AISI	M 50	0.77 ~ 0.85	Not more than 0.25	Not more than 0.35	Not more than 0.015	Not more than 0.015	3.75 ~ 4.25	4.00 ~ 4.50	0.90 ~ 1.10	Not more than 0.10	Not more than 0.10	Not more than 0.25	Not more than 0.25

Table 6-4 Chemical composition of stainless steel

Standard	Code			tion (%)				
Stariuaru	Code	С	Si	Mn	Р	S	Cr	Мо
JIS G 4303	SUS 440 C	0.95 ~ 1.20	Not more than 1.00	Not more than 1.00	Not more than 0.040	Not more than 0.030	16.00 ~ 18.00	Not more than 0.75

Table 6-1 Chemical composition of high carbon chromium bearing steel

Standard	Code	Chemical composition (%)								
Otandara	Code	С	Si	Mn	Р	S	Cr	Мо		
	SUJ 2		0.15 ~ 0.35	Not more than 0.50		Not more than 0.025	1.30 ~ 1.60	Not more than 0.08		
JIS G 4805	SUJ 3	0.95 ~ 1.10	0.40 ~ 0.70	0.90 ~ 1.15	Not more than 0.025		0.90 ~ 1.20	Not more than 0.08		
	SUJ 5		0.40 ~ 0.70	0.90 ~ 1.15			0.90 ~ 1.20	0.10 ~ 0.25		
SAE J 404	52100	0.98 ~ 1.10	0.15 ~ 0.35	0.25 ~ 0.45	Not more than 0.025	Not more than 0.025	1.30 ~ 1.60	Not more than 0.06		

[Remark] As for bearings which are induction hardened, carbon steel with a high carbon content of 0.55 to 0.65 % is used in addition to those listed in this table.

62

Standard

JIS G 4053

SAF J 404

Code

SCr 415

SCr 420

SCM 420

SNCM 220

SNCM 420

SNCM 815

5120

8620

4320

С

0.13 ~

0.18

0.18 ~

0.23

0.18 ~

0.23

0.17 ~

0.23

0.17 ~

0.23

0.12 ~

0.18

0.17 ~

0.22

0.18 ~

0.23

0.17 ~

0.22

Si

0.15 ~

0.35

0.15 ~

0.35

0.15 ~

0.30

6-2 Materials used for cages

Since the characteristics of materials used for cages greatly influence the performance and reliability of rolling bearings, the choice of materials is of great importance.

It is necessary to select cage materials in accordance with required shape, ease of lubrication, strength, and abrasion resistance.

Typical materials used for metallic cages are shown in Tables 6-5 and 6-6.

In addition, phenolic resin machined cages and other synthetic resin molded cages are often used.

Materials typically used for molded cages are polyacetal, polyamide (Nylon 6.6, Nylon 4.6), and polymer containing fluorine, which are strengthened with glass and carbon fibers.

Table 6-5 Chemical compositions of pressed cage steel sheet (A) and machined cage carbon steel (B)

	Standard	Code		Chemical composition (%)					
	Stanuaru	Code	С	Si	Mn	Р	S	Ni	Cr
	JIS G 3141	SPCC	Not more than 0.12	-	Not more than 0.50	Not more than 0.040	Not more than 0.045	_	-
(A)	JIS G 3131	SPHC	Not more than 0.15	-	Not more than 0.60	Not more than 0.050	Not more than 0.050	_	-
(A)	BAS 361	SPB 2	0.13 ~ 0.20	Not more than 0.04	0.25 ~ 0.60	Not more than 0.030	Not more than 0.030	_	-
	JIS G 4305	SUS 304	Not more than 0.08	Not more than 1.00	Not more than 2.00	Not more than 0.045	Not more than 0.030	8.00 ~ 10.50	18.00 ~ 20.00
(B)	JIS G 4051	S 25 C	0.22 ~ 0.28	0.15 ~ 0.35	0.30 ~ 0.60	Not more than 0.030	Not more than 0.035	_	-

Table~6-6~~Chemical~composition~of~high-tensile~brass~casting~of~machined~cages

(7

Standard	Code	Cu	Zn	Mn	Fe	Al	Sn	Ni	Imp	urity
Staridard	Code	Ou	211	IVIII	16	re Ai	311	141	Pb	Si
JIS H 5120	CAC 301 (HBsC*)	55 ~ 60	33 ~ 42	0.1 ~ 1.5	0.5 ~ 1.5	0.5 ~ 1.5	Not more than 1.0	Not more than 1.0	Not more than 0.4	Not more than 1.0

^{*:} Material with HBsC is used.

7. Examples of failures

Table 7-1 (1) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
(1) Flaking	Flaking caused by excessive axial load Inner ring of four-row tapered roller bearing	Flaking on bearing raceway surface generated on only rows receiving axial load	1) Crossed work rolls causing excessive axial load Roll neck diameter is smaller than the standard one. Chock side liner is worn. Inaccuracy of mill stand. Rigidity of the chock is poor. Corrosion on liner or clearance generated between the liner and the chock. Failure of the keeper plate.	1) Keep the correct locations of the chock and work roll.
	Outer ring raceway of four-row tapered roller bearing	Flaking generated and developed from raceway end face	1) Looseness of chock cover/excessive axial clearance As the axial clearance is increased, the loading range becomes narrower, partial load acts, and edge load is generated on the outer ring raceway. 2) Excessive axial clearance is generated because of the mixed use of other bearing spacer or outer ring.	Adjust shims, select thickness of shims, measure a gap, and tighten bolts correctly. Use parts of the same number.
	Flaking caused by improper mounting Loading position (1) 1st row 2nd row 3rd row 4th row (2) (4) Loading position (3) Loading position (4) Outer ring raceway of four-row tapered roller bearing	Flaking on raceway surface with slanted contact	1) It occurs when the chock is fixed inappropriately and slantingly. Failure of keeper plate Removal, looseness, damage, deformation, bend, unequal tightening, unequal wear, improper parallelism Damaged, deformed, or bent chock flange	Find the cause of damage by periodic inspection of the chock and stand.
	Flaking at corroded start point Outer ring raceway of four-row tapered roller bearing	Flaking on raceway surface started from corroded (rusted) portion	 After the bearing was used, it has been left for a long period with moisture mixed in grease. Improper rust preventive treatment after the bearing was washed. Worn or damaged seal lips Corrosion on the raceway is generated due to the clearance between the roll neck and the sleeve, and flaking occurs with rust. 	1) Improve seal maintenance and sealing method. Periodically check for wear or damage on the seal lips. 2) Fit the "O" ring between the roll neck and the sleeve. 3) Immediately after the bearing is removed from the chock, change grease. 4) After washing the bearing, remove kerosene and water completely.

Table 7-1 (2) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
(1) Flaking	Flaking on nicks (scratch) start point Rolling contact surface of four-row cylindrical roller bearing	Flaking on rolling contact surface with nicks start point	Inappropriate handling Mounting / dismounting bearing to / from chock Replacing roll	Proper handling jig (use of a copper hammer) Prevention of impact load when replacing roll (use of soft material) Improvement in mounting method Change in raceway chamfering
	Outer ring raceway of double-row cylindrical roller bearing	Flaking on raceway surface	1) Low viscosity lubrication (improper lubrication) 2) Ingress of dusts and foreign matters	Improvement in viscosity of oil and oil type Improvement in seal maintenance and sealing method Periodic check of wear or damage of seal lip Check of oil filter
	Inner ring raceway of double-row cylindrical roller bearing			
(2) Cracking Chipping	Inner ring side face of four-row tapered roller bearing	Minute crack on inner ring side face	 Fix the inner ring and the roll with a fillet ring (thrust collar). Clearance between the fillet ring (thrust collar) and the inner ring is excessively small. Area of the side face of nut/slinger contacting the inner ring side face is too small, the side face is worn due to inner ring creep, causing heat. 	Keep the clearance between the inner ring and the fillet ring (thrust collar) (from 0.5 mm to 1.5 mm). Keep the area of the side of fillet ring (thrust collar) (to reduce pressure on the side face). Apply and supply grease of adequate amount.
	Rolling contact surface of four-row cylindrical roller bearing	Cracking on rolling elements	1) Application of load greater than bearing load rating (Load resistance of roller by use of pin type cage) 2) Secondary factor in case of damaged pin of cage (For a reversible mill, pins are broken due to fatigue caused by rapid acceleration and deceleration) 3) Other factors Ingress of water due to faulty sealing Increase of axial clearance of bearing, causing application of partial and excessive load	Optimal design of bearing considering load and operating conditions (Examination of optimal cage type) Reviewing sealing method and design of strength of cover

Table 7-1 (3) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	 Causes	Countermeasures
(2) Cracking Chipping	Outer ring outside surface of double-row cylindrical roller bearing Outer ring side face of double-row cylindrical roller bearing Outer ring outside of double-row cylindrical roller bearing	Crack on outer ring	1) Impact load acting due to accidents of rolling mill (for example, plate being caught in, ingress of dusts) 2) Rolling load acting unevenly due to uneven overall thickness of bearing in the shaft, causing excessive load to a thick section bearing (for multi-roll mill, BUR bearing)	1) Change to outer ring material or heat treated material hard to be cracked. 2) Appropriate overall thickness control of bearings in a shaft
	Inner ring raceway of four-row cylindrical roller bearing	Grinding burn or crack on inner ring raceway surface	1) After fitting an inner ring into the roll neck, grinding burn occurs during grinding with the inner ring and the roll. 2) Crack occurs because rollers rolling on the raceway surface of which strength (hardness) is decreased due to grinding burn.	Reviewing grinding conditions Grain size of grinding stone, grinding stone cutting amount, cutting pressure, grinding fluid amount, etc.
	Outer ring outside surface of double-row cylindrical roller bearing	Grinding burn or crack on outer ring outside surface	1) Grinding burn occurs when re-grinding the outer ring of a multi-roll mill bearing. 2) Crack occurs because the outer ring of which strength (hardness) is decreased by grinding burn contacts with the intermediate roll.	

Table 7-1 (4) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures		
(2) Cracking Chipping	Fractured section of inner ring Inner ring of spherical roller bearing	Axial crack occurs on bore surface of inner ring and raceway surface.	Excessive interference between inner ring and shaft Great fit stress due to excessive difference in temperature of inner ring and that of shaft	Appropriate fit conditions of inner ring and shaft Appropriate difference in temperature by checking load, rotation, and temperature conditions. (appropriate fit)		
	Inner ring bore surface of four-row tapered roller bearing	Circumferential crack occurs on bore surface and raceway surface of inner ring.	Step wear occurs on the shaft (roll neck), and the inner ring overrides the shaft, causing great bore surface stress	Provide circumferential groove for the roll neck. When using a bearing with different chamfers for a roll, make the chamfers identical.		
	Outer ring raceway of double-row tapered roller bearing Fractured section of outer ring	Axial crack occurs on outside surface and raceway surface of outer ring.	Excessive axial load Axial clearance between the bearing and roll is great, and excessive axial load is applied.	Check for axial load. Check the wear condition of counterpart components. Reviewing thickness of the outer ring		
	Inner ring raceway of spherical thrust roller bearing	Crack occurs on inner ring back face rib.	Excessive axial load Low holding shoulder diameter on the inner ring back face rib	Reviewing operating conditions Reviewing dimensions of counterpart collar (Dimensions allowing backup of inner ring back face rib)		

Table 7-1 (5) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
(3) Brinelling Nicks	Outer ring raceway surface of four-row tapered roller bearing	Brinelling (Nicks) on raceway and rolling contact surfaces (scratch)	Nicks occur on the raceway and rollers because of improper handling. Mounting / dismounting bearing to / from chock Replacing roll	1) Proper handling jig (use of a copper hammer) 2) Application of grease to raceway surface of inner and outer rings (Apply oil if the bearing is the oil lubricated type) 3) Prevention of impact load when replacing roll (Use of soft material) 4) Roll bending compared to bearing static load rating 5) Improvement in mounting method 6) Change in raceway chamfering 7) Check for excessive load on the slant chamfer of the
	Rolling contact surface of four-row cylindrical roller bearing	Brinelling on raceway surface at the same interval as rolling element spacing	Great bending load is applied to the roll neck. (Especially, when faulty rolling occurs)	raceway surface
(4) Scratch Scuffing	Roller end face of double-row cylindrical roller bearing Roller large end face of double-row tapered roller bearing	Scuffing on roller end face and rib of the raceway	Improper lubrication, ingress of foreign matters Abnormal axial load caused by improper mounting or control of bearing overall thickness Excessive axial load Excessive preload	1) Selection of appropriate oil type and supply of adequate lubricant 2) Reviewing bearing mounting location 3) Reviewing bearing overall thickness control 4) Reviewing operating conditions 5) Checking preload

Table 7-1 (6) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
(5) Smearing	Outer ring raceway surface of four-row tapered roller bearing Outer ring raceway surface of spherical roller bearing	Smearing on raceway or rolling contact surface	Inproper lubrication Slip of rolling elements (high speed, light load) Ingress of foreign matters during maintenance	Selection of appropriate oil type and supply of adequate lubricant Setup of appropriate preload Prevention of ingress of foreign matters
	Outer ring raceway surface of spherical roller bearing Rolling element surface of spherical roller bearing			
(6) Corrosion Rust	Corrosion Outer ring of four-row tapered roller bearing Outer ring of four-row tapered roller bearing	Rust, corrosion on the raceway surface at the same interval as rolling element spacing	Worn or damaged seal lips Ingress of water or corrosive materials into clearance between roll neck and sleeve	In mprove seal maintenance and sealing method. Periodically check for wear or damage on the seal lips. Fit the "O" ring between the roll neck and the sleeve.
	Rust Outer ring of four-row tapered roller bearing	Rust on partial or entire surface of bearing	After the bearing was used, it has been left for a long period with moisture mixed in grease. Improper rust preventive treatment after the bearing was washed.	1) Immediately after the bearing is removed from the chock, change grease. 2) After washing the bearing, remove kerosene and water completely.

Table 7-1 (7) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures		
(7) Creeping	Scuffing on rolling mill roll neck	Wear, discoloration, and scuffing due to slip of fit surface	Insufficient grease or oil between the inner ring bore surface and the roll neck outside surface When creep occurs between the inner ring and the roll neck, because of loose fit of them.	Provide the spiral groove for bore surface of inner ring When mounting the bearing, apply grease with molybdenum disulfide or EP grease. (Apply oil if the bearing is the oil lubricated type)		
	Inner ring bore surface of four-row tapered roller bearing					
(8) Seizure	Rolling contact surface of double-row tapered roller bearing Roller large end face of double-row tapered roller bearing TE-3-1 Inner ring of double-row tapered roller bearing	Discoloration, deformation, and melting caused by heat of bearing	1) Improper lubrication (insufficient or degraded lubricant) 2) Ingress of water due to faulty sealing 3) Excessive axial load 4) Heat generated by creep of inner ring 5) Ingress of dusts or foreign matters 6) Excessively small bearing internal clearance	1) Reviewing sealing type and conditions 2) Reviewing lubricating method and lubricant, and checking lubricated condition 3) Check for axial load 4) Reviewing bearing (type, size, etc.) 5) Reviewing clearance 6) Confirming operating conditions		

Table 7-1 (8) Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures		
(9) Failure in lubrication	Inner ring assembly of four-row tapered roller bearing	Grease including large quantity of water mixed in	 Operated at high temperature ⇒ Grease is carbonized. Ingress of water due to improper sealing or wear or damage of seal lip (In this example, 20% or more of water is mixed in grease. 	Find the cause of high temperature. If the temperature cannot be lowered, review the possibility of change to high temperature grease. 2) Checking wear or damage of seal lip Find the cause of and countermeasure against the improper sealing.		
	Inner ring assembly of double-row tapered roller bearing Outer ring of double-row tapered roller bearing	Foreign matter attachment and corrosion occur because of ingress of a great deal of foreign matters (scale and water for rolling).	Ingress of water due to improper sealing or wear or damage of seal lip	Checking wear or damage of seal lip Find the cause of and countermeasure against the improper sealing.		
	Four-row tapered roller bearing	Seizure and adhesion of raceway, roller, and cage	Varied factors including improper lubrication, improper operation, and ingress of foreign matters occur, causing damages.	Checking improper operation Checking lubricating conditions Checking degradation of peripheral parts		
	Outer ring assembly of four-row cylindrical roller bearing Outer ring assembly of four-row cylindrical roller bearing	Looseness and breaking of pin	Abnormal load due to vibration occurs. End of cage's service life because of use for a long period	Checking abnormal vibration Replace if it has been used for a long period.		

	Koyo
--	------

Bearing specification tables

Koyo

- Deep groove ball bearings can accommodate radial load and axial load in both directions.
 Suitable for operation at high speed, with low vibration.

Boundary dimensions	The dimensions of standard	d series ar	e as spe	cified in J	IIS B 151	12.					
Tolerances	As specified in JIS B 1514,	class 0 or	6 (refer	to Table	2-2 on pa	age 14.)					
Allowable misalignment	0.002 3 rad (8') - 0.003 4 rad (12')										
Radial internal clearance	(refer to Table 4-2 on page 46)										
Standard cages	Pressed cage (design 1) or machined cage (design 2 to 5).										
Equivalent radial load	Dynamic equivalent radial load	$\frac{f_0 F_a}{C_{0r}} \qquad e \qquad \frac{F_a}{F_r} \leq e$		≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$						
	$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$	C _{0r}		X	Y	X	Y				
	Static equivalent radial load $P_{0r} = 0.6F_r + 0.5F_a$ when the value of $P_{0r} < F_r, P_{0r} = F_r$	0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00				
		Factor f ₀ i	is shown	in the be	aring spe	ecification	table.				

d 100 ~ 130 mm

Bound	dary dir		ons	Basic load		Factor			Mounting dimensions (mm)		(Refer.)	
	(mm)		(Kr	N)		Bearing No.	Design	a			Mass
d	D	В	r min.	$C_{\rm r}$	C_{0r}	f_0			$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
100	125	13	1	19.6	21.2	16.0	6820	1	105	120	1	0.309
	140	20	1.1	45.0	41.9	16.2	6920	2	106.5	133.5	1	0.960
	150	16	1	42.4	42.1	16.5	16020	1	105	145	1	0.910
	150	24	1.5	60.2	54.2	15.9	6020	1	108	142	1.5	1.25
	180	34	2.1	122	93.1	14.4	6220	1	111	169	2	3.14
	215	47	3	173	141	13.2	6320	1	113	202	2.5	7.00
105	145	20	1.1	46.5	44.8	16.4	6921	2	111.5	138.5	1	1.00
	160	18	1	41.9	42.2	16.5	16021	1	110	155	1	1.20
	160	26	2	72.3	65.8	15.8	6021	1	114	151	2	1.59
	190	36	2.1	133	105	14.4	6221	1	116	179	2	3.70
	225	49	3	184	153	13.2	6321	1	118	212	2.5	8.05
110	140	16	1	28.1	30.7	16.1	6822	1	115	135	1	0.606
	150	20	1.1	47.9	47.8	16.4	6922	2	116.5	143.5	1	1.04
	170	19	1	57.5	56.7	16.3	16022	1	115	165	1	1.46
	170	28	2	82.0	73.0	15.6	6022	1	119	161	2	1.96
	200	38	2.1	144	117	14.4	6222	1	121	189	2	4.36
	240	50	3	205	180	13.2	6322	1	123	227	2.5	9.54
120	150	16	1	29.0	33.0	16.0	6824	1	125	145	1	0.655
	165	22	1.1	57.2	56.9	16.4	6924	2	126.5	158.5	1	1.41
	180	19	1	63.2	63.3	16.4	16024	1	125	175	1	1.80
	180	28	2	85.0	79.3	15.9	6024	1	129	171	2	2.07
	215	40	2.1	155	131	14.4	6224	1	131	204	2	5.15
	260	55	3	207	185	13.5	6324	1	133	247	2.5	12.5
130	165	18	1.1	36.9	41.2	16.1	6826	1	136.5	158.5	1	0.939
	180	24	1.5	65.2	67.4	16.3	6926	2	138	172	1.5	1.86
	200	22	1.1	71.3	74.8	11.2	16026	1	136.5	193.5	1	2.69
	200	33	2	106	101	15.8	6026	1	139	191	2	3.16
	230	40	3	167	146	14.5	6226	1	143	217	2.5	5.82
	280	58	4	229	214	13.6	6326	1	146	264	3	15.1

d 140 ~ (180) mm

Bound	dary din (mm)	nensi	ons	Basic load		Factor	Bearing No.	Design	Mountir	ng dimer	nsions	(Refer.) Mass
d	D	В	r min.	C_{r}	$C_{0\mathrm{r}}$	f_0		200.8	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
140	175	18	1.1	38.2	44.4	16.0	6828	1	146.5	168.5	1	1.00
	190	24	1.5	71.3	74.8	16.5	6928	2	148	182	1.5	1.98
	210	22	1.1	65.8	71.1	16.5	16028	1	146.5	203.5	1	2.86
	210	33	2	110	109	15.9	6028	1	149	201	2	3.55
	250	42	3	166	150	14.8	6228	1	153	237	2.5	7.45
	300	62	4	253	246	13.6	6328	1	156	284	3	19.4
150	190	20	1.1	47.8	54.9	16.1	6830	1	156.5	183.5	1	1.40
	210	28	2	93.4	94.3	16.2	6930	2	159	201	2	3.05
	225	24	1.1	91.2	99.3	16.6	16030	2	156.5	218.5	1	3.58
	225	35	2.1	125	126	16.0	6030	1	161	214	2	4.22
	230	35	2.1	125	116	15.8	306891A	2	161	219	2	5.50
	270	45	3	176	168	15.1	6230	1	163	257	2.5	9.41
	320	65	4	275	284	13.9	6330	2	166	304	3	26.2
160	200	20	1.1	48.4	56.9	16.1	6832	1	166.5	193.5	1	1.45
	220	28	2	96.1	101	16.4	6932	2	169	211	2	3.20
	229.5	33	2	99	108	16.5	SB322333A	2	169	220.5	2	4.2
	240	25	1.5	98.8	108	16.5	16032	2	168	232	1.5	4.25
	240	38	2.1	136	135	15.9	6032	1	171	229	2	5.22
	290	48	3	185	186	15.4	6232	2	173	277	2.5	14.3
	340	68	4	278	286	13.9	6332	2	176	324	3	29.0
170	215	22	1.1	59.8	70.5	16.1	6834	1	176.5	208.5	1	1.90
	230	28	2	98.8	108	16.5	6934	2	179	221	2	3.35
	249.5	38	2	135	137	16.1	SB342538	2	179	240.5	2	6.00
	260	28	1.5	114	127	16.5	16034	2	178	252	1.5	5.75
	260	42	2.1	161	161	15.8	6034	1	181	249	2	6.80
	310	52	4	212	223	15.3	6234	2	186	294	3	17.5
	360	72	4	326	355	13.6	6334	2	186	344	3	38.6
180	225	22	1.1	60.7	73.1	16.1	6836	1	186.5	218.5	1	2.00

d (180) ~ (220) mm

Bound	dary din (mm)		ons	Basic load		Factor	Bearing No.	Design	Mount	ing dime	nsions	(Refer.)
d	D	В	r min.	C_{r}	C_{0r}	f_0	Bouring Ho.	Doorgii	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
180	250 259.5	33 33	2	123 114	129 127	16.3 16.5	6936 306840	2 2	189 189	241 250.5	2	4.90 6.10
	265	33	2	140	147	16.2	SB3627	2	189	256	2	6.20
	280	31	2	135	148	16.4	16036	2	189	271	2	7.55
	280	46	2.1	182	194	15.8	6036	2	191	269	2	10.3
	320	52	4	227	241	15.1	6236	2	196	304	3	18.3
	380	75	4	354	407	13.9	6336	2	196	364	3	44.7
190	240	24	1.5	73.1	88.1	16.1	6838	1	198	232	1.5	2.60
	259.5	33	2	113	127	16.6	SB382633	2	199	250.5	2	5.10
	260	33	2	126	138	16.4	6938	2	199	251	2	5.20
	269.5	33	2	139	148	16.3	306627A	2	199	260.5	2	6.50
	290	31	2	139	158	16.6	16038	2	199	281	2	7.85
	290	46	2.1	188	201	15.8	6038	2	201	279	2	10.8
	340	55	4	255	281	15.0	6238	2	206	324	3	23.0
	400	78	5	355	415	14.1	6338	2	210	380	4	51.5
200	250	24	1.5	78.0	93.6	16.1	6840	2	208	242	1.5	2.70
	279.5	38	2.1	143	158	16.4	360278	2	211	268.5	2	7.40
	280	38	2.1	157	168	16.2	6940	2	211	269	2	7.30
	289.5	38	2.1	165	176	16.1	306841	2	211	278.5	2	8.90
	310	34	2	161	180	16.4	16040	2	209	301	2	10.1
	310	51	2.1	217	243	15.6	6040	2	211	299	2	14.0
	360	58	4	269	311	15.2	6240	2	216	344	3	28.2
	420	80	5	411	506	14.0	6340	2	220	400	4	58.0
210	299.5	38	2.1	170	189	16.2	SB4230	2	221	288.5	2	8.80
220	270	24	1.5	80.7	101	16.0	6844	2	228	262	1.5	3.00
	300	38	2.1	160	180	16.4	6944	2	231	289	2	7.90
	309.5	38	2.1	151	178	16.5	306867	2	231	298.5	2	9.40
	319.5	46	2.1	193	220	16.1	SB4432A	2	231	308.5	2	11.9

d (220) ~ (280) mm

Bound	dary din	nensi	ons	Basic loa		Factor	Bearing No.	Design	Mounti	ng dime	nsions	(Refer.)
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Bearing No.	Design	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
220	340 340 400 460	37 56 65 88	2.1 3 4 5	180 235 311 433	217 271 376 539	16.5 15.6 15.1 13.8	16044 6044 6244 6344	2 2 2 2	231 233 236 240	329 327 384 440	2 2.5 3	13.2 18.3 37.0 71.6
230	329.5 339.5	40 45	2.1	183 223	213 267	16.3 16	306842A SB4634	2 2	241 243	318.5 326.5	2 2.5	11.9 13.6
240	300 320 329.5	28 38 40	2 2.1 2.1	108 164 173	135 192 205	16.1 16.5 16.5	6848 6948 SB4833	2 2 2	249 251 251	291 309 318.5	2 2 2	4.50 8.50 9.80
	360 360 440	37 56 72	2.1 3 4	184 244 340	228 296 431	16.5 15.9 15.2	16048 6048 6248	2 2 2	251 253 256	349 347 424	2 2.5 3	14.1 19.7 51.0
250	340 349.5	95 42 46	5 2.1 2.1	168 197	202 238	14.2 16.5 16.4	6348 SB5034A SB5035	2 2 2	260 261 261	329 338.5	2 2	93.3 10.8 13.1
260	320 360 369.5	28 46 46	2 2.1 2.1	112 213 229	146 263 289	16.0 16.3 16.2	6852 6952 306862	2 2 2	269 271 271	311 349 358.5	2 2 2	4.80 14.4 16.0
	379.5 400 400	56 44 65	3 3 4	253 236 291	321 310 377	16.1 16.4 15.8	SB5238 16052 6052	2 2 2	273 273 276	366.5 387 384	2.5 2.5 3	20.3 21.6 29.3
270	480 379.5	80 46	2.1	402 228	290	15.1	6252 SB5438	2	280	460 368.5	2	15.8
280	350 380 389.5 420	33 46 46 46	2 2.1 2.1 3	143 219 236 242	183 283 310 331	16.1 16.5 16.4 14.7	6856 6956 306861A 16056	2 2 2 2	289 291 291 293	341 369 378.5 407	2 2 2 2 2.5	7.40 15.1 18.0 22.9

d (280) ~ 340 mm

Bound	dary dir		ons		ad ratings	Factor	Bearing No.	Design	Mounti	ing dime	nsions	(Refer.)
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Bearing No.	Design	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
280	420 500	65 80	4 5	302 423	408 599	16.0 15.3	6056 6256	2 2	296 300	404 480	3 4	31.0 71.8
290	400 409.5 419.5	52 56 60	4 3 4	234 260 297	311 347 377	16.5 16.3 16.2	SB5840 SB5841 SB584260	2 2 2	306 303 306	384 396.5 403.5	3 2.5 3	19.6 22.2 26.5
300	380 419.5 420 429.5 460 460	38 56 56 56 50 74	2.1 3 3 4 4	179 258 276 257 284 355	230 349 377 350 405 482	16.2 16.4 16.2 16.4 16.4 15.6	6860 \$B604256 6960 \$B6043 16060 6060	2 2 2 2 2 2	311 313 313 313 316 316	369 406.5 407 416.5 447 444	2 2.5 2.5 2.5 3 3	10.5 22.9 24.1 26.7 32.2 44.0
310	429.5	60	4	275	379	16.3	SB624360	2	326	413.5	3	25.3
320	400 440 449.5 480	38 56 56 50	2.1 3 3	182 285 291 292	239 404 411 432	16.1 16.4 16.3 16.5	6864 6964 SB6445A 16064	2 2 2 2	331 333 333 336	389 427 436.5 467	2 2.5 2.5 3	11.0 25.5 26.4 33.9
330	480 459.5	74 56	3	352 301	487	15.7 16.4	6064 SB6646	2	336 343	464	2.5	46.0 28.4
340	420 449.5 460	38 56 56	2.1 3 3	185 282 282	249 407 407	16.1 16.5 16.5	6868 SB684556 6968	2 2 2	351 353 353	409 436.5 447	2 2.5 2.5	11.5 22.9 26.8
	479.5 489.5 520	65 60 57	3 5 4	330 329 335	480 481 512	16.2 16.2 16.4	5.2 SB6848 5.2 SB6849 6.4 16068		353 360 356	466.5 469.5 507	2.5 4 3	35.5 36.4 46.8
	520 540 620	82 90 92	5 5 6	441 462 511	661 679 817	15.6 15.4 15.6	6068 SB6854 6268	2 2 2	360 360 364	500 520 596	4 4 5	61.8 77.2 131
	710	118	7.5	704	1 160	14.7	6368	2	372	678	6	238

d 360 ~ (460) mm

Bound	dary dir (mm)		ons		ad ratings	Factor	Bearing No.	Design	Mounti	ng dime	ensions	(Refer.)
d	D	В	r min.	$C_{\rm r}$	C_{0r}	f_0	Bouring Hor	Boolgii	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
360	440	38	2.1	192	268	16.0	6872	2	371	429	2	12.0
	480	56	3	289	432	16.5	6972	2	373	467	2.5	28.2
	509.5	70	5	364	550	16.2	SB725170	2	380	489	4	42.7
	540	57	4	345	546	16.5	16072	2	376	527	3	49.0
	540	82	5	438	668	15.7	6072	2	380	520	4	64.7
	550	85	5	438	669	15.8	SB7255	2	380	530	4	71.9
380	480	46	2.1	244	359	16.2	6876	2	391	469	2	20.0
	520	65	4	352	552	16.4	6976	2	396	504	3	40.8
	560	82	5	457	725	15.9	6076	2	400	540	4	67.6
400	500	46	2.1	249	374	16.1	6880	2	411	489	2	20.5
	540	65	4	362	588	16.5	6980	2	416	524	3	42.7
	600	63	5	358	587	16.5	16080	2	420	580	4	65.0
	600	90	5	508	824	15.7	6080	2	420	580	4	87.7
	720	130	6	628	1 080	15.5	SB8072A	4	424	696	5	232
420	520	46	2.1	253	389	16.1	6884	2	431	509	2	21.5
	560	65	4	359	588	16.5	6984	2	436	544	3	43.5
	620	90	5	530	894	15.8	6084	2	440	600	4	91.2
430	600	75	4	408	678	16.4	SB8660	2	446	584	3	64.6
440	540	46	2.1	257	404	16.0	6888	2	451	529	2	22.5
	600	74	4	396	676	16.4	6988	2	456	584	3	61.3
	619	75	4	422	724	16.5	SB8862A	2	456	603	3	70.3
	650	67	5	407	710	16.5	16088	2	460	630	4	81.7
	650	94	6	526	902	16	6088	2	464	626	5	105
450	630	75	4	407	711	16.5	SB9063	2	466	614	3	72
460	580	56	3	314	517	16.2	6892	2	473	567	2.5	35.0
	620	74	4	407	711	16.5	6992	2	476	604	3	61.7
	659	80	4	484	854	16.3	SB9266	2	476	643	3	90

d (460) ~ (670) mm

Bound	dary dir		ons		ad ratings	Factor	Bearing No.	Design	Mounti	ng dimei	nsions	(Refer.)
d	D	В	r min.	$C_{\rm r}$	C_{0r}	f_0	bearing No.	Design	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
460	680 680	71 100	5 6	431 577	767 1 000	16.5 15.8	16092 6092	2 2	480 484	660 656	4 5	91.2 124
480	600 700	56 100	3	321 603	539 1 090	16.1 15.9	6896 6096	2 2	493 504	587 676	2.5 5	36.5 127
500	620 670 720	56 78 100	3 5 6	327 444 600	561 807 1 100	16.1 16.5 16.0	68/500 69/500 60/500	2 2 2	513 520 524	607 650 696	2.5 4 5	37.5 75.2 128
520	679.5	78	3	457	848	16.4	SB520-1	2	533	666.5	2.5	72.2
530	650 710 760	56 82 100	3 5 6	331 512 621	581 975 1 180	16.0 16.6 16.2	68/530 69/530 SB530	2 2 2	543 550 554	637 690 736	2.5 4 5	39.5 89.2 144
560	680 820	56 115	3	335 763	602 1 520	16.0 15.9	68/560 60/560	2 2	573 584	667 796	2.5 5	42.0 199
570	799	115	6	641	1 280	16.3	SB570	2	594	775	5	172
590	820	105	6	637	1 280	16.4	SB590A	2	614	796	5	166
600	730 800	60 90	3 5	377 592	707 1 200	16.0 16.4	68/600 69/600	2 2	613 620	717 780	2.5 4	52.0 127
610	720 730 849.5 869	55 54 100 120	3 3 6 5	303 302 659 725	559 559 1 370 1 520	15.7 15.7 16.5 16.3	SB610D SB610A SB610C SB610B	2 3 2 5	623 623 634 630	707 717 825.5	2.5 2.5 5	38.8 42.3 172 221
630	780 920	69	4 7.5	446 841	875 1 770	16.1 16.0	68/630 60/630	2 2	646 662	767 888	3	69.0 276
670	820	69	4	452	908	16.0	68/670	2	686	807	3	76.9

d (670) ~ 1 000 mm

Bour	ndary di (mn		ons		ad ratings kN)	Factor	Bearing No.	Design	Mount	ing dime	ensions	(Refer.)
d	D	В	<i>r</i> min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0			$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
670	980	136	7.5	870	1 920	16.2	60/670	2	702	948	6	337
700	979	150	6	837	1 900	16.4	SB700	5	724	955	5	326
710	870	74	4	495	1 030	16.0	68/710	2	726	854	3	93.8
	1 030	140	7.5	1 020	2 310	16.0	60/710	2	742	998	6	394
	1 080	160	7.5	1 060	2 490	16.1	SB710	2	742	1 048	6	524
730	900	78	5	476	1 010	15.9	SB730	3	750	880	4	105
750	920	78	5	514	1 110	15.9	68/750	2	770	900	4	111
	1 090	150	7.5	1 050	2 500	16.1	60/750	2	782	1 058	6	473
800	980	82	5	584	1 310	16.0	68/800	2	820	960	4	127
	1 150	155	7.5	1 090	2 690	16.3	60/800	2	832	1 118	6	533
830	1 080	115	6	795	1 900	16.3	SB830	4	854	1 056	5	275
850	1 030	82	5	591	1 350	15.9	68/850	2	870	1 010	4	135
	1 120	118	6	903	2 240	16.4	69/850	2	874	1 096	5	315
	1 178	160	7.5	1 080	2 710	16.4	SB850A	2	882	1 146	6	524
880	1 130	115	6	811	1 980	16.2	SB880	2	904	1 106	5	265
900	1 090	85	5	611	1 450	15.9	68/900	2	920	1 070	4	162
	1 180	122	6	888	2 220	16.3	69/900	2	924	1 156	5	347
920	1 180	120	6	828	1 020	16.2	SB920	2	944	1 156	5	320
930	1 010	40	2.1	218	494	14.3	SB930A	2	946	994	2	31
950	1 150	90	5	701	1 740	15.9	68/950	2	970	1 130	4	190
	1 250	132	7.5	989	2 580	16.3	69/950	2	982	1 218	6	431
1 000	1 220	100	6	790	2 030	16.0	68/1000	2	1 024	1 196	5	245
	1 380	190	7.5	1 170	3 220	16.4	SB1000	2	1 032	1 348	6	837

d 1 060 ~ 1 420 mm

Bour	ndary di (mm		ons		ad ratings kN)	Factor	Bearing No.	Design	Mount	ing dime	nsions	(Refer.)
d	D	В	<i>r</i> min.	$C_{\rm r}$	C_{0r}	f_0			$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
1 060	1 280	100	6	798	2 100	15.9	68/1060	2	1 084	1 256	5	251
1 090	1 350	122	7.5	890	2 140	16	SB1090	2	1 122	1 318	6	376
1 100	1 200	50	2.1	316	744	14.2	SB1100A	2	1 116	1 184	2	56
1 120	1 360	106	6	886	2 410	15.6	68/1120	2	1 144	1 336	5	319
1 200	1 450	112	7.5	915	2 580	15.8	SB1200	2	1 232	1 418	6	363
1 240	1 510	122	7.5	1 010	2 930	15.9	SB1240	2	1 272	1 478	6	446
1 320	1 600	122	6	1 040	3 130	15.9	68/1320	2	1 344	1 576	5	504
1 400	1 700	132	7.5	1 130	3 510	15.8	68/1400	2	1 432	1 668	6	621
1 420	1 800	150	9.5	1 150	3 630	15.8	SB1400B	2	1 460	1 760	8	915

_ Koyo

■ Double-row (page 112)

- Single-row bearings can accommodate radial load and axial load in one direction.
- DB and DF matched pair bearings and doublerow bearings can accommodate radial load and axial load in both directions.
- Two or more single-row angular contact ball bearings are often combined in order to increase the load rating or rigidity. In this case, two types of arrangements, back-to-back arrangement (DB) and face-to-face arrangement (DF), are available. If the load rating of a single-row angular contact ball bearing is insufficient, use the tandem arrangement (DT).

Boundary dimensions	The dimensions of standard series are as specified in JIS B 1512-1995.
Tolerances	As specified in JIS B 1514, class 0 or 6. (refer to Table 2-2 on page 14.)
Contact angle (α)	The standard contact angles are 15°, 30° and 40°. Bearings with a smaller contact angle are more suitable for applications involving high-speed rotation. Those with a larger contact angle feature superior axial load resistance. (The standard contact angles of single-row and matched pair angular contact ball bearings) 15°supplementary code C 30°supplementary code A or no indication 40°supplementary code B [Note] Contact angles of double-row angular contact ball bearings are shown in specification tables.
Allowable misalignment	Single-row0.000 6 rad (2'): Matched pair, double-rowmisalignment not allowed
Internal clearance	(refer to Table 4-3 on pages 46, 47)
Standard cages	Machined cage

Equiva-Single-Dynamic Single-row and Back-to-back (DB) and lent radial row and equivalent tandem (DT) arrangement face-to-face (DF) arrangement load matched radial load if_0F_a Contact pair $P_r = XF_r + YF_a$ C_{0r} angular contact Y ball 0.178 0.38 1.47 1.65 2.39 bearings 0.357 0.40 1.40 1.57 2.28 0.714 0.43 1.30 1.46 2.11 1.07 0.46 1.23 1.38 2.00 $\alpha = 15^{\circ}$ 0 0.44 0.72 1.43 0.47 1.19 1.34 1.93 2.14 0.50 1.12 1.26 1.82 3.57 0.55 1.02 1.14 1.66 0.56 1.12 5.35 1.00 1.63 $\alpha = 30^{\circ}$ 0.80 0 0.39 0.76 0.78 0.63 1.24 0.35 0.57 0.55 0.57 0.93 $\alpha = 40^{\circ}$ 1.14 0 For i, use 2 for DB & DF and 1 for single & DT. Factor f_0 is shown in the bearing specification table. Static equivalent Single-row and Back-to-back (DB) and radial load Contact tandem (DT) arrangement face-to-face (DF) arrangement $P_{0r} = X_0 F_r + Y_0 F_a$ angle Y_0 X_0 Y_0 X_0 In reference to single-row and tandem arrangement 0.46 $\alpha = 15^{\circ}$ 0.5 1 0.92 bearings, $\alpha = 30^{\circ}$ 0.5 0.33 0.66 1 when $P_{0r} < F_r$ $\alpha = 40^{\circ}$ 0.5 0.26 0.52 $P_{0r} = F_r$ Double-Dynamic equivalent radial load row $\leq e$ Contact angular $P_r = XF_r + YF_a$ angle X X Ycontact ball $\alpha = 30^{\circ}$ 0.80 1 0.78 0.63 1.24 bearings $\alpha = 32^{\circ}$ 0.86 1 0.73 | 0.62 | 1.17 Static equivalent X_0 Y_0 Contact angle radial load 0.66 $\alpha = 30^{\circ}$ 1 $P_{0r} = X_0 F_r + Y_0 F_a$ $\alpha = 32^{\circ}$ 1 0.63

Dynamic equivalent load calculation: when a pair of single-row angular contact ball bearings is arranged face-to-face or back-to-back.

While radial loads $F_{\rm rA}$ and $F_{\rm rB}$ are applied to bearings A and B, axial load $K_{\rm a}$ externally acts in the directions shown in the figures below.

[Remark]

When radial load is applied to a single-row angular contact ball bearing, axial load generated as an axial component of force acts on another bearing. The axial load can be obtained by the following equation.

$$F_a = \frac{F_r}{2Y}$$

Paired mounting	Loading condition	Bearing	Axial load	Dynamic equivalent load
Back-to-back arrangement A B	F.p. F.A	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a}$	$P_{\rm A} = X F_{\rm rA} + Y_{\rm A} \left[\frac{F_{\rm rB}}{2 Y_{\rm B}} + K_{\rm a} \right]$ $P_{\rm A} = F_{\rm rA}, \text{ where } P_{\rm A} < F_{\rm rA}$
F _{rA} F _{rB}	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a} \ge \frac{F_{\rm rA}}{2Y_{\rm A}}$	Bearing B	-	$P_{ m B} = F_{ m rB}$
Face-to-face arrangement B A	F.D. F.A	Bearing A	-	$P_{\rm A} = F_{ m tA}$
K_a F_{rB} F_{rA}	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a} < \frac{F_{\rm rA}}{2Y_{\rm A}}$	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left[\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a} \right]$ $P_{\rm B} = F_{\rm rB}$, where $P_{\rm B} < F_{\rm rB}$
Back-to-back arrangement A B	$F_{\rm rR}$, $F_{\rm rA}$	Bearing A	-	$P_{\rm A} = F_{ m rA}$
F _{rA} F _{rB}	$\frac{F_{\rm rB}}{2Y_{\rm B}} \le \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a} \right)$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} < F_{\rm rB}$
Face-to-face arrangement B A	$\frac{F_{\rm rB}}{2Y_{\rm B}} > \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left[\frac{F_{rB}}{2Y_{B}} - K_{a} \right]$ $P_{A} = F_{rA}, \text{ where } P_{A} < F_{rA}$
K_a F_{rB} F_{rA}	$\frac{2Y_{\rm B}}{2Y_{\rm A}} > \frac{2Y_{\rm A}}{2Y_{\rm A}} + K_{\rm a}$	Bearing B	_	$P_{ m B} = F_{ m rB}$

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. above

d 100 ~ (130) mm

Bour	•	dimer	isions		Single	Basic load r	atings (kN) Matche	d pair	0: 1	Bearin	g No.	De-	Load cent	er	ı	Moun	ting di	mensio	ns	(Refer.) Mass
d D	В	С	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	C_{r}	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	sign	a a_1	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max. n	$r_{ m a}$ η nax. ma	
100 150 150 180	24 24 34	_ _ _	1.5 1.5 2.1	1 1 1.1	68.4 61.2 137	70.6 63.6 117	111 99.4 223	141 127 235	7020 7020B 7220	7020DB 7020BDB 7220DB	7020DF 7020BDF 7220DF	1 1 1	48.1 96.2 64.4 128.9 57.7 115.4	48.2 80.9 47.4	108.5 108.5 112	_ _ _	141.5 168		1.5 1 2 1	1.37 1.37 3.32
180 215 215	34 47 47		2.1 3 3	1.1 1.1 1.1	124 184 168	107 161 148	202 298 274	214 323 297	7220B 7320 7320B	7220BDB 7320DB 7320BDB	7220BDF 7320DF 7320BDF	1 1 1	76.2 152.3 69.4 138.8 90.2 180.4	84.3 44.8 86.4	112 114 114	_	201	208	2 1 2.5 1 2.5 1	3.32 7.53 7.53
105 160 190 190	26 36 36	_ _ _	2 2.1 2.1	1 1.1 1.1	79.8 149 135	81.9 132 121	130 243 220	164 265 241	7021 7221 7221B	7021DB 7221DB 7221BDB	7021DF 7221DF 7221BDF	1 1 1		51.7 50.1 89.0	117 117	_ _ _	178 178	183	2 1 2 1	1.73 3.95 3.95
225 225	49 49	_	3	1.1	208 191	193 177	337 310	386 355	7321 7321B	7321DB 7321BDB	7321DF 7321BDF	1	72.1 144.3 93.7 187.5	46.3 89.5	119 119	_			2.5 1 2.5 1	8.62 8.62
110 170 170 200	28 28 38	_ _ _	2 2 2.1	1 1 1.1	91.9 82.3 162	92.8 83.7 148	149 134 263	186 167 297	7022 7022B 7222	7022DB 7022BDB 7222DB	7022DF 7022BDF 7222DF	1 1 1	54.4 108.9 72.7 145.5 64.3 128.7	52.9 89.5 52.7	120 120 122	_ _ _	160 160 188	164.5 164.5 193		2.14 2.14 4.65
200 240 240	38 50 50	_ _ _	2.1 3 3	1.1 1.1 1.1	147 232 213	135 226 208	238 377 346	270 452 416	7222B 7322 7322B	7222BDB 7322DB 7322BDB	7222BDF 7322DF 7322BDF	1 1 1	84.9 169.7 76.4 152.7 99.6 199.3	93.7 52.7 99.3	122 124 124	_ _ _	226	233	2 1 2.5 1 2.5 1	4.65 10.1 10.1
120 180 180 215	28 28 40	_ _ _	2 2 2.1	1 1 1.1	96.6 86.4 174	103 93.0 166	157 140 283	206 186 332	7024 7024B 7224	7024DB 7024BDB 7224DB	7024DF 7024BDF 7224DF	1 1 1		58.6 97.9 57.0	130 130 132	_ _ _	170	174.5 174.5 208		2.27 2.27 5.49
215 260 260	40 55 55	 	2.1 3 3	1.1 1.1 1.1	158 246 225	151 252 231	257 400 366	302 504 462	7224B 7324 7324B	7224BDB 7324DB 7324BDB	7224BDF 7324DF 7324BDF	1 1 1	90.3 180.5 82.3 164.7 107.2 214.4	54.7	132 134 134	_ _ _	246	253	2 1 2.5 1 2.5 1	5.49 12.6 12.6
130 200 200 230	33 33 40	_ _ _	2 2 3	1 1 1.1	117 105 196	125 113 198	191 171 318	251 226 395	7026 7026B 7226	7026DB 7026BDB 7226DB	7026DF 7026BDF 7226DF	1 1 1	64.1 128.3 85.7 171.5 72.0 143.9		140 140 144	_ _ _	190 190 216	194.5 194.5 223		3.43 3.43 6.21
230 280	40 58	_	3 4	1.1 1.5	177 301	180 329	288 489	360 659	7226B 7326	7226BDB 7326DB	7226BDF 7326DF	1	95.5 191.0 88.8 177.5	-		_		223 271.5	2.5 1 3 1.	6.21 5 15.4

[Remark] a_1, a_2 : Load center spread

Design 1

Design 3

Bour	_	dimen:	sions		Single	Basic load i	r atings (kN) Matched	pair		Bearin	g No.	De-	Load (n			Moun	ting di mm	mensio	ns	(Refer.) Mass
d D	В	C	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	sign	a i	,	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	-	$r_{ m a}$ $r_{ m b}$	Single row (kg)
130 280	58	_	4	1.5	250	268	406	536	7326B	7326BDB	7326BDF	1	115.0 23	0.0 114.0	148	_	262	271.5	3 1.5	15.4
140 190 190 210	24 24 33	_ _ _	1.5 1.5 2	1 1 1	79.8 71.1 120	93 81.3 133	130 115 194	186 163 265	7928 7928B 7028	7928DB 7928BDB 7028DB	7928DF 7928BDF 7028DF	1 1 1		9.3 71.3 2.5 114.5 4.1 68.1			181.5	184.5 184.5 204.5		
210 250 250	33 42 42	_ _ _	2 3 3	1 1.1 1.1	107 218 197	119 234 213	174 355 320	237 468 426	7028B 7228 7228B	7028BDB 7228DB 7228BDB	7028BDF 7228DF 7228BDF	1 1 1	77.3 15	9.8 113.8 4.6 70.6 5.6 121.6	154	_ _ _	236		2 1 2.5 1 2.5 1	3.64 7.76 7.76
300 300	62 62	_	4	1.5 1.5	329 302	374 344	535 491	748 688	7328 7328B	7328DB 7328BDB	7328DF 7328BDF	1 1		9.0 65.0 6.6 122.6		_		291.5 291.5		
145 220	38	_	2.1	1.1	133	146	217	292	AC2922	AC2922DB	AC2922DF	1	71.7 14	3.4 67.4	157	_	208	213	2 1	4.82
150 210 210 210	28 28 25	 28	2 2 2	1 1 1	107 95.7 95.7	125 109 109	174 156 156	250 218 218	7930 7930B AC3021B	7930DB 7930BDB AC3021BDB	7930DF 7930BDF	1 1 3		1.9 75.9 9.0 123.0 6 —		_ _ _	200	204.5 204.5 204.5	2 1	2.90 2.90 2.73
225 225 229.9	35 35 35	_ _ _	2.1 2.1 2.1	1.1 1.1 2.1	137 122 132	154 138 143	222 199 214	308 275 287	7030 7030B AC302335B	7030DB 7030BDB AC302335BDB	7030DF 7030BDF	1 1 2		4.2 74.2 2.3 122.3 4.4 —		_ _ _	213		2 1 2 1 2 2	4.43 4.43 4.70
270 270 320 320	45 45 65	_ _ _	3 3 4 4	1.1 1.1 1.5 1.5	248 225 348 318	280 254 414 380	403 365 565 516	560 509 829 760	7230 7230B 7330 7330B	7230DB 7230BDB 7330DB 7330BDB	7230DF 7230BDF 7330DF 7330BDF	1 1 1	83.1 16 110.6 22 100.3 20 131.1 26	0.7 70.7	164 168	_ _ _	256 302			
160 215 220 220	28 28 28	25 —	2 2 2	1.5 1 1	85.7 109 97.1	102 129 113	139 177 158	204 259 226	AC3222B 7932 7932B	AC3222BDB 7932DB 7932BDB	7932DF 7932BDF	3 1 1	91.2 18 68.9 13		170 170		205 210		2 1.5 2 1	2.60 3.00 3.00
229.5 240 240	33 38 38	_ _ _	2 2.1 2.1	1 1.1 1.1	111 155 139	128 176 158	180 252 225	256 353 316	AC322333B 7032 7032B	AC322333BDB 7032DB 7032BDB	AC322333BDF 7032DF 7032BDF	2 1 1	76.8 15	6.6 130.6 3.5 77.5 5.8 129.8	172	165.5 —		233	2 1 2 1 2 1	4.40 5.45 5.45
290	48	_	3	1.1	230	263	374	525	7232	7232DB	7232DF	1	89.0 17	7.9 81.9	174	_	276	283	2.5 1	12.1

[Remark] a_1, a_2 : Load center spread

Design 1

Design 3

Boundary	dime	nsions		Singl	Basic load in e row	ratings (kN) Matched	d nair		Bearin	ıg No.		Load center (mm)		Moun	ting di mn)	imension	ıS	(Refer.) Mass
d D B	` ′	r min.	$r_1^{\ 1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	De- sign	$a a_1 a_2$	d _a	$d_{ m b}$ min.	$D_{\rm a}$	_	r _a r _b	Single row
160 290 48 340 68 340 68		3 4 4	1.1 1.5 1.5	238 365 332	279 455 416	386 592 540	557 909 831	7232B 7332 7332B	7232BDB 7332DB 7332BDB	7232BDF 7332DF 7332BDF	1 1 1	118.4 236.8 140.8 106.2 212.3 76.3 138.9 277.8 141.8	174 178	— — —	276 322 322		2.5 1 3 1.5	12.1 5 26.4
170 230 28 230 28 249.5 38	_ _ _	2 2 2	1 1 1	110 98.4 158	134 117 186	179 160 257	268 234 371	7934 7934B AC342538	7934DB 7934BDB AC342538DB	7934DF 7934BDF AC342538DF	1 1 1	71.7 143.5 87.9 97.9 195.8 139.8 79.6 159.3 83.3	180	_ _ _	220 220 239.5	224.5 2 224.5 2 244 2	2 1	3.20 3.20 5.80
249.5 38 260 42 260 42	_ _ _	2 2.1 2.1	1 1.1 1.1	141 186 166	165 214 193	229 302 270	329 429 386	AC342538B 7034 7034B	AC342538BDB 7034DB 7034BDB	AC342538BDF 7034DF 7034BDF	2 1 1	107.1 214.2 138.2 83.1 166.2 82.2 111.2 222.4 138.4	182	175.5 — —	239.5 248 248	244 2 253 2 253 2	2 1	6.10 7.58 7.77
270 40 310 52 310 52	_ _ _	2.1 4 4	1.1 1.5 1.5	176 272 245	205 331 300	285 441 398	410 661 600	AC3427B 7234 7234B	AC3427BDB 7234DB 7234BDB	AC3427BDF 7234DF 7234BDF	2 1 1	112.3 224.6 144.6 95.3 190.6 86.6 126.7 253.4 149.4	188	177 —	258 292 292	263 2 301.5 3 301.5 3	3 1.5	
360 72 360 72	_	4	1.5 1.5	389 355	485 444	631 577	969 888	7334 7334B	7334DB 7334BDB	7334DF 7334BDF	1 1	112.5 225.0 81.0 147.2 294.4 150.4		_ _	342 342	351.5 3 351.5 3		31.2 31.2
175 235 30	27	2	1	94.2	115	153	230	AC3524B	AC3524BDB	_	3	101.0 202.0 —	185	_	225	229.5 2	. 1	6.40
1802503325033259.533	_ _ _	2 2 2	1 1 1	141 126 144	170 148 176	229 204 234	339 296 353	7936 7936B AC3626	7936DB 7936BDB AC3626DB	7936DF 7936BDF AC3626DF	1 1 1	78.6 157.2 91.3 106.7 213.4 147.4 80.0 160.0 94.0	190	_ _ _	240 240 249.5	244.5 2 244.5 2 254 2	2 1	4.80 4.70 5.60
259.5 33 265 33 280 46	_ _ _	2 2 2.1	1 2 1.1	128 143 212	154 170 253	209 233 344	308 341 506	AC3626B AC3627B 7036	AC3626BDB AC3627BDB 7036DB	AC3626BDF — 7036DF	1 2 1	108.8 217.6 151.0 110.1 220.1 — 89.4 178.8 86.8	190	_ _ _	249.5 255 268	254 2 255 2 273 2	2 2	5.70 6.3 10.1
280 46 320 52 320 52	_ _ _	2.1 4 4	1.1 1.5 1.5	190 293 265	228 362 329	308 477 430	457 724 657	7036B 7236 7236B	7036BDB 7236DB 7236BDB	7036BDF 7236DF 7236BDF	1 1 1	119.5 239.0 147.0 98.2 196.3 92.3 130.9 261.8 157.0	198 198	_ _ _	302	273 2 311.5 3 311.5 3	3 1.5 3 1.5	15.7
380 75 190 255 33 259.5 35	29		1.5 1.1 SP	373 109 118	488 136 147	178 192	976 272 295	7336B AC382633B AC382635AB	7336BDB AC382633BDB AC382635ABDB	7336BDF AC382635ABDF	3 2	109.8 219.7 — 111.9 223.8 153.8	200	200	362 245 249.5	371.5 3 248 2 249 2	2 1	4.30 5.00

[Note] 1) SP indicates the specially chamfered form.

[Remark] a_1, a_2 : Load center spread

Bour		dimen	sions		Sing	Basic load I		ned pair		Bearin	g No.	De-	Load center		Mou	nting di	mension)	ns	(Refer.)
d D	В	C	r min.	$r_1^{\ 1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	sign	a a_1 a	d_{a} min	$d_{ m b}$. min.	$D_{\rm a}$	D_{b}	$r_{ m a}$ $r_{ m b}$ max. ma:	4 >
190 260 269.5 290	33 33 46	_ _ _	2 2 2.1	1 SP 1.1	143 146 217	176 177 268	233 237 353	352 354 535	7938 AC382733B 7038	7938DB AC382733BDB 7038DB	7938DF AC382733BDF 7038DF	1 2 1	81.5 162.9 96 113.0 226.0 160 92.3 184.6 92	.0 200	196	250 259.5 278		2 1 2 1 2 1	5.00 6.00 10.8
290 340 340	46 55 55	_ _ _	2.1 4 4	1.1 1.5 1.5	194 303 273	241 390 353	316 493 443	483 779 706	7038B 7238 7238B	7038BDB 7238DB 7238BDB	7038BDF 7238DF 7238BDF	1 1 1	123.7 247.4 155 104.0 208.0 98 138.7 277.4 167	.0 208	_	278 322 322	283 331.5 331.5		
400	78	_	5	2	411	548	668	1 100	7338B	7338BDB	7338BDF	1	162.8 325.5 169	.5 212		378	390	4 2	45.5
200 279.5 280 280	38 38 38	_ _ _	2.1 2.1 2.1	1.1 1.1 1.1	161 180 161	194 222 194	261 293 261	388 444 388	AC4028B 7940 7940B	AC4028BDB 7940DB 7940BDB	AC4028BDF 7940DF 7940BDF	2 1 1	119.7 239.4 163 88.3 176.6 100 119.7 239.4 163	.6 212	_	267.5 268 268		2 1 2 1 2 1	6.90 7.00 7.00
289.5 310 310	38 46 51	_ _ _	2.1 3 2.1	1.1 1.1 1.1	172 219 244	211 274 309	279 356 396	421 547 618	AC4029B AC403146B 7040	AC4029BDB AC402146BDB 7040DB	AC4029BDF AC403146BDF 7040DF	2 2 1	121.8 243.6 167 130.0 260.0 168 99.1 198.3 96	214	214	277.5 296 298		2 1 2.5 1 2 1	8.1 13.1 12.7
310 360 360	51 58 58	_ _ _	2.1 4 4	1.1 1.5 1.5	218 324 292	279 423 384	355 526 474	558 847 768	7040B 7240 7240B	7040BDB 7240DB 7240BDB	7040BDF 7240DF 7240BDF	1 1 1	132.5 265.0 163 109.8 219.7 103 146.5 292.9 176	.7 218	_	298 342 342	303 351.5 351.5		
420 420	80 80	_	5 5	2 2	474 432	658 602	770 702	1 320 1 200	7340 7340B	7340DB 7340BDB	7340DF 7340BDF	1	129.5 259.0 99 170.1 340.1 180	-		398 398	410 410	4 2 4 2	52.0 52.0
210 299.5	38	_	2.1	1.1	209	268	340	536	AC4230	AC4230DB	AC4230DF	1	92.6 185.2 109	.2 222	_	287.5	292.5	2 1	8.60
220 300 309.5 319.5		38	2.1 2.1 2.1	1.1 1.1 1.1	160 178 212	203 227 281	259 289 345	405 454 562	AC4430B AC443138B AC443246B	AC4430BDB AC443138BDB AC443246BDB	AC443138BDF AC443246BDF	3 2 2	126.6 253.2 — 130.2 260.4 18 ⁴ 136.3 272.6 180	.4 232	227		293 302.5 312.5		7.4 8.90 12.0
340 340 400	56 56 65	_ _ _	3 3 4	1.1 1.1 1.5	267 239 375	353 318 515	434 389 610	705 636 1 030	7044 7044B 7244	7044DB 7044BDB 7244DB	7044DF 7044BDF 7244DF	1 1 1	108.9 217.8 105 145.5 290.9 178 122.0 244.0 114	.9 234	_	326 326 382		2.5 1 2.5 1 3 1.5	18.5 18.9 5 35.2
460	88.5	_	5	2	542	795	881	1 590	AC4446	AC4446DB	AC4446DF	1	142.1 284.3 108	.3 242	_	438	450	4 2	37.5
230 320	40	_	2.1	1.1	181	235	294	471	AC4632B	AC4632BDB	AC4632BDF	1	135.4 270.8 190	.8 242	_	308	313	2 1	9.6

[Note] 1) SP indicates the specially chamfered form.

[Remark] a_1, a_2 : Load center spread

d (230) ~ 290 mm

Boundary	dime	nsions		Sing	Basic load rate		ed pair		Bearin	g No.	De-	Load cer			Moun	ting dir		ons	(Refer.) Mass
d D B	C	r min.	$r_1^{\ 1)}$ min.		$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	sign	a a_1		d_{a} min.	$d_{ m b}$ min.	$D_{ m a}$ max.		$r_{ m a}$ n	49. 5
230 339.5 45	_	3	1.1	227	310	369	619	AC4634B	AC4634BDB	AC4634BDF	2	142.1 284.1	194.1	244	237	325.5	332.5	2.5 1	13.9
240 320 38 320 38 329.5 40	_ _ _	2.1 2.1 2.1	1.1 1.1 1.1	193 171 197	255 223 265	313 278 320	510 446 529	7948 7948B AC4833B	7948DB 7948BDB AC4833BDB	7948DF 7948BDF AC4833BDF	1 1 2	99.8 199.7 136.5 272.9 139.6 279.1	196.9 199.1	252 252	 247	317.5	313 322.5	2 1	8.00 8.00 9.80
360 56 360 56	_	3 3	1.1 1.1	273 244	375 338	443 397	751 677	7048 7048B	7048DB 7048BDB	7048DF 7048BDF	1	114.6 229.2 153.9 307.7			_			2.5 1 2.5 1	19.7 20.1
250 340 35 349.5 46	38		1.5 1.1	173 220	230 303	281 357	460 606	AC5034B AC503546B	AC5034BDB AC503546BDB	AC503546BDF	3 2	141.3 282.5 148.9 297.7		262 262	_	328 337.5	331.5 342.5		.5 9.6 13.2
260 360 46 369.5 46	_ _ _	2.1 2.1 2.1	1.1 1.1 2.1	251 218 247	360 302 353	408 354 401	720 604 706	7952 7952B AC523746B	7952DB 7952BDB AC523746BDB	7952DF 7952BDF AC523746BDF	1 1 2	112.5 225.1 153.1 306.1 155.2 310.3	214.1	272	 272		353	2 1 2 1 2 2	13.8 13.9 15.5
379.5 56 400 65 400 65	_ _ _	3 4 4	1.1 1.5 1.5	264 325 291	387 478 431	429 529 473	774 956 862	AC5238B 7052 7052B	AC5238BDB 7052DB 7052BDB	AC5238BDF 7052DF 7052BDF	2 1 1	162.3 324.5 128.4 256.7 171.0 341.9	126.7	278	267 —	365.5 382 382	391.5	3 1	20.6 .5 28.7 .5 29.3
270 379.5 46	_	2.1	1.1	252	367	409	735	AC5438B	AC5438BDB	AC5438BDF	2	159.4 318.7	226.7	282	277	367.5	372.5	2 1	24.3
280 380 46 380 46 389.5 46	_ _ _	2.1 2.1 2.1	1.1 1.1 SP	254 226 257	372 325 381	413 368 417	744 651 763	7956 7956B AC563946AB	7956DB 7956BDB AC563946ABDB	7956DF 7956BDF AC563946ABDF	1 1 2	118.3 236.6 161.5 322.9 163.5 327.1	230.9	292	 287		373	2 1 2 1 2 1	14.2 14.7 16.5
400 52 420 65 420 65	_ _ _	4 4 4	1.5 1.5 1.5	268 332 297	401 507 453	435 540 483	803 1 010 906	AC5640B 7056 7056B	AC5640BDB 7056DB 7056BDB	AC5640BDF 7056DF 7056BDF	1 1 1	228.6 457.2 133.5 267.1 179.3 358.7	137.1	298	_ _ _	402	391.5 411.5 411.5	3 1	.5 20.5 .5 30.4 .5 31.0
285 380 46 380 46	_	3 2	1.1 2	206 204	296 291	334 331	592 582	AC5738 AC5738B	AC5738DB AC5738BDB	AC5738DF AC5738BDF	1 2	119.0 238.0 162.7 325.4			_			2.5 1 2 2	14.1 14.2
290 409.5 56 419.5 60	_	3 4	1.1 1.5	285 292	438 455	464 475	875 910	AC584156B AC5842B	AC584156BDB AC5842BDB	AC584156BDF AC5842BDF	2 2	174.8 349.7 178.9 357.9	-		297 298.5	395.5 401.5			.5 22.5 .5 26.5

[Note] 1) SP indicates the specially chamfered form.

[Remark] a_1, a_2 : Load center spread

Boundary dimensions	Sing	Basic load		ned pair		Bearin	g No.	De-	Load center		Mount	ing dir		ns	(Refer.) Mass
d D B C r r_1 r_2 r_3 r_4 r_5 r_5 r_5 r_6 $r_$	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{r}	$C_{0\mathrm{r}}$	Single row	Back-to-back DB	Face-to-face DF	sign	a a_1 a_2	d_{a} min.	$d_{ m b}$ min.	D_{a} max.		$r_{ m a}$ $r_{ m b}$ max. max	Single row (kg)
300 419.5 56 — 3 1.1 460 74 — 4 1.5	283 382	436 613	460 621	873 1 230	AC604245B 7060B	AC604256BDB 7060BDB	AC604256BDF 7060BDF	2 1	179 358.1 246.1 196.4 392.9 244.9	314 318	307		412.5 451.5		23 44.9
310 429.5 60 — 4 1.5	282	435	457	870	AC624360B	AC624360BDB	AC624360BDF	2	185.2 370.5 250.5	328	318.5	411.5	421	3 1.5	24.5
320 449.5 56 — 3 1.1	318	513	517	1 030	AC644556B	AC644556BDB	AC644556BDF	2	189.5 379.1 267.1	334	327	435.5	442.5	2.5 1	27.4
340 479.5 65 — 3 1.1	354	595	575	1 190	AC6848B	AC6848BDB	AC6848BDF	2	204.5 409.0 279.0	354	347	465.5	472.5	2.5 1	35.7
350 559.5 86 — 4 1.5	527	952	856	1 900	AC7056B	AC7056BDB	AC7056BDF	2	233.9 467.8 295.8	368	358.5	541.5	551	3 1.5	81.6
360 509.5 70 — 5 2 539.5 82 — 4 1.5	380 461	656 824	617 750	1 310 1 650	AC7251B AC725482B	AC7251BDB AC725482BDB	AC7251BDF AC725482BDF		217.5 435 295 229.8 459.6 295.6	382 378		487.5 521.5		4 2 3 1.5	42.9 6 63.5
380 480 46 — 2.1 1.1 519.5 65 — 4 1.5 540 82 — 4 1.1	252 339 416	416 590 747	410 551 676	833 1 180 1 490	7876B AC7652AB AC7654B	7876BDB AC7652ABDB AC7654BDB	7876BDF AC7652ABDF AC7654BDF	2	203.4 406.8 314.8 221.3 442.6 312.6 234.0 468.0 304.0	398		501.5	511	2 1 3 1.5 3 1	18.8 39.2 58.3
400 559.5 70 — 4 1.5	402	734	653	1 470	AC8056B	AC8056BDB	AC8056BDF	2	236.4 472.8 332.8	418	408.5	541.5	551	3 1.5	52.1
420 559.5 65 — 4 1.5	375	683	609	1 370	AC8456B	AC8456BDB	AC8456BDF	2	238.1 476.2 346.2	438	428.5	541.5	551	3 1.5	55.9
500 620 56 — 3 1.1	380	740	617	1 480	78/500	78/500DB	78/500DF	1	189.7 379.4 267.4	514	_	606	613	2.5 1	35.5
530 780 112 — 6 3	807	1 810	1 310	3 620	70/530	70/530DB	70/530DF	1	245.1 490.2 266.2	558	_	752	766	5 2.5	174
560 750 85 — 5 2	541	1 170	878	2 330	79/560B	79/560BDB	79/560BDF	1	231.6 463.2 293.2	582	_	728	740	4 2	102
670 900 103 — 6 3	703	1 680	1 140	3 370	79/670B	79/670BDB	79/670BDF	1	380.8 761.7 555.7	698	_	872	886	5 2.5	178

[Remark] a_1, a_2 : Load center spread

d 120 ~ 280 mm

Bou	ndary d (mn		ions	Basic loa (k	d ratings N)	Bearing No. 1)	De-	Load center spread (mm)	Mount	ing dime (mm)	nsions	(Refer.)
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Open	sign	a_1, a_2	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
120	190	66	2	167	213	2AC2419B	1	163.1	130	180	2	6.90
140	210	66	2	185	249	305275-1	1	142.4	150	200	2	7.80
150	225	73	2.1	216	293	305333-1	1	145.0	162	213	2	10.0
	230	70	2.1	215	294	305283-1	1	144.7	162	218	2	10.0
160	239.5	76	2.1	252	352	305183/1D	2	77.7	172	227	2	11.1
170	260	84	2.1	270	386	305180-1	2	138.8	182	248	2	13.0
180	259.5	66	2	212	326	305262-1	1	160.0	190	249.5	2	11.0
	280	92	2.1	308	457	305172B-1	2	147.4	192	268	2	17.0
190	269.5	66	2.1	209	324	305338A-1	1	165.8	202	257.5	2	12.0
	290	92	2.1	341	510	305178	1	184.6	202	278	2	21.5
200	279.5	76	2.1	257	388	305424	2	100.6	212	267.5	2	14.0
	279.5	76	2.1	257	388	305428-1	1	176.6	212	267.5	2	14.0
	289.5	76	2.1	312	479	305263-1	1	179.5	212	277.5	2	16.5
220	309.5	76	2.1	278	448	305272-1	1	191.0	230	299.5	2	22.0
	319.5	92	2.1	345	562	2AC4432B-1	1	230.6	232	307.5	2	24.0
230	329.5	80	2.1	337	559	305264-1	1	201.7	242	317.5	2	22.0
260	369.5	92	2.1	428	765	305270-1	1	227.9	272	357.5	2	31.0
280	389.5	92	2.1	406	744	305269-1	1	239.4	292	377.5	2	33.0

[[]Note] 1) Bearing No.305275-1 and 305262-1 indicate nominal contact angle of 32°. Bearing No. 2AC2419B, 305180-1, 305172B-1, and 2AC4432B-1 indicate nominal contact angle of 40°, and nominal contact angle of other bearings is 30°.

[Remark] 1) Some of these bearings have lubrication grooves or lubrication holes on their outer rings.

Cylindrical roller bearings

- Cylindrical roller bearings feature high radial load capacity because the rollers and raceway are in linear contact. These bearings are suitable for applications that involve heavy radial and impact loading.
- They are appropriate for high-speed applications in that they can be machined very accurately due to their structure.
- The NU and N types exhibit their best performance when used as free side bearings since they adjust to the shaft's axial movement, to a certain extent, relative to the housing position.
- The NJ and NF types carry axial load in one direction, while the NUP type can carry a certain degree of axial load in both directions.

- Double-row cylindrical roller bearings come in two types: with a cylindrical bore, and with a tapered bore. As for those with a tapered bore, the specified amount of clearance can be obtained by adjusting the press-in distance.
- Some bearings have lubrication holes and lubrication grooves on the outer ring. They are identified by supplementary code "W".

■ Single-row (page 120)

■ Double-row (page 134)

■ Four-row ··· Cylindrical bore (page 142)

- Four-row cylindrical roller bearings, having superior resistance to radial load, are suitable for use at a high-speed.
- Since the inner ring raceway surface and the roll can be finished simultaneously after the inner ring is mounted on the roll neck (the inner ring raceway surface is grounded by a roll grinding machine, and then, the roll barrel is finished based on the grounded surface), rolling accuracy is improved. Additionally, residual clearance of the bearing can be adjusted freely.
- Some four-row cylindrical roller bearings have nozzle holes and O-rings for oil mist lubrication.

Design 1-3P

Design 1-4

Design 2-2

Design 2-3

116

Design 1-1

Design 1-2

Boundary dimensions	The dimensio	ns of standard	d series are a	s specified in	JIS B 1512.	
Tolerances		double-row an	d four-row cyl	indrical bore b es 0 and 6 (ref		
	Tolerance	es of roller set		F _w and roller eable bearings	set outside dia	nmeter E _w
	diamet	al bore er nm)		t bore deviation $F_{ m W}$		t outside deviation Ew
	over	up to	upper	lower	upper	lower
	50 120 200	120 200 250	+ 20 + 25 + 30	0 0 0	0 0 0	- 20 - 25 - 30
	250 315 400	315 400 500	+ 35 + 40 + 45	0 0 0	0 0 0	- 35 - 40 - 45
	500 600 700	600 700 800	+ 50 + 55 + 60	0 0 0	0 0 0	- 50 - 55 - 60
	800 900 1 000	900 1 000 1 250	+ 70 + 80 + 90	0 0 0	0 0 0	- 70 - 80 - 90
	1 250 1 600 2 000	1 600 2 000 2 500	+100 +120 +150	0 0 0	0 0 0	-100 -120 -150
	mat mat	ched with the ched with the	outer ring, or inner ring, wi	e an inner ring an outer ring thout affecting ring number ir	with rollers the performance	at can be in the
Allowable misalignment	bearing type a General value	and specificates are as follo	ion. ws:	oad of normal	use	
	,			oad lighter thai	n 1) 0.	.000 9 rad (3') .001 2 rad (4')
Radial internal clearance	(refer to Table			is required, co	DIISUIL WILLI J I	ENI.
	(.5101 to 14010	. I on page	.,, 10,			

Standard cages	Machined cage or pin type ca	ge		
Equivalent radial load	Dynamic equivalent radial le	oad $\cdots P_r = F_r$		
•	Static equivalent radial load	$I \cdots P_{0r} = F_1$:	
Allowable axial load	Cylindrical roller bearings with rings accommodate axial load In such cases, axial load capa forms of rib or loose rib, lubric For certain special uses, a de loads. In general, axial loads calculated using the following $F_{\rm ap} = 9.8f_{\rm a}\cdot f_{\rm b}\cdot f_{\rm p}\cdot d_{\rm m}^2$	I to a certain ex- acity is controlled ation, rotational sign is available allowable for cy	tent. I by the condition of respect etc. To accommodate verifical roller bearing	oller end faces, ry heavy axial s can be
	where : F_{ap} : maximum allowable f_{a} : coefficient determin f_{b} : coefficient determin f_{p} : coefficient for rib sudding : mean value of bore	ned from loading ned from bearing urface pressure	g diameter series (see (see below)	e below)
	Loading condition	f_{a}	Diameter series	fb
	Continuous loading	1	8	0.4
	Intermittent loading	2	9	0.6
	Instantaneous loading	3	0	0.7
	- Hotantanoodo lodding		2 3	0.8 1.0
			4	1.2

,	0.10		<i></i>	∠ Oi (di	il lubr mn <	icatio 120 >	on = (< 10 ³)	i Greas	i se lub	ricati	on _								
	0.1		\																
$f_{\rm p}$										<u></u>	 Oil lul 	l bricat	l tion —						
							`\	· .	\leq			_	_						
	0		— (Greas	l se lub	l ricati	ion –		***	***						/	/	_	
	U				10	00 1:	20		\		00 e <i>d</i> n	n		3	00		(>	40 <10³)	0
	ъ.	 										,	,					1、	

Relationship between coefficient f_p and value $d_m n$ (n: rotational speed, min^{-1})

d 100 ~ (120) mm

		Bounda	ry dime	nsions			Basic load (kN		D . N 1)	De-				Mo	ounting o	limensio _{m)}	ns				(Refer.) Mass NU
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	C_{0r}	Bearing No. 1)	sign	d_{a} min.	d_{\parallel} min.	max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
100	150 180 180	24 34 34	1.5 2.1 2.1	1.1 2.1 2.1	113 — 119	160 —	91.0 183 250	120 217 306	NU1020 N220 NU220R	1, 3 4, 5 1~3	108 111 111	106.5 — 111	111 — 117	116 — 122	130 130	142 169 169	169 —	164 —	1.5 2 2	1 2 2	1.46 (3.38) 3.52
	180 180 180	46 46 60.3	2.1 2.1 2.1	2.1 2.1 2.1	120 119 120	_ _ _	259 334 327	338 444 459	NU2220 NU2220R NU3220	1~3 1~3 1	111 111 111	111 111 111	117 117 117	122 122 122	130 130 —	169 169 169	_ _ _	_ _ _	2 2 2	2 2 2	4.67 4.82 6.62
	215 215 215	47 47 73	3 3 3	3 3 3	127.5 129.5	185.5 — —	323 379 464	337 424 548	N320 NU320R NU2320	4, 5 1~3 1~3	113 113 113	113 113	125 125	132 132	143 143 143	202 202 202	202 — —	190 — —	2.5 2.5 2.5	2.5 2.5 2.5	(7.59) 7.75 11.9
	215 215	73 82.6	3	3 3	127.5 129.5	_	570 530	717 706	NU2320R NU3320	1~3 1	113 113	113 113	125 125	132 132	143	202 202	<u> </u>	_	2.5 2.5	2.5 2.5	12.1 15.0
105	160 190 225 225	26 36 49 77	2 2.1 3	1.1 2.1 3	119.5 — — 135	168.8 195	108 201 366 568	149 241 417 750	NU1021 N221 N321 NU2321	1, 3 4, 5 4, 5 1, 3	114 116 118	111.5 — — 118	118 — — — 131	122 — — 138	137 149	151 179 212 212	179 212	173 199	2 2 2.5 2.5	1 2 2.5 2.5	1.85 (4.44) (8.68) 15.6
110	170 200 200	28 38 38	2 2.1 2.1	1.1 2.1 2.1	125 — 132.5	 178.5 	134 241 293	171 290 365	NU1022 N222 NU222R	1, 3 4, 5 1~3	119 121 121	116.5 — 121	124 — 130	128 — 135	 144 144	161 189 189	189 —	 182 	2 2 2	1 2 2	2.31 (5.24) 4.90
	200 200 200	53 53 69.8	2.1 2.1 2.1	2.1 2.1 2.1	132.5 132.5 132.5	_ _ _	334 384 427	442 517 607	NU2222 NU2222R NU3222	1~3 1~3 1	121 121 121	121 121 121	130 130 130	135 135 135	144 144 —	189 189 189	_ _ _	_ _ _	2 2 2	2 2 2	6.93 6.93 9.55
	240 240 240	50 50 80	3 3 3	3 3 3	143 143	207 — —	411 451 604	467 525 789	N322 NU322R NU2322	4, 5 1~3 1~3	123 123 123	123 123	140 140	145 145	158 158 158	227 227 227	227 — —	211 — —	2.5 2.5 2.5	2.5 2.5 2.5	(10.4) 10.7 18.8
	240	80	3	3	143	_	680	880	NU2322R	1~3	123	123	140	145	158	227			2.5	2.5	18.8
120	165 180	27 28	1.1 2	1.1 1.1	131.5 135	_	116 137	188 181	NU2924 NU1024	1,3	126.5 129	126.5 126.5	130 134	134 138	_	158.5 171	_ _	_ _	1 2	1	1.72 2.47

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

When "4, 5" is on "Design" column, refer to bearing numbers of N type bearings. When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d (120) ~ (140) mm

		Bound	ary dime	nsions				ad ratings	B N 1)	De-				Мо		dimensio	ons				(Refer.) Mass NU
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{\rm w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	sign	$d_{ m a}$ min.	d min.	max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	h min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
120	215 215 215	40 40 58	2.1 2.1 2.1	2.1 2.1 2.1	143.5 143.5	191.5 — —	260 336 367	318 421 492	N224 NU224R NU2224	4, 5 1~3 1~3	131 131 131	131 131	— 141 141	146 146	156 156 156	204 204 204	204 — —	196 — —	2 2 2	2 2 2	(6.31) 5.85 8.56
	215 215 260	58 76 55	2.1 2.1 3	2.1 2.1 3	143.5 143.5 —	 226	452 477 485	619 695 551	NU2224R NU3224 N324	1~3 1 4, 5	131 131 133	131 131 —	141 141 —	146 146 —	156 — 171	204 204 247	 247	230	2 2 2.5	2 2 2.5	8.56 11.9 (13.1)
	260 260	55 86	3	3 3	154 154	_	528 708	610 918	NU324R NU2324	1~3 1~3	133 133	133 133	151 151	156 156	171 171	247 247	_ _	_	2.5 2.5	2.5 2.5	13.4 23.1
130	180 200 230	30 33 40	1.5 2 3	1.5 1.1 3	142 148	 204	152 171 282	243 238 362	NU2926 NU1026 N226	2 1, 3 4, 5	138 139 143	138 136.5 —	140 146 —	145 151 —	150 — 168	172 191 217	 217	 208	1.5 2 2.5	1.5 1 2.5	2.27 3.77 (7.21)
	230 230 230	40 64 64	3 3 3	3 3 3	153.5 156 153.5	_ _ _	364 395 530	453 560 737	NU226R NU2226 NU2226R	1~3 1~3 1~3	143 143 143	143 143 143	151 151 151	158 158 158	168 168 168	217 217 217	_ _ _	_ _ _	2.5 2.5 2.5	2.5 2.5 2.5	6.60 11.2 11.2
	230 280 280	80 58 58	3 4 4	3 4 4	156 — 167	 243 	550 564 616	857 667 736	NU3226 N326 NU326R	1 4, 5 1~3	143 146 146	143 — 146	151 — 164	158 — 169	184 184	217 264 264	264 —	247 —	2.5 3 3	2.5 3 3	14.1 (16.4) 16.7
	280 280 280	93 93 112	4 4 4	4 4 4	167 167 167		838 920 936	1 130 1 230 1 290	NU2326 NU2326R NU3326	1~3 1~3 1	146 146 146	146 146 146	164 164 164	169 169 169	184 186 —	264 264 264	_ _ _	_ _ _	3 3 3	3 3 3	29.1 29.1 34.6
140	190 210 250	30 33 42	1.5 2 3	1.5 1.1 3	152 158	 221	165 175 324	275 250 421	NU2928 NU1028 N228	2 1, 3 4, 5	148 149 153	148 146.5	151 156	155 161	161 — 182	182 201 237	237	228	1.5 2 2.5	1.5 1 2.5	2.49 4.00 (8.78)
	250 250 250	42 68 68	3 3 3	3 3 3	169 169 169	<u> </u>	392 465 572	514 671 835	NU228R NU2228 NU2228R	1~3 1~3 1~3	153 153 153	153 153 153	166 166 166	171 171 171	182 182 182	237 237 237	_ _ _	_ _ _	2.5 2.5 2.5	2.5 2.5 2.5	8.50 14.3 14.3
	300 300	62 62	4 4	4 4	— 180	260	623 663	746 797	N328 NU328R	4, 5 1~3	156 156	 156	 176	 182	198 198	284 284	284	264 —	3 3	3	(21.8) 21.8

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

When "4, 5" is on "Design" column, refer to bearing numbers of N type bearings. When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d (140) ~ (170) mm

		Bound	ary dime	ensions				ad ratings	Description No. 1)	De-				Mo		dimensionm)	ons				(Refer.) Mass NU
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{\rm w}$	C_{r}	C_{0r}	Bearing No. 1)	sign	$d_{ m a}$ min.	min.	$l_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.) _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
140	300 300	102 102	4 4	4 4	180 180	_	920 1 020	1 250 1 380	NU2328 NU2328R	1~3 1~3	156 156	156 156	176 176	182 182	198 200	284 284	_	_	3	3	36.8 36.8
150	225 270 270	35 45 45	2.1 3 3	1.5 3 3	169.5 — 182	 238 	201 374 448	281 492 594	NU1030 N230 NU230R	1, 3 4, 5 1~3	161 163 163	158 — 163	167 — 179	173 — 184	196 196	214 257 257	 257 	245 —	2 2.5 2.5	1.5 2.5 2.5	4.83 (11.1) 10.7
	270 270 320	73 73 65	3 3 4	3 3 4	182 182 —	 277	545 662 663	800 982 807	NU2230 NU2230R N330	1~3 1~3 4, 5	163 163 166	163 163 —	179 179 —	184 184 —	196 196 213	257 257 304	304	 281	2.5 2.5 3	2.5 2.5 3	18.7 18.7 (25.6)
	320 320 320	65 108 108	4 4 4	4 4 4	193 193 193	_ 	757 1 020 1 180	922 1 400 1 600	NU330R NU2330 NU2330R	1~3 1~3 1~3	166 166 166	166 166 166	190 190 190	195 195 195	213 213 213	304 304 304	_ _ _	_ _ _	3 3 3	3 3 3	27.0 44.7 44.7
160	320 220	128	2	2	193 175		1 290 149	1 890	NU3330 NU1932	2, 3	166 169	166	190	195	184	304 211			2	2	3.08
100	220 220 240	36 38	2 2.1	2 1.5	175 175 180	_ _ _	199 236	330 330	NU1932 NU1032	2, 3	169 171	169 168	173 173 178	178 178 184	184	211 211 229	_ _ _	_ _ _	2 2	2 1.5	4.05 5.93
	270 290 290	86 48 48	2.1 3 3	2.1 3 3	187 — 195	 255 	681 427 498	1 070 568 666	NU3132 N232 NU232R	3 4, 5 1~3	171 173 173	171 — 173	183 — 192	190 — 197	210 210	259 277 277	 277 	262 —	2 2.5 2.5	2 2.5 2.5	20.6 (13.9) 14.8
	290 290 340	80 80 68	3 3 4	3 3 4	195 193 —	 292	631 809 698	939 1 190 876	NU2232 NU2232R N332	1~3 1~3 4, 5	173 173 176	173 173 —	192 192 —	197 197 —	210 210 228	277 277 324	324	 296	2.5 2.5 3	2.5 2.5 3	23.6 23.6 (30.2)
	340 340 340	68 114 114	4 4 4	4 4 4	204 208 204	_ _ _	857 1 070 1 310	1 050 1 520 1 820	NU332R NU2332 NU2332R	1~3 1~3 1~3	176 176 176	176 176 176	200 200 200	211 211 211	228 228 228	324 324 324	_ _ _	_ _ _	3 3 3	3 3 3	32.0 53.1 53.1
170	340	136	4	4	208		1 270	1 890	NU3332	1	176	176	200	211		324			3	3	61.5
170	260 260	42 67	2.1 2.1	2.1 2.1	193 196	_	276 461	400 824	NU1034 NU3034	1, 3	181 181	181 181	190 193	197 199	_	249 249	_	_	2 2	2 2	7.90 13.0

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

When "4, 5" is on "Design" column, refer to bearing numbers of N type bearings. When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d (170) ~ (200) mm

		Bound	ary dimo	ensions				ad ratings kN)	Descina No. 1)	De-				Mo		dimensionm)	ons				(Refer.) Mass NU
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{\rm w}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	sign	$d_{ m a}$ min.	min.	$l_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
170	310	52	4	4	_	272	475	637	N234	4, 5	186	_	_	_	223	294	294	280	3	3	(17.2)
	310	86	4	4	208	_	715	1 080	NU2234	1~3	186	186	204	211	223	294	_	_	3	3	29.2
	310	86	4	4	205	_	967	1 410	NU2234R	1~3	186	186	204	211	223	294	_	_	3	3	29.2
	360	72	4	4	220	310	809	1 010	NU334	1~5	186	186	216	223	241	344	344	314	3	3	38.6
	360	120	4	4	220	_	1 220	1 750	NU2334	1~3	186	186	216	223	241	344	_	_	3	3	62.6
180	280	46	2.1	2.1	205	_	356	503	NU1036	1, 3	191	191	203	209	_	269	_	_	2	2	10.5
	320	52	4	4	_	282	492	677	N236	4, 5	196	_	_	_	233	304	304	290	3	3	(18.0)
	320	52	4	4	217	_	626	852	NU236R	1~3	196	196	214	221	233	304	_	_	3	3	19.3
	320	86	4	4	218	_	741	1 140	NU2236	1~3	196	196	214	221	233	304	_	_	3	3	30.4
	320	86	4	4	215	_	1 010	1 510	NU2236R	1~3	196	196	214	221	233	304	_	_	3	3	30.4
	320	112	4	4	218	_	999	1 680	NU3236	1	196	196	214	221	_	304	_	_	3	3	38.4
	380	75	4	4	232	328	917	1 150	NU336	1~5	196	196	227	235	255	364	364	332	3	3	42.6
	380	126	4	4	232	_	1 350	1 940	NU2336	1~3	196	196	227	235	255	364	_	_	3	3	73.0
	380	150	4	4	232	_	1 660	2 520	NU3336	1	196	196	227	235		364			3	3	84.4
190	290	46	2.1	2.1	215	_	366	530	NU1038	1, 3	201	201	213	219	_	279	_	_	2	2	10.9
	340	55	4	4	_	299	554	768	N238	4, 5	206	_	_	_	247	324	324	310	3	3	(21.5)
	340	55	4	4	230	_	694	954	NU238R	1~3	206	206	227	234	247	324	_	_	3	3	23.3
	340	92	4	4	231	_	828	1 290	NU2238	1~3	206	206	227	234	247	324	_	_	3	3	37.0
	340	120	4	4	231	_	1 310	1 930	NU3238	1	206	206	227	234	_	324	_	_	3	3	46.8
	400	78	5	5	245	345	987	1 260	NU338	1~5	210	210	240	248	268	380	380	349	4	4	49.9
	400	132	5	5	245	_	1 520	2 220	NU2338	1~3	210	210	240	248	268	380	_	_	4	4	84.7
	400	155	5	5	245	_	1 870	2 910	NU3338	1	210	210	240	248	_	380	_	_	4	4	96.5
200	310	51	2.1	2.1	229	_	388	582	NU1040	1, 3	211	211	226	233	_	299	_	_	2	2	14.1
	360	58	4	4	_	316	618	865	N240	4, 5	216	_	_	_	261	344	344	328	3	3	(25.7)
	360	58	4	4	243	_	766	1 060	NU240R	1~3	216	216	240	247	261	344	_	_	3	3	27.2
	360	98	4	4	244		946	1 490	NU2240	1~3	216	216	240	247	261	344	_		3	3	44.4
	360	98	4	4	241	_	1 220	1 870	NU2240R	1~3	216	216	240	247	261	344	_	_	3	3	44.4

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

When "4, 5" is on "Design" column, refer to bearing numbers of N type bearings. When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d (200) ~ (280) mm

		Bound	lary dime	ensions				ad ratings	Barrian Na 1)	De-				Mo		dimensio	ons				(Refer.) Mass NU
d	D	В	r min.	r_1 min.	F_{w}	E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	sign	$d_{ m a}$ min.	min.	$l_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	h min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
200	420	80	5	5	260	360	987	1 270	NU340	1~5	220	220	254	263	283	400	400	364	4	4	56.2
	420	138	5	5	260	_	1 520	2 240	NU2340	1~3	220	220	254	263	283	400		_	4	4	97.4
	420	165	5	5	260	_	1 870	2 930	NU3340	1	220	220	250	258	_	400	_	_	4	4	113
220	340	56	3	3	250	_	507	748	NU1044	1, 3	233	233	248	254	_	327		_	2.5	2.5	18.5
	370	120	4	4	261	_	1 230	2 140	NU3144	1	236	236	255	264	_	354	354	_	3	3	53.2
	400	65	4	4	270	350	766	1 080	NU244	1~5	236	236	266	273	289	384	384	362	3	3	38.5
	400	108	4	4	270	_	1 130	1 810	NU2244	1, 2	236	236	266	273	289	384	_	_	3	3	60.9
	400	144	4	4	270	_	1 630	2 880	NU3244	1	236	236	266	273	_	384	_	_	3	3	78.8
	460	88	5	5	284	396	1 200	1 570	NU344	1~5	240	240	279	287	309	440	440	400	4	4	74.4
	460	145	5	5	284	_	1 810	2 690	NU2344	1, 3	240	240	276	287	_	440	_	_	4	4	119
	460	180	5	5	284	_	2 130	3 300	NU3344	1	240	240	279	287	_	440		_	4	4	148
240	360	56	3	3	270	_	535	822	NU1048	1, 3	253	253	268	275		347	_	_	2.5	2.5	20.1
	360	92	3	3	276	_	774	1 450	NU3048	1	253	253	270	279	_	347	347	_	2.5	2.5	33.0
	440	72	4	4	295	385	949	1 340	NU248	1~5	256	256	293	298	316	424	424	397	3	3	52.1
	440	120	4	4	295	_	1 430	2 320	NU2248	1, 2	256	256	293	298	316	424		_	3	3	82.5
	440	160	4	4	295	_	1 950	3 460	NU3248	1	256	256	293	298	_	424	_	_	3	3	107
	500	95	5	5	310	430	1 430	1 950	NU348	1~5	260	260	305	313	337	480	480	434	4	4	94.6
	500	155	5	5	310	_	2 170	3 320	NU2348	1, 3	260	260	303	313	_	480	_	_	4	4	152
260	360	46	2.1	2.1	285	_	452	777	NU1952	1	271	271	282	288	_	349	349	339	2	2	13.9
	360	60	2.1	2.1	285	_	558	1 020	NU2952	1	271	271	282	288	_	349	349	339	2	2	18.4
	400	65	4	4	296	_	651	979	NU1052	1, 3	276	276	292	300	_	384	_	_	3	3	29.2
	480	80	5	5	320	420	1 100	1 580	NU252	1~5	280	280	318	323	343	460	460	432	4	4	69.0
	480	130	5	5	320	_	1 790	2 950	NU2252	1, 2	280	280	318	323	343	460	_	_	4	4	107
	480	174	5	5	320	_	2 140	3 680	NU3252	1	280	280	318	323	_	460	_	_	4	4	139
280	350	52	2	2	298	_	427	968	NU3856	1	289	289	295	301	_	341	341	_	2	2	11.5
	380	46	2.1	2.1	305	_	406	689	NU1956	1	291	291	302	308	_	369	369	339	2	2	14.7
	420	65	4	4	316	_	669	1 030	NU1056	1, 3	296	296	313	320	_	404	_	_	3	3	35.2

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same di mensions as NU230 is N230.

When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d (280) ~ 480 mm

		Bound	ary dime	ensions				ad ratings	Bearing No. 1)	De-				Мо		dimensionm)	ons				(Refer.) Mass NU
d	D	B	<i>r</i> min.	r_1 min.	$F_{ m w}$	E_{w}	C_{r}	$C_{0\mathrm{r}}$	Dearing No.	sign	$d_{ m a}$ min.	min.	$d_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)
280	500	80	5	5	340	440	1 140	1 680	NU256	1~5	300	300	336	343	365	480	480	452	4	4	72.7
300	380	60	2.1	2.1	322	_	543	1 300	NU3860	1	311	311	319	325	_	369	369	_	2	2	16.6
	420	56	3	3	332	_	507	873	NU1960	1, 2	313	313	328	335	_	407	407	_	2.5	2.5	23.3
	460	74	4	4	340	_	890	1 380	NU1060	1, 3	316	316	337	344	_	444	_	_	3	3	44.1
	540	85	5	5	364	476	1 350	1 960	NU260	1~5	320	320	361	368	392	520	520	487	4	4	90.7
320	480	74	4	4	360	_	913	1 450	NU1064	1, 3	336	336	356	365	_	464	_	_	3	3	48.4
	580	92	5	5	390	510	1 540	2 270	NU264	1~5	340	340	386	393	419	560	560	522	4	4	114
	670	112	7.5	7.5	425		1 970	2 880	NU364	1	352	352	419	428	_	638	638	575	6	6	199
340	420	60	2.1	2.1	362	_	624	1 500	NU3868	1	351	351	359	365	_	409	409	_	2	2	18.1
	460	56	3	3	370	_	605	1 080	NU1968	1	353	353	366	373	_	447	447	434	2.5	2.5	25.7
	460	72	3	3	372	_	800	1 620	NU2968	1, 3	353	353	368	375	_	447	447	432	2.5	2.5	34.7
	520	82	5	5	385	_	1 090	1 750	NU1068	1~3	360	360	381	390	_	500	_	_	4	4	64.1
360	440	38	2.1	2.1	380	_	339	692	NU1872	1	371	371	378	383	_	429	429	424	2	2	11.7
	480	56	3	3	392	_	566	1 060	NU1972	1	373	373	388	395	_	467	467	_	2.5	2.5	27.3
	480	72	3	3	393	_	845	1 820	NU2972	1	373	373	390	396	_	467	467	451	2.5	2.5	37.2
	540	82	5	5	405	_	1 120	1 830	NU1072	1, 3	380	380	401	410	_	520	_	_	4	4	67.1
	540	134	5	5	413	_	1 970	4 180	NU3072	1	380	380	407	416	_	520	520	_	4	4	111
380	480	75	2.1	2.1	405	_	852	1 970	NU3876	1	391	391	401	408	_	469	469	_	2	2	32.3
	560	82	5	5	425		1 150	1 920	NU1076	1, 3	400	400	421	430		540			4	4	70.1
400	600	90	5	5	450	_	1 400	2 310	NU1080	1, 3	420	420	446	455	_	580	_	_	4	4	91.0
-	600	148	5	5	450	_	2 250	4 370	NU3080	1	420	420	443	453	_	580	580	_	4	4	148
420	620	90	5	5	470	_	1 390	2 320	NU1084	1, 3	440	440	466	475	_	600	_	_	4	4	94.6
460	620	74	4	4	500	_	1 060	1 990	NU1992	1	476	476	495	503	_	604	604	585	3	3	60.8
480	650	78	5	5	525	_	1 130	2 200	NU1996	1	500	500	520	529	_	630	630	_	4	4	72.7

[[]Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

d 500 ~ 850 mm

	Boundary dimensions B						ad ratings	Description No. 1)	De-	Mounting dimensions (mm)										(Refer.) Mass NU	
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{\rm w}$	C_{r}	$C_{0\mathrm{r}}$	Bearing No. 1) sign	$d_{ m a}$ min.	min.	$d_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(N) (kg)	
500	620	56	3	3	534	_	705	1 560	NU18/500	1	513	513	531	537	_	607	607	594	2.5	2.5	37.3
	620	90	3	3	534	_	1 210	3 140	NU38/500	1	513	513	530	537	_	607	607	_	2.5	2.5	61.8
	670	78	5	5	546	_	1 480	3 160	NU19/500	1-P	520	520	542	550	_	650	650	_	4	4	78.5
	670	100	5	5	546	_	1 940	4 500	NU29/500	1-P	520	520	542	550	_	650	650	_	4	4	101
	720	100	6	6	556	_	2 270	4 440	NU10/500	1-P	524	524	551	560	_	696	_	674	5	5	141
530	710	82	5	5	575	_	1 320	2 560	NU19/530	2	550	550	570	579	_	690	690	673	4	4	86.9
	710	106	5	5	577	_	2 160	4 850	NU29/530	1-P	550	550	572	561	_	690	690	_	4	4	118
560	750	85	5	5	613	_	1 600	3 260	NU19/560	1	580	580	609	617	_	730	730	_	4	4	105
	750	112	5	5	613	_	2 510	5 870	NU29/560	2-P	580	580	607	617	_	730	730	_	4	4	140
600	800	90	5	5	652	_	1 980	4 170	NU19/600	1-P	620	620	647	656	_	780	780	_	4	4	126
630	780	88	4	4	671		1 510	3 690	NU28/630	1	646	646	665	675	_	764	764	_	3	3	91.8
	850	100	6	6	689	_	2 450	5 240	NU19/630	1-P	654	654	684	693	_	826	826	_	5	5	165
670	820	69	4	4	708	_	1 530	3 750	NU18/670	1-P, 2-P	686	686	705	712	_	804	804	_	3	3	76.6
850	1 030	106	5	5	900	_	2 120	5 960	NU28/850	1	870	870	894	905	_	1 010	1 010	_	4	4	175
	1 120	118	6	6	917	_	3 630	8 190	NU19/850	1-P	874	874	911	921	_	1 096	1 096	1 061	5	5	310

[Note] 1) For bearings other than NU type bearings (NJ, NUP, N, and NF types), use NJ, NUP, N, and NF for bearing number instead of supplementary code NU. For example, bearing number of a N type bearing having the same dimensions as NU230 is N230.

When two or more numbers for bearings other than that are on "Design" columns, refer to bearing numbers of NU type bearings.

d 100 ~ 200 mm

Design	2-P ((NNU	type)
--------	-------	------	-------

	Boundary dimensions						id ratings	Bea NN	Bearing No. NN NNU		De-		(Refer.) Mass (kg)					
d	D	В	r min.	$F_{ m w}$	$E_{ m w}$	C_{r}	$C_{0\mathrm{r}}$	Cylindrical bore	Cylindrical bore	sign		min.	$l_{ m a}$ max.	$d_{ m b}$ min.	$D_{ m a}$ max.	min.	$r_{ m a}$ max.	Cylindrical bore
100	140 150	40 37	1.1 1.5	113	137	139 157	258 265	NN3020	NNU4920 —	2		106.5 108	111	115	133.5 142	 139	1 1.5	1.95 2.28
105	160	41	2	_	146	197	322	NN3021	_	1		114	_	_	151	148	2	2.88
110	150 170	40 45	1.1 2	123	 155	163 221	326 361	NN3022	NNU4922 —	2		116.5 119	121	125 —	143.5 161	 157	1 2	2.10 3.65
120	165 180	45 46	1.1 2	134.5 —	 165	187 232	373 392	NN3024	NNU4924 —	2		126.5 129	132	137	158.5 171	— 167	1 2	2.90 4.00
130	180 200	50 52	1.5 2	146	182	216 283	428 476	NN3026	NNU4926 —	2		138 139	143.5	148	172 191	 183	1.5 2	3.90 5.94
140	190 210	50 53	1.5 2	156	 192	222 297	456 516	 NN3028	NNU4928 —	2		148 149	153.5	158 —	182 201	— 194	1.5 2	4.15 6.41
150	210 225	60 56	2 2.1	168.5	206	343 334	692 587	NN3030	NNU4930 —	2		159 161	166	171 —	201 214	 208	2	6.50 7.74
160	220 240	60 60	2 2.1	178.5	219	340 398	695 695	 NN3032	NNU4932 —	2		169 171	176	182	211 229	 221	2 2	6.95 9.38
170	230 260	60 67	2 2.1	188.5	236	361 471	763 824	NN3034	NNU4934 —	2		179 181	186	192	221 249	238	2 2	7.20 12.8
180	225 280	45 74	1.1 2.1	_	213 255	228 561	544 958	NN4836 NN3036	<u> </u>	1		186.5 191		_ _	218.5 269	214 257	1 2	4.09 16.8
190	260 290	69 75	2 2.1	210	265	465 598	996 1 020	 NN3038	NNU4938	2		199 201	207	215 —	251 279	 267	2 2	11.0 17.6
200	280 310 340	80 82 112	2.1 2.1 3	223 	282 304	509 638 960	1 050 1 120 1 640	NN3040 NN3140	NNU4940 — —	2 1 1		211 211 213	219.5	228 — —	269 299 327	 285 307	2 2 2.5	15.4 22.5 41.3

[Remark] The bearing number of the tapered bore type bearing is suffixed by K.

d 220 ~ 410 mm

Design	2-P	(ININU	type)

	Boundary dimensions (mm)					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					M	ounting o	(Refer.) Mass (kg)				
d	D	В	r min.	F_{w}	$E_{ m w}$	$C_{\rm r}$	C_{0r}	Cylindrical bore	Cylindrical bore	sign	min.	$d_{ m a}$ max.	$d_{ m b}$ min.	max.) _a min.	$r_{ m a}$ max.	Cylindrical bore
220	300	80	2.1	244	_	561	1 220		NNU4944	2	231	241	248	289	_	2	16.7
	370	120	4	263	_	1 110	1 950	_	NNU3144	2	236	260	268	354		3	52.5
240	320	80	2.1	263	_	588	1 340	_	NNU4948	2	251	260	269	309	_	2	18.0
	360	92	3	_	330	864	1 590	NN3048	_	1	253	_	_	347	333	2.5	32.8
	400	128	4	286	_	1 270	2 290	_	NNU3148	2	256	282	291	384	_	3	65.3
260	360	100	2.1	287	_	941	2 050	_	NNU4952	2	271	284	296	349	_	2	31.4
280	380	100	2.1	308	_	976	2 200	_	NNU4956	2	291	305	316	369	_	2	33.1
	420	106	4	_	384	1 090	2 010	NN3056	_	1	296	_	_	404	387	3	51.2
300	420	118	3	339	_	1 170	2 720	_	NNU4960	2	313	335	343	407	_	2.5	51.9
	460	118	4	_	418	1 290	2 460	NN3060	_	1	316	_	_	444	421	3	70.8
	500	160	5	_	446	2 060	3 840	NN3160		1	320	_	_	480	450	4	126
320	480	121	4	_	438	1 350	2 670	NN3064	_	1	336	_	_	464	442	3	76.4
	480	160	4	362		1 970	4 030	_	NNU4064	2	336	358	367	464		3	99.9
340	460	118	3	372	_	1 270	2 930	_	NNU4968	2	353	368	383	447	_	2.5	56.8
	520	180	5	387	_	2 370	4 810	_	NNU4068	2	360	383	393	500	_	4	136
360	480	118	3	390	_	1 340	3 050	_	NNU4972	2	373	387	394	467	_	2.5	58.2
	540	134	5	_	493	1 560	3 090	NN3072	_	1	380	_	_	520	497	4	107
	540	180	5	407	_	2 430	5 050	_	NNU4072	2	380	403	413	520	_	4	142
	540	266	5	407	_	3 930	9 410	_	72NNU54266	2-P	380	403	413	520	_	4	219
	600	192	5	_	538	2 820	5 400	NN3172	_	1	380	_	_	580	543	4	218
380	570	300	4	423	_	4 970	11 700	_	76NNU57300	2-P	396	417	425	554	_	3	271
400	600	148	5	_	548	2 030	4 140	NN3080		1	420		_	580	552	4	146
	600	170	5	452	_	2 930	6 200	_	80NNU60170	2-P	420	447	458	580	_	4	172
	600	200	5	453		2 970	6 280	_	NNU4080	2	420	448	459	580	_	4	195
410	600	220	5	470	_	3 700	9 060	_	82DC60220	2-P	430	465	476	580	_	4	214

[Remark] The bearing number of the tapered bore type bearing is suffixed by K.

d 420 ~ (670) mm

Design 2-P	(NNU	type)
------------	------	-------

	Boundary dimensions (mm)						ad ratings	Bear NN	ring No. NNU	De-		M	ounting o		ns		(Refer.) Mass (kg)
d	D	В	<i>r</i> min.	$F_{ m w}$	E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Cylindrical bore	Cylindrical bore	sign	min.	$d_{ m a}$ max.	$d_{ m b}$ min.) _a min.	$r_{ m a}$ max.	Cylindrical bore
420	560 600	140 220	4	460 470	_	1 670 3 700	4 290 9 060	_	NNU4984 84DC60220	2 2-P	436 440	457	465 476	544	_	3 4	96.7 204
	620	150	5 5	470	570	2 310	9 060 4 570	NN3084	840060220	2-P 1	440	465	4/6	580 600	— 574	4	154
	620	200	5	473	_	3 050	6 570	_	NNU4084-1	2	440	468	479	600	_	4	203
430	750	280	7.5	515	_	6 040	12 100	_	86DC75280	2-P	462	508	521	718	_	6	539
440	600	160	4	487	_	2 060	5 000	_	NNU4988	2	456	483	492	584	_	3	133
	620	225	4	487	_	3 950	9 980	_	88DC62225	2-P	456	483	492	604	_	3	220
	650	212	6	493	_	3 430	7 530		NNU4088A	2	464	488	501	_	_	5	240
	650	230	6	495	_	4 030	9 320	_	88NNU65230	2-P	464	489	502	626	_	5	265
460	620	160	4	502	_	2 250	5 440	_	NNU4992	2	476	498	507	604	_	3	136
480	680	280	6	527	_	5 160	12 900	_	96NNU68280	2-P	504	521	531	656	_	5	325
500	670	170	5	545	_	2 940	7 660	_	100DC67170A	2-P	520	541	551	650	_	4	171
	680	210	5	547	_	3 810	9 870	_	100NNU68210	2-P	520	542	552	660	_	4	225
	720	270	8	556	_	4 740	11 400	_	100DC72270A	2-P	532	551	565	688	_	6	353
	720	300	7	556	—	5 580	14 100		100DC72300B	2-P	532	551	561	688	_	5.5	405
508	749.3	355.6	6	566	_	7 350	18 300	_	102DC75356	2-P	532	560	573	725	_	5	540
560	735	170	5	604.6	_	3 040	7 730	_	112DC74170	2-P	580	598	609	715	_	4	194
	750	190	5	613		3 190	7 940	_	NNU49/560	2	580	608	619	730	_	4	233
600	800	200	5	652		3 500	8 630	_	NNU49/600	2	620	647	658	780	_	4	272
	870	200	6	_	801	3 940	8 450	NN30/600	_	1	624	_	_	846	807	5	388
630	780	150	4	671	_	2 430	6 800	_	NNU48/630	2	646	667	676	764	_	3	154
640	890	320	6	705	_	7 330	19 900	_	128DC89320	2-P	664	699	713	866	_	5	625
670	900	230	6	732	_	5 270	14 100	_	NNU49/670	2-P	694	726	740	876	_	5	420

[Remark] The bearing number of the tapered bore type bearing is suffixed by K.

d (670) ~ 710 mm

Design 2-P (NNU type)

	Bou		dimens nm)	ions			nd ratings N)	Bearing No. NN NNU				(Refer.) Mass (kg)					
d	D	В	$rac{r}{min.}$	F_{w}	E_{w}	C_{r}	C_{0r}	Cylindrical bore	Cylindrical bore	sign	min.	$l_{ m a}$ max.	$d_{ m b}$ min.	max.) _a min.	$r_{ m a}$ max.	Cylindrical bore
670	920	330	6	738	_	7 370	20 800	_	134NNU92330	2-P	694	732	746	896	_	5	662
710	950	243	6	775	_	5 890	16 200	_	NNU49/710	2-P	734	769	783	926	_	5	491

[Remark] The bearing number of the tapered bore type bearing is suffixed by K.

d 100 ~ (160) mm

		
<u> </u>		
Design 2-1P	Design 2-2	Des

esign 2-2P	Design 2-3	Design 2-4

	I	Boundary d		s			$\begin{array}{c c} \textbf{Basic load ratings} \\ (kN) & \textbf{Bearing No.} \end{array}$			D	esign		(Refer.)				
d	D	В	C	$F_{ m w}$	r min.	r_1 min.	C_{r}	C_{0r}	Bearing No.		esigii	$d_{ m a}$ min.	max.	(mm) O _a min.	$r_{ m a}{}^{1)}$ max.	$r_{ m b}{}^{1)}$ max.	(kg)
100	140	120	120	110	1.1	1.1	485	945	20FC14120	2	2-2	107	133	131	1	1	5.6
110	170 180	90 120	90 120	127 128	2 2	2 2	428 636	692 971	22FC1790 22FC18120		1-2 2-2	120 119	160 170	155 164	2 2	2 1.5	7.4 12
115	165	90	90	132.5	1.1	1.1	398	751	23FC1690	1	1-1	122	158	154	1	1	6.5
120	165 180	87 105	87 105	134.5 135	1.1 2	1.1 1.1	374 487	745 796	24FC1787 4CR120		1-2 1-2	127 127	158 170	154 165	1 2	1	5.6 9.3
127	174.65 203.2	150.812 127	150.812 127	139.5 147	1.1 2	1.1 2	630 740	1 300 1 180	25FC17150 25FC20127		2-2 1-3	134 137	167 193	163 185	1 2	1 2	10.5 15.4
130	200 200	104 125	104 125	150 149	2 2	2 2	566 752	953 1 310	26FC20104 26FC20125		1-2 1-2	140 140	190 190	182 183	2 2	2 2	11.8 14.4
140	190 210	119 116	119 116	154 158	1.5 2	1.5 2	565 675	1 160 1 120	28FC19119W 28FC21116		1-3 1-2	149 150	181 200	178 194	1.5 2	1.5 2	9.6 13.5
145	210 225	155 156	155 156	166 169	1.1 2	1.1 2	845 912	1 710 1 680	29FC21155 313924		1-2 1-2	152 155	203 215	196 205	1 2	1 2	17.8 22.9
150	200 210 210	120 120 150	120 120 150	162 168.5 165	2 2 2	2 2 2	672 686 872	1 400 1 380 1 780	30FC20120 30FC21120 30FC21150	2	1-2 2-2 1-2	160 160 160	190 200 200	188 196 195	2 2 2	2 2 2	10.1 12.8 15.9
	220 220 230	150 150 156	150 150 156	170 168 174	2 2 2	2 2 2	887 889 961	1 760 1 760 1 810	30FC22150 30FC22150A 313891-1	1	1-2 1-2 1-2	160 160 160	210 210 220	202 200 210	2 2 2	2 2 2	19.2 19.5 23.8
160	220 230 230	180 130 168	180 130 168	177 180 182	2 2.1 1.1	2 2.1 1.1	964 867 1 040	2 170 1 740 2 210	32FC22180 314190 32FC23170	1	1-2 1-2 1-2 1-2	170 172 167	210 218 223	205 212 214	2 2 1	2 2 1	20.5 17.7 22.8
	230	168	168	180	2	2	1 040	2 200	32FC23170A	1	1-2	170	220	212	2	2	23.1

Design 3-2P

[[]Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

d (160) ~ (200) mm

Щ		Д
Design 2-1P	Design 2-2	Design 2-2P

Design 2-3	Design 2-4

	Boundary dimensions (mm)				Basic load				Mounting dimensions							
		(111111)		r	۴.	(KI	V)	Bearing No.	Design	d_{a}	,	O_a	$r_{\rm a}^{-1)}$	$r_{\rm b}^{\ 1)}$	Mass
d	D	В	C	F_{w}	r min.	r_1 min.	C_{r}	C_{0r}			u_{a} min.	max.	v _a min.	max.	max.	(kg)
160	230	168	168	179	2	2	1 110	2 210	32FC23170B	1-4	170	220	215	2	2	22.6
	230	180	180	177	2	2	1 140	2 270	32FC23180A	1-2	170	220	213	2	2	24.1
	240	120	120	183	2.1	2.1	663	1 140	32FC24120W	1-3	172	228	219	2	2	18.5
	240	170	170	183	2.1	2.1	1 180	2 220	32FC24170	1-2	172	228	223	2	2	26.8
170	230	120	120	187	2	2	782	1 680	34FC23120	1-2	180	220	215	2	2	14.4
	240	156	156	190	2	2	972	2 050	34FC24156A	1-2	180	230	222	2	2	22.4
	240	156	156	189	2	2	1 060	2 100	34FC24156B	1-2	180	230	225	2	2	21.8
	240	190	190	187	1.5	1.5	1 260	2 620	34FC24190	1-2	179	231	223	1.5	1.5	26.9
	250	168	168	192	2.1	2.1	1 170	2 230	34FC25168	1-2	182	238	232	2	2	27.6
	250	170	170	192	2.1	2.1	1 170	2 230	34FC25170	1-2	182	238	232	2	2	27.8
	260	150	150	195	2.1	2.1	1 100	2 000	34FC26150	1-2	182	248	237	2	2	28.8
178	258.75	150	150	199	1.5	1.5	1 090	2 070	36FC26150	1-2	187	250	239	1.5	1.5	25.8
180	250	156	156	200	2	2	1 020	2 130	36FC25156A	1-2	190	240	234	2	2	23.3
	260	168	168	202	2.1	2.1	1 150	2 390	313812W	1-4	192	248	238	2	2	29.7
	260	168	168	202	2.1	2.1	1 230	2 420	36FC26168	1-2	192	248	242	2	2	29.3
	265	180	180	203	2	2	1 300	2 600	36FC27180	1-2	190	255	243	2	2	33.6
190	260	168	168	212	2.1	2.1	1 140	2 600	38FC26168-1	1-2	202	248	244	2	2	26.5
	270	170	170	212	2	2	1 140	2 310	38FC27170	1-2	200	260	250	2	2	30.8
	270	170	170	213	2	2	1 140	2 310	38FC27170A	1-2	200	260	251	2	2	31.0
	270	200	200	212	2	2	1 460	3 080	314199	1-2	200	260	252	2	2	36.1
	280	200	200	214	2.1	2.1	1 550	3 100	38FC28200	1-2	202	268	258	2	2	42
	290	190	190	215	2.1	2.1	1 550	2 860	38FC29190	1-2	202	278	265	2	2	44.9
195	300	226	226	220	2.1	2.1	1 960	3 690	39FC30226	1-2	207	288	274	2	2	57.9
200	270	170	170	222	2	2.1	1 190	2 780	314553	1-2	212	260	254	2	2	28.0
	280	152	152	222	2.1	2.1	1 100	2 150	40FC28152BW	1-3	212	268	262	2	2	28.0

 ϕD_{a} ϕd_{a}

[[]Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

d (200) ~ (240) mm

	Boundary dimensions (mm)						Basic load ratings (kN) Bearing No.			Design		Mounting dimensions (mm)				
d	D	В	C	$F_{ m w}$	r min.	r_1 min.	C_{r}	$C_{0\mathrm{r}}$	bearing No.	Design	$d_{ m a}$ min.	max.		$r_{ m a}^{-1)}$ max.	$r_{ m b}^{\ 1)}$ max.	Mass (kg)
200	280	170	170	222	2.1	2.1	1 280	2 620	40FC28170	1-2	212	268	262	2	2	31.7
	280 280	188 190	188 190	222 223	2.1 3	2.1 3	1 350 1 460	2 810 3 100	40FC28188 40FC28190A	1-2 1-2	212 214	268 266	262 263	2 2.5	2 2.5	35.0 36.0
	280	200	200	222	2	2	1 450	3 090	313893-1	1-2	210	270	262	2	2	37.7
	280 290	200 192	200 192	224 226	2.1 2.1	2.1 2.1	1 450 1 460	3 330 3 030	40FC28200 313811	1-2 1-2	212 212	268 278	260 268	2	2	38.7 42.0
	310	160	160	232	2.1	2.1	1 260	2 240	40FC31160	1-1	212	298	282	2	2	44.6
	310	206	206	227	2.1	2.1	1 790	3 240	40FC31206	1-2	212	298	283	2	2	56.6
206	299.97	170	170	229	2	2	1 470	2 780	41FC30170	1-2	216	289	277	2	2	39.2
210	290	192	192	236	2.1	2.1	1 460	3 270	42FC29192	1-2	222	278	274	2	2	38.1
	300	210	210	234	2.1	2.1	1 660	3 490	42FC30210	1-2	222	288	278	2	2	47.3
220	300	150	150	240	2.1	2.1	1 210	2 500	44FC30150W	1-3	232	288	280	2	2	30.7
	310 310	192 192	192 192	247 246	2.1 2	2.1 2	1 520 1 630	3 270 3 420	313837-1 313837A	1-2 1-2	232 230	298 300	289 291	2 2	2 2	45.5 44.9
	310	192	192	245	3	2.1	1 450	2 980	44FC31192W	1-3	232	296	289	2.5	2	43.9
	310 320	225 210	225 210	244 246	2.1 2.1	2.1 2.1	1 880 1 760	4 160 3 490	44FC31225A 44FC32210	1-2 1-2	232 232	298 308	288 296	2	2	53.5 55.4
	320	210	210	248	2.1	2.1	1 810	3 740	44FC32210-1	1-4	232	308	296	2	2	56.7
	340	180	180	256	3	3	1 500	2 750	44FC34180A	1-4	234	326	310	2.5	2.5	59.0
230	330	206	206	260	2.1	2.1	1 880	3 980	313824A	1-2	242	318	308	2	2	57.5
	340	260	260	261	3	3	2 310	4 900	46FC34260	1-2	244	326	313	2.5	2.5	81.2
237	339.67	200	200	264	2	2	1 840	3 780	47FC34200	1-2	247	329	314	2	2	58.0
240	330	220	220	270	3	3	1 780	4 250	312943/1YD	1-4	254	316	310	2.5	2.5	55.5
	330 330	220 220	220 220	264 268	2.1 3	2.1 3	1 830 1 770	4 120 4 070	48FC33220 48FC33220BW	1-2	252 254	318 316	308 310	2 2.5	2 2.5	54.3 55.5
	330	250	250	263	2.1	2.1	2 160	4 910	48FC33250W	1-3	252	318	309	2.3	2.3	63.7

147

Design 3-2P

[Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

Design 2-4

Design 2-6P

Design 3-1P

d (240) ~ (290) mm

Design 2-1P	Design 2-2	Design 2-2P	Design 2-3
Mount	ing dimensions	(Refer.)	
d_{a}	(mm) $D_{\rm a}$ $r_{\rm a}^{-1)}$	$r_b^{(k\alpha)}$ Mass	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$r_{\rm a}^{\ 1)}$ $r_{\rm b}^{\ 1)}$ max. max.	(Refer.) Mass (kg) 56.3	
d D B C F _w min. min. cr Cor Cor	. max. max. 3 2.5 2.5	(116)	
340 220 220 268 3 3 2 000 4 240 48FC34220 1-2 254 326 318 250 350 220 220 278 3 3 1 930 4 200 50FC35220 1-2 264 336 326 260 355 260 260 286 2.1 2.1 2 290 5 440 52FC35260 2-2 272 343 332 360 192 192 287 2.1 2.1 1 750 3 740 52FC36192W 1-3 272 348 335 360 200 200 287 2.1 2.1 1 880 4 110 52FC36200 1-2 272 348 340 360 230 230 292.5 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 100 4 790		56.3	
250 350 220 220 278 3 3 1 930 4 200 50FC35220 1-2 264 336 326 260 355 260 260 286 2.1 2.1 2 290 5 440 52FC35260 2-2 272 343 332 360 192 192 287 2.1 2.1 1 750 3 740 52FC36192W 1-3 272 348 335 360 200 200 287 2.1 2.1 1 880 4 110 52FC36200 1-2 272 348 340 360 230 230 292.5 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 020 4 790 52FC36230D 1-2 272 348 340	3 2.5 2.5		
260 355 260 260 286 2.1 2.1 2 290 5 440 52FC35260 2-2 272 343 332 360 192 192 287 2.1 2.1 1 750 3 740 52FC36192W 1-3 272 348 335 360 200 200 287 2.1 2.1 1 880 4 110 52FC36200 1-2 272 348 335 360 230 230 292.5 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 020 4 790 52FC36230D 1-2 272 348 336		63.4	
360 192 192 287 2.1 2.1 1 750 3 740 52FC36192W 1-3 272 348 335 360 200 200 287 2.1 2.1 1 880 4 110 52FC36200 1-2 272 348 335 360 230 230 292 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 10 2 020 4 790 52FC36230D 1-2 272 348 336	3 2.5 2.5	64.6	Design 2-5P
360 200 200 287 2.1 2.1 1 880 4 110 52FC36200 1-2 272 348 335 360 230 230 292 5 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 020 4 790 52FC36230D 1-2 272 348 336		75.0	
360 230 230 292.5 2.1 2.1 2 140 4 900 52FC36230CW 1-4 272 348 340 360 230 230 292 2.1 2.1 2 020 4 790 52FC36230D 1-2 272 348 336		59.8	
360 230 230 292 2.1 2.1 2 020 4 790 52FC36230D 1-2 272 348 336	5 2 2	62.0	
) 2 2	69.7	
200 000 000 007 04 04 0 000 5 200 5 200 0 0 0 0 0 0 0 0 0 0 0	3 2 2	72.6	
360 260 260 287 2.1 2.1 2.300 5.320 52FC36260 2-2 272 348 335	5 2 2	80.0	
368 268 268 288 2.1 2.1 2.740 5.990 52FC37268W 1-4 272 356 344	1 2 2	89.9	
370 220 220 292 3 3 2 000 4 330 313823 1-2 274 356 342	2 2.5 2.5	76.0	
370 220 220 290 3 3 2 180 4 480 313823A 1-2 274 356 346	3 2.5 2.5	75.0	Design 3-1
370 260 260 290 2.1 2.1 2.640 5.740 52FC37260 1-2 272 358 346	3 2 2	88.5	
265 370 234 234 292 1.5 1.5 2 290 4 910 53FC37234A 1-2 274 361 346	3 1.5 1.5	76.3	
370 234 234 300 1.5 1.5 2 270 5 290 53FC37234B 2-2 274 361 348		78.5	
270 380 230 230 298 2.1 2.1 2 330 4 910 54FC38230 1-2 282 368 354	2 2	80.0	
280 380 170 170 306 2.1 2.1 1710 3590 56FC38170W 1-3 292 368 356	3 2 2	55.0	H HL
390 220 220 312 3 3 2 070 4 640 313822 1-2 294 376 362		81.8	
390 220 220 308 3 3 2 180 4 670 313822A 1-2 294 376 362		79.7	Design 3-2P
390 220 220 306 3 2.1 2 520 5 350 313822C 1-2 292 376 364	2.5 2	79.7	
390 220 220 312 3 3 2 320 5 100 313822D 1-2 294 376 366		80.1	
390 240 240 312 3 3 2 460 5 620 56FC39240 1-2 294 376 364		88.1	
390 275 275 309 2.1 2.1 2.680 6.110 56FC39275B 1-2 292 378 363	3 2 2	100	/ <u>-</u>
390 275 275 308 3 2.1 3 040 6 850 56FC39275J 2-4 292 376 366	0.5	400	41)
410 300 300 314 3 3 3 730 8 400 56FC41300 2-6P 294 396 378		102 137	$\phi D_{\rm a}$

[Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

320

2 300

5 500 **58FC39234**

234

290

390

234

148

1-2

304

376

368

2.5

2.5

d (290) ~ (340) mm

1_0										j	كتا	ر المحال					
	Design 1-1		Desig	ın 1-2	De	sign 1-3	D	esign 1-4	Design 1-6P		Desig	n 2-1P	Design	n 2-2	Des	ign 2-2P	
		Boundary	dimensio /	ns			Basic load	d ratings				Mounti	ng dimens	ions		(Refer.)	
		((mm)				(kľ	4)	Bearing No.	Desig	n		(mm)			Mass	
d	D	В	C	F_{w}	r	r_1	$C_{\rm r}$	C_{0r}			$d_{\rm a}$		$D_{\rm a}$	$r_{\rm a}^{\ 1)}$	$r_{\rm b}^{\ 1)}$	(kg)	
				1 W	min.	min.	C _I	Cui			min.	max.	min.	max.	max.	(0)	
290	400	180	180	320	3	3	1 880	4 010	58FC40180W	1-2	304	386	372	2.5	2.5	68.3	
	410	240	240	320	3	3	2 610	5 540	58FC41240	1-2	304	396	380	2.5	2.5	99.0	
	420	300	300	327	3	3	3 100	6 960	58FC42300	1-2	304	406	387	2.5	2.5	138	
											-						
300	400	300	300	328	3	3	2 920	7 310	60FC40300A	1-2	314	386	378	2.5	2.5	103	
	420	218	218	332	3	3	2 350	5 010	60FC42218	1-1	314	406	390	2.5	2.5	93.0	
	420	240	240	332	3	3	2 660	5 750	60FC42240	1-1	314	406	392	2.5	2.5	102	
	420	300	300	332	3	3	3 370	7 840	4CR300	3-2P	314	406	392	2.5	2.5	125	
	420	300	300	331	3 1.5	3 1.5	3 420	7 750	60FC42300DW	2-4	309	411	395	1.5	1.5	127	
	420	300	300	332	2	2	3 750	8 690	60FC42300L-2	2-4 2-6P	310	410	395	2	2	127	
	420	300	300	332	3	3	3 250	7 270	60FC42300W	2-3	314	406	394	2.5	2.5	127	
	400	222		222	_						201	400	201				
310	420	300	300	338	3	3	3 090	7 370	62FC42300	1-2	324	406	394	2.5	2.5	119	
	430	240	240	344.5	3	3	2 640	5 770	62FC43240	1-2	324	416	404	2.5	2.5	105	
	440	240	240	341	3	3	2 820	5 730	62FC44240	1-2	324	426	409	2.5	2.5	113	
320	440	230	230	351	3	3	2 530	5 490	64FC44230/240	1-2	334	426	411	2.5	2.5	103	
	450	240	240	358	3	3	2 700	5 740	4CR320	1-2	334	436	422	2.5	2.5	119	
	450	240	240	355	3	3	2 700	5 730	64FC45240	1-2	334	436	419	2.5	2.5	117	_
	450	240	240	358	3	3	2 770	5 930	64FC45240CW	1-4	334	436	422	2.5	2.5	118	
	460	340	340	360	3	3	3 860	8 730	64FC46340A	1-4	334	446	428	2.5	2.5	187	
	480	290	290	361	4	4	4 080	8 450	64FC48290	2-6P	338	462	441	3	3	189	
					4	•	4 000	0 430				402	441				
	480	350	350	364	2.1	2.1	5 010	11 000	314274A	2-6P	332	468	444	2	2	227	
330	440	200	200	358	3	3	2 340	5 220	66FC44200AW	1-3	344	426	414	2.5	2.5	83.4	
330	440	200	200	360	3	ა 5	2 050	4 670	66FC44200W	1-3	352	426	414	2.5	2.5 4	83.0	
	460	340	340	364	ა 2.1	2.1	3 860	9 150	66FC46340	1-3	342	448	412	2.5	2	172	1
					۷.۱	۷.۱											
	460	340	340	368	4	4	4 060	9 800	66FC46340B	1-2	348	442	432	3	3	176	, ,
	460	380	380	364	2.1	2.1	4 380	10 800	66FC46380W	1-4	342	448	428	2	2	195	ϕ_{\parallel}^{L}
340	445	250	250	367	2.1	4	2 510	6 110	68FC45250W	1-3	358	433	419	2	3	100	
340	450	250	250	368	2.1	2.1	2 750	6 480	68FC45250BW	1-3	352	438	424	2	2	106	<u> </u>
	450	200	200	300	۷.۱	۷.۱	2 / 50	0 400	00F C43Z3UDW	1-3	302	430	424	۷	۷	100	

[[]Note] 1) $r_{
m a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm l}$.

d (340) ~ 390 mm

		1 11 11 11 11 11 11 11 11 11 11 11 11 1
Design 2-1P	Design 2-2	Design 2-2P

	Boundary dimensions (mm)			Basic loa		atings Bearing No.					(Refer.)						
				_	r	$r_1^{(1)}$,		Bearing No.		Design	$d_{\rm a}$	I	(mm) O _a	$r_{\rm a}^{(2)}$	$r_{\rm b}^{\ 2)}$	
d	D	В	С	F_{w}	min.	min.	$C_{\rm r}$	C_{0r}				min.	max.	min.	max.	max.	(kg)
340	480	350	350	378	4	SP	4 580	11 100	68FC48350-2		2-4	354	462	446	3	2	211
	480	350	350	378	3	SP	4 780	11 500	68FC48350D		3-2P	354	466	448	2.5	2	201
	480	350	350	376	4	4	4 840	11 400	68FC48350L		3-2P	358	462	448	3	3	201
	480	385	350	378	2.1	SP	4 780	11 500	68FC48350N		2-6P	358	468	448	2	3	209
	490	300	300	380	5	5	3 500	7 690	68FC49300		1-2	362	468	450	4	4	187
	490	300	300	379	5	5	3 680	7 850	68FC49300A		1-2	362	468	453	4	4	182
343.052	457.098	254	254	374	3	3	2 640	6 190	69FC46254W		1-4	358	443	430	2.5	2.5	112
350	500	460	460	388	2	2	6 570	16 500	70FC50460		2-6P	360	490	464	2	2	296
360	480	290	290	392	3	3	3 470	8 510	72FC48290		1-2	374	466	452	2.5	2.5	145
	500	250	250	394	3	3	3 510	7 340	72FC50250		2-2	374	486	470	2.5	2.5	145
	510	370	370	400	4	4	4 590	11 000	72FC51370		1-2	378	492	470	3	3	241
	520	380	380	405	2	5	5 800	13 700	72FC52380		2-6P	382	510	485	2	4	270
370	520	380	380	409	5	5	5 320	13 200	74FC52380		2-6P	392	498	481	4	4	257
	520	400	400	413	5	5	4 740	11 900	74FC52400W		2-4	392	498	481	4	4	268
	540	400	400	415	4	4	5 190	11 500	74FC54400A		1-2	388	522	499	3	3	311
375	545	400	400	417	4	4	6 310	14 500	75FC55400		3-2P	393	527	505	3	3	315
380	520	280	280	417	4	4	3 720	8 550	76FC52280		1-2	398	502	487	3	3	173
	520	290	290	418	4	4	3 760	8 840	76FC52290		1-2	398	502	486	3	3	181
	540	300	300	421	3	3	4 650	10 100	76FC54300		2-6P	394	526	505	2.5	2.5	222
	540	340	340	422	4	4	4 600	10 300	76FC54340W		3-1	398	522	502	3	3	256
	540	360	360	422	4	4	5 480	12 900	76FC54360		2-6P	398	522	502	3	3	266
	540	400	380	422	4	4	6 010	14 300	76FC54380		2-6P	398	522	504	3	3	287
	540	400	400	422	4	4	6 040	14 600	76FC54400BW		2-6P	398	522	502	3	3	298
	540	400	400	422	4	4	6 040	14 600	76FC54400DW		3-2P	398	522	502	3	3	298
390	550	400	400	434	5	SP	5 130	12 400	78FC55400AW		2-3	410	528	510	4	4	296

[[]Notes] 1) SP indicates the specially chamfered form.

2) $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension $r_{\rm c}$. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm 1}$.

d 400 ~ 444.5 mm

	ļ	Boundary	dimensior	15			Basic loa					(Refer.)				
	_	`	<i>'</i>	_	r	r_1	`		Bearing No.	Design	$d_{\rm a}$	1	(mm)	$r_{\rm a}^{\ 1)}$	$r_{\rm b}^{-1)}$	
d	D	В	С	$F_{ m w}$	min.	min.	$C_{\rm r}$	C_{0r}			min.	max.	min.	max.	max.	(kg)
400	520	250	250	432	4	4	2 920	7 100	80FC52250W	1-3	418	502	492	3	3	133
	560	360	360	441	5	5	5 570	13 400	80FC56360	2-6P	422	538	521	4	4	277
	560	410	410	445	5	5	6 330	15 800	4CR400	3-2P	422	538	525	4	4	310
	560	410	410	445	2	5	6 470	16 300	80FC56410	2-6P	422	550	525	2	4	315
	600	380	380	450	5	5	6 610	14 300	80FC60380	2-6P	422	578	552	4	4	388
406.4	609.6	304.8	304.8	460	5	5	4 380	8 750	81FC6130W	1-4	429	587	556	4	4	307
410	546	400	400	448	5	5	5 010	13 000	82FC55400	2-2	432	524	516	4	4	256
	600	440	440	460	5	5	8 070	18 800	82FC60440	2-6P	432	578	560	4	4	432
418.5	600	410	410	470	5	5	6 630	15 700	84FC60410A	2-6P	441	578	560	4	4	385
419	592	350	350	462	4	4	5 690	12 900	84FC59350	1-6P	437	574	552	3	3	304
420	560	280	280	457	4	4	3 930	9 410	84FC56280	1-1	438	542	527	3	3	189
	560	400	400	458	4	4	4 870	12 700	84FC56400	2-4	438	542	526	3	3	270
	580	320	320	463	4	4	4 760	11 000	84FC58320	2-4	438	562	543	3	3	249
	600	440	440	470	5	5	7 240	17 700	4CR420A	3-1P	442	578	560	4	4	420
430	591	420	420	472	5	5	6 550	16 800	86FC59420	2-2P	452	569	552	4	4	345
	591	420	420	476	4	4	6 520	17 400	86FC59420-2	2-6P	448	573	552	3	3	349
	591	420	420	476	4	4	5 910	14 700	86FC59420A-1	1-3	448	573	552	3	3	340
	600	450	450	475	5	5	7 460	19 300	86FC60450	2-6P	452	578	559	4	4	405
440	590	270	270	482	4	4	3 620	8 460	88FC59270W	1-3	458	572	554	3	3	207
	620	450	450	487	4	4	7 900	20 000	4CR440	3-1P	458	602	577	3	3	440
	620	450	450	487	4	4	7 900	20 000	88FC62450AW	2-6P	458	602	577	3	3	440
	640	420	420	492	5	5	7 820	18 400	88FC64420	2-6P	462	618	592	4	4	470
	720	452	452	512	6	6	8 570	16 600	88FC72452	1-6P	468	692	652	5	5	740
444.5	660.4	323.85	323.85	500	4	4	6 040	12 600	89FC66324	1-6P	463	642	608	3	3	400

[Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

d 445 ~ 500 mm

<u> </u>		111
Design 2-1P	Design 2-2	Design 2-2P

Boundary dimensions (mm)							Basic loa		Pageing No.	Design		(Refer.) Mass				
d	D	В	C	$F_{ m w}$	$r^{1)}$ min.	$r_1^{\ 1)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No.	Design	$d_{ m a}$ min.	D max.	(mm) a min.	$r_{ m a}^{\ 2)}$ max.	$r_{ m b}^{2)}$ max.	(kg)
445	635	375	375	496	4	4	6 240	14 600	4CR445	3-1P	463	617	588	3	3	385
450	630	450	450	500	4	4	6 820	16 600	90FC63450A	2-2	468	612	590	3	3	433
460	600	400	400	497	4	SP	5 300	14 300	92FC60400	2-4	478	582	567	3	3	287
	620	400	400	504	4	4	6 850	18 200	4CR460C	3-1P	478	602	584	3	3	350
	620	400	400	502	4	4	6 510	17 000	92FC62400BW	1-6P	478	602	582	3	3	350
	620 650 660 660 680	400 470 500 500 400	400 470 500 500 400	502 509 512 510 504	4 6 4 5	4 6 4 5 4	5 900 8 990 9 310 9 540 7 910	14 800 22 200 23 300 23 400 16 600	92FC62400D 92FC65470W 4CR460 92FC66500 4CR460D	1-4 1-6P 3-1P 2-6P 3-1P	478 488 478 482 478	602 622 642 638 662	583 609 612 614 624	3 5 3 4 3	3 5 3 4 3	340 494 590 573 510
480	650	450	450	525	5	5	8 480	22 400	96FC65450B	2-6P	502	628	615	4	4	440
	650	460	460	526	5	5	7 730	20 800	96FC65460	2-6P	502	628	610	4	4	443
	680	460	460	532	5	5	8 620	21 300	96FC68460	2-6P	502	658	632	4	4	545
	680	500	500	534	5	5	8 620	22 000	4CR480	3-1P	502	658	630	4	4	580
	680	500	500	534	5	5	8 620	22 000	4CR480B	3-2P	502	658	630	4	4	580
	680	500	500	532	5	5	9 550	24 300	96FC68500A	2-6P	502	658	632	4	4	595
495	615	360	360	530	SP	SP	4 030	12 000	99FC62360	2-4	511	597	586	3	3	235
500	670	450	450	540	5	SP	8 460	22 500	100FC67450A-3	2-6P	522	648	630	4	4	451
	680	420	405	550	5	5	6 710	17 600	100FC68405	2-6P	522	658	634	4	4	442
	680	450	450	542.5	4	4	8 980	23 100	100FC68450	2-6P	518	662	639	3	3	495
	690	510	510	550	5	5	9 350	24 600	100FC69510A	3-2P	522	668	646	4	4	562
	710	480	480	558	6	6	9 770	24 800	100FC71480	2-6P	528	682	662	5	5	631
	720	400	400	558	5	6	8 320	18 900	100FC72400	1-6P	528	698	672	4	5	549
	720	530	530	560	6	6	10 800	26 500	100FC72530	2-6P	528	692	674	5	5	725
	720	530	530	568	5	4	11 000	28 900	100FC72530C	2-6P	518	698	672	4	3	742
	720	530	530	560	6	6	10 800	26 500	100FC72530W	3-2P	528	692	674	5	5	725

 $\phi D_{\rm a}$ ϕd

[[]Notes] 1) SP indicates the specially chamfered form.

²⁾ $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension $r_{\rm c}$

 $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm l}$.

d 510 ~ (600) mm

Щ		
Design 2-1P	Design 2-2	Design 2-2P

	Boundary dimensions (mm)			Basic load ratings (kN) Bearing No.			Design			(Refer.) Mass						
d	D	В	C	F_{w}	r min.	$r_1^{\ 1)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No.	Design	$d_{ m a}$ min.	max.	D _a min.	$r_{ m a}^{\ 2)}$ max.	$r_{ m b}^{2)}$ max.	(kg)
510	670 670	320 450	320 450	554 550	5 5	5 5	5 560 8 370	14 300 23 400	102FC67320 102FC67450	1-6P 2-6P	532 532	648 648	634 634	4 4	4 4	305 433
520	680 735 735	450 535 535	450 535 535	562 574.5 574.5	5 5 5	5 5 5	7 810 10 500 10 700	22 300 27 200 27 500	104FC68450W 104FC74535 104FC74535C	2-6P 2-5P 3-2P	542 542 542	658 713 713	642 680 682	4 4 4	4 4 4	435 738 735
530	760 780 780	520 570 570	520 570 570	589 595 595	6 6 6	SP 6 6	11 500 12 500 12 500	28 800 30 600 30 600	106FC76520A 106FC78570 106FC78570B	2-6P 2-6P 3-2P	548 558 558	732 752 752	705 719 719	5 5 5	2.5 5 5	810 957 960
536.17	762.03	558.8	558.8	598	5	SP	11 300	29 100	107FC76559AW	2-6P	559	740	710	4	4	825
545	810	580	580	614	6	6	13 100	32 100	4CR545	3-1P	573	782	744	5	5	1 090
550	740	510	510	600	6	6	10 400	28 100	110FC74510	2-6P	578	712	700	5	5	635
560	780 800 820	570 600 600	570 600 600	616 620 625	5 7.5 6	2.1 7.5 6	12 400 13 000 14 600	33 100 33 400 36 300	112FC78570 112FC80600 112FC82600	2-6P 2-6P 2-6P	572 596 588	758 764 792	727 740 759	4 6 5	2 6 5	865 1 010 1 120
570	800 815	514 594	514 594	626 628	6 6	6 6	11 700 13 100	29 200 32 100	114FC80514A 114FC81594	2-6P 2-6P	598 598	772 787	746 758	5 5	5 5	829 1 010
571.1	812.97	594	594	636	6	6	13 400	35 100	114FC81594A	2-6P	600	784	756	5	5	1 030
590	820	590	590	649	6	SP	13 100	35 100	118FC82590	2-6P	621	792	765	5	5	990
600	820 820 850 870	575 575 600 578	575 575 600 540	660 660 664 672	5 5 4 6	5 5 4 SP	13 000 13 000 14 600 13 300	36 000 36 000 38 100 32 300	120FC82575B 120FC82575C 120FC85600 120FC87540A	2-6P 3-2P 3-2P 2-6P	622 622 618 628	798 798 832 842	772 772 792 808	4 4 3 5	4 4 3 5	925 920 1 120
	870 870	640 640	640 640	672 669	6 5	6 5	15 700 15 700	40 000 40 000	120FC87640 4CR600	2-6P 3-1P	628 622	842 848	808 805	5 4	5 4	1 320 1 310

Design 3-1P

[Notes] 1) SP indicates the specially chamfered form.

²⁾ $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm 1}$.

d (600) ~ 730 mm

<u> </u>		
Design 2-1P	Design 2-2	Design 2-2P

	Boundary dimensions (mm)			Basic loa		Bearing No.	Design		Mountir		(Refer.) Mass					
d	D	В	С	$F_{ m w}$	r min.	$r_1^{\ 1)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No.	Design	$d_{ m a}$ min.	max.	O _a min.	$r_{ m a}^{\ 2)}$ max.	$r_{ m b}^{2)}$ max.	(kg)
600	870	640	640	682	4	4	15 500	40 800	4CR600A	2-6P	618	852	812	3	3	1 330
000	870	640	640	669	5	5	15 700	40 000	4CR600B	2-6P	622	848	805	4	4	1 310
610	850	570	570	670	6	6	13 200	34 900	122FC85570	2-6P	638	822	790	5	5	1 040
	870	660	660	680	6	6	15 200	40 300	122FC87660	2-6P	638	842	808	5	5	1 310
630	800	360	360	675	5	5	6 850	19 500	126FC80360	2-6P	652	778	759	4	4	440
640	880	600	600	700	6	6	15 000	40 800	128FC88600	2-5P	668	852	824	5	5	1 130
650	920	670	670	723	7.5	7.5	16 700	45 500	130FC92670	2-6P	686	884	855	6	6	1 450
	920	670	670	724	7.5	7.5	16 700	45 500	130FC92670A	2-6P	686	884	856	6	6	1 480
	920	690	690	724	7.5	7.5	16 700	45 500	130FC92690	2-6P	686	884	856	6	6	1 490
660	820	440	440	708	4	4	7 250	22 700	132FC82440W	2-4	678	802	784	3	3	513
	889.75	670	670	718	6	6	15 700	46 900	132FC89670	2-6P	688	861	830	5	5	1 240
665	968.6	732	732	734.5	6	SP	21 200	53 300	133FC97732	2-6P	693	940	899	5	5	1 870
680	1 020	680	680	775	5	SP	20 000	49 200	4CR680D	3-2P	719	998	946	4	8	2 040
690	980	715	715	767.5	7.5	7.5	18 300	48 800	138FC98715	2-6P	726	944	911	6	6	1 660
	980	750	750	766	6	7.5	19 300	52 300	138FC98750	3-2P	726	952	910	5	6	1 860
	980	750	750	766	6	7.5	19 300	52 300	138FC98750A	2-6P	726	952	910	5	6	1 860
700	980	700	700	774	6	6	17 800	48 200	140FC98700	2-6P	728	952	914	5	5	1 680
	980	700	700	774	6	6	17 800	48 200	140FC98700A	3-2P	728	952	914	5	5	1 680
	980	700	700	766	4	4	19 300	51 300	140FC98700C	2-6P	718	962	914	3	3	1 710
	1 000	710	710	770	4	4	18 900	47 400	140FC100710W	2-6P	718	982	930	3	3	1 810
710	929.9	645	635	767	5	5	15 500	47 000	142FC93635	2-6P	732	907	879	4	4	1 170
730	1 030	750	750	809	6	6	21 600	59 500	146FC103750	2-6P	758	1 002	961	5	5	2 060
	1 050	693	670	804	6	6	20 700	51 200	146FC105670	2-6P	758	1 022	978	5	5	1 980

[[]Notes] 1) SP indicates the specially chamfered form.

²⁾ $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension $r_{\rm a}$

 $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm l}$.

Design 2-4

d 750 ~ (850) mm

		===	
<u> </u>			
Design 2-1P	Design 2-2	Design 2-2P	Design 2-3

6

6

6

5

6

1 059

1 059

1 084

1 078

1 105

6

6

6

5

6

2 5 1 0

2 5 1 0

2 800

2 620

2 190

	3		- 3					- 3	3 -		3		- 3			3	3 -	3
	Е		dimension nm)	ns			Basic load		Bearing No.	Design			ng dimens (mm)			(Refer.) Mass		
d	D	В	C	F_{w}	r min.	r_1 min.	$C_{\rm r}$	C_{0r}			$d_{ m a}$ min.	max.	$D_{ m a}$ min.	$r_{ m a}^{-1)}$ max.	$r_{ m b}^{\ 1)}$ max.	(kg)	++	
750	1 000	670	670	813	6	6	18 300	54 200	150FC100670	2-6P	778	972	941	5	5	1 520		
	1 020	630	620	816	6	6	17 600	48 300	150FC102620	2-1P	778	992	956	5	5	1 550		
755	1 070	750	750	837	7.5	7.5	22 300	60 300	151FC107750A	3-2P	791	1 034	997	6	6	2 240	Design 2-5P	Design 2-6P
760	1 015	700	700	832	7.5	7.5	17 900	54 200	152FC102700	2-5P	796	979	956	6	6	1 590		
	1 030	750	750	828	7.5	7.5	20 500	61 100	152FC103750	2-6P	796	994	962	6	6	1 870		
	1 079.5	787	787	846	7.5	7.5	22 600	61 700	152FC108787B	2-6P	796	1 043	1 006	6	6	2 380		
	1 079.5	787	787	846	7.5	7.5	23 800	65 700	152FC108787D	3-2P	796	1 043	1 006	6	6	2 420		
	1 080	805	790	847	6	6	22 600	61 700	4CR760	3-1P	788	1 052	1 007	5	5	2 440		
761.425	1 079.602	787.4	787.4	846	7.5	7.5	23 800	65 700	152FC108787C	2-6P	798	1 043	1 006	6	6	2 420		
765	1 010	718	708	827	6	6	19 100	58 000	153FC101708A	2-6P	793	982	953	5	5	1 610	Design 3-1	Design 3-1P
	1 065	662	652	840	6	6	19 200	51 700	153FC107652	2-6P	793	1 037	992	5	5	1 870	9	Design 3-1F
770	1 075	770	770	847	7.5	6	23 100	63 500	154FC108770	3-2P	798	1 039	1 007	6	5	2 240		
770	1 075	770	770	847	7.5	6	23 100	63 500	154FC108770A	2-6P	798	1 039	1 007	6	5	2 250		
	1 080	650	650	845	6	6	20 100	52 000	154FC108650	2-6P	798	1 052	1 010	5	5	1 930		
780	1 070	780	780	852	6	6	22 800	65 100	156FC107780A	2-6P	808	1 042	1 002	5	5	2 140		
790	1 015.9	610	610	850	6	6	15 500	48 800	158FC102610	2-6P	818	987	962	5	5	1 290		
800	1 080	750	750	880	6	6	18 400	55 000	160FC108750	2-6P	828	1 052	1 010	5	5	2 020	Design 3-2P	
820	1 130	650	650	891	6	6	20 600	53 700	164FC113650	2-6P	848	1 102	1 059	5	5	2 030		

[Note] 1) $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension $r_{\rm c}$ $r_{\rm h}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm l}$.

903

903

920

928

945

7.5

7.5

7.5

7.5

7.5

7.5

7.5

7.5

23 400

23 400

26 400

25 600

18 700

66 900

66 900

76 000

77 700

50 000

164FC113800A

164FC113800D

168FC116840B

170FC115840

170FC118650

800

800

840

840

650

800

800

840

840

650

1 130

1 130

1 160

1 150

1 180

840

850

162 163

3-2P

2-6P

2-6P

2-6P

2-5P

856

856

876

878

886

1 094

1 094

1 124

1 122

d (850) ~ 1 000 mm

		111
Design 2-1P	Design 2-2	Design 2-2P

Design 2-3	Design 2-4

		-	y dimensi (mm)	ons				nd ratings N)	Bearing No.	Design		Mount	ing dimens			(Refer.)
d	D	B	C	$F_{ m w}$	r min.	$r_1^{\ 1)}$ min.	$C_{\rm r}$	C_{0r}			$d_{ m a}$ min.	max.	D_{a} min.	$r_{ m a}^{2)}$ max.	$r_{ m b}^{2)}$ max.	(kg)
850	1 180	850	850	940	7.5	7.5	25 400	72 700	170FC118850	3-2P	886	1 144	1 104	6	6	2 900
	1 180	850	850	940	7.5	7.5	25 400	72 700	170FC118850B	2-6P	886	1 144	1 104	6	6	2 900
	1 180	875	850	940	7.5	7.5	25 400	72 700	4CR850A	3-1P	886	1 144	1 104	6	6	2 930
855	1 094.9	665	655	918	6	6	18 000	58 000	171FC109655	2-6P	883	1 066	1 038	5	5	1 580
	1 178	714	704	928.5	6	6	23 600	62 900	171FC118704	2-6P	883	1 150	1 104	5	5	2 410
860	1 140	750	750	938	7.5	7.5	20 800	63 800	172FC114750	2-6P	896	1 104	1 074	6	6	2 080
	1 160	780	780	932	6	6	24 800	72 600	172FC116780	2-6P	888	1 132	1 088	5	5	2 470
862.98	1 219.302	876.3	889	956	7.5	7.5	29 900	84 600	173FC122889B	2-6P	899	1 183	1 136	6	6	3 450
	1 219.302	889	889	960	7.5	7.5	26 400	74 400	173FC122889	2-6P	899	1 183	1 132	6	6	3 360
870	1 145	705	685	940	6	6	21 500	63 700	174FC115685B	2-6P	898	1 117	1 085	5	5	1 980
	1 181.1	750	750	942	9.5	SP	24 600	68 600	174FC118750	3-2P	906	1 137	1 110	8	6	2 470
880	1 140	800	800	946	6	6	23 600	77 400	176FC114800	2-6P	908	1 112	1 078	5	5	2 210
	1 230	850	850	970	7.5	7.5	29 000	82 100	176FC123850A	2-6P	916	1 194	1 148	6	6	3 280
900	1 220	840	840	981	7.5	7.5	28 000	83 100	180FC122840	2-6P	936	1 184	1 146	6	6	2 980
	1 220	840	840	989	7.5	7.5	27 600	83 300	180FC122840A	2-6P	936	1 184	1 150	6	6	2 980
	1 230	895	870	990	7.5	7.5	26 400	77 500	180FC123870	2-6P	936	1 194	1 154	6	6	3 170
	1 230	895	870	990	7.5	7.5	26 400	77 500	180FC123870A	3-1P	936	1 194	1 154	6	6	3 160
	1 280	930	930	1 000	7.5	7.5	32 100	90 300	180FC128930	2-6P	936	1 244	1 190	6	6	4 050
	1 280	1 050	840	1 000	7.5	7.5	28 900	79 100	180FC128840	1-6P	936	1 244	1 190	6	6	3 890
920	1 280	815	800	1 010	7.5	7.5	28 700	79 900	184FC128800	3-2P	956	1 244	1 196	6	6	3 280
	1 280	865	850	1 015	7.5	7.5	27 600	77 500	4CR920	3-1P	956	1 244	1 195	6	6	3 460
	1 300	975	950	1 019	7.5	7.5	32 600	92 600	4CR920A	3-2P	956	1 264	1 209	6	6	4 180
950	1 300	965	950	1 036	7.5	7.5	32 600	96 900	4CR950A	3-1P	986	1 264	1 216	6	6	3 900
	1 330	950	950	1 053	9.5	9.5	33 300	97 200	190FC133950	2-6P	994	1 286	1 241	8	8	4 330
1 000	1 360	1 025	1 000	1 092	7.5	7.5	36 100	111 000	200FC136100	2-6P	1 036	1 324	1 276	6	6	4 480

Design 3-2P

[[]Notes] 1) SP indicates the specially chamfered form.

²⁾ r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r.

 $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm 1}$.

d 1 200 ~ 1 480 mm

Design 2-1P	Design 2-2	Design 2-2P

Design 2-3	Design 2-4

		-	dimension)	ons				ad ratings (N)	Bearing No.	Design		Mounti	ng dimens (mm)	ions		(Refer.)
d	D	В	С	$F_{ m w}$	<i>r</i> min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	2011.11.18.1101	2 oo ig.i	$d_{ m a}$ min.	max.	$D_{ m a}$ min.	$r_{ m a}^{\ 1)}$ max.	$r_{ m b}^{\ 1)}$ max.	(kg)
1 200	1 509.85	1 027.5	1 005	1 278	7.5	7.5	36 600	131 000	240FC151101	2-6P	1 236	1 473	1 438	6	6	4 390
1 270	1 602	850	850	1 354	7.5	7.5	32 800	111 000	254FC160850	2-6P	1 306	1 566	1 524	6	6	4 200
1 300	1 655	890	880	1 391	7.5	7.5	36 000	121 000	260FC165880	2-6P	1 336	1 619	1 571	6	6	4 830
1 349.04	1 745	1 010	1 000	1 446	7.5	7.5	44 200	146 000	270FC175110	2-6P	1 386	1 709	1 651	6	6	6 450
1 480	1 849.74	1 100	1 100	1 574	7.5	7.5	47 500	174 000	296FC185110	2-6P	1 516	1 813	1 764	6	6	7 170

[Note] 1) r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

d 151.5 ~ 855 mm

L	esi	ıgı	1 2	٦,

		Boundar	y dimer	nsions				ad ratings	Bearing No.	Design		Mount	ing dimer	isions		Mass
d	d_1	D	B	F_{w}	$r^{1)}$ min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	200111191101	2 co.g	$d_{ m a}$ min.	max.) a min.	$r_{ m a}^{\ 2)}$ max.	$r_{ m b}^{2)}$ max.	(kg)
151.5	165.5	230	168	180	2	2	1 040	2 210	32FC23170AK	1-1	176	212	220	2	2	24
181.5	195.5	260	168	209	1.1	1.1	1 120	2 530	314023A	1-1	203	241	253	1	1	27.7
320.833	350	490	350	385	SP	2	4 720	11 100	70FC49350WK	1-2	360	457	480	2	2	226
356.666	389.999	550	400	431.902	2	2	6 010	14 700	71FC55400BK	1-4	400	511	540	2	2	336
358.83	388.83	520	360	422	5	3	4 270	10 900	467412	2-3	407.8	486	501	4	2.5	243
412.5	450	630	450	500	4	4	6 820	16 600	90FC63450KW	1-2	468	590	612	3	3	490
551.667	600	830	580	647	SP	3	12 300	32 200	120FC83580K	2-2	617	763	807	4	2.5	1 060
640.833	700	1 000	710	770	4	4	18 900	47 400	140FC100710K	1-3P	720	930	980	3	3	1 790
650.833	710	1 020	710	785	4	4	19 300	49 100	142FC102710K	1-3P	730	945	1 000	3	3	2 140
855	880	1 180	750	946	9.5	7.5	23 300	66 100	176FC118750AK	1-3P	911	1 106	1 145	8	6	2 480

[[]Notes] 1) SP indicates the specially chamfered form.

2) $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm 1}$.

Wide series cylindrical roller bearings

- This type has high radial load capacity, and so, is suited to heavy duty applications or where shock loading is expected.
- Outer ring is available either with or without ribs, either of which is provided with two lubrication holes.

Some bearings have four lubrication holes.

■ T99 series ······ For line shaft

- This is a type equivalent to the above bearing except for extended inner ring provided with a key way.
- Applicable to such applications where large axial movement of the inner ring is involved, and mainly used for line shafts of rolling mill table rollers.

Radial internal clearance Equivalent radial load	(Refer to Table 4-4 on page 47) Dynamic equivalent radial load $\cdots P_r = F_r$ Static equivalent radial load $\cdots P_r = F_r$
Tolerances	Consult with JTEKT, as bearings are manufactured at special tolerance corresponding to each application of bearing. Tolerances generally correspond to class 0 or class 6 specified in JIS B 1514 (See Table 2-2 given on page 14).

d 50 ~ (150) mm

Design 5

	Decign C Decign C							J -		Boolgii i	1	Boolgilo							
		Во	-	dimensionm)	ons			Basic loa (k)		Bearing No.	De-	Lubrication hole	Key	way dimension (mm)	ons	Mount	ing dime (mm)	nsions	Mass
d	D	В	С	$F_{ m w}$	E_{w}	r min.	r_1 min.	C_{r}	C_{0r}	3	sign	n-фm (qty-mm)	$K_{ m w}$	K_{D}	$r_{\rm k}$	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
50	90	44.450	_	60.325	_	2.0	2.0	118	167	W99210NU	1	2-8		_	_	58	82	1	1.17
55	100	46.025	_	66.635	89.635	2.0	2.5	129	199	W99211	2	2-8	_	_	_	64	92	1.5	1.64
60	110	49.200	_	73.025	_	2.4	2.4	173	237	W99212NU	1	2-8	_	_	_	69	101	1.5	2.02
70	125	60.325	_	84.138	109.538	2.8	2.8	214	381	W99214	2	2-9.5		_	_	80	115	1.5	3.19
75	130	66.675	_	88.881	114.281	2.8	2.8	231	428	W99215	2	2-9.5		_	_	85	120	1.5	3.69
80	140	66.675	_	95.250	_	3.2	3.2	278	437	W99216NU	1	2-11.1	_	_	_	91	129	2	4.29
100	180 180	58.740 82.550	_	120 120.650	_	4 4	4 4	340 454	483 701	99220NU W99220NU	1	2-14 2-14		_	_	112 112	168 168	2.5 2.5	6.41 9.37
101.600	180	110	58.740	120	_	4	3	340	483	T99220NU-1	4	2-14	20	10	1.5	113	167	2	7.59
110	200 200 200	65.088 88.900 177.800	 	133.500 132.500 133.350	 177.800	R2.1 4 4	R2.1 4 4	382 531 841	579 802 1 750	99222NU W99222NU D99222	1 1 3	2-14 2-14 2-14	 	_ _ _	_ _ _	122 123 123	188 187 187	2 2.5 2.5	9.07 11.9 24.6
114.300	200	111.125	88.900	133.350	_	4	3	531	803	TW99222NU	4	2-14	28.97	9.53	2	126	187	2	11.9
125.413	230	117.475	79.375	153.988	_	4.8	3	560	838	T99226NU	4	2-14	25.8	9.53	2	137	215	2	16.4
130	230 230	79.375 107.950	_ _	153.988 153.988	_	4.8 4.8	4 4	560 706	838 1 130	99226NU W99226NU	1	2-14 2-14	_ _	_	_	143 143	215 215	2.5 2.5	13.9 18.9
138.113	250	130.175	120.650	168.275	_	5.6	3	907	1 540	TXW99228NU	4	2-14	35.32	9.5	2	150	233	2	26.0
140	250 250 250 250	82.550 82.550 120.650 120.650	_ _ _ _	168.275	222.251 — 222.251	5.6 5.6 5.6 5.6	5.6 5.6 5.6 5.6	632 614 907 890	968 1 100 1 540 1 770	99228NU 99228 W99228NU W99228	1 2 1 2	2-14.3 2-14.3 2-14 2-14	_ _ _ _	_ _ _ _	_ _ _ _	157 157 157 157	233 233 233 233	3 3 3	17.2 17.2 25.2 25.2
150	270	88.900	_	179.388	_	5.6	5.6	681	1 000	99230NU	1	2-16	_	_		167	253	3	21.5

d (150) ~ 200 mm

Design 5

		Во		dimensio	ons			Basic loa (ki		Bearing No.	De-	Lubrication hole	Key	way dimensio	ons	Mount	ing dime (mm)	nsions	Mass
d	D	В	С	$F_{ m w}$	E_{w}	r min.	r_1 min.	C_{r}	C_{0r}	200	sign	n-φm (qty⋅mm)	$K_{ m w}$	K_{D}	$r_{\rm k}$	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
150	270 270	120.650 120.650	_	179.388 179.388	 239.714	5.6 5.6	5.6 5.6	860 861	1 350 1 600	W99230NU W99230	1 2	2-16 2-16	_	_ _	_	167 167	253 253	3 3	29.6 29.6
150.813	270	136.525	88.900	179.388	_	5.6	4.06	681	1 000	T99230NU	4	2-16	35.32	11.51	3	164	253	2.5	23.5
160	290 290	123.825 247.650	_	193.675 193.675		6.4 6.4	6.4 6.4	1 060 1 750	2 060 3 960	W99232 D99232	2	2-16 2-16	_	_	_	178 178	272 272	4 4	35.3 70.6
163.513	290	139.700	123.825	193.675	257.175	6.4	4	1 060	2 060	TW99232	5	2-16	38.497	11.509	2	177	272	2.5	35.6
180	320	149.225	_	215.106	_	6.35	6.35	1 280	2 160	W99236NU	1	2-17.5	_	_	_	198	302	4	50.9
200	340	174.625	_	234.950	_	6.4	6.4	1 670	3 120	SW99240NU	1	4-17.5	_	_	_	218	322	4	64.9

Full complement cylindrical roller bearings for crane sheaves

Koyo®

- Since full complement type cylindrical roller bearings can incorporate more rollers than bearings with cage, the load rating can be increased.
- Bearings on the fixed side is capable of withstanding radial load and axial load in both directions.
- The shielded bearing is specially designed for crane sheaves;
- o Prelubricated with high quality grease.
- O Shield plates are located. (The rubber seal can be employed according to the operating conditions.)
- The bearing surfaces are coated with phosphate to prevent rusting.

Bowndary dimensions	As specified in J	IIS B 1512.											
Tolerances	As specified in J	IIS B 1514, class	s 0 or 6. (refer to Ta	able 2-2 on page	e 14.)								
Recommended fits and radial internal clearance	■ Fits	and clearance o	ble 3-3 on pages 3 f full complement to leaves with the rota	ype cylindrical ro									
		Condition		Shaft tolerance class	Housing bore tolerance class								
	Rotating outer ring load Normal or heavy load g 6 or h 6 Heavy load on thin section housing												
	Refer to Table 4-4 on page 47. As for the nominal bore dia. up to 140 mm shielded type (DC5000 series), the corresponding CN clearance are shown below.												
	Nominal bore	e dia. d (mm)	CN c	learance (μm)									
	over	up to	min.	max	X.								
	30 -	- 40	35	70	0								
	40 -	- 50	40	7:	5								
	50 -	- 65	45	90	0								
	65 -	- 80	55	10	5								
	80 -	- 100	65	11!	5								
	100 -	- 120	80	120	0								
	120 -	- 140	90	130	0								
Allowable axial load	The above fixed side bearings whose inner and outer rings have ribs can accommodate a certain magnitude of axial load. As for the equation to calculate allowable axial load in this case, refer to page 119.												
Equivalent radial load	Dynamic equiv	alent radial loa	$\mathbf{d} \cdot \cdots \cdot P_{\mathbf{r}} = F_{\mathbf{r}}$										
	Static equivale	nt radial load ···	$P_{0r} = F_r$										

Double-row, open type d 50 ~ (200) mm

	Boundary dimensions (mm)							ad ratings	Bearin	ıg No.	Lubri	cation (mm)	holes	Mounti	ng dimei (mm)	nsions	Mass
d	D	В	B_1	B_2	r min.	(mm)	$C_{ m r}$	$C_{0\mathrm{r}}$	Fixed side	Free side	P	n qty	d_0	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
50	72	22	32	42	0.6	1	49.1	82.9	DC4910AVW	DC4910VW	11	4	2	55	67	0.6	0.30
60	85	25	37	49	1	1	72.7	136	DC4912AVW	DC4912VW	12.5	4	2	66	79	1	0.46
70	100	30	44	57	1	1	105	193	DC4914AVW	DC4914VW	15	4	2	76	94	1	0.78
80	110	30	44	57	1	1	114	218	DC4916AVW	DC4916VW	15	4	2	86	104	1	0.88
90	125	35	52	68	1.1	1.5	150	301	DC4918AVW	DC4918VW	17.5	4	2.5	97	118	1	1.35
100	140	40	59	78	1.1	2	194	400	DC4920AVW	DC4920VW	20	4	2.5	107	133	1	1.95
110	150	40	59	78	1.1	2	202	431	DC4922AVW	DC4922VW	20	4	2.5	117	143	1	2.15
120	165	45	66	87	1.1	3	226	479	DC4924AVW	DC4924VW	22.5	4	3	127	158	1	2.95
130	180	50	73	96	1.5	4	276	560	DC4926AVW	DC4926VW	25	4	3	138.5	171.5	1.5	3.95
140	190	50	73	96	1.5	4	284	589	DC4928AVW	DC4928VW	25	4	3	148.5	181.5	1.5	4.20
150	190 210	40 60	 88	 116	1.1 2	2 4	234 406	575 842	DC4830AVW DC4930AVW	DC4830VW DC4930VW	20 30	4 6	3 4	157 160	183 200	1 2	2.90 6.65
160	200 220	40 60	 88	116	1.1 2	2 4	242 428	616 895	DC4832AVW DC4932AVW	DC4832VW DC4932VW	20 30	4 6	3 4	167 170	193 210	1 2	3.05 7.00
170	215 230	45 60	 88	 116	1.1 2	3 4	269 440	655 944	DC4834AVW DC4934AVW	DC4834VW DC4934VW	22.5 30	4 6	3 4	177 180	208 220	1 2	4.10 7.35
180	225 250	45 69	101	133	1.1 2	3 4	276 547	690 1 140	DC4836AVW DC4936AVW	DC4836VW DC4936VW	22.5 34.5	4 6	4 4	187 190	218 240	1 2	4.30 10.7
190	240 260	50 69	101	133	1.5 2	4	327 555	782 1 200	DC4838AVW DC4938AVW	DC4838VW DC4938VW	25 34.5	4 6	4 5	198.5 200	231.5 250	1.5 2	5.65 11.2
200	250	50	_	_	1.5	4	337	826	DC4840AVW	DC4840VW	25	4	4	208.5	241.5	1.5	5.90

[Note] 1) Effective movement of the bearing on the free side in an axial direction.

Double-row, open type *d* (200) ~ 440 mm

	Boundary dimensions (mm)					S 1)		ad ratings kN)	Bearin	ıg No.	Lubri	cation (mm)	holes	Mounti	ng dime (mm)	nsions	Mass
d	D	В	B_1	B_2	r min.	(mm)	C_{r}	$C_{0\mathrm{r}}$	Fixed side	Free side	P	n qty	d_0	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
200	280	80	116	152	2.1	5	667	1 500	DC4940AVW	DC4940VW	40	6	6	212	268	2	15.7
220	270 300	50 80	116	 152	1.5 2.1	4 5	355 707	971 1 600	DC4844AVW DC4944AVW	DC4844VW DC4944VW	25 40	6 6	4 6	228.5 232	261.5 288	1.5 2	6.40 17.1
240	300 320	60 80	 116	 152	2 2.1	4 5	509 735	1 330 1 720	DC4848AVW DC4948AVW	DC4848VW DC4948VW	30 40	6 6	5 6	250 252	290 308	2	10.2 18.4
260	320 360	60 100	 146	 192	2 2.1	4 6	532 1 070	1 450 2 520	DC4852AVW DC4952AVW	DC4852VW DC4952VW	30 50	6 8	5 6	270 272	310 348	2 2	11.0 32.0
280	350 380	69 100	 146	 192	2 2.1	4 6	663 1 130	1 720 2 700	DC4856AVW DC4956AVW	DC4856VW DC4956VW	34.5 50	6 8	5 6	290 292	340 368	2 2	16.0 33.9
300	380 420	80 118	 174	 230	2.1 3	6 6	802 1 560	2 160 3 710	DC4860AVW DC4960AVW	DC4860VW DC4960VW	40 59	8 8	6 8	312 314	368 406	2 2.5	23.0 53.0
320	400 440	80 118	 174	 230	2.1 3	6 6	832 1 620	2 310 3 940	DC4864AVW DC4964AVW	DC4864VW DC4964VW	40 59	8 8	6 8	332 334	388 426	2 2.5	24.3 56.0
340	420 460	80 118	 174	230	2.1 3	6 6	853 1 660	2 430 4 150	DC4868AVW DC4968AVW	DC4868VW DC4968VW	40 59	8 8	6 8	352 354	408 446	2 2.5	25.6 59.0
360	440 480	80 118	174	230	2.1 3	6 6	880 1 700	2 580 4 390	DC4872AVW DC4972AVW	DC4872VW DC4972VW	40 59	8 8	6 8	372 374	428 466	2 2.5	27.0 62.0
380	480 520	100 140	 206	 272	2.1 4	6 7	1 310 2 290	3 570 5 600	DC4876AVW DC4976AVW	DC4876VW DC4976VW	50 70	8 8	6 8	392 398	468 502	2	45.3 92.3
400	540	140	206	272	4	7	2 380	5 990	DC4980AVW	DC4980VW	70	8	8	418	522	3	96.4
420	560	140	206	272	4	7	2 440	6 270	DC4984AVW	DC4984VW	70	8	8	438	542	3	101
440	600	160	236	312	4	7	2 970	7 390	DC4988AVW	DC4988VW	80	8	8	458	582	3	139

[Note] 1) Effective movement of the bearing on the free side in an axial direction.

Double-row, shielded type

d 40 ~ 150 mm

	Во	undary d		ns		Basic loa		Bearir	ıg No.	Danieus	Locatin		ng specifi	cations	Mounti	ng dime	ensions	(Refer.)
d	D	В	C	t	r min.	C_{r}	C_{0r}	Without locating snap rings	With locating snap rings	Design	$C_1^{(1)}$	S	E	f	$d_{ m a}$ min.	D_{x} min.	$C_2^{(2)}$	(kg)
40	68	38	37	0.9	0.6	87.8	125	DC5008N	DC5008NR	1	28	4.5	71.8	2	46	80	28	0.55
45	75	40	39	0.9	0.6	95.1	144	DC5009N	DC5009NR	1	30	4.5	78.8	2	51	87	30	0.70
50	80	40	39	0.9	0.6	99.7	158	DC5010N	DC5010NR	1	30	4.5	83.8	2	56	92	30	0.75
55	90	46	45	1.2	0.6	118	193	DC5011N	DC5011NR	1	34	5.5	94.8	2.5	63	104	34	1.19
60	95	46	45	1.2	0.6	123	208	DC5012N	DC5012NR	1	34	5.5	99.8	2.5	68	109	34	1.27
65	100	46	45	1.2	0.6	128	224	DC5013N	DC5013NR	1	34	5.5	104.8	2.5	73	114	34	1.30
70	110	54	53	1.2	0.6	170	285	DC5014N	DC5014NR	1	42	5.5	114.5	2.5	78	124	42	1.94
75	115	54	53	1.2	0.6	178	307	DC5015N	DC5015NR	1	42	5.5	119.5	2.5	83	129	42	2.11
80	125	60	59	1.2	0.6	250	429	DC5016N	DC5016NR	1	48	5.5	129.5	2.5	88	146	48	2.65
85	130	60	59	1.2	0.6	255	446	DC5017N	DC5017NR	1	48	5.5	134.5	2.5	93	155	48	2.80
90	140	67	66	1.4	0.6	303	541	DC5018N	DC5018NR	1	54	6	145.4	2.5	100	165	54	3.70
95	145	67	66	1.4	0.6	310	562	DC5019N	DC5019NR	1	54	6	150.4	2.5	105	175	54	3.90
100	150	67	66	1.4	0.6	316	584	DC5020N	DC5020NR	1	54	6	155.4	2.5	110	180	54	4.05
110	170	80	79	1.7	1	382	697	DC5022N	DC5022NR	1	65	7	175.4	2.5	122	200	65	6.50
120	180	80	79	1.7	1	398	750	DC5024N	DC5024NR	1	65	7	188.4	3	132	210	65	6.95
130	200	95	94	1.7	1	534	1 000	DC5026N	DC5026NR	1	77	8.5	208.4	3	142	230	77	10.5
140	210	95	94	1.7	1	540	1 070	DC5028N	DC5028NR	1	77	8.5	218.4	3	152	245	77	11.0
150	225	100	99	2	1	682	1 400	DC5030N	DC5030NR	2	81	9	233	3	178.5	244	81	13.9

[[]Notes] 1) Dimensional tolerance of C_1 is +0.4/0 when bore diameter is not more than 170 mm, while +0.6/0 when bore diameter is over 170 mm.

²⁾ Dimensional tolerance of C_2 is -0.1/-0.5 when bore diameter is not more than 170 mm, while -0.1/-0.7 when bore diameter is over 170 mm.

Double-row, shielded type

d 160 ~ 440 mm

	Во	undary o	limensio	ns			ad ratings	Bearir	ıg No.	Design	Locatii		ing specif	ications	Mounti	ng dime	ensions	(Refer.)
d	D	В	C	t	r min.	C_{r}	$C_{0\mathrm{r}}$	Without locating snap rings	With locating snap rings	Design	$C_1^{(1)}$	S	Ε	f	d_{a} min.	D_{x} min.	$C_2^{(2)}$	(kg)
160	240	109	108	2	1.1	786	1 640	DC5032N	DC5032NR	2	89	9.5	248	3	190	259	89	17.2
170	260	122	121	2	1.1	977	2 020	DC5034N	DC5034NR	2	99	11	270	4	204	286	99	23.1
180	280	136	135	2	1.1	1 150	2 440	DC5036N	DC5036NR	2	110	12.5	290	4	217.5	306	110	30.8
190	290	136	135	2	1.1	1 180	2 530	DC5038N	DC5038NR	2	110	12.5	300	4	225	316	110	32.4
200	310	150	149	2	1.1	1 390	2 980	DC5040N	DC5040NR	2	120	14.5	320	4	240	336	120	41.7
220	340	160	159	2.5	1.1	1 620	3 590	DC5044N	DC5044NR	2	130	14.5	356	6	266.5	380	130	53.5
240	360	160	159	2.5	1.1	1 690	3 850	DC5048N	DC5048NR	2	130	14.5	376	6	284.5	400	130	57.3
260	400	190	189	3	1.5	2 230	4 980	DC5052N	DC5052NR	2	154	17.5	416	7	312.5	444	154	87.2
280	420	190	189	3	1.5	2 330	5 350	DC5056N	DC5056NR	2	154	17.5	436	7	334.5	464	154	93.0
300	460	218	216	3	1.5	2 860	6 610	DC5060	_	3	_	_	_	_	361	_	_	134
320	480	218	216	3	1.5	2 950	6 930	DC5064	_	3	_	_	_	_	378.5	_	_	140
340	520	243	241	3.5	2	3 590	8 420	DC5068	_	3	_	_	_	_	413	_	_	189
360	540	243	241	3.5	2	3 660	8 720	DC5072	_	3	_	_	_	_	427	_	_	197
380	560	243	241	3.5	2	3 730	9 020	DC5076	_	3	_	_	_	_	441	_	_	207
400	600	272	270	3.5	2	4 510	11 000	DC5080	_	3	_	_	_	_	475.5	_	_	281
420	620	272	270	3.5	2	4 650	11 400	DC5084	_	3	_	_	_	_	496	_	_	290
440	650	280	278	4.5	3	4 940	12 200	DC5088	_	3	_	_	_	_	521	_	_	330

[[]Notes] 1) Dimensional tolerance of C_1 is +0.4/0 when bore diameter is not more than 170 mm, while +0.6/0 when bore diameter is over 170 mm.

²⁾ Dimensional tolerance of C_2 is -0.1/-0.5 when bore diameter is not more than 170 mm, while -0.1/-0.7 when bore diameter is over 170 mm.

Tapered roller bearings

Koyo

■ Single-row (page 192)

- Able to carry radial and axial load in one direction simultaneously. Combined radial and axial load can be also accommodated. Suitable for heavy load and impact load.
- The larger the contact angle (α) is, the greater the bearing resistance to axial load.
 {Steep angle type ··· α ≥ 25° (constant e ≥ 0.67)}
- Koyo tapered roller bearings whose bearing numbers are suffixed by "J" are precision ground in accordance with the ISO 355 (Sub-unit, Metric Series) specifying the outer ring width and small inside diameter as well as the contact angle, so that outer rings and inner ring assembly (inner ring, rollers and cage assembly) of these bearings are internationally interchangeable.

ISO sub-unit specifications

[Note] When supplementary code "J" is added as a prefix (not a suffix) to bearing numbers (e.g. JHM720249/ JHM720210), the bearings are not designed according to ISO 355.

Such bearings are called "J series metric tapered roller bearings," and are produced according to special tolerances.

■ Double-row (Face to face)

- The TDI type bearing is made up of two single-row outer rings and one double inner ring, and is generally provided with an outer ring spacer.
- The bearing with outer ring spacer is handy for mounting, as its end play has been pre-adjusted for each application.
- The spacer is provided with an lubrication groove and several lubrication holes.
- Used for roll neck of medium-duty rolling mills, speed reducers, etc.

- The TDIS type bearing is of the same construction as the TDI type, except that it has larger contact angle so that it can accommodate heavier axial load.
- Used for applications where the axial load is greater than the radial load or where only the axial load is applied.

The bearing with the key way on the inner ring is mainly used for rollling mill roll necks. The bearing may be also used with preload without using the outer ring spacer.

 The bearing having lubrication holes and O-rings on its outer ring is used for oil mist lubrication.

Example of key way

- Where the interference fit is necessary, and needs to be removed frequently, the use of TDIT type is convenient.
- It is also possible to mount the bearing on the shaft by using an adaptor sleeve.
- Used for roll neck of light or medium-duty rolling mills and roll neck of calendar mills.
- The use of a hydraulic unit will facilitate bearing mounting/dismounting.
- The roll neck taper needs to be matched to the bore diameter of bearing by using taper gauge, sign bar gauge, etc.

■ Double-row (Back to back)

- The TDO type bearing is made up of one double outer ring, two single-row inner rings and one inner ring spacer. The outer ring is provided with several lubrication holes.
- The inner ring spacer has been adjusted to provide an end play suitable to each application.
 It is also possible to freely adjust the end play for use by removing the inner ring spacer, however, it requires time and labor.
- Suitable to case where moment may act.
 Used for speed reducer, winding machine, etc.
- The steep angle type (TDOS type) having large contact angle has increased axial load capacity, and is widely used for worm shaft of medium, heavy duty applications, thrust bearing of reducers etc.

 The TNA type bearing has different assembled width tolerance from the TDO type, specially selected for the TNA type.

[Reference] Features of bearing with pin type cage -

- (1) Load rating can be increased. The pin type cage accommodates a larger number of rollers, thus making it possible to increase the load rating of bearing.
- (2) Reduced friction resistance
 Friction coefficient of pin type cage is
 reduced, as contact area of roller and cage
 is limited.
- (3) Easy mounting/dismounting
 The pin type cage is provided with a tap hole for lifting.

The use of tap hole will facilitate the work. Use ISO metric thread for lifting tap screw.

■ Four-row

- The four-row tapered roller bearing with cylindrical bore is designed to maximize the load capacity with minimum space, and is widely used for roll neck of lower, medium speed rolling mills.
- The bearing of this type is made up of one double outer ring, two single-row outer rings, two double inner rings and inner ring spacer/ outer ring spacer.
 - Since each component is not interchangeable, it is necessary to assemble each component as specified with care taken to the matching marks marked on the bearing.
- Since the internal clearance has been preadjusted, the bearing can be used with ease without any necessity of readjustment.
- Since the bearing needs to be removed frequently and is clearance-fitted to the roll neck, the inner ring spacer is hardened to avoid wear.

The lubrication grooves are provided on both sides of the inner ring spacer to allow the lubricant to be readily passed to the roll neck.

- The lubrication groove and lubrication holes are provided at the outside diameter of double outer ring and outer ring spacer.
- The bearing provided with lubrication holes and O-rings on the outer ring is used for oil mist lubrication.
- Sealed type four-row tapered roller bearings have oil seals on their side faces and in between inner rings, and O-rings on their outside surfaces to achieve the purposes below.
- Reduction in frequency of disassembly, washing, and reassembly
- Improvement in working environment of disassembly, washing, and reassembly
- Reduction in grease consumption
- Improvement in ambient surrounding rolling mills
- Design 2 shows the compact oil seal type to increase the load rating of a four-row tapered roller bearing. The intermediate seal in the Design 2 has advantages below.
- Compact
- Easy disassembly, washing, and reassembly

[Applicable tolerance for tapered roller bearings]

	Туре	of tapered roller bearings	Applicable tolerance*
	Metric series	32900JR, 32000JR, 33000JR, 33100JR 30200JR, 32200JR, 33200JR, 30300JR 31300JR, 32300JR	Class 0, class 6, class 6X, or class 5 of JIS B 1514 (Refer to Table 2-3 on page 18)
Single-row	Inch series	(56418/56650, HM125943/HM125910 etc.)	Class 4, class 2 or class 3 of ABMA 19 (Refer to Table 2-5 on page 22)
	Metric J series	(JHM720249/JHM720210 etc.)	Class PK, class PN or class PC (Refer to Table 2-6 on page 24)
	Metric series	45200, 45300, 46200(A), 46300(A) 46T30200JR, 46T32200JR, 46T30300JR, 46T32300JR 37200, 47200, 47300	Class 0 of BAS 1002 (Refer to Table 2-4 on page 21)
Double-row Four-row	Inch series	(LM377449D/LM377410, 67388/67322D) EE127094D/127138/127139D etc.	Class 4 of ABMA 19 (Refer to Table 2-5 on page 22)
	The others	45T, 46T, 47T, 2TR, 4TR	Special tolerances for required are used in many cases. Consult with JTEKT.

^{*} Consult with JTEKT if a higher tolerance class than that shown in this table is necessary.

Allowable misalignment		pered roller bearings: 0.000 9 rad Inment exceeds this angle size, JT ngs to order.)	. ,
Radial internal clearance	(refer to Tabl	e 4-5 on page 49) ······ Radial interi four-row ta	nal clearance of double-row and pered roller bearings
Standard cage	Pressed cage	e or pin type cage	
Equivalent radial load	Single-row	Dynamic equivalent radial load	$\left[\text{when } \frac{F_{\rm a}}{F_{\rm r}} \leq e \right] P_{\rm r} = F_{\rm r}$ $\left[\text{when } \frac{F_{\rm a}}{F_{\rm r}} > e \right] P_{\rm r} = 0.4F_{\rm r} + Y_1 F_{\rm a}$
		Static equivalent radial load	$\begin{split} P_{0\mathrm{r}} &= 0.5 F_{\mathrm{r}} + Y_0 F_{\mathrm{a}} \\ \text{when } P_{0\mathrm{r}} &< F_{\mathrm{r}}, P_{0\mathrm{r}} = F_{\mathrm{r}} \end{split}$
[Note]	Double-row	Dynamic equivalent radial load	$\left[\text{when } \frac{F_a}{F_r} \leq e \right] P_r = F_r + Y_2 F_a$ $\left[\text{when } \frac{F_a}{F_r} > e \right] P_r = 0.67 F_r + Y_3 F_a$
Refer to the bearing specification table for the values of axial load factors Y_1 , Y_2 , Y_3 and Y_0 and constant e .	four-row	Static equivalent radial load	$P_{0r} = F_r + Y_0 F_a$

Dynamic equivalent load calculation: when a pair of single-row tapered roller bearings is arranged face-to-face or back-to-back.

While radial loads $F_{\rm rA}$ and $F_{\rm rB}$ are applied to bearings A and B, axial load $K_{\rm a}$ externally acts in the directions shown in the figures below.

[Remark]

When radial load is applied to a single-row tapered roller bearing, axial load generated as an axial component of force acts on another bearing. The axial load can be obtained by the following equation.

$$F_{\rm a} = \frac{F_{\rm r}}{2Y_1}$$

Paired mounting	Loading condition	Bearing	Axial load	Dynamic equivalent load
Back-to-back arrangement A B	$F_{\rm rB}$ $F_{\rm rA}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a}$	$P_{\rm A} = XF_{\rm rA} + Y_{\rm A} \left[\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a} \right]$ $P_{\rm A} = F_{\rm rA}, \text{ where } P_{\rm A} < F_{\rm rA}$
F_{rA} F_{rB}	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a} \ge \frac{F_{\rm rA}}{2Y_{\rm A}}$	Bearing B	_	$P_{\rm B} = F_{ m rB}$
Face-to-face arrangement B A	F _{rB} F _{rA}	Bearing A	-	$P_{ m A} = F_{ m rA}$
F_{rB} F_{rA}	$\frac{F_{\text{rB}}}{2Y_{\text{B}}} + K_{\text{a}} < \frac{F_{\text{rA}}}{2Y_{\text{A}}}$	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left[\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a} \right]$ $P_{\rm B} = F_{\rm rB}$, where $P_{\rm B} < F_{\rm rB}$
Back-to-back arrangement A B	$\frac{F_{\rm rB}}{2Y_{\rm B}} \le \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	-	$P_{ m A} = F_{ m rA}$
F_{rA} F_{rB}	$2\gamma_{\rm B} \ge 2\gamma_{\rm A} + \Lambda_{\rm a}$	Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left[\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a} \right]$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} < F_{\rm rB}$
Face-to-face arrangement B A	$\frac{F_{\rm rB}}{2Y_{\rm B}} > \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left[\frac{F_{rB}}{2Y_{B}} - K_{a} \right]$ $P_{A} = F_{rA}, \text{ where } P_{A} < F_{rA}$
$K_{\rm a}$ $F_{\rm rB}$ $F_{\rm rA}$	$\frac{1}{2Y_{\rm B}} > \frac{1}{2Y_{\rm A}} + K_{\rm a}$	Bearing B	_	$P_{\rm B} = F_{ m rB}$

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

^{2.} Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. above table.

d 100 ~ (105) mm

			В	oundary dime	ensions					De-	Basic	load ratings	Load center			Mou		dimens	ions				Con- stant	Axial fact		(Refer.)
d mm	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25	.4 min. 1	r_1 min.	Bearing No. 1)	sign	C_{r}	` ′	(mm)	d_{a} min.	$d_{ m b}$ max.	D max.	,	D_{b}	$S_{ m a}$ min.	$S_{ m b}$ min.	r _a max. ı		e	<i>Y</i> ₁	Y_0	Mass (kg)
100	_	140 150	_	25 — 32 —	25 — 32 —	20 — 24 —	2	1.5 1.5	32920JR 32020JR	1 1	12 18	5 298	24.0 32.6	109 110	108 109	131 141	128 134	135 144	5 6	5 8	2	1.5	0.33 0.46	1.82 1.31	0.72	1.19 1.95
	_	150	_	39 —	39 —	32.5 —	2	1.5	33020JR	1	23	1 397	28.6	110	108	141	135	143	7	6.5	2	1.5	0.29	2.09	1.15	2.40
100.000	3.9370 3.9370	155.000 160.000		36.000 1.4173 41.000 1.6142		28.000 1.10 32.000 1.25			JM720249/JM720210 JHM720249/JHM720210	1	20 23		35.6 38.3	110 110	110 111	146 151	139 143	148 153	5.9 6.4	8 9	3.0 3.0			1.27 1.28		2.40 3.08
100	_ _ _	165 180 180	_ _ _	52 — 37 — 49 —	52 — 34 — 46 —	40 — 29 — 39 —	3	2 2.5 2.5	33120JR 30220JR 32220JR	1 1 1	32 25 34	8 338	40.1 36.8 42.1	112 114 114	111 116 114	155 168 168	142 157 154	159 168 171	8 5 5	12 8 10	2 2.5 2.5	2 2 2	0.41 0.42 0.42	1.48 1.43 1.43	0.79	4.29 3.83 5.21
	_	180	_	63 —	63 —	48 —	3	2.5	33220JR	1	43	1 680	45.7	114	112	168	151	172	10	15	2.5	2	0.40	1.48	0.82	6.92
100.000	3.9370	200.000	7.8740	52.761 2.0772	49.213 1.9375	34.925 1.37	3.6	3.2	98394X/98788	1	34	7 471	54.7	112	123	189	170	185	4.8	17.8	3.6	3.2	0.63	0.95	0.52	6.91
100	_	215	_	56.5 —	51 —	35 —	4	3	31320JR	1	37	3 459	67.7	118	120	201	183	202	6	17.5	3	2.5	0.83	0.73	0.40	8.72
100.012	3.9375	157.162	6.1875	36.512 1.4375	36.116 1.4219	26.195 1.03	13 3.6	3.2	52393/52618	1	18	0 288	36.0	113	115	145	142	150	5	10.3	3.6	3.2	0.47	1.26	0.69	2.43
101.600	4.0000 4.0000 4.0000	146.050 157.162 161.925	6.1875	21.433 0.8438 36.512 1.4375 36.513 1.4375	36.116 1.4219	16.670 0.65 26.195 1.03 26.195 1.03	13 3.6	3.2	L521945R/L521910 52400/52618 52400/52637	1 1 1	8 18 18		26.2 36.0 36.0	110 114 114	119 115 115	137 145 150	134 142 142	138 150 150	4 5 5	4.8 10.3 10.3	1.6 3.6 3.6	3.2	0.47	1.53 1.26 1.26	0.69	1.17 2.36 2.60
	4.0000 4.0000 4.0000	168.275 180.975 190.500	7.1250	41.275 1.6250 47.625 1.8750 57.150 2.2500	48.006 1.8900	30.162 1.18 38.100 1.50 46.038 1.81	00 3.6	3.2	687/672 780/772 HH221449/HH221410	1 1 1	22 28 44	8 438	38.6 39.5 42.5	114 114 123	115 120 119	156 169 179	146 156 168	156 165 178	4.7 4.2 5.9	11.1 9.5 11.1	3.6 3.6 7.9	3.2	0.47 0.39 0.33	1.28 1.56 1.79	0.86	3.37 5.01 6.93
	4.0000 4.0000 4.0000	200.000 212.725 212.725	8.3750	52.761 2.0772 66.675 2.6250 66.675 2.6250	66.675 2.6250	34.925 1.37 53.975 2.12 53.975 2.12	7.1	3.2	98400/98788 941/932 HH224335/HH224310	1 1 1	34 45 51	0 674	54.5 47.6 47.6	114 121 121	123 135 134	188 201 201	170 181 189	185 192 201	4	12.7	3.6 7.1 7.1	3.2	0.63 0.33 0.33	0.95 1.84 1.84	1.01	6.83 11.1 10.8
104.775	4.1250 4.1250 4.1250	180.975 180.975 190.500	7.1250	47.625 1.8750 47.625 1.8750 47.625 1.8750	48.006 1.8900	38.100 1.50 38.100 1.50 34.925 1.37	00 6.4	3.2	782/772 786/772 71412/71750	1 1 1	28 28 30	8 438	39.5 39.5 40.9	117 123 117	120 120 131	169 169 179	156 156 167	165 165 177	4.2 4.2 6.4	9.5 9.5 12.7	6.4	3.2	0.39 0.39 0.42	1.56 1.56 1.44	0.86	4.82 4.80 5.68
105	_	145	_	25 —	25 —	20 —	1.5	1.5	32921JR	1	12	8 224	25.1	114	113	136	133	140	5	5	1.5	1.5	0.34	1.75	0.96	1.23

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (105) ~ (114.300) mm

Design 1	Design 1
Doolgii i	Boolgii i

			В	ounda	ry dim	ensions	5						De-	Basic load		Load center			Мог	unting o	dimens	ions				Con- stant	Axial fact		(Refer.)
d mm	1/25.4	D mm	1/25.4	mm	T 1/25.4		3 1/25.4	mm		r min.	-	Bearing No. 1)	sign	C_{r}	$C_{0\mathrm{r}}$	(mm)	d_{a} min.	$d_{ m b}$ max.	D max.) _a min.	$D_{ m b}$ min.	$S_{\rm a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.		е	Y_1	Y_0	(kg)
105	_	160 160	_	35 43	_	35 43	_	26 34	_	2.5 2.5	2	32021JR 33021JR	1	215 267	344 461	34.5 30.9	117 117	116 116	150 150	143 145	154 153	6	9	2	2	0.44 0.28	1.35 2.12		2.45 3.08
	_	190	_	39	_	36	_	30	_	3	2.5	30221JR	1	288	380	39.0	119	122	178	165	178	6	9	2.5	2	0.42	1.43		4.49
	_	190 225	_	53 58	_	50 53	_	43 36	_ _	3	2.5 3	32221JR 31321JR	1	392 397	567 489	44.8 70.3	119 123	120 126	178 211	161 193	180 211	6 6	10 18	2.5 3	2 2.5	0.42 0.83	1.43 0.73		6.37 9.72
106.362	4.1875	165.100	6.5000	36.51	3 1.4375	36.51	3 1.4375	26.98	3 1.0625	3.6	3.2	56418/56650	1	184	300	38.5	119	120	153	148	157	5.5	9.5	3.6	3.2	0.50	1.21	0.66	2.65
107.950	4.2500 4.2500 4.2500	158.750 161.925 165.100	6.3750	34.92	20 0.9063 25 1.3750 3 1.4375	34.92	8 0.8440 5 1.3750 3 1.4375	26.98	5 0.6250 3 1.0625 3 1.0625	3.6	3.2	37425/37625 48190/48120 56425/56650	1 1 1	104 173 184	169 293 300	36.5 39.1 38.5	121 121 121	121 120 120	147 150 153	141 145 148	148 154 157	4.3 4.2 5.5	7.1 7.9 9.5	3.6 3.6 3.6	3.2	0.61 0.51 0.50	0.99 1.19 1.21	0.65	1.38 2.39 2.57
	4.2500 4.2500	190.500 212.725			25 1.8750 25 2.6250		2 1.9375 5 2.6250		5 1.3750 5 2.1250			71425/71750 HH224340/HH224310	1	303 513	483 699	40.9 47.6	121 129	131 134	179 201	167 189	177 201	6.4 7	12.7 12.7	3.6 7.9	-	0.42 0.33	1.44 1.84		5.48 10.2
109.987	4.3302 4.3302	159.987		34.92	25 1.3750 25 1.3750	34.92	5 1.3750 5 1.3750	26.98	3 1.0625 3 1.0625	3.6		LM522548/LM522510 LM522549/LM522510	1	184 184	319 319	32.9 32.9	131 123	121 121	148 148	146 146	153 153		7.9		3.2	0.40	1.50 1.50	0.82	2.30
110		150	_	25		25		20				32922JR	1	129	231	26.3	119	118	141	138	145	5	5	1.5			1.69		1.28
110.000	4.3307	165.000	6.4961	35.00	0 1.3780	35.00	0 1.3780	26.50	1.0433	3.0	2.5	JM822049/JM822010	1	195	325	38.1	121	121	155	148	157	4.8	8.5	3.0	2.5	0.50	1.21	0.66	2.44
110	_	170 170	_	38 47	_	38 47	_	29 37	_	2.5 2.5	2	32022JR 33022JR	1	248 287	395 502	36.1 33.4	122 122	122 123	160 160	152 152	163 161	7 7	9 10	2	2	0.43 0.29	1.39 2.09		3.12 3.81
110.000	4.3307	180.000	7.0866	47.00	0 1.8504	46.00	0 1.8110	38.00) 1.4961	3.0	2.5	JHM522649/JHM522610	1	306	487	40.6	121	125	170	160	171	6	9	3.0	2.5	0.41	1.48	0.81	4.57
110	_ _ _ _	180 200 200 240	- - -	56 41 56 54.5	- - -	56 38 53 50	_ _ _ _	43 32 46 42	_ _ _ _	2.5 3 3 4	2 2.5 2.5 3	33122JR 30222JR 32222JR 30322JR	1 1 1	369 324 438 481	634 434 640 590	44.5 40.8 46.7 46.3	122 124 124 128	121 129 126 141	170 188 188 226	155 174 170 206	174 188 190 222	9 6 6 8	13 9 10 12.5	2 2.5 2.5 3	2 2 2 2.5	0.42 0.42 0.42 0.35	1.43 1.43 1.43 1.74	0.79 0.79	5.52 5.33 7.45 11.4
114.300	4.5000 4.5000	180.975 190.500			25 1.3750 25 1.8750		0 1.2500 2 1.9375) 1.0000 5 1.3750			68450/68712 71450/71750	1	171 303	247 483	40.6 40.9	127 127	131 131	169 179	161 167	169 177	2.5 6.4	9.5 12.7	3.6 3.6		0.50 0.42	1.21 1.44		2.92 5.05

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (114.300) ~ (127.000) mm

Design ⁻

			Во	oundary dime	nsions					De-	Basic load ra	_	Load center			Моц	ınting o	dimens	ions				Con- stant		l load	(INCICI.)
d mm 1	/25.4	D mm	1/25.4	<i>T</i> mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/2		r_1 min.	Bearing No. 1)	sign			(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	L max.) _a min.	D_{b}	$S_{\rm a}$ min.	S_{b} min.	r_{a} max.		e	Y_1	Y ₀	Mass (kg)
	I.5000 I.5000	212.725		66.675 2.6250 53.975 2.1250	66.675 2.6250 49.428 1.9460				HH224346/HH224310 97450/97900	1		699 459	47.6 65.6	134 127	134 144	201 217	189 193	201 212	7 5	12.7 15.9	7.1 3.6	-	0.33		1.01 0.45	9.67 9.17
	1.5000	228.600	9.0000	53.975 2.1250	49.428 1.9460	38.100 1.5	3.6	3.2	HM926740/HM926710	1	430	651	67.9	127	148	217	200	218		15.9	3.6	3.2	0.74	0.81	0.45	10.0
114.976	1.5000	273.050 1		82.550 3.2500 66.675 2.6250	82.550 3.2500 66.675 2.6250	53.975 2.1 53.975 2.1				1		699	76.1 47.6	133	151	255	230 189	252		28.6	7.1				1.01	9.61
115.087		190.500		47.625 1.8750	49.212 1.9375					1		483	40.9	136	131	179	167	177		12.7					0.79	4.97
117.475	I.6250 I.6250	179.975 180.975		34.925 1.3750 34.925 1.3750	31.750 1.2500 31.750 1.2500				68462/68709 68462/68712	1		247 247	40.7 40.6	130 130	131 131	173 169	161 161	169 169	2.5 2.5		3.6 3.6				0.66 0.66	2.73
120	_	165 180 180	_ _ _	29 — 38 — 48 —	29 — 38 — 48 —	23 - 29 - 38 -	- 2.5		32924JR 32024JR 33024JR	1 1 1	258	298 427 540	29.4 38.8 36.2	129 132 132	128 131 132	156 170 170	152 161 160	160 173 171	6 7 6	6 9	1.5 2 2	1.5 2 2	0.35 0.46 0.31	1.31	0.95 0.72 1.08	1.77 3.34 4.16
	_ _ _	200 215 215	_ _ _	62 — 43.5 — 61.5 —	62 — 40 — 58 —	48 - 34 - 50 -	- 2.5 - 3		33124JR 30224JR 32224JR	1 1 1	462 347	785 473 691	47.8 44.2 51.6	132 134 134	133 140 136	190 203 203	172 187 181	192 203 204	9 6 7	14 9.5 11.5	2 2.5	2 2 2	0.40 0.44 0.44	1.51 1.38	0.83 0.76 0.76	7.73 6.36 9.04
120.000	1.7244	230.000	9.0551	53.975 2.1250	49.428 1.9460	38.100 1.5	3.6	3.2	97472X/97905X	1	325	459	65.6	133	144	218	193	212	5	15.9	3.6	3.2	0.74	0.81	0.45	8.91
120	-	260	-	68 —	62 —	42 -	- 4	3	31324JR	1	526	665	81.9	138	145	246	221	244	6	21	3	2.5	0.83	0.73	0.40	15.4
120.650	1.7500	234.950	9.2500	63.500 2.5000	63.500 2.5000	49.213 1.9	375 6.4	3.2	95475/95925	1	523	826	49.9	139	155	223	204	216	8	14.3	6.4	3.2	0.37	1.62	0.89	12.3
123.825		182.563		39.688 1.5625	38.100 1.5000					1		429	34.1	136	141	171	166	173		6.4					1.08	3.42
125.298		228.600		53.975 2.1250	49.428 1.9460					1		651	68.1	138	148	217	200	218		15.9					0.45	9.23
	5.0000	182.563 196.850 203.200	7.7500	39.688 1.5625 46.038 1.8125 46.038 1.8125	38.100 1.5000 46.038 1.8125 46.038 1.8125	38.100 1.5	3.6	3.2	48290/48220 67388/67322 67388/67320	1 1 1	311	429 561 561	34.1 39.7 39.7	140 140 140	141 148 148	171 185 191	166 180 180	173 188 188	3.8 5 5	6.4 7.9 7.9	3.6 3.6 3.6	3.2	0.31 0.34 0.34	1.74	1.08 0.96 0.96	3.24 5.05 5.64
5	5.0000	215.900	8.5000	47.625 1.8750	47.625 1.8750	34.925 1.3	750 3.6	3.2	74500/74850	1	322	549	49.7	140	156	204	193	204	5	12.7	3.6	3.2	0.49	1.23	0.68	6.83

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (127.000) ~ (139.700) mm

Design	1	-1

			В	oundary dim	ensions							De-	Basic load		Load			Мог	inting o		ions				Con- stant		l load tors	(Refer.)
d mm	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	T mm 1/25.4	<i>B</i> mm 1/2	25.4	C mm		<i>r</i> iin. i	-	Bearing No. 1)	sign	$C_{\rm r}$	C_{0r}	(mm)	d_{a} min.	d_{b} max.	E max.	`	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{\rm b}$	e	<i>Y</i> ₁	Y_0	Mass (kg)
	5.0000 5.0000	228.600 234.950		53.975 2.1250 63.500 2.5000			38.100 ¹ 49.213		3.6 6.4		HM926747/HM926710 95500/95925	1	430 523	651 826	68.1 49.9	140 145	148 155	217 223	200 204	218 216	7 8	15.9 14.3	3.6 6.4	3.2	0.74		0.45 0.89	9.10 11.7
	5.0000	254.000		77.788 3.0625			61.912				HH228349/HH228310	1	717	1 050	54.3	151	158	236	219	233	9	15.9	9.5	-	0.32		1.03	17.8
	5.0000	304.800	12.0000	88.900 3.5000	82.550 3.2	2500	57.150	2.2500	5.4	6.4	HH932132/HH932110	1	791	1 060	92.1	145	178	287	259	287	7	31.8	6.4	6.4	0.73	0.82	0.45	29.5
127.792	5.0312	228.600	9.0000	53.975 2.1250	49.428 1.9	9460	38.100	1.5000 ;	3.6	3.2	HM926749/HM926710	1	430	651	68.1	140	148	217	200	218	7	15.9	3.6	3.2	0.74	0.81	0.45	9.04
128.588	5.0625	206.375	8.1250	47.625 1.8750	47.625 1.8	3750	34.925	1.3750	3.2	3.2	799/792	1	326	548	45.7	140	146	195	183	194	6	12.7	3.2	3.2	0.46	1.31	0.72	5.82
130	_	180 200	_	32 — 45 —			25 34			1.5 2	32926JR 32026JR	1	200 340	368 563	31.4 42.9	140 142	141 144	171 190	165 178	174 192	6 8	7 11	2	1.5 2	0.34 0.43		0.97 0.76	2.42 5.04
	_	200	_	55 —	55 -	_	43	- :	2.5	2	33026JR	1	390	705	42.5	142	143	190	178	192	8	12	2	2	0.34	1.76	0.97	6.19
130.000	5.1181	206.375	8.1250	47.625 1.8750	47.625 1.8	3750	34.925	1.3750	3.6	3.2	797/792	1	326	548	45.7	143	146	195	183	194	6	12.7	3.6	3.2	0.46	1.31	0.72	5.71
130	_ _ _	230 230 280 280	_ _ _	43.75 — 67.75 — 63.75 —	64 -	_	34 54 49	_ 4 _ 4 _ 5	1 5	3 3 4	30226JR 32226JR 30326JR 31326JR	1 1 1	377 554 657 589	511 830 834 748	46.2 56.0 54.0 87.3	148 148 152 152	152 146 164 155	216 216 262 262	203 193 239 236	218 219 255 261	7 7 8	9.5 13.5 14.5 23	3 3 4	2.5 2.5 3	0.44 0.44 0.35 0.83	1.38 1.74	0.76 0.76 0.96 0.40	7.24 11.5 18.1 18.9
	5.2500 5.2500 5.2500 5.2500 5.2500		7.7500 8.5000	25.400 1.0000 39.688 1.5625 46.038 1.8125 47.625 1.8750 63.500 2.5000	26.195 1.0 39.688 1.5 46.038 1.8 47.625 1.8	0313 5625 3125 3750	20.638	0.8125 1.3125 1.5000 1.3750	1.6 3.6 7.9	1.6 3.2 3.2 3.2	L327249/L327210 48385/48320 67391/67322 74525/74850 95525/95925	1 1 1 1 1 1	141 236 311 322 523	278 472 561 549 826	29.1 35.9 39.7 49.7 49.9	142 146 155 146 158	145 150 148 156 155	168 179 185 204 223	164 174 180 193 204	169 181 188 204 216	5.4 4.7 5 5	4.8 6.4 7.9 12.7 14.3	1.6 3.6 7.9 3.6 9.5	1.6 3.2 3.2 3.2 3.2	0.35 0.32 0.34 0.49	1.72 1.87 1.74 1.23	0.95 1.03 0.96 0.68 0.89	1.69 3.58 4.55 6.35 11.0
136.525	5.3750 5.3750	190.500 228.600		39.688 1.5625 57.150 2.2500			33.338 44.450				48393/48320 896/892	1	236 439	472 730	35.9 50.6	149 149	150 158	179 217	174 201	181 214	4.7 6	6.4 12.7	3.6 3.6		0.32 0.42		1.03 0.78	3.37 8.98
	5.5000 5.5000 5.5000	215.900 215.900 228.600	8.5000	47.625 1.8750 47.625 1.8750 57.150 2.2500	47.625 1.8	3750	34.925	1.3750	6.4	3.2	74550/74850 74550A/74850 898/892	1 1 1	322 322 439	549 549 730	49.7 49.7 50.6	152 158 152	156 156 158	204 204 217	193 193 201	204 204 214	5 5 6	12.7 12.7 12.7	3.6 6.4 3.6	3.2	0.49 0.49 0.42	1.23	0.68 0.68 0.78	5.84 5.82 8.68

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (139.700) ~ (150) mm

Design 1-P

			Во	oundary dime	nsions						De-	Basic load		Load center			Моц	unting o	dimens	ions				Con- stant		4	(Refer.)
d mm	1/25.4	<i>D</i> mm 1/	25.4	T mm 1/25.4	<i>B</i> mm 1/2	25.4	C mm 1/25.4		r_1 min.	Bearing No. 1)	sign	$C_{\rm r}$	C_{0r}	(mm)	d_{a} min.	$d_{ m b}$ max.	E max.	O _a min.	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	$r_{ m a}$ max. r	$r_{\rm b}$	e	<i>Y</i> ₁	Y_0	Mass (kg)
139.700	5.5000 5.5000	228.600 9. 236.538 9.		57.150 2.2500 57.150 2.2500	57.150 ^{2.25} 56.642 ^{2.23}					898A/892 HM231132/HM231110	1	439 499	730 832	50.6 45.2	158 152	158 168	217 225	201 213	214 222	6	12.7 12.7		3.2	0.42	1.43	0.78	8.66 10.1
	5.5000	254.000 10.	.0000	66.675 2.6250	66.675 2.6	6250	47.625 1.8750	7.1	3.2	99550/99100	1	549	913	55.0	159	174	242	223	236	8	19.1	7.1	3.2	0.41	1.47	0.81	14.1
	5.5000	295.275 11.	.6250	82.550 3.2500	87.313 3.43		57.150 2.2500				1	814	1 090	56.3	164	176	277	252	264	11	25.4	9.5			1.88		24.9
140	_	210	_ _ _	32 — 45 — 56 —	32 – 45 – 56 –	_	25 — 34 — 44 —	2 2.5 2.5	1.5 2 2	32928JR 32028JR 33028JR	1 1 1	206 346 406	390 585 758	33.6 45.6 45.6	150 152 152	150 153 152	181 200 200	174 187 186	184 202 202	6 8 7	7 11 12	2 2 2	1.5 2 2	0.36 0.46 0.36	1.67 1.31 1.67	0.72	2.57 5.28 6.61
140.000	5.5118		.4646	47.625 1.8750	47.625 1.83		34.925 1.3750			74551X/74846X	1	322	549	49.7	153	156	203	193	204	•				0.49		0.68	5.74
140	_	250 300	_	71.75 — 77 —	68 – 70 –		58 — 47 —	4 5	3 4	32228JR 31328JR	1	636 674	961 865	60.0 93.8	158 162	158 167	236 282	210 254	238 280	9	13.5 26		2.5	0.44		0.76 0.40	14.7 23.3
142.875	5.6250	193.675 7. 200.025 7.	.8750	28.575 1.1250 41.275 1.6250	28.575 1.13	625	23.020 0.9063 34.130 1.3437	3.6	3.3	48685/48620	1	187 246	375 491	33.7 38.4	152 156	158 157	185 188	179 182	185 190	5.5 4	5.6 7.1	3.6	3.3	0.37	1.78		2.41
	5.6250 5.6250	222.250 8. 241.300 9.		34.925 1.3750 57.150 2.2500	31.623 1.24 56.642 2.23		23.813 0.9375 44.450 1.7500			73562/73875 HM231136/HM231115	1	209 499	302 832	41.9 45.2	156 156	163 168	210 229	197 213	204 222	8	11.1 12.7	3.6 3.6		0.44	1.37		4.15 10.4
146.050	5.7500 5.7500 5.7500	193.675 7. 193.675 7. 236.538 9.	.6250	28.575 1.1250 28.575 1.1250 57.150 2.2500	28.575 1.12 28.575 1.12 56.642 2.23	250	23.020 0.9063 23.020 0.9063 44.450 1.7500	4.8	1.6	36691/36620	1 1 1	187 187 499	375 375 832	33.7 33.7 45.2	155 161 159	158 158 168	185 185 225	179 179 213	185 185 222	5.5 5.5 8	5.6 5.6 12.7	4.8	1.6 1.6 3.2		1.63 1.63 1.88	0.90	2.25 2.23 9.45
	5.7500 5.7500 5.7500	241.300 9. 268.288 10. 304.800 12.	.5625	57.150 2.2500 74.613 2.9375 88.900 3.5000	56.642 2.23 74.613 2.93 82.550 3.23	9375	44.450 1.7500 57.150 2.2500 57.150 2.2500	6.4	6.4	82576/82950 EE107057/107105 HH932145/HH932110	1 1 1	419 658 791	728 1 050 1 060	53.4 59.4 92.1	159 164 164	169 178 178	229 250 287	211 234 259	224 249 287	7 8 7	12.7 17.5 31.8		-	0.39	1.36 1.55 0.82	0.85	10.0 17.9 26.9
149.225	5.8750 5.8750 5.8750	236.538 9. 236.538 9. 236.538 9.	.3125	57.150 2.2500 57.150 2.2500 57.150 2.2500	56.642 2.23 56.642 2.23 56.642 2.23	2300	44.450 1.7500 44.450 1.7500 44.450 1.7500	6.4	3.2		1 1 1	419 499 499	728 832 832	53.4 45.2 45.2	162 167 162	169 168 168	225 225 225	211 213 213	224 222 222	7 8 8	12.7 12.7 12.7		3.2	0.44 0.32 0.32	1.36 1.88 1.88		9.07 9.10 9.13
150	_ _	210 225	_	38 — 48 —	38 – 48 –		30 — 36 —	2.5	2 2.5	32930JR 32030JR	1	286 391	536 668	36.1 48.8	162 164	163 164	200 213	194 200	202 216	7 8	8 12	2 2.5	2 2	0.33 0.46	1.83 1.31	1.01 0.72	3.96 6.41

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (150) ~ (168.275) mm

Design	1-F

			В	oundary	dimen	sions							De-	Basic load		Load center			Mou	ınting o		ions				Con- stant		l load tors	(Refer.)
d mm	1/25.4	D mm	1/25.4	T mm	1/25.4	B mm	1/25.4	mm	C 1/25.4		r_1	Bearing No. 1)	sign	$C_{ m r}$	C_{0r}	(mm)	$d_{ m a}$ min.	d_{b} max.	D max.) _a min.	D_{b} min.	$S_{\rm a}$	S _b	r _a		е	Y_1	Y_0	(kg)
150	_	225	_	59	_	59	_	46	_	3	2.5	33030JR	1	459	869	47.8	164	164	213	200	217	8	13	2.5	2	0.36	1.65		8.09
	_	270 320	_	77 82	_	73 75	_	60 50	_	4 5	3 4	32230JR 31330JR	1	704 763	1 070 989	65.2 100.1	168 172	170 179	256 302	226 272	254 301	8 9	17 27	3 4	2.5	0.44 0.83	1.38 0.73		18.2 28.0
152.400	6.0000	254.000		66.675		66.675			25 1.8750			99600/99100	1	549	913	55.0	172	174	242	223	236	8			3.2		1.47		12.6
	6.0000	254.000 268.288		66.675 2 74.613 2		71.438 74.613			50 2.2500 50 2.2500		3.2 6.4	99603/99100 EE107060/107105	1	549 658	913 1 050	55.0 59.4	161 171	174 178	242 250	223 234	236 249	8	19.1 17.5			0.41 0.39	1.47 1.55		12.8 17.1
	6.0000 6.0000	269.799 307.975		74.612 2 88.900 3		74.613 93.663			50 2.2500 113 2.4375			EE107060/107107 EE450601/451212	1	658 795	1 050 1 150	59.4 61.4	171 177	178 193	252 289	234 261	249 274	8 7	17.5 27		6.4 6.7	0.39 0.33	1.55 1.84	0.85 1.01	17.4 28.1
	6.0000	307.975 317.500		88.900 3 88.900 3		93.663 93.663			75 2.6250 75 2.6250			HH234048/HH234010 HH234048/HH234018	1	1 020 1 020	1 450 1 450	63.3 63.3	177 177	191 191	289 299	270 270	285 285	8	22.2 22.2	9.5 9.5		0.33	1.84	1.01 1.01	29.4 31.9
155.575	6.1250	330.200	13.0000	85.725	3.3750	79.375	3.1250	53.9	75 2.1250	6.4	6.4	H936340/H936310	1	868	1 210	103.8	174	196	312	281	311	6	31.8	6.4	6.4	0.81	0.74	0.41	31.4
160	_	220 240	_	38 51	_	38 51	_	30 38	_	2.5	2 2.5	32932JR 32032JR	1	295 440	568 758	38.4 52.1	172 174	173 175	210 228	204 213	212 231	7	8 13		2 2	0.35 0.46	1.73	0.95 0.72	4.19 7.75
	_	290	_	84	_	80	_	67	_	4	3	32232JR	1	795	1 210	70.3	178	182	276	242			17		2.5	0.44	1.38		23.2
160.325	6.3120	288.925	11.3750	63.500 2	2.5000	63.500	2.5000	47.6	25 1.8750	7.1	3.2	HM237532/HM237510	1	628	973	52.2	180	203	277	260	270	8	15.9	7.1	3.2	0.32	1.88	1.04	17.0
161.925	6.3750	374.650	14.7500	87.313	3.4375	79.375	3.1250	60.3	25 2.3750	6.4	3.2	EE117063/117148	1	876	1 220	103.7	180	218	363	308	337	7	27	6.4	3.2	0.73	0.82	0.45	43.7
165.100	6.5000 6.5000 6.5000	247.650 254.000 288.925	10.0000	47.625 1 46.038 1 63.500 2	1.8125	47.625 46.038 63.500	1.8125	33.3	38 1.3125	4.8	3.2	67780/67720 M235145/M235113 HM237535/HM237510	1 1	346 378 628	701 620 973	52.3 41.5 52.2	178 180 185	193 191 203	236 242 277	226 232 260	237 239 270	5 7 8	9.5 12.7 15.9	4.8	3.2	0.44 0.32 0.32	1.36 1.88 1.88	1.04	7.92 7.87 16.4
	6.5000	288.925 289.975	11.3750	63.500 ² 63.500 ²	2.5000	63.500 63.500	2.5000	47.6	325 1.8750 300 1.8898	7.1	3.2	HM237536/HM237511 HM237535/HM237513	1	628 628	973 973	52.2 52.2	185 185	203	277 277 279	260 260	270 270 270	8	15.9	7.1		0.32		1.04	16.4 16.6
	6.5000	336.550	13.2500	92.075	3.6250	95.250	3.7500	69.8	350 2.7500	3.2	6.4	HH437549/HH437510	1	1 040	1 630	70.7	177	215	318	290	307	12	22.2	3.2	6.4	0.37	1.62	0.89	38.5
168.275	6.5000	360.000 247.650		92.075 3		88.897 47.625			00 1.5000			EE420651/421417 67782/67720	1	938	1 460 701	75.6 52.3	190	193	236	226	237	5				0.40	1.49		42.9 7.61
100.273	6.6250	330.200		85.725		79.375			75 2.1250			H936349/H936310	1	868	1 210	103.8	187	196	312	281	311	6	31.8				0.74		29.5

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (168.275) ~ (177.800) mm

Design	1-F

	Boundary dimensio					sions							De-	Basic load		Load center			Mou	inting o	dimens	ions				Con- stant			(Refer.)
d mm	1/25.4		1/25.4	T mm	1/25.4	B mm	1/25.4	C mm	1/25.4	r min.		Bearing No. 1)	sign	C_{r}	$C_{0\mathrm{r}}$	(mm)	d_{a} min.	$d_{ m b}$ max.	max.) _a min.	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	$r_{ m a}$ max. n	$r_{\rm b}$	e	Y_1	Y_0	Mass (kg)
168.275	6.6250	342.900 13	3.5000	85.725	3.3750	79.375	3.1250	53.975	2.1250	6.4	6.4	H936349/H936316	1	868	1 210	103.8	187	196	325	281	311	6	31.8	6.4	6.4	0.81	0.74	0.41	32.3
170	-	230	-	38	-	38	_	30	_	2.5	2	32934JR	1	296	606	42.0	182	183	220	213	222	7	8	2	2	0.38	1.57	0.86	4.49
170.000	6.6929 6.6929	230.000 9 240.000 9 254.000 1	9.4488 0.0000	46.038	1.8110 1.8125	38.000 44.500 46.038	1.7520 1.8125	31.000 37.000 33.338	1.4567 1.3125	3.0 4.8	2.5 3.2	JHM534149/JHM534110 JM734449/JM734410 86669/86100	1 1 1	291 353 336	558 666 531	43.6 50.6 44.9	181 181 185	184 184 189	220 230 242	214 220 230	222 231 238	7 7 6	8 9 12.7	3.0 4.8	2.5 2.5 3.2	0.44 0.37	1.57 1.37 1.63	0.75 0.90	4.46 6.31 7.01
170	6.6929	254.000 1	0.0000	46.038	1.8125	46.038 57	1.8125	33.338 43	1.3125	4.8	2.5	M235149/M235113 32034JR	1	378 526	905	41.5 55.8	185	191	242	232	239	10	12.7	2.5	3.2	0.32	1.88		7.41
170.000	6.6929	266.700 1	0.5000	46.038	1.8125	46.038	1.8125	33.338	1.3125	4.8	1.6	86669/86105	1	336	531	44.9	185	189	258	230	238	6	12.7	4.8	1.6	0.37	1.63	0.90	8.36
171.450	6.7500 6.7500	288.925 1 298.450 1		63.500 63.500	2.5000 2.5000	63.500 63.500	2.5000	47.625 47.625				94675/94113A 94675/94118	1	550 550	960 960	63.2 63.2	191 191	204 204	277 287	255 255	269 269	8	15.9 15.9		3.2 3.2	0.47 0.47	1.28 1.28		16.2 17.8
174.625	6.8750 6.8750 6.8750 6.8750	247.650 ± 288.925 ± 1 288.925 ± 1 311.150 ± 1	1.3750 1.3750	47.625 63.500 63.500 82.550	2.5000 2.5000	63.500 63.500	1.8750 2.5000 2.5000 3.2500	47.625	1.8750 1.8750	7.1	3.2	67787/67720 94687/94113 HM237542/HM237510 H238148/H238110	1 1 1	346 550 628 862	701 960 973 1 340	52.3 63.2 52.2 64.3	187 194 194 193	193 204 203 207	236 277 277 293	226 255 260 273	237 269 270 287	5 8 8	9.5 15.9 15.9 17.5	7.1	3.2 3.2 3.2 6.4	0.47 0.32	1.36 1.28 1.88 1.82	0.70	6.98 15.8 15.1 25.3
177.800	7.0000 7.0000 7.0000	227.013 247.650 247.650	9.7500	30.163 47.625 47.625	1.8750	30.163 47.625 47.625	1.8750		1.5000	3.6	3.2	36990/36920 67790/67720 67791/67720	1 1 1	177 346 346	402 701 701	43.0 52.3 52.3	186 190 204	191 193 193	218 236 236	212 226 226	219 237 237	6 5 5	7.1 9.5 9.5		1.6 3.2 3.2	0.44	1.36 1.36 1.36	0.75	2.85 6.65 6.56
	7.0000 7.0000 7.0000	260.350 10 285.750 11 288.925 11	1.2500	53.975 63.500 63.500	2.5000	53.975 63.500 63.500	2.5000	41.275	1.6250	6.4	3.2	M236849/M236810 EE91702/91112 94700/94113	1 1 1	442 443 550	821 716 960	48.4 58.8 63.2	190 196 197	199 205 204	249 274 277	237 251 255	246 263 269	5 4 8	12.7 22.2 15.9	6.4	3.2 3.2 3.2	0.43	1.80 1.39 1.28		8.94 13.4 15.3
	7.0000 7.0000 7.0000 7.0000	288.925 11 288.925 11 304.800 11 319.964 11	1.3750 2.0000	63.500 63.500 66.675 88.900	2.5000 2.6250	63.500 63.500 69.106 85.725	2.5000		1.8750 1.6875	7.1 6.4	3.2 3.2	94700/94113A HM237545/HM237510 EE280702/281202 EE222070/222126	1 1 1	550 628 548 747	960 973 802 1 220	63.2 52.2 54.4 72.9	197 197 196 190	204 203 211 216	277 277 293 305	255 260 271 280	269 270 281 297	8 8 7 4	15.9 15.9 23.8 23.8	7.1	3.2	0.32 0.36	1.28 1.88 1.67 1.49	1.04 0.92	15.3 14.7 17.3 28.0

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (177.800) ~ 190 mm

Design	1

			В	oundary di	mens	ions							De-	Basic loa		Load center			Mou	unting o	dimens	sions				Con- stant	Axia	l load tors	(Refer.)
d mm	1/25.4	D mm	1/25.4	T mm 1/2	25.4	B mm	1/25.4	mm	1/25.4		r_1 min.	Bearing No. 1)	sign	$C_{\rm r}$	$C_{0\mathrm{r}}$	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	E max.) _a min.	$D_{ m b}$ min.	$S_{\rm a}$ min.	S _b min.	r _a	$r_{\rm b}$	e	Y ₁	Y_0	Mass (kg)
-	7.0000	319.964	12.5970	88.900 3.50	000	85.725	3.3750	65.08	8 2.5625	3.6		H239640/H239610	1	853	1 270	66.1	190	214	305	286	300	5	23.8			0.32	1.88	1.04	26.9
	7.0000 7.0000	320.675 327.025		88.900 3.50 90.488 3.50		85.725 92.075			8 2.5625 0 2.5000		4.8 6.4		1	747 864	1 220 1 430	72.9 68.3	190 196	216 225	306 309	280 289	297 305	4 7	23.8 27		- 1	0.40 0.37		0.82 0.90	28.2 31.1
	7.0000	336.550		90.488 3.50		92.075			0 2.5000			EE470073/470132	1	864	1 430	68.3	210	225	318	289	305	7	27		-	0.37		0.90	33.4
	7.0000 7.0000	360.000 365.049		92.075 3.65 92.075 3.65		88.897 88.897			0 2.5000 0 2.5000			EE420701/421417 EE420701/421437	1	938 938	1 460 1 460	75.6 75.6	209 209	243 243	348 353	317 317	334 334	6 6			-	0.40 0.40		0.82 0.82	40.5 41.9
	7.0000	428.625	16.8750	106.362 4.18	875	95.250	3.7500	61.91	2 2.4375	6.4	6.4	EE350701/351687	1	1 070	1 390	118.7	196	238	410	350	381	9	44.5	6.4	6.4	0.76	0.79	0.44	64.6
179.975	7.0856	317.500	12.5000	63.500 2.50	000	63.500	2.5000	46.03	8 1.8125	3.6	3.2	93708/93125	1	604	1 130	71.4	193	227	306	278	294	7	17.5	3.6	3.2	0.52	1.15	0.63	20.8
180	-	250	_	45 –	_	45	_	34	_	2.5	2	32936JR	1	357	735	53.5	192	193	240	225	241	8	11	2	2	0.48	1.25	0.69	6.64
180.000	7.0866	250.000	9.8425	47.000 1.8	504	45.000	1.7717	37.00	0 1.4567	3.0	2.5	JM736149/JM736110	1	365	705	55.2	191	193	240	230	242	7	10	3.0	2.5	0.48	1.25	0.69	6.56
180	-	280 320	_	64 – 57 –		64 52	_	48 43	_	3	2.5	32036JR 30236JR	1	644 615	1 100 870	59.5 63.6	194 202	199 211	268 302	247 278	268 297	10 9	16 14	2.5 4	2	0.42 0.45		0.78 0.73	14.1 18.3
	_	320	_	91 –		86	_	71	_	5	4	32236JR	1	957	1 520	77.8	202	204	302	267	303	10	20	4	3	0.45		0.73	29.9
184.150	7.2500 7.2500	266.700 279.997		47.625 1.83 46.525 1.83		46.833 46.833	1.8438 1.8438		0 1.5000 0 1.4173			67883/67820 67883/67830	1	339 339	703 703	57.8 56.7	197 197	211 211	255 268	245 245	257 256	6 7	9.5 10.5	3.6 3.6	-	0.48 0.48		0.69 0.69	8.55 10.0
	7.3750 7.3750 7.3750	269.875 319.964 320.675	12.5970	55.563 2.18 88.900 3.50 88.900 3.50	000	55.563 85.725 85.725		65.08	3 1.6875 8 2.5625 8 2.5625	5.6		M238849/M238810 H239649/H239610 H239649/H239612	1 1 1	411 853 853	805 1 270 1 270	49.9 66.1 66.1	200 204 204	209 214 214	258 305 306	245 286 286	255 300 300	5 5 5	12.7 23.8 23.8		4.8	0.33 0.32 0.32	1.88	0.99 1.04 1.04	9.66 25.1 25.3
190	_	260	_	45 –	_	45	_	34	_	2.5	2	32938JR	1	366	789	55.0	202	204	250	235	252	8	11	2	2	0.48	1.26	0.69	6.89
190.000	7.4803	260.000	10.2362	46.000 1.8	110	44.000	1.7323	36.50	0 1.4370	3.0	2.5	JM738249/JM738210	1	369	723	56.0	201	203	250	240	251	7	9.5	3.0	2.5	0.48	1.26	0.69	6.89
190	_ _ _	290 340 340	_ _ _	64 – 60 – 97 –	-	64 55 92	_ _ _	48 46 75	_ _ _	3 5 5	2.5 4 4	32038JR 30238JR 32238JR	1 1 1	654 729 1 090	1 170 1 030 1 740	62.9 66.4 81.9	204 212 212	209 225 216	278 322 322	257 298 286	279 318 323	10 12 12	16 13 22	2.5 4 4	2 3 3	0.44 0.44 0.44	1.38	0.75 0.76 0.76	14.7 21.9 36.6

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 190.500 ~ (203.200) mm

esign 1	Design 1
9	

		В	oundary dime	ensions					De-	Basic loa		Load			Mou	ınting o	dimens _{im)}	sions				Con-			(Refer.)
d	1	D	T	В	C	r	r.	Bearing No. 1)	sign	(K1	IN)	center (mm)	d_{a}	d_{h}	I) _a	D_{h}	S_{a}	$S_{\rm b}$	$r_{\rm a}$		stant	iac	tors	Mass
	1/25.4	mm 1/25.4	mm 1/25.4	mm 1/25.4						$C_{ m r}$	$C_{0\mathrm{r}}$	a	min.	max.	max.	'a min.	min.		min.			e	Y_1	Y_0	(kg)
190.500	7.5000	266.700 10.5000	47.625 1.8750	46.833 1.8438	38 100 1.5000	3.6	3 2	67885/67820	1	339	703	57.8	203	211	255	245	257	6	9.5	3.6	3 2	0.48	1 26	0.69	7.88
130.300	7.5000	282.575 11.1250	50.800 2.0000	47.625 1.8750				87750/87111	1	410	726	55.7	203	215	271	256	266	3	14.3	3.6		0.42		0.79	9.67
	7.5000	317.500 12.5000	63.500 2.5000	63.500 2.5000				93750/93125	1	604	1 130	71.4	205	227	306	278	294	7	17.5		-	0.52		0.63	19.3
	7.5000	317.500 12.5000	68.263 2.6875	63.500 2.5000	50.800 2.0000	43	3 2	93750/93126	1	604	1 130	76.2	205	227	306	276	294	2	17.5	4.3	3 2	0.52	1 15	0.63	20.3
	7.5000	336.550 13.2500	98.425 3.8750	95.250 3.7500	73.025 2.8750	6.4		HH840249/HH840210	1	956	1 710	93.5	209	217	318	288	316	8	25.4		6.4			0.57	35.8
	7.5000	368.300 14.5000	92.075 3.6250	88.897 3.4999	63.500 2.5000				1	938	1 460	75.6	209	243	356	317	334	6	28.6	6.4			-	0.82	40.4
	7.5000	428.625 16.8750	106.363 4.1875	95.250 3.7500				EE350750/351687	1	1 070	1 390	118.7	209	238	410	350	381	9	44.5	6.4				0.44	62.0
		120.020	100.000	00.200	01.010	0.1	0.1	220307307032007		1010	1 000	110.7	200	200	110		001		11.0	0.1	0.1	0.70	0.70		02.0
193.675	7.6250	282.575 11.1250	50.800 2.0000	47.625 1.8750	36.512 1.4375	3.6	3.2	87762/87111	1	410	726	55.7	206	215	271	256	266	3	14.3	3.6	3.2	0.42	1.44	0.79	9.32
196.850	7.7500	254.000 10.0000	28.575 1.1250	27.783 1.0938	21.433 0.8438	1.6	1.6	L540049/L540010	1	188	387	43.1	206	214	245	238	243	4	7.1	1.6	1.6	0.40	1.51	0.83	3.35
	7.7500	257.175 10.1250	39.688 1.5625	39.688 1.5625	30.163 1.1875	3.6	3.2	LM739749/LM739710	1	268	632	50.6	210	211	245	238	247	6	9.5	3.6	3.2	0.45	1.34	0.74	5.27
	7.7500	266.700 10.5000	39.688 1.5625	39.688 1.5625	30.163 1.1875	3.6	3.2	LM739749/LM739719	1	268	632	50.6	210	211	255	238	247	6	9.5	3.6	3.2	0.45	1.34	0.74	6.18
	7.7500	317.500 12.5000	63.500 2.5000	63.500 2.5000	46.038 1.8125	4.3	32	93775/93125	1	604	1 130	71.4	211	227	306	278	294	7	17.5	4.3	3.2	0.52	1 15	0.63	18.4
	7.7500	317.500 12.5000	68.263 2.6875	63.500 2.5000				93775/93126	1	604	1 130	76.2	211	227	306	276	294	2	17.5		-			0.63	19.3
		000	54	F4	00	0	0.5	2004018	_	400	050	50.0	04.4	040	000	057	074		40	0.5	0	0.00	4.50	0.04	0.44
200	_	280 —	51 —	51 —	39 —	3	2.5	32940JR	1	486	958	53.6	214	216	268	257	271	9	12	2.5	2	0.39	1.52	0.84	9.44
200.000	7.8740	300.000 11.8110	65.000 2.5591	62.000 2.4409	51.000 2.0079	3.6	2.5	JHM840449/JHM840410	1	617	1 140	72.1	213	218	290	270	288	6	14	3.6	2.5	0.52	1.15	0.63	15.0
200	_	310 —	70 —	70 —	53 —	3	2.5	32040JR	1	755	1 340	66.9	214	221	298	273	297	11	17	2.5	2	0.43	1.39	0.77	19.1
	_	360 —	64 —	58 —	48 —	5	4	30240JR	1	792	1 120	70.3	222	238	342	315	336	12	15	4	3	0.44	1.38	0.76	26.4
	-	360 —	104 —	98 —	82 —	5	4	32240JR	1	1 240	1 880	84.6	222	225	342	302	340	11	22	4	3	0.41	1.48	0.81	44.2
200.025	7.8750	276.225 10.8750	42.863 1.6875	46.038 1.8125	34.133 1.3438	3.6	3.2	LM241147/LM241110	1	375	715	46.3	214	222	263	257	264	4	8.7	3.6	3.2	0.32	1.88	1.04	7.57
	7.8750	292.100 11.5000	57.945 2.2813	57.945 2.2813	46.038 1.8125			M241543/M241510	1	545	1 030	52.6	214	223	279	267	277	7	11.9		3.2		1.80	0.99	12.1
	7.8750	317.500 12.5000	63.500 2.5000	63.500 2.5000				93787/93125	1	604	1 130	71.4	215	227	305	278	294	7	17.5		3.2			0.63	17.9
	7.8750	355.600 14.0000	69.850 2.7500	69.850 2.7500	49 213 1.9375	6.7	16	EE130787/131400	1	727	1 310	59.9	220	263	346	319	330	q	20.6	6.7	16	U 33	1 82	1.00	28.7
	7.8750	384.175 15.1250	112.713 4.4375		90.488 3.5625			H247535/H247510	1-P	1 450	2 680	83.8	219	265	365	341	361	8	22.2			0.33		0.99	60.5
	7.8750	393.700 15.5000	111.125 4.3750						1	1 360	2 260	76.2	219	257	374	338	355	9	27	6.4				1.11	59.2
203.200	8.0000	276.225 10.8750	42.863 1.6875	42.863 1.6875	34.133 1.3438	3.6	3.2	LM241149/LM241110	1	375	715	46.3	217	222	263	257	264	4	8.7	3.6	3.2	0.32	1.88	1.04	7.08

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (203.200) ~ 220 mm

		В	oundary dir	nensions						De-	Basic load		Load center			Mou	inting o	dimens	ions				Con- stant	Axial		(Refer.)
d		D	T	В	?	C	r	r_1	Bearing No. 1)	sign	$C_{\rm r}$	$C_{0\mathrm{r}}$	(mm)	$d_{\rm a}$	$d_{\rm b}$	D	,	D_{b}	$S_{\rm a}$	$S_{\rm b}$	$r_{\rm a}$	$r_{\rm b}$	e	Y ₁	Y ₀	Mass (kg)
mm	1/25.4	mm 1/25.4	mm 1/25	.4 mm	1/25.4	mm 1/25.4	min.	min.			Cr	Cor	а	min.	max.	max.	min.	min.	min.	min.	max. n	nax.	E	11	10	(<i>8</i>)
203.200	8.0000	279.400 11.0000	46.038 1.81	46.038	8 1.8125	36.513 1.4375	3.6	3.2	67983/67919	1	349	707	61.6	217	222	267	259	271	7	9.5	3.6	3.2	0.51	1.18	0.65	8.04
	8.0000	282.575 11.1250	46.038 1.81	46.038	8 1.8125	36.513 1.4375	3.6	3.2	67983/67920	1	349	707	61.6	217	222	270	259	271	7	9.5	3.6	3.2	0.51	1.18	0.65	8.43
	8.0000	292.100 11.5000	57.945 2.28	13 57.945	5 2.2813	46.038 1.8125	3.6	3.2	M241547/M241510	1	545	1 030	52.6	217	223	279	267	277	7	11.9	3.6	3.2	0.33	1.80	0.99	11.7
	8.0000	317.500 12.5000	53.975 2.12	53.975	5 2.1250	34.925 1.3750	4	3.2	EE132083/132125	1	439	724	48.4	218	238	305	285	292	7	19.1	4	3.2	0.31	1.91	1.05	13.9
	8.0000	317.500 12.5000	63.500 2.50	63.500	0 2.5000	46.038 1.8125	4.3	3.2	93800/93125	1	604	1 130	71.4	218	227	305	278	294	7	17.5	4.3	3.2	0.52	1.15	0.63	17.4
	8.0000	317.500 12.5000	63.500 2.50	63.500	0 2.5000	46.038 1.8125	7.9	3.2	93800A/93125	1	604	1 130	71.4	225	227	305	278	294	7	17.5	7.9	3.2	0.52	1.15	0.63	17.3
	8.0000	360.000 14.1732	92.075 3.62	88.897	7 3.4999	63.500 2.5000	3.2	3.2	EE420801/421417	1	938	1 460	75.6	216	243	347	317	334	6	28.6	3.2	3.2	0.40	1.49	0.82	35.4
	8.0000	368.300 14.5000	92.075 3.62	88.897	7 3.4999	63.500 2.5000	3.2	3.2	EE420801/421450	1	938	1 460	75.6	216	243	355	317	334	6	28.6	3.2	3.2	0.40	1.49	0.82	37.8
	8.0000	406.400 16.0000	92.075 3.62	85.725	5 3.3750	57.150 2.2500	6.4	6.4	EE114080/114160	1	950	1 460	119.8	222	253	387	337	367	6	34.9	6.4	6.4	0.79	0.76	0.42	48.5
	8.0000	482.600 19.0000	117.475 4.62	95.250	0 3.7500	73.025 2.8750	6.4	6.4	EE380080/380190	1-P	1 450	2 060	152.8	222	273	463	385	427	1	44.5	6.4	6.4	0.87	0.69	0.38	93.5
203.987	8.0310	276.225 10.8750	42.863 1.68	75 46.038	8 1.8125	34.132 1.3438	3.6	3.2	LM241148/LM241111	1	375	715	46.3	218	222	263	257	264	4	8.7	3.6	3.2	0.32	1.88	1.04	7.12
204.788	8.0625	292.100 11.5000	57.945 2.28	13 57.945	5 2.2813	46.038 1.8125	3.6	3.2	M241549/M241510	1	545	1 030	52.6	218	223	279	267	277	7	11.9	3.6	3.2	0.33	1.80	0.99	11.5
206.375	8.1250	282.575 11.1250	46.038 1.81	46.038	8 1.8125	36.513 1.4375	3.6	3.2	67985/67920	1	349	707	61.6	220	222	270	259	271	7	9.5	3.6	3.2	0.51	1.18	0.65	8.07
	8.1250	317.500 12.5000	53.975 2.12	53.975	5 2.1250	34.925 1.3750	4	3.2	EE132084/132125	1	439	724	48.4	221	238	305	285	292	7	19.1	4	3.2	0.31	1.91	1.05	13.4
	8.1250	319.088 12.5625	53.975 2.12	53.975	5 2.1250	34.925 1.3750	4	3.2	EE132084/132127	1	439	724	48.4	221	238	306	285	292	7	19.1	4	3.2	0.31	1.91	1.05	13.6
	8.1250	336.550 13.2500	98.425 3.87	100.013	3 3.9375	77.788 3.0625	3.2	3.2	H242649/H242610	1	1 040	1 900	73.8	219	236	324	300	317	9	20.6	3.2	3.2	0.33	1.80	0.99	33.1
209.550	8.2500	317.500 12.5000	63.500 2.50	0 63.500	0 2.5000	46.038 1.8125	4.3	3.2	93825/93125	1	604	1 130	71.4	225	227	305	278	294	7	17.5	4.3	3.2	0.52	1.15	0.63	16.4
	8.2500	317.500 12.5000	63.500 2.50	63.500	0 2.5000	46.038 1.8125				1	604	1 130	71.4	241	227	305	278	294	7	17.5			0.52	1.15	0.63	16.2
	8.2500	333.375 13.1250	69.850 2.75	69.850	0 2.7500	52.388 2.0625	6.4	6.4	HM743345/HM743310	1	750	1 330	71.9	229	243	314	301	316	7	17.5	6.4	6.4	0.44	1.37	0.75	22.2
	8.2500	355.600 14.0000	68.263 2.68	66.675	5 2.6250	47.625 1.8750	7.1	3.2	96825/96140	1	658	1 320	84.9	230	259	343	312	331	8	20.6	7.1	3.2	0.59	1.02	0.56	26.9
215.900	8 5000	288.925 11.3750	46.038 1.81	25 46 039	8 1.8125	34 925 1 3750	3.6	3.2	LM742749/LM742714	1	356	781	60.7	230	232	276	265	276	6	11.1	3.6	32	N 48	1.25	0.69	7.94
213.300	8.5000	360.000 14.1732	82.550 3.25		2 3.1249	63.500 2.5000		3.2	EE420850/421417	1	938	1 460	75.7	226	243	347	317	334			1.6			1.49		30.9
220		300 —	51 —	51	_	39 —	3	2.5	32944JR	1	498	1 010	58.6	234	234	288	275	290	9	12	2.5	2	0.43	1.41	0.78	10.1
220	_	340 —	76 —	76	_	57 —	4	3	32044JR	1	894	1 620	72.8	238	243	326	300	326	12	19				1.39		25.2
	_	400 —	72 —		_	54 —	5	4	30244JR	1	1 010	1 440	76.5	242	263	382	344	371		17		- 1	0.44	1.43	-	35.9

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 220.663 ~ 237.330 mm

Design

	В	oundary dime	nsions				De-	Basic load		Load center			Mou	inting o		ions				Con- stant	Axial fact		(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	<i>T</i> mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4	$rac{r}{m}$ in. mii		sign	$C_{\rm r}$	_	(mm)	d_{a} min.	$d_{ m b}$ max.	D max.	`	D_{b}	$S_{ m a}$ min.	S _b	-	$r_{\rm b}$	e	<i>Y</i> ₁	<i>Y</i> ₀	Mass (kg)
220.663 8.6875	314.325 12.3750	61.913 2.4375	61.913 2.4375	49.213 1.9375	6.4 3.	M244249/M244210	1	613	1 220	58.0	240	243	301	288	299	5	12.7	6.4	3.2	0.33	1.80	0.99	14.5
220.878 8.6960	317.500 12.5000	47.625 1.8750	52.388 2.0625	36.513 1.4375	3.2 3.	LM245833/LM245810	1	488	928	50.5	234	253	305	296	304	8	11.1	3.2	3.2	0.33	1.80	0.99	12.3
223.838 8.8125	295.275 11.6250	46.038 1.8125	46.038 1.8125	34.925 1.3750	3.6 3.	LM844049/LM844010	1	360	792	63.1	237	239	282	273	285	6	11.1	3.6	3.2	0.50	1.20	0.66	8.01
225.425 8.8750 8.8750	355.600 14.0000 400.050 15.7500	69.850 2.7500 88.900 3.5000	69.850 2.7500 87.313 3.4375	49.213 1.9375 63.500 2.5000		EE130889/131400 EE430888/431575	1	727 987	1 310 1 600	59.9 82.6	245 235	263 267	346 387	319 344	330 363		20.6 25.4	6.7 1.6	-		1.82 1.37		24.1 42.5
228.600 9.0000 9.0000 9.0000	355.600 14.0000 355.600 14.0000 355.600 14.0000	68.263 2.6875 69.850 2.7500 69.850 2.7500	66.675 2.6250 69.850 2.7500 69.850 2.7500	47.625 1.8750 49.213 1.9375 50.800 2.0000			1 1 1	658 727 772	1 320 1 310 1 370	84.9 59.9 77.0	249 248 248	259 263 261	343 346 336	312 319 322	331 330 338	9	20.6 20.6 19.1	6.7	3.2 1.6 6.4	0.33	1.02 1.82 1.27	1.00	23.5 23.5 24.0
9.0000 9.0000 9.0000 9.0000	358.775 14.1250 400.050 15.7500 425.450 16.7500 508.000 20.0000	71.438 2.8125 88.900 3.5000 101.600 4.0000 117.475 4.6250	71.438 2.8125 87.313 3.4375 95.250 3.7500 95.250 3.7500	53.975 2.1250 63.500 2.5000 76.200 3.0000 73.025 2.8750	10.4 3.	EE700091/700167	1 1 1	773 987 1 180 1 230	1 590 1 600 1 980 1 800	64.4 82.6 81.1 168.1	242 256 249 248	279 267 285 303	346 387 406 489	330 344 364 410	342 363 381 455	8		10.4 7.1	3.2 3.2 6.4 6.4	0.44 0.33	1.80 1.37 1.80 0.64	0.75 0.99	26.6 41.6 58.7 97.1
231.775 9.1250 9.1250	295.275 11.6250 300.038 11.8125 377.825 14.8750	33.338 1.3125 33.338 1.3125 79.375 3.1250	31.750 1.2500 31.750 1.2500 80.963 3.1875	23.813 0.9375 23.813 0.9375 58.738 2.3125	3.6 3.	544091/544118	1 1 1	244 244 958	491 491 1 630	50.1 50.1 77.6	245 245 245	248 248 266	282 287 365	277 277 336	283 283 353	4 4 10	9.5 9.5 20.6	3.6	3.2 3.2 3.2	0.40	1.49 1.49 1.40	0.82	4.84 5.25 32.9
234.950 9.2500 9.2500 9.2500	314.325 12.3750 317.500 12.5000 327.025 12.8750	49.213 1.9375 49.213 1.9375 52.388 2.0625	49.213 1.9375 49.213 1.9375 52.388 2.0625	36.513 1.4375	3.6 3.	2 LM545849/LM545810 2 LM545849/LM545812 2 8574/8520	1 1 1	485 485 468	981 981 930	57.5 57.5 60.0	249 249 254	253 253 259	301 305 314	293 293 299	303 303 309	9	12.7 12.7 15.9	3.6	3.2 3.2 3.2	0.40	1.51 1.51 1.48	0.83	10.2 10.6 12.2
9.2500 9.2500 9.2500 9.2500	327.025 12.8750 328.625 12.9380 381.000 15.0000 384.175 15.1250	52.388 2.0625 52.388 2.0625 74.613 2.9375 112.713 4.4375	52.388 2.0625 52.388 2.0625 74.613 2.9375 112.712 4.4375		6.4 3. 6.4 3.	2 8575/8520 2 8575/8522 2 M252330/M252310 4 H247549/H247510	1 1 1 1-P	468 468 854 1 450	930 930 1 670 2 680	60.0 60.0 69.0 83.8	254 254 254 254	259 259 295 265	314 316 368 365	299 299 350 341	309 309 363 361	7 6	15.9 15.9 17.5 22.2	6.4	3.2 3.2 3.2 6.4	0.41		0.81 0.99	12.2 12.4 32.5 50.0
237.330 9.3437 9.3437	336.550 13.2500 358.775 14.1250	65.088 2.5625 71.438 2.8125	65.088 2.5625 71.438 2.8125	50.800 2.0000 53.975 2.1250		2 M246949/M246910 2 M249736/M249710	1	708 773	1 380 1 590	59.9 64.4	257 257	259 279	324 346	309 330	320 342	-	14.3 17.5		3.2		1.80		17.1 24.8

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 240 ~ (254.000) mm

Design 1-

	В	oundary dime	nsions				De-	Basic load		Load center			Mou	inting d		ions				Con- stant	Axial facto		(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4	r r min. mi		sign	C_{r}	$C_{0\mathrm{r}}$	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.) _a min.	$D_{ m b}$ min.	S_{a} min.		$r_{ m a}$ max. m	$r_{\rm b}$	е		Y_0	Mass (kg)
240 — —	320 — 360 —	51 — 76 —	51 — 76 —	39 — 57 —	3 2. 4 3	32948JR 32048JR	1	515 924	1 090 1 720	64.5 78.5	254 258	254 261	308 346	294 318	311 346		12 19			0.46 0.46	1.31 1.31		10.9 26.8
241.300 9.5000 9.5000 9.5000	327.025 12.8750 444.500 17.5000 488.950 19.2500	101.600 4.0000 120.650 4.7500	52.388 2.0625 100.013 3.9375 120.650 4.7500	36.513 1.4375 76.200 3.0000 92.075 3.6250	6.4 4. 6.4 6.	EE295950/295193	1 1 1	468 1 280 1 680	930 1 980 2 790	60.0 84.4 92.7	261 261 261	259 298 328	314 428 470	299 389 427	309 406 446	8	15.9 25.4 28.6	6.4 6.4	3.2 (4.8 (6.4 (0.34 0.31	1.48 1.78 1.94	0.98	11.2 62.1 100
9.5000 243.683 9.5938	508.000 20.0000 315.913 12.4375	117.475 4.6250 31.750 1.2500	95.250 3.7500 31.750 1.2500	73.025 2.8750 22.225 0.8750	6.4 6. 3.6 3.		1	1 230	1 800 549	168.1 54.0	261	303 268	303	410 295	455 301	6	9.5		3.2 (1.39		6.00
244.475 9.6250	381.000 15.0000	79.375 3.1250	76.200 3.0000	57.150 2.2500	6.4 4.	B EE126097/126150	1	788	1 470	88.5	264	276	365	336	356	5	22.2	6.4	4.8 (0.52	1.16	0.64	30.6
247.650 9.7500 9.7500 9.7500	304.800 12.0000 346.075 13.6250 355.600 14.0000	22.225 0.8750 63.500 2.5000 50.800 2.0000	22.225 0.8750 63.500 2.5000 50.800 2.0000	15.875 0.6250 50.800 2.0000 33.338 1.3125	6.4 6.	2 28880/28820 4 M348449/M348410 2 EE170975/171400	1 1 1	155 726 508	322 1 440 924	38.8 61.7 56.1	257 267 267	262 268 280	295 327 343	285 319 327	288 330 335		6.4 12.7 17.5		1.6 (6.4 (3.2 (0.34	1.85 1.75 1.65	0.96	3.05 17.4 15.1
9.7500 9.7500 9.7500	368.300 14.5000 381.000 15.0000 406.400 16.0000	50.800 2.0000 74.613 2.9375 115.888 4.5625	50.800 2.0000 74.613 2.9375 117.475 4.6250	33.338 1.3125 57.150 2.2500 93.663 3.6875	6.4 3. 6.4 3. 6.4 6.	M252337/M252310	1 1 1-P	508 854 1 620	924 1 670 3 120	56.1 69.0 86.3	267 267 267	280 295 282	355 368 387	327 350 361	335 363 382	6	17.5 17.5 22.2	6.4	3.2 (3.2 (6.4 (0.33	1.65 1.80 1.80	0.99	17.0 29.7 58.6
9.7500 249.250 9.8130	444.500 17.5000 381.000 15.0000	104.775 4.1250 79.375 3.1250	103.188 4.0625 76.200 3.0000			B EE115097/115175 B EE126098/126150	1	1 560	2 460 1 470	85.3 88.5	267	296	428	394	412 356			6.4			1.73		65.0
254.000 10.0000 10.0000 10.0000	315.913 12.4375 358.775 14.1250 365.125 14.3750 368.300 14.5000	31.750 1.2500 71.438 2.8125	31.750 1.2500 71.438 2.8125 58.738 2.3125 58.738 2.3125	22.225 0.8750	3.6 4. 3.6 3.	3 LL648449/LL648416 2 M249749/M249710 4 EE134100/134143	1 1 1 1	788 241 773 566 566	549 1 590 1 070 1 070	54.0 64.4 63.7	269 268 268 273 273	276 268 279 286 286	365 300 346 346 349	295 330 334 334	301 342 345 345	5 6 8 8	9.5 17.5 15.9	3.6 6.4	4.8 (3.2 (6.4 (0.43 0.33 0.37	1.16 1.39 1.80 1.60	0.77 0.99 0.88	4.99 21.3 18.2
10.0000 10.0000	393.700 15.5000 403.225 15.8750	73.817 2.9062 69.850 2.7500	69.850 2.7500 69.850 2.7500	50.005 1.9687 46.038 1.8125	6.4 6. 6.4 6.	EE275100/275155 EE275100/275158	1	738 738	1 540 1 540	75.4 71.5	273 273	314 314	374 384	364 365	377 377		23.8 23.8	6.4 6.4	6.4 (6.4 (0.40 0.40	1.49 1.49	0.82 0.82	31.1 32.5
10.0000 10.0000 10.0000	422.275 16.6250 422.275 16.6250 495.300 19.5000	86.121 3.3906 86.121 3.3906 141.288 5.5625	79.771 3.1406 79.771 3.1406 141.288 5.5625	66.675 2.6250 66.675 2.6250 114.300 4.5000	6.7 3. 6.7 3. 6.4 6.	2 HM252344/HM252310	1 1 1-P	1 010 1 010 2 330	1 680 1 680 4 670	78.7 78.7 108.1	274 274 273	309 309 346	409 409 476	384 384 441	399 399 467	1 1 8	19.4 19.4 27		3.2 (3.2 (6.4 (0.33	1.80 1.80 1.80	0.99	42.7 42.7 128

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (254.000) ~ (279.400) mm

Design 1-P

	В	oundary dime	ensions			5 . N . N		De-	Basic load		Load center			Mou	inting o		ions				Con- stant	Axial fact	load tors	(Refer.)
<i>d</i> mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4 m	$egin{array}{ll} r & r_1 \ & & \ & \ & \ & \ & \ & \ & \ & \ & $	Bearing No. 1)	s	sign	$C_{\rm r}$	C_{0r}	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	max.) _a min.	$D_{ m b}$ min.	$S_{\rm a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.		e	Y_1	Y_0	(kg)
254.000 10.0000	533.400 21.0000	133.350 5.2500	120.650 4.7500	77.788 3.0625	6.4 6.4	HH953749/HH953710		1-P	1 780	2 800	180.8	273	324	510	446	495	4	55.6	6.4	6.4	0.94	0.64	0.35	127
255.600 10.0630	342.900 13.5000	57.150 2.2500	63.500 2.5000	44.450 1.7500	1.6 3.2	M349547/M349510		1	612	1 280	60.1	265	276	330	320	330	6	12.7	1.6	3.2	0.35	1.73	0.95	14.1
257.175 10.1250 10.1250	342.900 13.5000 358.775 14.1250	57.150 2.2500 71.438 2.8125	57.150 2.2500 76.200 3.0000		6.4 3.2 1.6 3.2			1	612 773	1 280 1 590	60.1 64.4	276 267	276 279	330 346	320 330	330 342	6 8	12.7 17.5	6.4 1.6	-		1.73 1.80		13.3 21
258.763 10.1875	400.050 15.7500	69.850 2.7500	67.470 2.6563	46.038 1.8125	9.5 6.4	EE221018/221575		1	759	1 280	71.2	284	295	381	359	371	6	23.8	9.5	6.4	0.39	1.52	0.84	26.7
260 — —	360 — 400 —	63.5 — 87 —	63.5 — 87 —		3 2.5 5 4	32952JR 32052JR		1	741 1 170	1 550 2 170	69.6 85.0	274 282	279 287	348 382	328 352	347 383	11 14	15.5 22	2.5 4	2	0.41 0.43	1.48 1.38		18.9 39.5
260.350 10.2500 10.2500 10.2500	365.125 14.3750 419.100 16.5000 422.275 16.6250	58.738 2.3125 85.725 3.3750 86.121 3.3906	84.138 3.3125 79.771 3.1406	61.913 2.4375 (66.675 2.6250 (6.7 3.2	HM252348/HM252310		1 1 1	566 980 1 010	1 070 1 760 1 680	63.7 106.0 78.7	280 280 280	286 296 309	346 406 409	334 369 384	345 394 399	8 6 1	15.9 23.8 19.4	6.4 6.4 6.7	3.2 3.2	0.37 0.60 0.33	1.60 0.99 1.80	0.55 0.99	17.1 42.3 41.2
10.2500 10.2500 10.2500	422.275 16.6250 431.724 16.9970 431.724 16.9970	86.121 3.3906 82.550 3.2500 82.550 3.2500	79.771 3.1406 79.771 3.1406 79.771 3.1406	60.325 2.3750	5.7 3.2 5.7 3.6 5.7 3.6	HM252349/HM252310 HM252348/HM252315 HM252349/HM252315		1 1 1	1 010 1 010 1 010	1 680 1 680 1 680	78.7 75.2 75.2	280 280 280	309 309 309	409 418 418	384 384 384	399 397 397	1 4 4	19.4 22.2 22.2	6.7 6.7 6.7	3.6	0.33 0.33 0.33	1.80 1.80 1.80	0.99	41.2 42.9 42.9
263.525 10.3750	325.438 12.8125	28.575 1.1250	28.575 1.1250	25.400 1.0000	1.6 1.6	38880/38820		1	217	507	48.6	273	281	316	306	312	6	3.2	1.6	1.6	0.37	1.64	0.90	5.08
264.975 10.4321	355.600 14.0000	57.150 2.2500	62.000 2.4409	44.450 1.7500	3.6 3.2	LM451347/LM451310		1	605	1 280	62.3	279	287	343	332	342	8	12.7	3.6	3.2	0.36	1.67	0.92	15.3
266.700 10.5000 10.5000 10.5000 10.5000	325.438 12.8125 355.600 14.0000 393.700 15.5000 444.500 17.5000	57.150 2.2500	57.150 2.2500 69.850 2.7500	44.450 1.7500 5 50.005 1.9687	1.6 1.6 3.6 3.2 5.4 6.4 6.4 6.4	LM451349/LM451310		1 1 1	217 605 738 1 500	507 1 280 1 540 2 820	48.6 62.3 75.4 121.3	276 280 286 286	281 287 314 300	316 343 374 425	306 332 364 390	312 342 377 424	6 8 5 9	3.2 12.7 23.8 31.8	6.4	3.2 6.4	0.37 0.36 0.40 0.58	1.64 1.67 1.49 1.04	0.92 0.82	4.79 14.7 28.3 71.2
269.875 10.6250	381.000 15.0000	74.613 2.9375	74.613 2.9375	57.150 2.2500	6.4 3.2	M252349/M252310		1	854	1 670	69.0	289	295	368	350	363	6	17.5	6.4	3.2	0.33	1.80	0.99	24.5
276.225 10.8750	352.425 13.8750	36.513 1.4375	34.925 1.3750	23.813 0.9375	3.6 3.2	L853049/L853010		1	310	653	71.2	290	295	340	329	337	7	12.7	3.6	3.2	0.54	1.11	0.61	7.53
279.400 11.0000	469.900 18.5000	95.250 3.7500	93.663 3.6875	69.850 2.7500	9.5 3.2	EE722110/722185		1	1 230	2 190	87.2	305	332	457	412	430	7	25.4	9.5	3.2	0.38	1.59	0.88	60.7

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (279.400) ~ 330.200 mm

sign	1		Design

	В	oundary dime	ensions		5	1	De-	Basic load		Load center			Mou	inting d		sions				Con- stant	Axial fact		(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	<i>T</i> mm 1/25.4	<i>B</i> mm 1/25.4	C r r ₁ mm 1/25.4 min. min	Bearing No. 1)	s	sign	C_{r}	$C_{0\mathrm{r}}$	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	max.	a min.	$D_{ m b}$ min.		$S_{ m b}$ min.	$r_{ m a}$ max. і		e	Y_1	Y_0	(kg)
279.400 11.0000	488.950 19.2500	120.650 4.7500	120.650 4.7500	92.075 3.6250 1.2 6.4	EE295110/295193		1	1 680	2 790	92.7	288	328	470	427	446	8	28.6	1.2	6.4	0.31	1.94	1.07	85.5
280 — —	380 — 420 —	63.5 — 87 —	63.5 — 87 —	48 — 3 2.5 65 — 5 4	32956JR 32056JR		1	760 1 200	1 630 2 280	75.1 91.1	294 302	298 305	368 402	347 370	368 402	11 14	15.5 22	2.5 4	2	0.43 0.46	1.39 1.31		20.1 41.7
285.750 11.2500 11.2500	358.775 14.1250 380.898 14.9960	33.338 1.3125 65.088 2.5625	31.750 1.2500 65.088 2.5625	22.225 0.8750 3.6 3.2 49.213 1.9375 3.6 3.2			1	240 664	537 1 410	65.8 75.9	299 299	308 307	346 368	337 356	344 370	6 7	11.1 15.9		-		1.23 1.39		6.75 18.9
288.925 11.3750	406.400 16.0000	77.788 3.0625	77.788 3.0625	60.325 2.3750 6.4 3.2	M255449/M255410		1	1 010	2 210	73.2	308	318	394	373	387	8	17.5	6.4	3.2	0.34	1.77	0.98	30.9
292.100 11.5000	374.650 14.7500	47.625 1.8750	47.625 1.8750	34.925 1.3750 3.6 3.2	L555249/L555210		1	468	971	64.7	306	309	362	351	360	8	12.7	3.6	3.2	0.40	1.49	0.82	11.5
298.450 11.7500	444.500 17.5000	63.500 2.5000	61.913 2.4375	39.688 1.5625 7.9 1.6	EE291175/291750		1	721	1 380	70.0	321	346	435	403	413	11	23.8	7.9	1.6	0.38	1.59	0.87	30.4
300 —	420 — 460 —	76 — 100 —	76 — 100 —	57 — 4 3 74 — 5 4	32960JR 32060JR		1	1 050 1 430	2 210 2 660	79.9 97.9	318 322	324 329	406 442	383 404	405 439	12 15	19 26	3 4		0.39 0.43	1.52 1.38		32.4 57.5
300.038 11.8125	422.275 16.6250	82.550 3.2500	82.550 3.2500	63.500 2.5000 6.4 3.2	HM256849/HM256810		1	990	2 010	76.4	320	328	408	388	402	7	19.1	6.4	3.2	0.34	1.78	0.98	33.6
304.800 12.0000 12.0000 12.0000 12.0000	393.700 15.5000 406.400 16.0000 444.500 17.5000 495.300 19.5000	50.800 2.0000 63.500 2.5000 63.500 2.5000 95.250 3.7500	50.800 2.0000 63.500 2.5000 61.913 2.4375 92.075 3.6250	38.100 1.5000 6.4 3.2 47.625 1.8750 6.4 3.2 39.688 1.5625 7.9 1.6 69.850 2.7500 16 6.4	LM757049/LM757010 EE291201/291750		1 1 1	524 748 721 1 270	1 180 1 580 1 380 2 340	64.8 79.6 70.0 95.2	325 325 328 344	329 324 346 359	380 393 434 475	369 376 403 438	378 390 413 457	5 8 11 6	12.7 15.9 23.8 25.4	6.4 7.9	3.2 1.6		1.67 1.36 1.59 1.49	0.75 0.87	14.6 21.2 29.0 64.8
317.500 12.5000 12.5000 12.5000	444.500 17.5000 447.675 17.6250 622.300 24.5000	63.500 2.5000 85.725 3.3750 147.638 5.8125	85.725 3.3750	39.688 1.5625 7.9 1.6 68.263 2.6875 3.6 3.2 82.550 3.2500 14.3 12.7	HM259049/HM259010		1 1 1-P	721 1 120 2 220	1 380 2 390 3 490	70.0 80.8 210.5	341 332 354	346 346 390	434 434 585	403 410 530	413 427 580	11 8 7	23.8 17.5 65.1	7.9 3.6 14.3	3.2	0.33	1.59 1.79 0.64	0.99	26.0 40.2 179
320 — —	440 — 480 —	76 — 100 —	76 — 100 —	57 — 4 3 74 — 5 4	32964JR 32064JR		1	1 060 1 510	2 270 2 810	85.0 103.0	338 342	342 344	426 462	401 418	426 461	12 16	19 26	3 4	2.5	0.42 0.46	1.44 1.31		34.0 58.7
323.850 12.7500	381.000 15.0000	28.575 1.1250	28.575 1.1250	20.638 0.8125 3.6 3.3	LL758744/LL758715		1	219	570	64.8	339	340	367	363	369	5	7.9	3.6	3.3	0.44	1.36	0.75	5.15
330.200 13.0000	415.925 16.3750	47.625 1.8750	47.625 1.8750	34.925 1.3750 3.6 3.2	L860049/L860010		1	453	1 080	82.8	345	351	402	389	401	6	12.7	3.6	3.2	0.50	1.20	0.66	13.8

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 333.375 ~ 371.475 mm

Design	1
Desidii	- 1 -

	В	oundary dime	nsions					De-	Basic load		Load center			Mou	nting d		ions				Con- stant		l load tors	(Refer.)
d	D	T	B	C	r	r_1	Bearing No. 1)	sign	`		(mm)	$d_{\rm a}$	$d_{\rm b}$	D		D_{b}	$S_{\rm a}$	$S_{\rm b}$	$r_{\rm a}$					Mass (kg)
mm 1/25.4	mm 1/25.4	mm 1/25.4	mm 1/25.4	mm 1/25.4	min.	min.			$C_{\rm r}$	$C_{0\mathrm{r}}$	а	min.	max.	max.	min.	min.	min.	min.	max. r	max.	е	Y_1	Y_0	(Kg)
333.375 13.1250	469.900 18.5000	90.488 3.5625	90.488 3.5625	71.438 2.8125	6.4	3.2	HM261049/HM261010	1	1 220	2 580	84.3	354	365	456	430	446	8	19.1	6.4	3.2	0.33	1.79	0.99	46.2
340 —	460 —	76 —	76 —	57 —	4	3	32968JR	1	1 070	2 340	90.5	358	361	446	420	446	12	19	3	2.5	0.44	1.37	0.75	35.6
342.900 13.5000	450.850 17.7500	66.675 2.6250	66.675 2.6250	52.388 2.0625	8.5	3.6	LM361649/LM361610	1	845	1 980	76.2	367	370	436	420	433	9	14.3	8.5	3.6	0.35	1.70	0.94	27.8
13.5000	457.098 17.9960	66.675 2.6250	63.500 2.5000	46.038 1.8125	3.2	3.2	LM961548/LM961510	1	729	1 670	122.3	357	366	443	420	442	8	20.6	3.2	3.2	0.71	0.84	0.46	28.2
13.5000	533.400 21.0000	76.200 3.0000	76.200 3.0000	50.800 2.0000	4.8	3.2	EE971354/972100	1	1 090	1 790	79.4	360	397	520	482	493	8	25.4	4.8	3.2	0.33	1.80	0.99	53.8
346.075 13.6250	482.600 19.0000	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161363/161900	1	613	1 250	93.7	368	388	462	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	29.4
13.6250	482.600 19.0000	66.675 2.6250	63.500 2.5000	44.450 1.7500	6.7	6.7	EE203136/203190	1	725	1 430	86.6	367	386	462	442	454	6	22.2	6.7	6.7	0.42	1.44	0.79	32.4
13.6250	488.950 19.2500	95.250 3.7500	95.250 3.7500	74.613 2.9375	6.4	3.2	HM262749/HM262710	1	1 350	2 900	88.5	366	382	475	450	466	8	20.6	6.4	3.2	0.33	1.79	0.99	53.3
349.250 13.7500	501.650 19.7500	90.488 3.5625	84.138 3.3125	69.850 2.7500	6.4	3.2	EE333137/333197	1	1 280	2 550	95.2	370	391	488	465	482	7	20.6	6.4	3.2	0.37	1.60	0.88	53.0
354.013 13.9375	469.900 18.5000	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161394/161850	1	613	1 250	93.7	376	388	450	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	24.7
13.9375	488.950 19.2500	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161394/161925	1	613	1 250	93.7	376	388	469	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	28.9
355.600 14.0000	444.500 17.5000	60.325 2.3750	60.325 2.3750	47.625 1.8750	3.6	3.2	L163149/L163110	1	647	1 720	67.0	370	379	431	417	427	8	12.7	3.6	3.2	0.31	1.95	1.07	20.3
14.0000	469.900 18.5000	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161400/161850	1	613	1 250	93.7	377	388	450	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	24.3
14.0000	482.600 19.0000	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161400/161900	1	613	1 250	93.7	377	388	462	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	27.1
14.0000	488.950 19.2500	60.325 2.3750	55.563 2.1875	38.100 1.5000	7.1	6.4	EE161400/161925	1	613	1 250	93.7	377	388	469	440	453	7	22.2	7.1	6.4	0.50	1.20	0.66	28.5
14.0000	501.650 19.7500	74.613 2.9375	66.675 2.6250	50.800 2.0000	6.4	3.2	EE231400/231975	1	790	1 640	97.3	376	409	488	465	480	2	23.8	6.4	3.2	0.44	1.36	0.75	40.5
14.0000	501.650 19.7500	90.488 3.5625	84.138 3.3125	69.850 2.7500	6.4	3.2	EE333140/333197	1	1 280	2 550	95.2	376	391	488	465	482	7	20.6	6.4	3.2	0.37	1.60	0.88	50.7
360 —	480 —	76 —	76 —	57 —	4	3	32972JR	1	1 080	2 400	96.2	378	379	466	438	466	12	19	3	2.5	0.46	1.31	0.72	37.1
368.249 14.4980	523.875 20.6250	101.600 4.0000	101.600 4.0000	79.375 3.1250	6.4	6.4	HM265049/HM265010	1-P	1 590	3 390	94.0	388	408	500	483	500	7	22.2	6.4	6.4	0.33	1.80	0.99	56.6
368.300 14.5000	596.900 23.5000	95.250 3.7500	92.075 3.6250	60.325 2.3750	9.5	6.4	EE181453/182350	1	1 410	2 330	104.3	395	431	575	535	545	11	34.9	9.5	6.4	0.42	1.44	0.79	83.0
14.5000	609.600 24.0000	142.875 5.6250	139.700 5.5000	111.125 4.3750	7.9	6.4	EE321145/321240	1	2 510	4 530	121.4	392	427	585	545	570	7	31.8	7.9	6.4	0.36	1.69	0.93	152
371.475 14.6250	501.650 19.7500	74.613 2.9375	66.675 2.6250	50.800 2.0000	6.4	3.2	EE231462/231975	1	790	1 640	97.3	392	409	488	465	480	2	23.8	6.4	3.2	0.44	1.36	0.75	35.8
14.6250	514.350 20.2500	74.613 2.9375	66.675 2.6250	50.800 2.0000	6.4	3.2	EE231462/232025	1	790	1 640	97.3		409	500	465	480	2		6.4	3.2	0.44	1.36	0.75	39.8

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 381.000 ~ 415.925 mm

		Design	1-1
--	--	--------	-----

	В	oundary dime	nsions				De-	Basic load		Load			Mou	inting o		ions				Con-	Axial	load	(Refer.)
d	D	T	B	С	r	Bearing No. 1)	sign	` '	<u></u>	center (mm)	$d_{\rm a}$	d_{b}	D		D_{h}	S_a	$S_{\rm b}$	$r_{\rm a}$		stant			Mass
mm 1/25.4	mm 1/25.4	mm 1/25.4	mm 1/25.4	mm 1/25.4				C_{r}	C_{0r}	а	min.	max.	max.	min.	min.		min.			е	Y_1	Y_0	(kg)
381.000 15.0000	479.425 18.8750	49.213 1.9375	47.625 1.8750	34.925 1.3750	6.4	3.2 L865547/L865512	1	595	1 280	91.4	401	405	466	454	465	8	14.3	6.4	3.2	0.49	1.23	0.68	18.9
15.0000	508.000 20.0000	63.500 2.5000	58.738 2.3125	38.100 1.5000	6.4	3.2 EE192150/192200	1	689	1 490	101.9	401	412	494	466	479	9	25.4	6.4	3.2	0.53	1.13	0.62	30.0
15.0000	522.288 20.5625	85.725 3.3750	84.138 3.3125	61.913 2.4375	6.4	3.2 LM565949/LM565910	1	1 170	2 590	92.8	401	414	505	480	496	10	23.8	6.4	3.2	0.38	1.56	0.86	50.0
15.0000	523.875 20.6250	85.725 3.3750	84.138 3.3125	61.913 2.4375	6.4	3.2 LM565949/LM565912	1	1 170	2 590	92.8	401	414	510	480	496	10	23.8	6.4	3.2	0.38	1.56	0.86	50.7
15.0000	546.100 21.5000	104.775 4.1250	104.775 4.1250	82.550 3.2500	6.4	6.4 HM266446/HM266410	1-P	1 900	4 210	97.6	401	421	525	505	515	10	22.2	6.4	6.4	0.33	1.80	0.99	79.5
15.0000	546.100 21.5000	104.775 4.1250	104.775 4.1250	82.550 3.2500	6.4	6.4 HM266447/HM26641 0	1-P	1 900	4 210	97.6	401	421	525	505	515	10	22.2	6.4	6.4	0.33	1.80	0.99	79.5
384.175 15.1250	546.100 21.5000	104.775 4.1250	104.775 4.1250	82.550 3.2500	6.4	6.4 HM266448/HM26641	1-P	1 900	4 210	97.6	404	421	525	505	515	10	22.2	6.4	6.4	0.33	1.80	0.99	78.0
15.1250	546.100 21.5000	104.775 4.1250	104.775 4.1250	82.550 3.2500	6.4	6.4 HM266449/HM266410	1-P	1 900	4 210	97.6	404	421	525	505	515	10	22.2	6.4	6.4	0.33	1.80	0.99	78.0
385.763 15.1875	514.350 20.2500	82.550 3.2500	82.550 3.2500	63.500 2.5000	6.4	3.2 LM665949/LM665910	1	1 210	2 710	98.2	406	411	500	477	494	9	19.1	6.4	3.2	0.42	1.43	0.79	44.6
393.700 15.5000	546.100 21.5000	76.200 3.0000	61.120 2.4063	55.562 2.1875	6.4	6.4 EE234154/234215	1	867	1 910	113.3	414	441	525	497	510	1	20.6	6.4	6.4	0.48	1.26	0.69	46.4
396.875 15.6250	546.100 21.5000	76,200 3.0000	61.120 2.4063	55.562 2.1875	6.4	6.4 EE234156/234215	1	867	1 910	113.3	417	441	525	497	510	1	20.6	6.4	6.4	0.48	1.26	0.69	45.5
15.6250	558.800 22.0000	65.088 2.5625	61.120 2.4063	44.450 1.7500	6.4	6.4 EE234156/234220	1	867	1 910	102.2	417	441	535	505	510	10	20.6	6.4	6.4	0.48	1.26	0.69	44.9
406.400 16.0000	508.000 20.0000	61.913 2.4375	61.913 2.4375	47.625 1.8750	3.2	3.2 L467549/L467510	1	851	2 130	82.1	421	428	493	477	489	9	14.3	3.2	3.2	0.37	1.64	0.90	27.2
16.0000	546.100 21.5000	76.200 3.0000	61.120 2.4063	55.562 2.1875	6.4	6.4 EE234160/234215	1	867	1 910	113.3	428	441	520	497	510	1	20.6	6.4	6.4	0.48	1.26	0.69	_
16.0000	546.100 21.5000	87.313 3.4375	87.313 3.4375	68.263 2.6875	6.4	6.4 M667944/M667911	1	1 330	2 870	105.1	428	438	520	510	525	8	19.1	6.4	6.4	0.42	1.44	0.79	53.7
16.0000	558.800 22.0000	65.088 2.5625	61.120 2.4063	44.450 1.7500	6.4	6.4 EE234160/234220	1	867	1 910	102.2	428	441	535	505	510	10	20.6	6.4	6.4	0.48	1.26	0.69	42.0
16.0000	574.675 22.6250	76.200 3.0000	67.866 2.6719	50.800 2.0000	6.7	3.2 EE285160/285226	1	949	1 940	114.9	428	450	560	520	530	5	25.4	6.7	3.2	0.50	1.20	0.66	53.3
16.0000	590.550 23.2500	107.950 4.2500	107.950 4.2500	80.963 3.1875	9.5	6.4 EE833160X/833232	1	1 780	3 540	100.0	434	453	565	545	560	9	27	9.5	6.4	0.32	1.85	1.02	89.7
16.0000	609.524 23.9970	82.550 3.2500	79.375 3.1250	60.325 2.3750	7.9	6.4 EE736160/736238	1	1 520	3 030	95.9	431	477	585	565	570	8	22.2	7.9	6.4	0.35	1.73	0.95	76.2
16.0000	609.600 24.0000	92.075 3.6250	84.138 3.3125	60.325 2.3750	6.7	6.4 EE911600/912400	1	1 430	2 640	105.6	428	466	585	555	570	5	31.8	6.7	6.4	0.38	1.57	0.86	80.1
16.0000	673.100 26.5000	88.900 3.5000	87.833 3.4580	60.325 2.3750	6.4	3.2 EE571602/572650	1	1 470	2 620	111.7	428	505	655	610	620	8	28.6	6.4	3.2	0.40	1.49	0.82	109
409.575 16.1250	546.100 21.5000	87.313 3.4375	87.312 3.4375	68.263 2.6875	6.4	6.4 M667947/M667911	1	1 330	2 870	105.1	431	438	520	510	525	8	19.1	6.4	6.4	0.42	1.44	0.79	52.4
16.1250	546.100 21.5000	87.313 3.4375	87.313 3.4375	66.675 2.6250	6.4	6.4 M667948/M667910	1	1 330	2 870	105.1	431	438	520	510	525	8	20.6	6.4	6.4	0.42	1.44	0.79	52.2
411.163 16.1875	609.600 24.0000	92.075 3.6250	84.138 3.3125	60.325 2.3750	6.7	6.4 EE911618/912400	1	1 430	2 640	105.6	433	466	585	555	570	5	31.8	6.7	6.4	0.38	1.57	0.86	78.1
415.925 16.3750	590.550 23.2500	114.300 4.5000	114.300 4.5000	88.900 3.5000	6.4	6.4 M268749/M268710	1-P	1 980	4 470	103.7	437	460	565	545	560	9	25.4	6.4	6.4	0.33	1.80	0.99	96.1

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 430.213 ~ (488.950) mm

	В	oundary dime	ensions			5	D)e-	Basic load rati		Load enter			Моц	inting o	dimens	ions				Con- stant	Axial fact	load tors	(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4	$egin{array}{ccc} r & r_1 \ { m min.} & { m min.} \end{array}$	Bearing No. 1)	siį	ign	$C_{\rm r}$ $C_{\rm r}$)e	mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	max.		$D_{ m b}$ min.	$S_{\rm a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.		e	Y_1	Y_0	(kg)
430.213 16.9375	603.250 23.7500	76.200 3.0000	73.025 2.8750	50.800 2.0000	6.4 6.4	EE241693/242375	1	1	977 1 8	80 1	122.8	451	473	580	545	560	2	25.4	6.4	6.4	0.53	1.14	0.63	54.0
431.800 17.0000 17.0000 17.0000 17.0000	571.500 22.5000 571.500 22.5000 571.500 22.5000 603.250 23.7500 673.100 26.5000	73.025 2.8750 74.613 2.9375 76.200 3.0000 76.200 3.0000 88.900 3.5000		52.388 2.0625 57.150 2.2500 50.800 2.0000	3.2 3.2 3.2 3.2 6.4 6.4	EE239170/239225A	1 1 1	1 1 1 1 1	980 2 1 979 2 1 980 2 1 977 1 8 1 470 2 6	40 1 50 80 1	96.5 124.4 99.7 122.8	447 447 447 453 453	470 468 470 473 505	555 555 555 580 655	535 535 535 545 610	540 550 540 560 620	5 7 2 2	19.1 22.2 19.1 25.4	3.2 3.2	3.2 3.2 6.4	0.38 0.55 0.38 0.53	1.57 1.10 1.57 1.14 1.49	0.60 0.86 0.63	45.6 47.1 46.8 53.4 97.4
441.325 17.3750	660.400 26.0000	91.280 3.5937	85.725 3.3750	62.705 2.4687			1	1	1 350 2 6		109.5	471	510	635	600	610	7		10.4			1.60		95.5
447.675 17.6250 17.6250 17.6250	552.450 21.7500 565.150 22.2500 635.000 25.0000	44.450 1.7500 44.450 1.7500 120.650 4.7500	44.450 1.7500	31.750 1.2500	3.2 3.2 3.2 3.2 6.4 6.4		1 1 1 -	1 1 -P	636 1 5 636 1 5 2 290 5 2	20	72.4 72.4 113.8	463 463 469	481 481 495	535 550 610	525 525 585	530 530 600	10 10 8	12.7 12.7 25.4	3.2	3.2	0.32 0.32 0.33	1.88 1.88 1.80	-	21.0 23.8 118
450.850 17.7500	603.250 23.7500	85.725 3.3750	84.138 3.3125	60.325 2.3750	6.4 3.2	LM770945/LM770910	1	1	1 380 3 1	70 1	116.0	472	493	585	565	580	10	25.4	6.4	3.2	0.45	1.32	0.73	63.4
456.692 17.9800	660.400 26.0000	92.075 3.6250	91.262 3.5930	63.500 2.5000	6.4 6.4	EE737179X/737262	1	1	1 350 2 6	30 1	110.3	478	510	635	600	610	6	28.6	6.4	6.4	0.37	1.60	0.88	90.5
456.794 17.9840	761.873 29.9950	142.875 5.6250	142.875 5.6250	101.600 4.0000	16 6.4	EE425179A/425299	1-	-P	3 240 5 6	10 1	154.5	497	530	740	685	710	8	41.3	16	6.4	0.44	1.35	0.74	242
457.200 18.0000 18.0000 18.0000	573.088 22.5625 596.900 23.5000 615.950 24.2500	74.613 2.9375 76.200 3.0000 85.725 3.3750	73.025 2.8750	57.150 2.2500 53.975 2.1250 66.675 2.6250	6.4 6.4 9.5 3.2 6.4 6.4	EE244180/244235	1 1 1	1 1 1	1 100 2 9 1 120 2 6 1 410 3 5	20 1	100.4 103.1 98.4	478 485 478	484 492 515	550 580 590	540 555 585	550 570 590	10 7 8	17.5 22.2 19.1	9.5	3.2	0.40 0.40 0.33	1.49 1.48 1.80	0.82	42.7 50.1 71.8
476.250 18.7500	565.150 22.2500	41.275 1.6250	41.275 1.6250	31.750 1.2500	3.2 3.2	LL771948/LL771911	1	1	520 1 5	30	99.3	491	499	550	535	540	8	9.5	3.2	3.2	0.47	1.28	0.70	18.4
479.425 18.8750	679.450 26.7500	128.588 5.0625	128.588 5.0625	101.600 4.0000	6.4 6.4	M272749/M272710	1-	-P	2 470 5 5	50 1	122.2	500	530	655	630	645	7	27	6.4	6.4	0.33	1.80	0.99	140
482.600 19.0000 19.0000	615.950 24.2500 634.873 24.9950	85.725 3.3750 80.963 3.1875		66.675 2.6250 63.500 2.5000	6.4 6.4 6.4 3.2		1	1	1 410 3 5 1 320 3 2		98.4 100.0	505 505	515 530	590 620	585 595	590 605	8 9	19.1 17.5	6.4 6.4		0.33 0.34	1.80 1.75		59.3 66.3
488.671 19.2390	660.400 26.0000	93.663 3.6875	94.458 3.7188	69.850 2.7500	6.4 6.4	EE640191/640260	1-	-P	1 810 3 9	60	98.4	510	530	635	615	630	11	23.8	6.4	6.4	0.31	1.95	1.07	86.9
488.950 19.2500	634.873 24.9950	84.138 3.3125	84.138 3.3125	61.913 2.4375	6.4 3.2	LM772748/LM772710	1	1	1 440 3 4	20 1	124.5	510	515	620	595	610	9	22.2	6.4	3.2	0.47	1.27	0.70	63.7

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (488.950) ~ 759.924 mm

Design
Design

	В	oundary dime	ensions					De-	Basic loa		Load center			Моц	inting o	dimens	sions				Con- stant		l load tors	(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4	r min. m	1	aring No. 1)	sign	$C_{\rm r}$	$C_{0\mathrm{r}}$	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	max.) _a min.	$D_{ m b}$ min.	S_{a} min.	S_{b} min.	$r_{ m a}$ max. г	$r_{\rm b}$	e	<i>Y</i> ₁	Y_0	(kg)
488.950 19.2500	660.400 26.0000	93.663 3.6875	94.458 3.7188	69.850 2.7500	6.4	.4 EE640192	2/640260	1-P	1 810	3 960	98.4	510	530	635	615	630	11	23.8	6.4	6.4	0.31	1.95	1.07	86.8
489.026 19.2530	634.873 24.9950	80.963 3.1875	80.963 3.1875	63.500 2.5000	6.4	.2 EE243192	2/243250	1	1 320	3 290	100.0	510	530	620	595	605	9	17.5	6.4	3.2	0.34	1.75	0.96	63.2
498.475 19.6250	634.873 24.9950	80.963 3.1875	80.963 3.1875	63.500 2.5000	6.4	.2 EE24319 6	06/243250	1	1 320	3 290	100.0	520	530	620	595	605	9	17.5	6.4	3.2	0.34	1.75	0.96	58.6
501.650 19.7500	711.200 28.0000	136.525 5.3750	136.525 5.3750	106.363 4.1875	6.4	.4 M274149	9/M274110	1-P	2 800	6 410	126.8	525	550	685	655	675	10	30.2	6.4	6.4	0.33	1.80	0.99	164
520.700 20.5000	736.600 29.0000	88.900 3.5000	81.758 3.2188	53.975 2.1250	6.4	.2 EE98205 1	51/982900	1-P	1 470	2 580	136.4	545	570	720	675	690	5	34.9	6.4	3.2	0.48	1.26	0.69	97.5
536.575 21.1250	761.873 29.9950	146.050 5.7500	146.050 5.7500	114.300 4.5000	6.4	.4 M276449	9/M276410	1-P	3 290	7 190	135.7	560	580	740	700	720	9	31.8	6.4	6.4	0.33	1.80	0.99	202
539.750 21.2500	635.000 25.0000	50.800 2.0000	50.800 2.0000	38.100 1.5000	6.4	.4 LL575349	9/LL575310	1	752	1 970	101.4	565	560	610	610	620	9	12.7	6.4	6.4	0.41	1.48	0.81	25.7
549.097 21.6180	692.150 27.2500	80.963 3.1875	80.962 3.1875	61.913 2.4375	6.4	.4 L476548 /	3/L476510	1	1 410	3 700	113.6	570	580	670	650	660	9	19.1	6.4	6.4	0.38	1.59	0.88	67.7
549.275 21.6250	692.150 27.2500	80.963 3.1875	80.963 3.1875	61.913 2.4375	6.4	.4 L476549 /	/L476510	1	1 410	3 700	113.6	575	580	670	650	660	9	19.1	6.4	6.4	0.38	1.59	0.88	67.5
558.800 22.0000	736.600 29.0000	88.108 3.4688	88.108 3.4688	63.500 2.5000	6.4	.4 EE843220	20/843290	1-P	1 730	4 020	110.7	580	610	710	695	705	9	24.6	6.4	6.4	0.34	1.75	0.96	94.2
584.200 23.0000	685.800 27.0000	49.213 1.9375	49.213 1.9375	34.925 1.3750	3.6	.2 LL778149	9/LL778110	1	723	1 930	113.8	600	610	670	660	665	10	14.3	3.6	3.2	0.44	1.36	0.75	29.4
607.720 23.9260	787.400 31.0000	93.663 3.6875	93.663 3.6875	69.850 2.7500	6.4	.4 EE64923 9	39/649310	1-P	1 980	4 970	126.9	630	650	760	740	750	12	23.8	6.4	6.4	0.37	1.61	0.89	113
609.600 24.0000 24.0000 24.0000	762.000 30.0000 787.400 31.0000 812.800 32.0000		92.075 3.6250 93.663 3.6875 82.550 3.2500	71.438 2.8125 69.850 2.7500 60.325 2.3750	6.4		7/L879910 10/649310 10/743320	1 1-P 1-P	1 700 1 980 1 910	4 510 4 970 4 290	153.0 126.9 112.7	635 635 635	640 650 660	735 760 790	720 740 755	740 750 765	9 12 12	23.8 23.8 22.2			0.49 0.37 0.33	1.61		91.2 112 112
660.400 26.0000	854.075 33.6250	85.725 3.3750	85.468 3.3649	60.325 2.3750	9.5	.4 EE74926 0	60/749336	1-P	1 820	4 000	125.1	690	705	830	800	810	8	25.4	9.5	6.4	0.35	1.71	0.94	111
685.800 27.0000	876.300 34.5000	93.663 3.6875	92.075 3.6250	69.850 2.7500	6.4	.4 EE65527 0	70/655345	1-P	2 050	5 390	149.1	710	735	850	830	840	9	23.8	6.4	6.4	0.42	1.44	0.79	132
749.300 29.5000	990.600 39.0000	159.500 6.2795	160.338 6.3125	123.000 4.8425	6.4	.4 LM28364	49/LM283610	 1-P	4 580	11 900	261.4	775	800	960	930	950	12	36.5	6.4	6.4	0.32	1.88	1.04	327
759.924 29.9183	889.000 35.0000	88.900 3.5000	88.900 3.5000	71.999 2.8346	3.2	.2 L183448 /	3/L183410	1	1 860	5 630	123.1	780	785	870	860	870	11	16.9	3.2	3.2	0.31	1.97	1.08	90.5

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 762.000 ~ 1 092.200 mm

	В	oundary dime	ensions			Paradara No. 1)	De-	Basic loa		Load center			Mou	nting o	dimens	sions			Con- stant	Axial loa	d (Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	<i>B</i> mm 1/25.4	C mm 1/25.4	$egin{array}{cccc} r & r_1 \ & & & & & & & & & & & & & & & & & & $	Bearing No. 1)	sign	C_{r}	$C_{0\mathrm{r}}$	(mm)	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.	a min.	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	$r_{ m a}$ max. n	r _b	Y_1 Y_0	(kg)
762.000 30.0000 30.0000						L183449/L183410 EE752300/752380	1 1-P	1 860 1 830	5 630 4 790	123.1 159.7	780 785	785 820	870 940	860 910	870 920	11 1	16.9 27		3.2 0.31 3.2 0.40	1.97 1.08 1.49 0.88	88.8
1 092.200 43.0000			88.900 3.5000		6.4 6.4	EE776430/776520	1-P	2 660	7 140	170.5	1 120	1 140	1 290	1 260	1 280	10	25.4	6.4	6.4 0.57	1.05 0.58	3 240

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TDI type *d* **100 ~ 150 mm**

		В	ounda	ry dime	nsion	s				Basic loa					Mount	ing di		ons		Constant	Axial	load fac	tors	(Refer.)
d		D		В		T		r	r_1	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	$d_{\rm a}$	L	`	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	Mass (kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	min.	Cr	C _{0r}			max.	max.	min.	min.	max.	max.	E	12	13	10	(6)
100	_	165	-	52	_	52	_	2	2.5	237	384	45320	1	119	155	148	3.9	2	2	0.35	1.95	2.90	1.91	4.26
110	_	180	_	56	_	56	_	2	2.5	300	505	45322	1	128	170	160	4	2	2	0.35	1.95	2.90	1.91	5.40
120	_	180	_	46		46	_	2	2.5	229	424	45224	1	138	170	163	4	2	2	0.26		3.80		4.08
	_	200	_	62	_	62	_	2	2.5	353	598	45324	1	142	190	178	4	2	2	0.35	1.95	2.90	1.91	7.92
127.000	5.0000	182.563	7.1875	76.200	3.0000	76.200	3.0000	3.2	1.6	389	858	48290D/48220	1	141	171	167	3.8	3.2	1.6	0.31	2.21	3.29	2.16	6.57
	5.0000	234.950	9.2500	139.700	5.5000	152.400	6.0000	3.2	5.2	897	1 650	95499D/95925	1	151	223	205	8	3.2	5.2	0.37	1.83	2.72	1.79	27.1
	5.0000	254.000	10.0000	161.925	6.3750	171.450	6.7500	6.4	3.2	1 190	2 010	EE153053D/153100	1	154	236	218	11	6.4	3.2	0.32	2.10	3.13	2.05	39.2
130	_	200	_	52	_	52	_	2	2.5	300	548	45226	1	152	190	179	4	2	2	0.27	2.47	3.67	2.41	5.96
	_	210	_	64	_	64	_	2	2.5	412	657	45326	1	153	200	185	4	2	2	0.36	1.87	2.79	1.83	8.41
130.005	5.1183	215.900	8.5000	123.825	4.8750	123.825	4.8750	3.2	1.6	551	1 100	74510D/74850	1	154	204	194	5	3.2	1.6	0.49	1.38	2.06	1.35	17.3
133.350	5.2500	196.850	7.7500	92.075	3.6250	92.075	3.6250	3.2	1.6	534	1 120	67390D/67322	1	146	185	181	5	3.2	1.6	0.34	1.96	2.92	1.92	9.46
	5.2500	203.200	8.0000	92.075	3.6250	92.075	3.6250	3.2	1.6	534	1 120	67390D/67320	1	146	191	181	5	3.2	1.6	0.34	1.96	2.92	1.92	10.9
136.525	5.3750	190.500	7.5000	77.788	3.0625	77.788	3.0625	3.2	1.6	405	944	48393D/48320	1	150	179	175	4.7	3.2	1.6	0.32	2.10	3.13	2.06	6.87
	5.3750	225.425	8.8750	120.650	4.7500	120.650	4.7500	3.2	1.6	811	1 610	H228649D/H228610	1	156	214	202	6	3.2	1.6	0.33	2.03	3.02	1.98	19.4
139.700	5.5000	200.025	7.8750	77.788	3.0625	75.408	2.9688	3.3	0.8	422	982	48680D/48620	1	155	188	183	4	3.3	0.8	0.34	2.01	2.99	1.96	8.01
140	_	210	_	53	_	53	_	2	2.5	311	564	45228	1	159	200	188	4	2	2	0.27	2.47	3.67	2.41	6.45
	_	225	_	68	_	68	_	2.5	3	486	807	45328	1	160	213	210	4	2	2.5	0.40	1.68	2.50	1.64	10.0
	_	250	_	88	_	88	_	3	4	615	915	45T282509	1	166	236	224	7.5	2.5	3	0.43	1.57	2.34	1.53	16.0
149.225	5.8750	254.000	10.0000	120.650	4.7500	120.650	4.7500	3.2	1.6	941	1 830	99587D/99100	1	172	242	224	8	3.2	1.6	0.41	1.66	2.47	1.62	26.0
150	_	225	_	56	_	56	_	2.5	3	355	686	45230	1	174	213	203	4	2	2.5	0.26	2.55	3.80	2.50	7.87
	_	225	_	75	_	75	_	2.5	1	510	965	45T302308	1	167	213	206	6.5	2	0.8	0.40	1.68	2.50	1.64	9.78
	_	250	_	80	_	80	_	2.5	3	593	955	45330	1	179	238	220	4	2	2.5	0.35	1.95	2.90	1.91	15.5
	_	250	_	100	_	100	_	2.5	3	768	1 510	45T302510A	1	179	238	226	6.5	2	2.5	0.40	1.68	2.50	1.64	20.0

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 152.400 ~ (190) mm

		Bounda	ary dime	nsion	S				Basic loa					Mount			ions		Constant	Axial	load facto	rs (Refer.)
	ı		I	ı					(kl	N)	Bearing No. 1)	Design			(mm	_						Mass
d	1/25.4	D 1/25 4	В		T	1/25.4		<i>r</i> ₁	$C_{\rm r}$	C_{0r}			da	D	-	$S_{\rm a}$	ra	$r_{\rm b}$	e	Y_2	Y_3 Y	(kg)
mm	1/25.4	mm 1/25.4	mm	1/25.4	mm	1/25.4	min.	min.					max.	max.	min.	min.	max.	пах.				
152.400	6.0000	222.250 8.7500		3.3125	84.138			1.6	541	1 190	M231649D/M231610	1	168	214	202	6	1.6	1.6	0.33		3.02 1.	
	6.0000	254.000 10.0000	133.350		133.350		3.2	1.6	941	1 830	99600D/99100	1	172	242	224	8	3.2	1.6	0.41		2.47 1.	
	6.0000	254.000 10.0000	158.750	6.2500	158.750	6.2500	3.2	1.6	941	1 830	99603D/99100	1	172	242	224	8	3.2	1.6	0.41	1.66	2.47 1.	31.1
160	_	240 —	60	_	60	_	2.5	3	421	705	45232	1	184	228	217	5	2	2.5	0.24	2.79	4.15 2.	3 9.22
	_	240 —	110	_	110	_	2.5	3	753	1 530	45T322411	1	176	228	220	6	2	2.5	0.33	2.03	3.02 1.	16.7
	_	270 —	86	_	86	_	2.5	3	678	1 100	45332	1	193	258	237	4	2	2.5	0.35	1.95	2.90 1.	19.8
170	_	260 —	67	_	67	_	2.5	3	521	956	45234	1	195	248	233	5	2	2.5	0.31	2.21	3.29 2.	6 12.4
	_	280 —	88	_	88	_	2.5	3	723	1 210	45334	1	201	268	247	5	2	2.5	0.33	2.03	3.02 1.	21.6
177.800	7.0000	247.650 9.7500	90.488	3.5625	90.488	3.5625	3.2	1.6	593	1 400	67790D/67720	1	190	236	227	5	3.2	1.6	0.44	1 54	2.29 1.	0 13.3
	7.0000	279,400 11.0000	112.710		112.713		3.2	1.6	828	1 640	82680D/82620	1	197	268	252	7	3.2	1.6	0.52	1.29	1.92 1.	
	7.0000	285.750 11.2500	106.360	4.1874	106.363	4.1875		1.6	760	1 430	EE91700D/91112	1	201	274	252	4	3.2	1.6	0.43	1.57	2.34 1.	
	7.0000	288.925 11.3750	123.825	4.8750	123.825	4.8750	3.2	1.6	943	1 920	94706D/94113	1	201	277	255	8	3.2	1.6	0.47	1.44	2.15 1.	1 32.1
	7.0000	288.925 11.3750	123.825	4.8750	123.825	4.8750	3.2	1.6	1 080	1 950	HM237546D/HM237510	1	201	277	261	8	3.2	1.6	0.32	2.12	3.15 2.	7 30.8
	7.0000	288.925 11.3750	158.750	6.2500	158.750	6.2500	3.2	1.6	1 080	1 950	HM237546DD/HM237510	1	201	277.5	261	8	3.2	1.6	0.32	2.12	3.15 2.	7 37.0
	7.0000	304.800 12.0000	109.438	4.3086	114.300	4.5000	3.2	3.2	974	1 690	EE280700D/281200	1	208	293	272	7	3.2	3.2	0.36	1.87	2.79 1.	33.1
180	_	254 —	90	_	90	_	2.5	3	572	1 270	45T362509	1	199	242	234	6	2	2.5	0.33	2 03	3.02 1.	14.0
	_	280 —	74	_	74	_	2.5	3	575	1 050		1	208	268	250	5	2	2.5	0.28		3.61 2.	
	_	300 —	96	_	96	_	3	4	860	1 370		1	210	286	263	5	2.5	3	0.35		2.90 1.	
	_	330 —	190	_	190	_	5	1.5	1 680	3 260	45T363319	1	202	308	286	6	4	1.5	0.58	1.17	1.75 1.	5 71.8
187.325	7 3750	269.875 10.6250	101.600	4 0000	101.600	4 0000	3.2	1.6	704	1 610	M238849D/M238810	1	207	258	246	5	3.2	1.6	0.33	2.03	3.02 1.	18 19.0
107.323	7.3750	319.964 12.5970			161.925			3.2	1 280	2 450	EE222074D/222126	1	212	305	281	4	4.8	3.2	0.33	1.68	2.50 1.	
	7.3750	319.964 12.5970			161.925			3.2	1 460	2 530	H239649D/H239610	1	212	305	287	5	4.8	3.2	0.32		3.15 2.	
	7.3750	320.675 12.6250	168.275		161.925		4.8	3.2	1 280	2 450	EE222074D/222128	1	212	306	281	4	4.8	3.2	0.40	1.68	2.50 1.	
	7.3750	320.675 12.6250	168.275		161.925		4.8	3.2	1 460	2 530	H239649D/H239612	1	212	306	287	5	4.8	3.2	0.40		3.15 2.	
100		000	75		75		0.5		FOC	1 100	45220	4	010	070	000		0	0.5	0.00	0.55	0.00	0 17.7
190		290 — 300 —	75 140	_	75 140		2.5	3 1.5	599	1 130 2 110		1	219 207	278 288	260 268	5 7	2	2.5	0.26 0.62		3.80 2. 1.62 1.	
		300 —	140	_	140	_	2.5	1.5	1 010	2 1 1 0	431303014	1	207	200	200	1	2	- 1	0.02	1.09	1.0∠ 1.	35.9

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TDI type *d* (190) ~ 220 mm

		Bound	ary dime	nsion	s				Basic loa						Mount			ions		Constant	Axial	load fa	ctors	(Refer.)
	1		1		I.	1			(k	N)	Bearing No. 1)	De	esign			(mm)	·							Mass
<i>d</i>	1/05 4	D	В	1/05 4	T	1/25.4	r	r_1	$C_{\rm r}$	C_{0r}				da	<i>D</i>	-	Sa		$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
-	1/25.4	mm 1/25.4		1/25.4		1/25.4	min.	min.						max.	max.		min.	max.	пах.					
190	-	320 —	104	_	104	_	3	4	981	1 590	45338		1	224	306	280	5	2.5	3	0.35	1.95	2.90	1.91	34.0
190.500	7.5000	365.049 14.3720	158.750	6.2500	152.400	6.0000	3.2	3.2	1 610	2 920	EE420750D/421437		1	239	353	317	6	3.2	3.2	0.40	1.68	2.50	1.64	77.2
7	7.5000	368.300 14.5000	158.750	6.2500	152.400	6.0000	3.2	3.2	1 610	2 920	EE420750D/421450		1	239	356	317	6	3.2	3.2	0.40	1.68	2.50	1.64	79.4
199.975	7.8730	317.500 12.5000	133.350	5.2500	133.350	5.2500	3.2	6.4	1 040	2 270	93788D/93125		1	223	306	279	7	3.2	6.4	0.52	1 20	1.92	1 26	40.1
155.575		017.000	100.000		100.000		0.2	0.4	1 040	2210	337600733123			220	000	210		0.2	0.4	0.02	1.25	1.52	1.20	40.1
200	_	310 —	82	_	82	_	2.5	3	728		45240		1	234	298	280	5	2	2.5	0.26		3.80		22.9
	-	340 —	112	_	112	_	3	4	1 080	1 840			1	244	326	300	5	2.5	3	0.35	1.95		1.91	41.9
	_	340 —	150	_	150	_	3	1.5	1 450	2 950	45T403415		1	233	326	301	9.5	2.5	1.5	0.43	1.57	2.34	1.53	57.7
203.200	8.0000	317.500 12.5000	123.825	4.8750	123.825	4.8750	3.2	1.6	1 040	2 270	93800D/93125		1	223	305	278	7	3.2	1.6	0.52	1.29	1.92	1.26	36.5
8	8.0000	317.500 12.5000	133.350	5.2500	133.350	5.2500	3.2	6.4	1 040	2 270	93801D/93125		1	223	305	279	7	3.2	6.4	0.52	1.29	1.92	1.26	39.1
1	8.0000	365.049 14.3720	158.750	6.2500	152.400	6.0000	3.2	3.2	1 610	2 920	EE420800D/421437		1	239	352	317	6	3.2	3.2	0.40	1.68	2.50	1.64	72.5
8	8.0000	368.300 14.5000	158.750	6.2500	152.400	6.0000	3.2	3.2	1 610	2 920	EE420800D/421450		1	239	355	317	6	3.2	3.2	0.40	1.68	2.50	1.64	74.8
206.375	8 1250	282.575 11.1250	87.313	3 /1375	87.313	3 /1375	3.2	0.0	E00	1 /10	67985D/67920		1	220	270	260	7	3.2	0.8	0.51	1 22	1.97	1 20	16.1
	8.1250	336,550 13.2500			184.150		3.2				H242649D/H242610		1	220 233	324	260 301	9	3.2	1.6	0.33		3.02		65.1
	0.1200	000.000 10.2000	100.973	7.1200	104.130	7.2000	0.2	1.0	1770	3 000	112420435/11242010		'	200	024	301	3	0.2	1.0	0.00	2.00	0.02	1.30	03.1
215.900	8.5000	285.750 11.2500	85.725	3.3750	85.725	3.3750	3.2	0.8	611	1 560	LM742749D/LM742710		1	228	273	266	6	3.2	0.8	0.48		2.09		14.9
1	8.5000	288.925 11.3750	85.750	3.3760	85.725	3.3750	3.2	0.8	611	1 560	LM742749D/LM742714		1	228	276	266	6	3.2	0.8	0.48	1.40	2.09	1.37	15.8
216.103	8.5080	330,200 13.0000	130.175	5.1250	127.000	5.0000	3.2	1.6	1 140	2 360	9974D/9920		1	237	317	301	7	3.2	1.6	0.55	1 22	1.82	1 19	38.8
	8.5080	330,200 13.0000			142.875		3.2	-			9977D/9920		1	239	317	301	7	3.2	3.2	0.55		1.82		43.3
218.000	-	314.325 —	115.888	_	115.888	_	3.2	1.6	1 120	2 550	45T443112		1	240	304	289	9	3.2	1.6	0.33	2.03	3.02	1.98	30.0
219.075	8.6250	358.775 14.1250	196.850	7.7500	200.025	7.8750	6.4	1.6	2 120	4 580	H244849D/H244810		1	245	340	320	9	6.4	1.6	0.33	2.03	3.02	1.98	80.9
220	_	320 —	76.2	_	76.2	_	2.5	3	779	1 570	45T443208		1	246	308	293	8.5	2	2.5	0.28	2.45	3.64	2.39	21.2
	_	340 —	90	_	90	_	3	4	805	1 460	45244		1	259	326	306	5	2.5	3	0.28	2.43	3.61		28.5
	_	370 —	120	_	120	_	4	5	1 210	2 060			1	263	352	324	5	3	4	0.35	1.95		1.91	50.8
	_	400 —	250	_	254	_	4	1.5	3 110	5 970	45T444025		1-P	252	391	355	13	3	1.5	0.40	1.68	2.50	1.64	139
										0								-						1

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 220.663 ~ 254.000 mm

,		Во	unda	ry dime	nsion	s				Basic loa					Moun	ting di		ions		Constant	Axial	load fa	ctors	(Refer.)
,	1		1			T		2)	$r_1^{(2)}$	(k	N)	Bearing No. 1)	Desig		,	(mm D _a	S_a		**					Mass
d mm	1/25.4	D mm	1/25.4	B mm	1/25.4	_	1/25.4	min.		$C_{\rm r}$	C_{0r}			max.	max.	y _a min.	-	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
220.663	8.6875	314.325	12.3750	115.888	4.5625	115.888	4.5625	3.2	1.6	1 050	2 450	M244249D/M244210	1	241	301	289	5	3.2	1.6	0.33	2.03	3.02	1.98	29.0
228.6	_	431.8	_	177.8	_	177.8	_	6	6	2 380	4 280	45T464318D	1-P	280	403	377	10	5	5	0.40	1.68	2.50	1.64	123
228.600	9.0000	400.050	15.7500	139.700	5.5000	139.700	5.5000	3.2	3.2	1 560	2 950	EE529091D/529157	1	277	387	352	6	3.2	3.2	0.31	2.19	3.25	2.14	76.3
230	_	350	_	90	_	90	_	3	4	791	1 560	45246	1	267	336	318	6	2.5	3	0.28	2.43	3.61	2.37	30.6
234.950	9.2500 9.2500	327.025 384.175		93.663 209.550		93.663 209.550		_	1.6 1.6			8576D/8520 H247549D/H247510	1 1-P	256 262	314 365	300 342	7 8	3.2 6.4	1.6 1.6	0.41 0.33		2.47 3.02		24.2 99.3
235	_	375	_	170	_	170	_	4	1.5	1 860	4 020	45T484012	1	268	366	338	8	3	1.5	0.33	2.03	3.02	1.98	73.7
240	_ _ _	360 400 395	_ _ _	92 128 124	_ _ _	92 128 124	_	3 4 4	4 5 5	915 1 430 1 430	2 470	45248 45348 45T484012	1 1 1	271 286 283	346 382 373	325 354 358	5 5 10	2.5 3 3	3 4 4	0.32 0.35 0.40	1.95	3.15 2.90 2.50	1.91	32.2 65.4 60.3
241.300	9.5000 9.5000 9.5000	355.524 355.600 368.300	14.0000	109.525 92.710 92.710	3.6500	109.525 92.862 92.862	3.6560	3.2	SP 1.6 1.6	870		45T483611 EE170951D/171400 EE170951D/171450	1 1 1	267 278 278	336 343 355	319 328 328	6 10 10	2.5 3.2 3.2	2 1.6 1.6	0.35 0.36 0.36	1.86	2.84 2.77 2.77	1.82	37.0 32.6 37.8
241.478	9.5070	349.148	13.7460	107.950	4.2500	107.950	4.2500	3.2	1.6	950	2 050	EE127097D/127135	1	268	336	320	7	3.2	1.6	0.35	1.91	2.84	1.86	34.0
244.475	9.6250 9.6250	327.025 381.000		92.075 146.050		92.075 146.050		-	1.6 3.2		1 890 2 930	LM247748D/LM247710 EE126096D/126150	1 1	265 269	314 365	306 337	7 5	3.2 4.8	1.6 3.2	0.32 0.52		3.13 1.95		21.5 62.2
247.650	9.7500 9.7500	400.050 406.400		119.060 215.900		114.300 219.075			1.6 3.2			EE220975D/221575 HH249949D/HH249910	1 1-P	292 279	381 387	360 362	6 11	6.4 6.4	1.6 3.2	0.39 0.33	1.71 2.03	2.54 3.02		56.4 116
	10.0000 10.0000	355.600 358.775 368.300	14.1250 14.5000	92.710 130.175 92.710	5.1250 3.6500	92.862	5.1250 3.6560	3.2 3.2	1.6 3.2 1.6	1 330 870	3 170 1 850	EE171000D/171400 M249748D/M249710 EE171000D/171450	1 1 1	278 277 278	343 346 355	330.1 328	10	3.2 3.2 3.2	1.6 3.2 1.6	0.36 0.33 0.36	2.03 1.86	2.77 3.02 2.77	1.98 1.82	29.1 42.1 34.2
	10.0000	444.500	0000	133.350	5.2500	133.350	3.2300	6.4	3.2	14/0	2//0	EE822101D/822175	1	311	425	393	7	6.4	3.2	0.42	1.62	2.42	1.59	86.9

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

TDI type d 260 ~ 299.974 mm

		Bounda	ary dimension	s			Basic loa		2			Mount	ing dir		ons		Constant	Axial	load fac	- 1	(Refer.)
$_{\rm mm}^{~d}$	1/25.4	<i>D</i> mm 1/25.4	B mm 1/25.4	T mm 1/2	<i>r</i> 5.4 min.	r_1 min.	$C_{ m r}$	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
260	_	400 —	104 —	104 -	- 4	5	1 140	2 120	45252	1	302	382	360	6	3	4	0.25	2.74	4.08	2.68	48.1
	_	400 —	150 —	150 –	- 4	5	1 630	3 540	45T524015	1	294	382	361	9	3	4	0.33	2.03	3.02	.98	70.0
	_	420 —	170 —	170 –	- 4	5	2 150	4 260	45T524217	1	297	402	381.5	11.5	3	4	0.33	2.03	3.02	.98	92.5
	-	440 —	144 —	144 -	- 4	5	1 890	3 440	45352	1	313	422	386	6	3	4	0.35	1.95	2.90	.91	92.2
260.350	10.2500	365.125 14.3750	107.950 4.2500	107.950 4.2	500 6.4	3.2	970	2 150	EE134102D/134143	1	283	346	334.7	8	6.4	3.2	0.37	1.80	2.69	.76	34.4
	10.2500	400.050 15.7500	119.060 4.6874	114.300 4.5		6.4	1 300		EE221025D/221575	1	292	381	360	6	6.4	6.4	0.39	1.71		.67	51.8
	10.2500	422.275 16.6250	152.400 6.0000	139.700 5.5	000 3.2	3.6	1 730	3 360	HM252347D/HM252310	1	306	409	385	1	3.2	3.6	0.33	2.03	3.02	.98	78.8
	10.2500	422.275 16.6250	155.575 6.1250	152.400 6.0	000 3.2	6.4	1 730	3 360	HM252348D/HM252310	1	304	409	385	1	3.2	6.4	0.33		3.02		81.5
	10.2500	431.724 16.9970	148.433 5.8438	152.400 6.0	000 3.6	6.4	1 730	3 360	HM252348D/HM252315	1	304	418	385	4	3.6	6.4	0.33	2.03	3.02	.98	87.1
266.700	10.5000	355.600 14.0000	107.950 4.2500	109.538 4.3	125 3.2	1.6	1 040	2 550	LM451349D/LM451310	1	285	343	332	8	3.2	1.6	0.36	1.87	2.79	.83	29.5
	10.5000	393.700 15.5000	130.175 5.1250	130.175 5.1	250 6.4	3.2	1 270	3 090	EE275106D/275155	1	309	374	365	5	6.4	3.2	0.40	1.68	2.50	.64	55.3
269.875	10.6250	381.000 15.0000	136.525 5.3750	136.525 5.3	750 3.2	3.2	1 460	3 350	M252349D/M252310	1	291	368	351	6	3.2	3.2	0.33	2.03	3.02	.98	48.4
276.225	10.8750	393.700 15.5000	130.175 5.1250	130.175 5.1	250 6.4	1.6	1 270	3 090	EE275109D/275155	1	309	374	365	5	6.4	1.6	0.40	1.68	2.50	.64	51.2
	10.8750	406.400 16.0000	122.240 4.8126	130.175 5.1	250 6.4	1.6	1 270	3 090	EE275109D/275160	1	309	387	366	9	6.4	1.6	0.40	1.68	2.50	.64	57.2
279.400	11.0000	393.700 15.5000	127.000 5.0000	127.000 5.0	000 6.4	1.6	1 200	2 780	EE135111D/135155	1	305	374	361	9	6.4	1.6	0.38	1.77	2.64	.73	48.9
	11.0000	457.200 18.0000	244.475 9.6250	244.475 9.6	250 6.4	1.6	3 300	7 540	HH255149D/HH255110	1	315	438	407	11	6.4	1.6	0.33	2.03	3.02	.98	166
279.578	11.0070	380.898 14.9960	117.475 4.6250	117.475 4.6	250 3.2	1.6	1 140	2 820	LM654644D/LM654610	1	303	368	357	7	3.2	1.6	0.43	1.57	2.34	.53	38.9
280	_	420 —	106 —	106 –	- 4	5	1 190	2 470	45256	1	321	402	370	6	3	4	0.25	2.69	4.00	2.63	51.9
285.750	11.2500	380.898 14.9960	117.475 4.6250	117.475 4.6	250 3.2	1.6	1 140	2 820	LM654648D/LM654610	1	303	368	357	7	3.2	1.6	0.43	1.57	2.34	.53	36.4
288.925	11.3750	406.400 16.0000	144.463 5.6875	144.463 5.6	875 3.2	3.2	1 720	4 420	M255449D/M255410	1	316	394	374	8	3.2	3.2	0.34	2.00	2.97	.95	61.4
292.100	11.5000	422.275 16.6250	130.175 5.1250	130.175 5.1	250 3.2	6.4	1 580	3 410	EE330116D/330166	1	321	409	388	7	3.2	6.4	0.32	2.11	3.14	2.06	59.9
299.974	11.8100	438.048 17.2460	133.350 5.2500	134.938 5.3	125 4.8	3.2	1 350	3 230	EE129119D/129172	1	339	422	401	7	4.8	3.2	0.40	1.68	2.50	.64	68.7

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 300 ~ 346.075 mm

		Bounda	ary dime	nsion	S				Basic loa (kl		Descripe No. 1)	Daniem		Mount	ing dii (mm		ions		Constant	Axial	load fa	ctors	(Refer.)
$_{\rm mm}^{d}$	1/25.4	<i>D</i> mm 1/25.4	B mm	1/25.4	mm T		$r^{2)}$ min. r	$r_1^{\ 2)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} max.	D max.	a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
300	_	460 — 500 —	118 160	_	118 160	_		5 6	1 610 2 120	3 150 4 240	45260 45360	1 1	350 356	442 478	418 440	6 6	3 4	4 5	0.25 0.35		4.08 2.90		78.5 129
300.038	11.8125	422.275 16.6250	150.813	5.9375	150.813	5.9375	3.2	3.2	1 700	4 030	HM256849D/HM256810	1	324	408	389	7	3.2	3.2	0.34	2.00	2.98	1.96	66.2
303.213	11.9375	495.300 19.5000	263.525	10.3750	263.525	10.3750	6.4	3.2	3 990	9 340	HH258249D/HH258210	1-P	342	475	442	8	6.4	3.2	0.33	2.03	3.02	1.98	207
304.648	11.9940	438.048 17.2460	131.763	5.1875	131.763	5.1875	3.2	3.2	1 510	3 450	EE329117D/329172	1	337	424	400	10	3.2	3.2	0.33	2.04	3.04	2.00	65.9
304.800	12.0000 12.0000 12.0000	419.100 16.5000 444.500 17.5000 495.300 19.5000	130.175 111.125 171.450	4.3750	130.175 107.950 165.100	4.2500		7.9	1 420 1 240 2 180	2 760	M257149D/M257110 EE291200D/291750 EE724121D/724195	1 1 1	331 344 355	399 434 475	388 404 439	7 11 6	6.4 1.6 6.4	1.6 7.9 3.2	0.33 0.38 0.40	1.79	3.02 2.66 2.50	1.75	53.8 58.7 130
304.902	12.0040	412.648 16.2460	128.588	5.0625	128.588	5.0625	3.2	3.2	1 370	3 340	M257248D/M257210	1	330	399	386	6	3.2	3.2	0.32	2.12	3.15	2.07	48.8
305.003	12.0080	438.048 17.2460	133.350	5.2500	134.938	5.3125	4.8	3.2	1 350	3 230	EE129123D/129172	1	339	421	401	7	4.8	3.2	0.40	1.68	2.50	1.64	66.2
305.054	12.0100	499.948 19.6830	200.000	7.8740	200.000	7.8740	6.4	3.2	2 810	5 820	HM858548D/HM858511	1	343	480	447	10	6.4	3.2	0.49	1.36	2.03	1.33	157
317.500	12.5000	447.675 17.6250	158.750	6.2500	158.750	6.2500	3.3	1.6	1 920	4 770	HM259049D/HM259010	1	346	434	412	10	3.3	1.6	0.33	2.02	3.00	1.97	80.2
320	_ _ _	450 — 480 — 540 —	110 121 176	_ _ _	110 121 176	_ _ _	4	4 5 6	1 270 1 630 2 690	3 180	45T644511 45264 45364R	1-P 1 1	352 368 378	436 462 518	416 434 474	5 6 6	2.5 3 4	3 4 5	0.38 0.26 0.32	2.55	2.64 3.80 3.15	2.50	54.1 77.8 167
333.375	13.1250	469.900 18.5000	166.688	6.5625	166.688	6.5625	3.2	3.2	2 320	5 680	HM261049D/HM261010	1-P	360	456	433	8	3.2	3.2	0.33	2.02	3.00	1.97	92.8
340	_	580 —	190	_	190	_	5	6	3 290	5 470	45368	1	401	558	515	6	4	5	0.32	2.12	3.15	2.07	202
342.900	13.5000	533.400 21.0000	139.690	5.4996	146.050	5.7500	3.2	3.2	1 870	3 580	EE971355D/972100	1	392	520	483	8	3.2	3.2	0.33	2.03	3.02	1.98	113
343.052	13.5060	457.098 17.9960	120.650	4.7500	120.650	4.7500	SP S	SP	1 420	3 470	45T694612	1	363	438	425	7	2	0.8	0.47	1.43	2.12	1.40	40.0
346.075	13.6250	488.950 19.2500	174.625	6.8750	174.625	6.8750	3.2	3.2	2 310	5 800	HM262749D/HM262710	1	378	475	450	8	3.2	3.2	0.33	2.02	3.00	1.97	105

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

243

TDI type

d 347.663 ~ 419.227 mm

		Bounda	ary dime	nsion	s				Basic loa					Mount	ing dir		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm	1/25.4	<i>D</i> mm 1/25.4	B mm		mm T		$r^{2)}$ min. r	$r_1^{\ 2)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	,	$S_{\rm a}$	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
347.663	13.6875	469.900 18.5000	138.113	5.4375	138.113	5.4375	3.2	3.2	1 800	4 520	M262449D/M262410	1	374	456	437	9	3.2	3.2	0.33	2.03	3.02	1.98	70.0
355.600	14.0000 14.0000 14.0000	444.500 17.5000 482.600 19.0000 501.650 19.7500	112.713 133.350 127.000	5.2500	114.300 128.588 111.125	5.0625	3.2	1.6	1 110 1 530 1 350	3 510	L163149D/L163110 LM763449D/LM763410 EE231401D/231975	1 1 1	377 381 405	431 469 488	418 451 466	8 4 2	3.2 3.2 3.2	1.6 1.6 3.2	0.31 0.47 0.44	1.43	3.27 2.14 2.28	1.40	40.7 67.7 75.3
360	_	540 — 600 —	134 192	_	134 192	_	-	6	2 050 3 360		45272 45372	1 1-P	408 419	518 578	488 528	11 10	4 4	5 5	0.32 0.32		3.15 3.15		101 228
368.300	14.5000 14.5000	523.875 20.6250 609.600 24.0000	185.738 254.000		185.738 279.400		6.4 6.4		2 730 4 310		HM265049D/HM265010 EE321146D/321240	1-P 1	403 416	500 585	484 545	7 7	6.4 6.4	3.2 3.2	0.33 0.36		3.02 2.83		110 303
374.574	14.7470	546.100 21.5000	193.675	7.6250	193.675	7.6250	6.4	3.2	3 260	8 430	HM266445D/HM266410	1-P	418	525	505	10	6.4	3.2	0.33	2.03	3.02	1.98	163
380	_ _ _	560 — 570 — 620 —	135 200 194	_ _ _	135 200 194	_ _ _	4	6 1.5 6	2 060 3 210 3 070	7 560	45276 45T765720 45376	1 1-P 1	428 418 445	538 552 598	510 520 545	6 11.5 6	4 3 4	5 1.5 5	0.27 0.47 0.32	1.43	3.67 2.12 3.15	1.40	112 183 234
384.175	15.1250	546.100 21.5000	193.675	7.6250	193.675	7.6250	6.4	3.2	3 260	8 430	HM266449D/HM266410	1-P	418	525	505	10	6.4	3.2	0.33	2.03	3.02	1.98	155
393.700	15.5000 15.5000	546.100 21.5000 546.100 21.5000	141.288 138.113		120.650 138.113				1 490 1 840		EE234157D/234215 LM767745D/LM767710	1	437 435	525 525	497.6 510	1 9	6.4 6.4	3.2 1.6	0.48 0.48		2.11 2.11		96.0 99.0
400	_	600 — 650 —	148 200	_	148 200	_		6 6	2 410 3 850	4 960 7 810	45280 45380	1 1-P	452 458	578 622	545 580	6 11	4 5	5 5	0.33 0.39		3.02 2.59		143 265
400.000	15.7480	650.000 25.5906	250.000	9.8425	250.000	9.8425	SP S	SP	4 660	9 790	45T806525	1-P	460	620	585	13	5	5	0.39	1.74	2.59	1.70	328
406.400	16.0000 16.0000	546.100 21.5000 546.100 21.5000	141.288 138.113		120.650 138.113			1	1 490 1 840		EE234161D/234215 LM767749D/LM767710	1	437 435	520 520	497.6 510	1 9	6.4 6.4	1.6 1.6	0.48 0.48		2.11 2.11		88.6 90.5
415.925	16.3750	590.550 23.2500	209.550	8.2500	209.550	8.2500	6.4	3.2	3 390	8 930	M268749D/M268710	1-P	456	565	545	9	6.4	3.2	0.33	2.03	3.02	1.98	189
419.227	16.5050	736.448 28.9940	406.400	16.0000	406.400	16.0000	6.4	6.4	8 700	19 000	EE323166D/323290	1-P	480.1	710	655	9	6.4	6.4	0.37	1.80	2.69	1.76	752

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 420 ~ 501.650 mm

Во	undary dimension	S	Basic load ratings	Descion No. 1)	D		Mount	ing dir		ions	(Constant	Axial	load fa	ctors	(Refer.)
d D mm 1/25.4 mm	/25.4 mm 1/25.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{ m r}$ $C_{0 m r}$	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.		$S_{ m a}$ min.	$r_{ m a}$ max.	r _b	e	Y_2	Y_3	Y_0	Mass (kg)
420 — 700	_ 224	224 — 6 6	4 710 8 380	45384	1-P	488	672	623	7	5	5	0.39	1.74	2.59	1.70	352
431.800 17.0000 635.000 2	5.0000 173.038 6.8125	173.038 6.8125 6.4 6.4	3 150 6 870	EE931170D/931250	1-P	482	610	585	8	6.4	6.4	0.32	2.10	3.13	2.06	189
431.902 17.0040 685.698 2	5.9960 254.000 10.0000	253.873 9.9950 6.4 3.2	5 110 11 600	EE328172D/328269	1-P	484	660	620	11	6.4	3.2	0.40	1.68	2.50	1.64	370
432.003 17.0080 609.524 2	3.9970 152.400 6.0000	152.400 6.0000 6.4 3.6	2 600 6 060	EE736173D/736238	1	473	585	565	8	6.4	3.6	0.35	1.95	2.90	1.91	135
440 — 650 — 720	_ 157 _ _ 226 _	157 — 6 6 226 — 6 6	2 750 5 500 4 990 9 130		1 1-P	500 506	622 692	592 642	10 7	5 5	5 5	0.28 0.39		3.61 2.59		182 367
447.675 17.6250 635.000 2 635.000 2		223.838 8.8125 6.4 3.2 223.838 8.8125 6.4 3.2			1-P 1-P	491 491	610 610	585 585	8	6.4 6.4	3.2 3.2	0.33 0.33	2.03 2.03	3.02 3.02		234 234
457.200 18.0000 596.900 2 18.0000 660.400 2	3.5000 136.525 5.3750	130.175 5.1250 3.2 1.6 133.350 5.2500 3.2 1.6 155.575 6.1250 6.4 3.2	1 930 5 110	L770849D/L770810	1 1 1	488 488 500	580 580 635	555 560 600	7 7 7	3.2 3.2 6.4	1.6 1.6 3.2	0.40 0.47 0.37	1.43	2.48 2.12 2.69	1.40	98.1 99.9 175
460 — 680	— 163 —	163 — 6 6	3 000 5 660	45292	1	510	652	616	6	5	5	0.39	1.74	2.59	1.70	197
479.425 18.8750 679.450 20 679.450 20		238.125 9.3750 6.4 3.2 238.125 9.3750 6.4 3.2		57567 M272749D/M272710	1 1-P	520 520	655 655	630 630	7 7	6.4 6.4	3.2 3.2	0.33 0.33		3.02 3.02		267 277
480 — 700	— 165 —	165 — 6 6	3 060 6 710	45296	1-P	531	672	625	6	5	5	0.40	1.68	2.50	1.64	215
482.600 19.0000 615.950 2	1.2500 158.750 6.2500	158.750 6.2500 6.4 3.2	2 420 7 110	LM272249D/LM272210	1	510	590	585	8	6.4	3.2	0.33	2.03	3.02	1.98	117
489.026 19.2530 634.873 2	1.9950 153.988 6.0625	153.988 6.0625 3.2 3.2	2 460 6 840	LM772749D/LM772710	1	510	620	595	9	3.2	3.2	0.47	1.43	2.12	1.40	126
500 — 720 — 870	_ 167 385	167 - 6 6 385 - 10 3.5	3 430 7 350 9 550 21 900		1-P 1-P	545 518	692 826	645 765	8 9	5 8	5 3	0.39 0.33		2.59 3.02		222 1 030
501.65 — 711.2	— 250.825 —	250.825 — 6.4 3.2	4 700 12 400	2TR502	1	515	683	656	10	6.4	3.2	0.33	2.03	3.02	1.98	322
501.650 19.7500 711.200 2	3.0000 250.825 9.8750	250.825 9.8750 6.4 3.2	4 810 12 800	M274149D/M274110	1-P	545	685	655	10	6.4	3.2	0.33	2.03	3.02	1.98	323

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 508.000 ~ 635 mm

	Bounda	ary dimension	ıs		Basic load					Mount	ing dir		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	D mm 1/25.4	B mm 1/25.4	T mm 1/25.4	$egin{array}{cccc} r & r_1 \ & & & & & & & & & & & & & & & & & & $	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.) _a	$S_{\rm a}$	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
508.000 20.0000 20.0000	762.000 30.0000 838.200 33.0000	219.075 8.6250 266.700 10.5000					EE531201D/531300 EE426201D/426330	1-P 1-P	560 580	740 810	695 755	11 7	6.4 9.5	6.4 6.4	0.38 0.48	_	2.65 2.10		354 585
510 —	655 —	184 —	184 —	6.4 1.5	3 160	9 590	2TR510-6	1	518	627	621	9	6.4	1.5	0.33	2.03	3.02	1.98	160
519.113 20.4375	736.600 29.0000	258.763 10.1875	258.763 10.1875	6.4 3.2	5 290	13 600	M275349D/M275310	1-P	560	710	680	10	6.4	3.2	0.33	2.03	3.02	1.98	361
520 —	735 —	111.125 —	260 —	5 6	5 290	13 600	2TR520C	1-P	548	713	681	11	4	5	0.33	2.03	3.02	1.98	356
530 — —	780 — 870 —	185 — 272 —	185 — 272 —	6 6 7.5 7.5	4 070 6 930		452/530 453/530	1-P 1-P	591 612	752 834	710 774	8	5 6	5 6	0.39 0.39		2.59 2.59		306 655
536.575 21.1250	761.873 29.9950	269.875 10.6250	269.875 10.6250	6.4 3.2	5 630	14 400	M276449D/M276410	1-P	575	740	700	9	6.4	3.2	0.33	2.03	3.02	1.98	401
540 —	710 —	150 —	140 —	4 5	2 650	6 620	2TR540	1-P	558	688	667	6	3	4	0.40	1.68	2.50	1.64	152
555.625 —	698.5 —	165.1 —	165.1 —	6.4 3.2	2 850	8 510	2TR555	1-P	569	670	662	10	6.4	3.2	0.33	2.03	3.02	1.98	151
558.800 22.0000	736.600 29.0000	196.850 7.7500	196.850 7.7500	6.4 3.2	3 590	9 870	LM377449D/LM377410	1-P	595	710	690	9	6.4	3.2	0.35	1.95	2.90	1.91	227
560 —	820 —	195 —	195 —	6 6	4 080	8 560	452/560	1-P	622	792	750	8	5	5	0.35	1.91	2.85	1.87	344
571.500 22.5000	812.800 32.0000	285.750 11.2500	285.750 11.2500	6.4 3.2	6 510	17 500	M278749D/M278710	1-P	620	790	750	11	6.4	3.2	0.33	2.03	3.02	1.98	497
595.313 23.4375	844.550 33.2500	296.863 11.6875	296.863 11.6875	6.4 3.2	6 780	18 500	M280049D/M280010	1-P	650	820	785	7	6.4	3.2	0.33	2.03	3.02	1.98	549
600 —	870 —	200 —	200 —	6 6	4 350	9 510	452/600	1-P	663	842	792	8	5	5	0.37	1.80	2.69	1.76	396
609.600 24.0000	787.400 31.0000	171.450 6.7500	171.450 6.7500	6.4 3.2	3 390	9 940	EE649241D/649310	1-P	645	760	740	12	6.4	3.2	0.37	1.82	2.70	1.78	223
630 —	1 030 —	315 —	315 —	7.5 7.5	9 150	19 400	453/630	1-P	733	994	915	8	6	6	0.39	1.74	2.59	1.70	1 060
635.000 25.0000	901.700 35.5000	317.500 12.5000	317.500 12.5000	6.4 3.2	7 480	19 900	M281049D/M281010	1-P	690	870	840	7	6.4	3.2	0.33	2.03	3.02	1.98	651
635 —	939.8 —	304.8 —	304.8 —	6.5 4	7 900	19 800	2TR635D	1-P	653	911	863	16	5	3	0.33	2.03	3.02	1.98	763

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TDI type d 670 ~ 939.800 mm

	Bounda	ary dimension	s		Basic load ratings		Danism		Moun	ting di		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	B mm 1/25.4	T mm 1/25.4	r r_1 min. min	$C_{\rm r}$ $C_{0{\rm r}}$	Bearing No. 1)	Design	d_{a} max.	max.	$D_{ m a}$ min.	S_{a} min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
670 —	980 —	230 —	230 —	7.5 7.	6 100 13 800	452/670	1-P	746	944	895	8	6	6	0.39	1.74	2.59	1.70	595
685.800 27.0000	876.300 34.5000	171.450 6.7500	168.275 6.6250	6.4 3.	3 510 10 800	EE655271D/655345	1-P	730	850	830	9	6.4	3.2	0.42	1.62	2.42	1.59	261
690 —	980 —	355 —	355 —	6 6	9 420 26 100	2TR690A	1-P	718	952	902	10	5	5	0.35	1.95	2.90	1.91	887
711.200 28.0000	914.400 36.0000	149.225 5.8750	149.225 5.8750	6.4 3.	3 020 8 930	EE755281D/755360	1-P	770	890	870	8	6.4	3.2	0.38	1.78	2.65	1.74	256
714.375 28.1250	1 016.000 40.0000	339.725 13.3750	339.725 13.3750	6.4 3.	9 740 26 100	M383240D/M383210	1-P	775	990	940	14	6.4	3.2	0.35	1.92	2.86	1.88	924
730.250 28.7500	1 035.050 40.7500	365.125 14.3750	365.125 14.3750	6.4 3.	9 820 27 100	M283449D/M283410	1-P	790	1 010	960	10	6.4	3.2	0.33	2.03	3.02	1.98	1 000
749.300 29.5000	990.600 39.0000	293.000 11.5354	293.000 11.5354	6.4 3.	7 850 23 900	LM283649D/LM283610	1-P	800	960	930	12	6.4	3.2	0.32	2.12	3.15	2.07	643
762.000 30.0000	1 079.500 42.5000	381.000 15.0000	381.000 15.0000	12.7 4.	3 11 100 31 300	M284249D/M284210	1-P	830	1 040	1 000	11	12.7	4.8	0.33	2.03	3.02	1.98	1 140
800 —	1 100 —	300 —	300 —	6 3	7 620 21 700	2TR800A	1-P	814	1 072	1 016	12	5	2.5	0.80	0.85	1.26	0.83	863
810 —	1 280 —	430 —	430 —	9.5 4	14 800 38 600	2TR810A	1-P	828	1 236	1 166	21	8	3	0.41	1.66	2.47	1.62	2 250
825.500 32.5000	1 168.400 46.0000	409.575 16.1250	409.575 16.1250	12.7 4.	3 13 000 36 200	M285848D/M285810	1-P	890	1 130	1 090	15	12.7	4.8	0.33	2.03	3.02	1.98	1 440
863.600 34.0000 34.0000	1 130.300 44.5000 1 219.200 48.0000	323.850 12.7500 438.150 17.2500	323.850 12.7500 425.450 16.7500			LM286249D/LM286210 EE547341D/547480	1-P 1-P	920 940	1 090 1 180	1 070 1 130	15 9	12.7 12.7	4.8 4.8	0.32 0.33	2.08 2.03			896 1 660
939.800 37.0000	1 333.500 52.5000	463.550 18.2500	463.550 18.2500	12.7 4.	16 700 47 700	LM287849D/LM287810	1-P	1 020	1 290	1 240	15	12.7	4.8	0.33	2.03	3.02	1.98	2 130

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d **100 ~ 260.35 mm**

	Bound	ary din (mm)	nension	s			sic load dial	ratings (Ax	kN) ial	Bearing No. 1)	De-	Con- stant	Axial load factors	5		Fa	ace ke	y way		Bore key way		Mount	ing dim (mm)	ension	15		Mass
d	D	В	T	r min.	$r_1^{(3)}$ min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	2008	sign	e	Y_2 Y_3 Y_0	Тур	oe (m	(w nm)	K _D (mm)	θ qt	y×Position ²⁾	R _k (mm)	$d_{ m a}$ max.	D_{i} max.	min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
100	215	105	110	3	1	647	925	518	1 130	45T202211	2	0.81	0.84 1.25 0.82	. B	20		18	45	2×2	_	119	184	163	5	2.5	1	18.3
	249.1	120	120	3	2.5	719	1 040	642	1 430	45T202512	2	0.9	0.75 1.12 0.73	-			_	_	_	_	127	202	178	4.5	2.5	2	30
110	240	118	118	3	1	730	1 040	593	1 290	45T222412	2	0.81	0.83 1.23 0.81	_		_	_	_	_	_	129	204	180	6	2.5	1	25.2
125	305	167	180	6.4	6	1 360	2 120	983	2 330	45T253018	2	0.73	0.93 1.38 0.91	_		_	_	_	_	_	173	261	233	8.5	5	5	65
	305	180	180	6.4	6	1 360	2 120	983	2 330	45T253018-1	2	0.73	0.93 1.38 0.91	Α	30	.2	11	_	1×2	_	164	257	227	2	5	5	66
160	342.9	160	160	3.3	SP	1 490	2 410	1 200	2 940	45T323416-2	1	0.81	0.83 1.24 0.82	. B	30		25	45	2×2	_	190	282	253	5	3	2.5	66
170	360	144	160	4	5	1 340	2 100	1 460	3 440	45T303616-1	2	1.09	0.62 0.92 0.61	В	30	:	25	45	1×2	_	200	301	266	5	3	4	80
	360	144	160	4	2.5	1 340	2 100	1 460	3 440	45T343616A	2	1.09	0.62 0.92 0.61	-		_	_	_	_	_	201	301	266	5.5	3	2	70
180	320	104	104	4	1.5	789	1 350	647	1 690	45T363210	2	0.83	0.82 1.22 0.8	-		_	_	_	_	_	212	278	259	7.5	3	1.5	35
190	320	104	104	3	4	785	1 400	623	1 690	45T383210	2	0.8	0.85 1.26 0.83			_	_	_	_	_	212	281	262	5	2.5	3	30
	320	104	104	3	4	785	1 400	623		45T383210A	1	8.0	0.85 1.26 0.83				15	45	1×2	_	212	281	262	5	2.5	3	33
	320	114	114	4	2.5	881	1 570	759	2 070	45T383211A	2	0.87	0.78 1.16 0.76	i A	38		10	_	1×2	_	216	282	260	6	3	2	33
190.09	265	58	58	2.5	1.5	327	662	292	910	45T382706	1	0.9	0.75 1.12 0.73	А	. 8	.5	4	_	1×2	_	210	242	231	4	2	1.5	9
200	360	170	170	4	1.5	1 250	2 300	1 200	3 380	45T403617-1	2	0.96	0.7 1.04 0.68	A	30		17	_	2×2	_	230	307	270	_	3	1.5	65
	380	180	180	4	SP	1 780	3 240	1 410	3 900	45T403818	2-P	8.0	0.85 1.26 0.83				25	45	1×2	_	236	328	294	5.5	3	3	94
	380	180	180	4	SP	1 780	3 240	1 410	3 900	45T403818-1	2-P	0.8	0.85 1.26 0.83	В	30		25	45	2×2	_	236	328	294	5.5	3	3	94
220	360	120	120	3	4	1 000	1 920	863	2 530	45T443612/DP	2	0.87	0.78 1.16 0.76	В	40		25	45	1×2		250	317	294	6.5	2.5	3	47
228.6	431.8	177.8	177.8	6	SP	1 940	3 400	1 710	4 530	45T464318A-1	2-P	0.88	0.76 1.14 0.75	i A	35		15	_	1×2	_	259	377	342	8.5	5	5	115
240	460	140	140	5	6	1 400	2 570	1 210	3 380	45T484614	2-P	0.87	0.78 1.16 0.76	S A	50		15	_	2×2	_	293	389	364	3	4	5	95
260	459	155	155	4	5	1 570	2 780	1 360	3 650	45T524616	2-P	0.87	0.78 1.16 0.76	i A	32	.1	15	_	2×2	_	292	400	370	5.5	3	4	95
260.35	419.1	155.57	5 158.75	3.2	3.2	1 760	3 710	1 050	3 370	45T524216	2	0.6	1.12 1.67 1.1	В	40	.2	18	45	1×2		291	374	349	7.5	3	3	85

[[]Notes] 1) Since there are many bearings of special tolerances for specific applications, consult with JTEKT for details of tolerances.

^{2) [}x1]...one face, [x2]...both face.3) SP indicates the specially chamfered form.

d 273.05 ~ 320 mm

	Bounda	ary din	nension	S		Rad		ratings (Bearing No. 1)	De-	Con- stant	Axial lo	ad fa	ctors		I	Face ke	ey way		Bore key way		Moun	ting dim	ension	s		Mass
d	D	В	T	r min.	$r_1^{\ 3)}$ min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	20011118 1101	sign	e	Y_2	Y_3	Y_0	Туре	K _w (mm	<i>K</i> _D (mm)	θ (deg) qt	y×Position ²⁾	R _k (mm)	$d_{ m a}$ max.	max.) _a min.	$S_{ m a}$ min.	$r_{\rm a}$ max.	$r_{ m b}$ max.	(kg)
273.05	393.7	130.17	5 130.175	6.4	1.6	1 190	2 760	824	2 930	45T553913	2	0.7	0.97	1.44	0.94	_	_	_	_	_	_	292	359	337	7.5	5	1.5	45
279.4	482.6	177.8	177.8	4.8	4.8	2 110	3 980	1 680	4 800	45T564818B	1-P	0.8	0.85	1.26	0.83	Α	40	12	_	1×2	_	310	424	392	6.5	4	4	130
280	410	110	110	3	4	980	2 050	847	2 700	45T564111	2	0.87	0.78	1.16	0.76	_	_	_	_	_	_	308	371	350	5.5	2.5	3	48
285	380	92	92	2.5	1	758	1 820	654	2 400	45T573809B	1	0.87	0.78	1.16	0.76	В	32	13	45	1×2	_	303	352	334	5	2	1	28
298	419.5	120	120	4	2.5	1 100	2 440	946	3 210	45T604212-1	2	0.87	0.78	1.16	0.76	_	_	_	_	_	_	319	383	360	5	3	2	49
300	440 440 480	105 105 180	105 105 180	4 3 2.5	4 4 SP	1 070 969 1 780	2 300 2 480 4 300	922 835 1 540	3 260	45T604411M 45T604411N-1/DP1 45T604818	1-P 2-P	0.87 0.87 0.87	0.78				32.1 32.13	22.225		1×2 —	6.477	324 334 330	398 395 403	378 374 365	7.5 6	3 2.5 2	3 3 2.5	50 57 132
	500 500 500	160 190 200	160 190 200	5 5 5	SP 6 SP	1 840 2 320 2 320	3 420 4 720 4 720	1 590 1 770 1 770	4 490 5 490	45T605016 45T605019 45T605020-3	1 1-P 2-P	0.87 0.76 0.76	0.78 1 0.88 1	1.16 1.31		B B	52 50 50	25 30 35	45 45 45	1×2 1×2 1×2	_	327 339 339	439 440 441	410 405 400	7	4 4 4	5 5 4	110 142 155
	520 570	180 290	180 290	5 6	SP SP	2 270 3 810	4 720 4 790 8 280	1 960 3 290	5 560	45T605218 45T605729	1 2-P	0.76 0.87 0.87		1.16	0.86	В	50 50 50	30 35	45 45 45	2×2 1×2		340 332	443 479	408 418	8 0.5	4 5	4 3	151 347
305	480 500 500	200 200 200	200 200 200	4 5 5	SP 6 6	2 060 2 320 2 320	4 670 4 720 4 720	1 780 1 770 1 770	5 490	45T614820-1 45T615020 45T615020-1	2 1-P 1-P	0.87 0.76 0.76	0.88	1.31	0.76 0.86 0.86	B C B	40 — 50.9	28 — 35	45 — 45	1×2 — 2×2	8.05 —	337 339 339	420 441 441	377 400 400	_ _ _	3 4 4	2.5 5 5	136 150 150
	500 500 560	200 200 200	200 200 200	5 5 10	6 SP 6.5	2 320 2 320 2 170	4 720 4 720 4 370	1 770 1 770 2 360	5 490 7 160	45T615020B 45T615020D-2 45T615620B 45T615620D	1-P 1-P 1	0.76 0.76 1.09	0.88 1 0.62 0	1.31 0.92	0.86 0.61	C B		35 39.7	45 45 45	1×2 1×2 2×2 2×2	8.05 8.05 —	339 339 373	441 441 482	400 400 436	_ _ _	4 4 8	5 4 5	150 146 146
318	560 449.5	120	120	20	2.5	2 170 1 090	4 370 2 420	2 360		45T615620D 45T644512	2	1.09	0.62 (50.8	19.05		1×2	_	373 342	482	436 381	5.5	3	5	146 50
320	480	160	160	2.5		1 630	4 090	1 400		45T644816A	1	0.87		1.16			51.3		45	2×1		349	419	386	5.5	2	2.5	101
	540 560	176 200	176 200	5 4	SP 2.5	2 280 3 020	4 810 6 040	1 970 1 640	6 330 4 990	45T645418 45T645620	2-P 1-P	0.87 0.55	0.78 1 1.24 1	1.16 1.84		B B	40 50	35 30	45 45	1×2 1×2	_	363 374	476 491	442 464	6.5 9.5	4 3	4 2	166 204

[[]Notes] 1) Since there are many bearings of special tolerances for specific applications, consult with JTEKT for details of tolerances.

^{2) [}x1]...one face, [x2]...both face.3) SP indicates the specially chamfered form.

d 330 ~ (400) mm

	Bounda	ary dim	ension	S		Bas Rac		ratings (Bearing No. 1)	De-	Con- stant	I.	Axial I	oad facto	ors			Face	key	way		Bore key way		Mount	ng dim (mm)	ensior	15		Mass
d	D	В	T	$r^{3)}$ min.	$r_1^{\ 3)}$ min.	C_{r}	C_{0r}	$C_{\rm r}$	C_{0r}	Bearing No.	sign	e		Y_2	<i>Y</i> ₃ 1	Y_0	Туре	K _w (mm	(m)	D m) (d	θ leg) qty	y×Position ²⁾	n.	d_{a} max.	D_{a} max.	min.	$S_{ m a}$ min.	$r_{\rm a}$ max.	$r_{ m b}$ max.	(kg)
330	459	120	120	4	5	1 050	2 370	1 090	3 770	45T664612	2	1.05		0.64	0.96 0.			32.1			_	2×2	_	354	421	393	5.5	3	4	55
340	550	135	135	5	2	1 710	3 520	1 190	3 750	45T685514	2	0.7		0.97	1.44 0.	.94	B+C	36	26		45	1×2	9	390	483	463	7	4	2	123
	590	192	192	SP	SP	2 940	5 870	2 040	6 240	45T685919-1	1-P	0.7	1	0.97	1.44 0.	.94	В	50	30		45	1×2	_	392	518	488	10	1	4	209
345	550	200	270	6	4	2 430	5 740	2 090	7 550	45T695520	1	0.87		0.78	1.16 0.	.76	Α	32	16		_	1×2	_	373	482	440	2	5	3	176
350	590	192	192	5	SP	2 820	5 590	2 430	7 360	45T705919A-1	1-P	0.87		0.78	1.16 0.	.76	Α	32	12		_	1×2	_	398	522	486	9	4	5	200
	590	192	192	5	SP	2 540	6 570	2 760	10 800	45T705919D	1-P	1.09		0.62	0.92 0.	.61	Α	32	12		_	1×2	_	401	520	470	11.5	4	5	227
	619	200	200	6	6	2 940	5 580	2 530	7 340	45T706220	2-P	0.87	1	0.78	1.16 0.	.76	Α	50	20		_	2×2	_	396	539	502	4.5	5	5	260
360	570	148	148	5	6	1 930	3 900	1 340	4 150	45T725715	1	0.7		0.97	1.44 0.	.94	В	50	23		45	1×2	_	394	498	472	7	4	5	131
365.6	514.35	140	140	4	SP	1 390	3 730	1 190	4 910	45T735114A	1	0.87		0.78	1.16 0.	.76	В	40	20		45	2×2	_	394	457	428	5.5	3	2.5	89
374.65	501.65	120.65	130.175	5 6	3.3	1 270	3 160	1 090	4 160	45T755013A	1	0.87	-	0.78	1.16 0.	.76	В	50	10		_	1×2	_	399	463	436	2.5	5	3	67
380	550	255	205	SP	SP	2 850	7 340	1 550	6 070	45T765526	3-P	0.55		1.24	1.84 1.	.21	Α	32	15		_	1×2	_	391	499	470	7.5	1	4	182
	560	190	190	2	2	2 860	7 220	1 560	5 970	45T765619	1-P	0.55		1.24	1.84 1.	.21	В	32	12		60	1×2	_	415	509	482	10.5	2	2	187
	560	200	200	4	4	2 750	7 020	1 660	6 440	45T765620	1-P	0.61		1.11	1.66 1.	.09	В	40.1	21		45	1×2	_	416	505	473	4	3	3	167
	570	200	200	4	SP	2 780	6 620	1 930	7 040	45T765720A	2-P	0.7		0.97	1.44 0.	.94	Α	32	11.7	7.	_	1×2	_	406	513	478	1.5	3	3	178
	650	240	240	6	5	3 830	8 260	3 040	9 950	45T766524	2-P	8.0	(0.85	1.26 0.	.83	В	50	15		45	_	_	442	572	528	9.5	5	4	290
	650	240	240	6	SP	3 830	8 260	3 040	9 950	45T766524-2	2-P	8.0		0.85	1.26 0.	.83	В	50.5	40		45	2×2	_	442	572	528	9.5	5	5	335
381	695	280	280	6	SP	4 780	9 970	4 120	13 100	45T767028A	2-P	0.87		0.78	1.16 0.	.76	В	50	45		45	2×2	_	448	602	547	10	5	5	479
390	548	180	180	4	SP	2 050	5 540	1 770	7 290	45T765518	1	0.87		0.78	1.16 0.	.76	В	51.3	16		45	1×2	_	418	495	457	3	3	2.5	169
	562	180	180	4.5	SP	2 110	5 530	1 820	7 280	45T785618	1	0.87		0.78	1.16 0.	.76	Α	32	11.7	7.	_	2×2	_	420	501	463	4.5	4	2.5	145
	570	180	180	2.5	SP	2 110	5 530	1 820	7 280	45T785718A	1	0.87		0.78	1.16 0.	.76	В	51.3	22		45	2×2	_	420	501	463	4.5	2	2.5	149
	600	200	200	5	6	2 610	6 070	2 250	7 990	45T786020	2-P	0.87		0.78	1.16 0.	.76	_	_	_	_	_	_	7.5	424	539	500	2.5	4	5	202
400	600	148	148	5	6	1 820	4 040	1 410	4 750	45T806015A	1	0.78		0.86	1.29 0.	.85	В	50	25		45	1×2	_	432	531	505	9.5	4	5	131
	650	200	200	6	6	2 930	6 500	2 520	8 560	45T806520D	1	0.87		0.78	1.16 0.	.76	Α	50.8	19		_	2×2	_	465	582	542	4.5	5	5	243
	650	240	240	6	SP	3 770	8 390	3 250	11 000	2TR400L	1-P	0.87		0.78	1.16 0.	.76	В	64.3	32		45	1×2	_	437	580	534	5.5	5	2	296

[[]Notes] 1) Since there are many bearings of special tolerances for specific applications, consult with JTEKT for details of tolerances.

^{2) [}x1]...one face, [x2]...both face. 3) SP indicates the specially chamfered form.

d (400) ~ 510 mm

	Bound	ary din	nensions	5		Rac	ic load I	ratings Ax		Bearing No. 1)	De-	Con- stant	Axial lo	oad fa	actors		ı	Face ke	y way		Bore key way		Mount	ing dime	ension	S		Mass
d	D	В	T	$r^{3)}$ min.	$r_1^{\ 3)}$ min.	C_{r}	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No.	sign	e	Y_2	Y_3	Y_0	Туре	K _w (mm)	K _D (mm)	θ qty	×Position ²⁾	R _k (mm)	d_{a} max.	max.	a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
400	650	240	240	6	SP	3 770	8 390	3 250	11 000	2TR400L-4/DP	3-P	0.87	0.78	1.16	0.76	В	64.3	32	45	1×2	_	437	580	534	5.5	5	2	308
406.4	546.1	138.11	2 138.112	6.4	SP	1 490	3 920	1 280	5 160	45T815514	1	0.87	0.78	1.16	0.76	Α	50	11	_	1×2	_	436	502	474	5	5	3	89
410	580	160	160	4	7	2 180	5 430	1 880	7 140	45T825816A-1	2	0.87	0.78	1.16	0.76	Α	50.8	10	_	1×2	_	434	532	500	9	3	5	133
430	535 600	84 200	84 200	3	SP 3	830 3 060	2 270 8 230	715 1 450		45T865408 45T866020	2 1-P	0.87 0.47	0.78 1.43			B A	20 50	15 19	45 45	1×2 1×2		456 466	503 552	486 527	5 6.5	2.5 3	2 2.5	42 172
440	650	155	155	6	SP	2 220	5 110	1 910		45T886516A	2-P	0.87	0.78				50	15	45	1×2	_	484	593	564	8	5	4	172
445	620	160	160	4	2.5	2 130	5 060	1 830		45T896216	1-P	0.87	0.78			В	51.3	31.75	45	1×2	_	476	566	536	3.5	3	2	136
450	820 830	300 320	300 320	7.5 7.5	7.5 7.5	4 990 5 570	10 000 10 900	5 200 5 800		45T908230U 45T908332-1	1-P 1-P	1.05 1.05	0.64 0.64		0.63 0.63	A B	40 60	25 55	— 45	1×2 2×2	_	540 501	713 706	650 636	2.5 1	6 6	6	610 691
460	619	150	150	4	4	1 820	4 640	1 900	7 370	45T926215	2	1.05	0.64	0.96	0.63	Α	50	15	_	2×2	_	486	569	536	4	3	3	125
470	700 720	270 216	270 216	5 6	SP 6	2 980 3 300	7 850 7 360	2 890 3 590		45T947027A 45T947222/DP	2 3-P	0.97 1.09	0.69 0.62		0.68 0.61	B B	50 63.6	35 30	45 45	1×2 1×2	_	518 515	607 646	544 600	7	4 5	3 5	358 309
482	655	160	170	4	4	1 890	5 270	1 630	6 930	45T966616-1	1	0.87	0.78	1.16	0.76	В	40	20	45	2×2	_	518	590	554	_	3	3	157
482.6	733.501	190 200.02 200.02 200.02	5 200	SP 6.4 17.5 17.5	SP 6.4 6.4 6.4	3 230 2 950 2 950 2 950	8 000 7 100 7 100 7 100	2 620 3 200 3 200 3 200	11 600 11 600	45T977319 45T977320C 45T977320D 45T977320J	1-P 1-P 1-P	0.81 1.09 1.09	0.62 0.62		0.61 0.61	B+C A		44.45 38.1 19.05 19.05	45 45 —	1×2 2×2 2×2 1×2	8.05 —	547 513 513 513	669 651 651 651	635 603 603	7.5 5 5 5	2 5 10	2 5 5	283 283 280 280
500	820 900	256 400	256 400	7.5 7.5	7.5 5	4 960 8 240	11 700 19 500	3 780 8 580		2TR500-3 2TR500J	2-P 1-P	0.76 1.05	0.88 0.64		0.86		50.8 50	38.1 40	45 45	2×2 1×2	_	561 560	718 774	672 680	9.5 11	6	6	559 1 090
509.998	733.5	200.02	200.02	5	6	3 230	8 000	2 620	9 880	2TR510L-1	1-P	0.81	0.83	1.23	0.81	В	50.8	38.1	45	2×2	_	560	667	630	3.5	4	5	261
510	800	285	285	6	SP	5 370	12 300	4 260	14 800	2TR510-2	1-P	0.8	0.85	1.26	0.83	В	70.2	44.45	45	1×2	_	570	716	662	7	6	6	506

[[]Notes] 1) Since there are many bearings of special tolerances for specific applications, consult with JTEKT for details of tolerances.

^{2) [}x1]...one face, [x2]...both face. 3) SP indicates the specially chamfered form.

d 600 ~ 900 mm

K _D K _W	θ $K_{\rm D}$	ϕd	S_a r_a ϕD_a ϕd_a
Face key way : A	Face key way : B	Bore key way	

	Bound	ary din (mm)	nension	S		Bas Rac	ic load lial	ratings Ax		Bearing No. 1)	De-	Con- stant	Axial lo	oad fa	ctors		1	Face k	ey way		Bore key way		Mount	ing dim (mm)	ension	15		Mass
d	D	В	T	$r^{3)}$ min.	$r_1^{\ 3)}$ min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No.	sign	e	Y_2	Y_3	Y_0	Туре	K _w (mm	<i>K</i> _D (mm)	$_{(deg)}^{\theta}$ qt	y×Position ²⁾	R _k (mm)	$d_{ m a}$ max.	D max.	a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
600	1 000	350	350	7.5	SP	8 390	18 500	6 400	21 500	2TR600-2	2-P	0.76	0.88	1.31	0.86	С	_	_	_	_	1.5	690	886	825	7.5	6	8	1 110
620	1 020	360	360	7.5	SP	8 430	19 800	7 260	26 100	2TR620	1-P	0.87	0.78	1.16	0.76	В	90	65	45	1×2	_	708	901	832	5	6	5	1 140
630	789	150	150	4	5	1 980	6 180	1 710	8 140	2TR630B	2-P	0.87	0.78	1.16	0.76	_	_	_	_	_	_	660	736	706	5	3	4	169
635	940	260	260	5.4	3.2	4 570	10 600	5 320	19 000	2TR635B-1	1-P	1.17	0.58	0.86	0.56	В	70.3	51	45	1×2	_	674	852	793	_	5	3	477
660	814	176.21	2 176.212	6.4	SP	2 620	8 780	1 820	9 340	2TR660C	1	0.7	0.97	1.44	0.94	В	50	20	45	1×2	_	686	766	735	5	5	2.5	196
685.8	939.8 939.8	235 234.95	228.6 227.81	SP 6.4	SP SP	4 930 4 390	12 800 13 000	3 760 3 780		2TR686A 2TR686C	1-P 1-P	0.76 0.87			0.86 0.76	B B	63.6 80	38.5 38.1	45 45	1×2 2×2	_	730 745	868 865	827 819	8.5 6.5	1 5	3	455 464
717.55	1 000	200	200	6	SP	4 070	12 400	3 510	16 300	2TR718	1-P	0.87	0.78	1.16	0.76	В	70.3	44.5	45	1×2	_	800	914	874	9	5	5	482
780	1 000	200	200	5	2	4 090	12 800	3 250	15 400	2TR780A	1-P	0.8	0.85	1.26	0.83	В	90	35	45	1×2	_	830	937	900	8	4	2	381
900	1 220	300	300	12	3	7 930	23 200	6 840	30 500	2TR900-1	1-P	0.87	0.78	1.16	0.76	В	89.5	51	45	1×2	_	955	1 129	1 070	14	8	2.5	1 020

[[]Notes] 1) Since there are many bearings of special tolerances for specific applications, consult with JTEKT for details of

^{2) [}x1]...one face, [x2]...both face.
3) SP indicates the specially chamfered form.

TDIT type

d 127.000 ~ 280.000 mm

	Bounda	ry dimension	s				nd ratings N)	Proving No. 1)	Desir			Moun	ting dir		ons		Constant	Axial	load facto	rs Mass
d mm 1/25.4	<i>D</i> mm 1/25.4	<i>B</i> mm 1/25.4	T mm 1/2		r_1 n. min.	C_{r}	C_{0r}	Bearing No. 1)	Desig		d _а nax.	max.	O _a min.		$r_{ m a}^{\ 2)}$ max.		e	Y_2	Y_3	(kg)
127.000 5.0000	182.563 7.1875	76.200 3.0000	76.200 3.0	000 3	3.2 1.6	389	858	48290TD/48220	1	1	41	171	166	3.8	3.2	1.6	0.31	2.21	3.29 2.	16 6.57
133.350 5.2500	196.850 7.7500	92.075 3.6250	92.075 3.6	250 3	3.2 1.6	534	1 120	67390TD/67322	1	1	46	185	180	5	3.2	1.6	0.34	1.96	2.92 1.	92 9.46
136.525 5.3750	215.900 8.5000	123.825 4.8750	123.825 4.8	750 3	3.2 1.6	551	1 100	74539TD/74850	1	1	54	204	193	5	3.2	1.6	0.49	1.38	2.06 1.	35 15.9
142.875 5.6250	200.025 7.8750	74.613 2.9375	77.788 3.0	625 3	3.3 0.8	422	982	48685TD/48620	1	1	56	188	182	4	3.3	0.8	0.34	2.01	2.99 1.	96 7.58
147.638 5.8125	241.300 9.5000	132.334 5.2100	133.351 5.2	500 3	3.2 1.6	719	1 460	82581TD/82950	1	1	66	229	211	7	3.2	1.6	0.44	1.53	2.27 1.	49 23.6
152.400 6.0000	254.000 10.0000	120.650 4.7500	120.650 4.7	500 3	3.2 1.6	941	1 830	99600TD/99100	1	1	72	242	223	8	3.2	1.6	0.41	1.66	2.47 1.	62 25.3
165.100 6.5000	269.875 10.6250	146.050 5.7500	146.050 5.7	500 3	3.2 1.6	1 140	2 220	H234649TD/H234610	1	1	87	258	243	5	3.2	1.6	0.33	2.03	3.02 1.	98 32.2
180.975 7.1250 7.1250	288.925 11.3750 288.925 11.3750	158.750 6.2500 158.750 6.2500			3.2 1.6 3.2 1.6			94713TD/94113 HM237549TD/HM237510	1 1		01 01	277 277	255 260	8	3.2 3.2	1.6 1.6	0.47 0.32		2.15 1. 3.15 2.	
190.500 7.5000	365.049 14.3720	152.400 6.0000	158.750 6.2	500 3	3.2 3.2	1 610	2 920	EE420750TD/421437	1	2	39	353	317	6	3.2	3.2	0.40	1.68	2.50 1.	64 77.2
198.438 7.8125	282.575 11.1250	87.313 3.4375	87.313 3.4	375 3	3.2 0.8	598	1 410	67980TD/67920	1	2	20	271	259	7	3.2	0.8	0.51	1.33	1.97 1.	30 17.8
209.550 8.2500	317.500 12.5000	184.150 7.2500	184.150 7.2	500 3	3.2 1.6	1 040	2 270	93826TD/93125	1	2	23	306	278	7	3.2	1.6	0.52	1.29	1.92 1.	26 48.3
219.075 8.6250	358.775 14.1250	200.025 7.8750	196.850 7.7	500 6	5.4 1.6	2 120	4 580	H244848TD/H244810	1	2	45	340	319	9	6.4	1.6	0.33	2.03	3.02 1.	98 80.9
222.250 8.7500	355.600 14.0000	130.175 5.1250	127.000 5.0	000 3	3.2 1.6	1 130	2 630	96876TD/96140	1	2	53	343	312	8	3.2	1.6	0.59	1.14	1.70 1.	12 50.9
252.413 9.9375	358.775 14.1250	139.700 5.5000	130.175 5.1	250 3	3.2 1.6	1 330	3 170	M249746TD/M249710	1	2	75	346	330	8	3.2	1.6	0.33	2.03	3.02 1.	98 43.5
263.525 10.3750	400.050 15.7500	192.088 7.5625	196.848 7.7	499 6	5.4 1.6	1 300	2 570	EE221039TD/221575	1	2	92	381	359	6	6.4	1.6	0.39	1.71	2.54 1.	67 76.7
266.700 10.5000	355.600 14.0000	109.538 4.3125	107.950 4.2	500 3	1.6	1 040	2 550	LM451349TD/LM451310	1	2	85	343	332	8	3.2	1.6	0.36	1.87	2.79 1.	33 29.5
280.000 11.0236	406.400 16.0000	206.375 8.1250	206.375 8.1	250 3	3.2 3.2	1 310	2 950	EE128113TD/128160	1	3	08	394	368	7	3.2	3.2	0.39	1.75	2.61 1.	71 81.4

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²) $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension $r_{\rm c}$, $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm L}$.

TDIT type

d 288.925 ~ 519.113 mm

	Bounda	ry dimension	s			Basi	load ratings (kN)	Bearing No. 1)	Design		Moun	ting di (mm		ions		Constant	Axial	load fa	actors	Mass
<i>d</i> mm 1/25.4	<i>D</i> mm 1/25.4	<i>B</i> mm 1/25.4	T mm 1/	/25.4	r r min. mi		C_{0r}	Bearing No.	Design	$d_{ m a}$ max.	max.	D _a min.		$r_{ m a}^{\ 2)}$ max.	$r_{ m b}^{\ 2)}$ max.	e	Y_2	Y_3	Y_0	(kg)
288.925 11.3750	406.400 16.0000	144.463 5.6875	144.463 5	.6875	3.2 3	.2 1 7	20 4 420	M255449TD/M255410	1	316	394	373	8	3.2	3.2	0.34	2.00	2.97	1.95	61.4
303.213 11.9375	495.300 19.5000	263.525 10.3750	263.525 10	.3750	6.4 3	.2 3 9	9 340	HH258249TD/HH258210	1-P	342	476	441	8	6.4	3.2	0.33	2.03	3.02	1.98	207
333.375 13.1250 13.1250	469.900 18.5000 523.875 20.6250	166.688 6.5625 185.738 7.3125	166.688 6 185.738 7		3.2 3 6.4 3	.2 2 3 .2 2 7			1-P 1-P	360 403	456 500	432 483	8 7	3.2 6.4	3.2 3.2	0.33 0.33	2.02 2.03		1.97 1.98	92.8 138
344.091 13.5469	488.950 19.2500	184.150 7.2500	174.625 6	.8750	3.2 3	.2 2 3	0 5 800	HM262746TD/HM262710	1	376	475	450	8	3.2	3.2	0.33	2.02	3.00	1.97	108
346.075 13.6250	488.950 19.2500	174.625 6.8750	174.625 6	.8750	3.2 3	.2 2 3	0 5 800	HM262749TD/HM262710	1	378	475	450	8	3.2	3.2	0.33	2.02	3.00	1.97	105
368.300 14.5000	523.875 20.6250	185.738 7.3125	185.738 7	.3125	6.4 3	.2 2 7	80 6 780	HM265049TD/HM265010	1-P	403	500	483	7	6.4	3.2	0.33	2.03	3.02	1.98	110
384.175 15.1250	546.100 21.5000	193.675 7.6250	193.675 7	.6250	6.4 3	.2 3 2	8 430	HM266449TD/HM266410	1-P	418	525	505	10	6.4	3.2	0.33	2.03	3.02	1.98	155
406.400 16.0000	590.550 23.2500	209.550 8.2500	209.550 8	.2500	6.4 3	.2 3 3	90 8 930	M268743TD/M268710	1-P	456	570	545	9	6.4	3.2	0.33	2.03	3.02	1.98	199
415.925 16.3750	590.550 23.2500	209.550 8.2500	209.550 8	.2500	6.4 3	.2 3 3	90 8 930	M268749TD/M268710	1-P	456	570	545	9	6.4	3.2	0.33	2.03	3.02	1.98	189
447.675 17.6250	635.000 25.0000	223.838 8.8125	223.838 8	.8125	6.4 3	.2 3 9	30 10 500	M270749TD/M270710	1-P	491	610	585	8	6.4	3.2	0.33	2.03	3.02	1.98	234
479.425 18.8750	679.450 26.7500	238.125 9.3750	238.125 9	.3750	6.4 3	.2 4 2	11 100	M272749TD/M272710	1-P	520	655	630	7	6.4	3.2	0.33	2.03	3.02	1.98	277
501.650 19.7500	711.200 28.0000	250.825 9.8750	250.825 9	.8750	6.4 3	.2 48	0 12 800	M274149TD/M274110	1-P	545	690	655	10	6.4	3.2	0.33	2.03	3.02	1.98	323
519.113 20.4375	736.600 29.0000	258.763 10.1875	258.763 10	.1875	6.4 3	.2 5 2	00 13 600	M275349TD/M275310	1-P	560	710	680	10	6.4	3.2	0.33	2.03	3.02	1.98	361

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension $r_{\rm 1}$.

d 100 ~ (120) mm

		В	ounda	ry dime	nsions	5				Basic loa				Мо	unting		ension	ıs	Constant	Axial	load fa	actors	(Refer.)
	1			I	1	1		1 2	2)	(kl	N)	Bearing No. 1)	Design			(mm)		2)					Mass
d		D		T		C			1	$C_{\rm r}$	C_{0r}			$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$ 2)	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	mın.					min.	min.	mın.	max.	max.					
100	_	150	_	46	_	37	_	2	0.6	180	293	46220A	1	110	142	4.5	2	0.6	0.35	1.95	2.90	1.91	2.53
	_	165	_	52	_	46	_	2.5	0.6	198	305	46320	1	112	154	3	2	0.6	0.35	1.95		1.91	4.03
	_	165	_	65	_	52	_	2.5	0.6	265	443	46320A	1	112	153	6.5	2	0.6	0.35	1.95	2.90	1.91	4.97
	_	180	_	83	_	67	_	2.5	1	443	676	46T30220JR/67	1	114	168	8	2.5	1	0.42	1.61	2.39	1.57	8.33
	_	180	_	107	_	87	_	2.5	1	596	990	46T32220JR/87	1	114	171	10	2.5	1	0.42	1.61	2.39	1.57	11.1
	_	200	_	116	_	80	_	4	SP	594	941	46T202012	1	118	186	18	3	SP	0.63	1.07	1.59	1.04	15
100.000	3.9370	304.800	12.0000	184.160	7.2504	127.000	5.0000	SP	SP	1 190	1 630	46T203018	1	117	285	28	4	2	0.80	0.85	1.26	0.83	70.0
105.000	4.1339	190.000	7.4803	88.000	3.4646	70.000	2.7559	SP	SP	423	632	46T211909	1	117	178	9	2	0.8	0.42	1.60	2.38	1.56	9.68
105	_	190	_	88	_	70	_	2.5	1	494	761	46T30221JR/70	1	119	178	9	2.5	1	0.42	1.61	2.39	1.57	9.87
	_	190	_	115	_	95	_	2.5	1	672	1 130	46T32221JR/95	1	119	180	10	2.5	1	0.42	1.61	2.39		13.5
110	_	170	_	45	_	40	_	2.5	0.6	175	304	46222	1	122	158	2.5	2	0.6	0.35	1.95	2.90	1.91	3.58
	_	180	_	56	_	50	_	2.5	0.6	245	388	46322	1	122	168	3	2	0.6	0.35	1.95	2.90	1.91	5.13
	_	180	_	70	_	56	_	2.5	0.6	324	533	46322A	1	122	168	7	2	0.6	0.35	1.92	2.86	1.88	6.43
	_	180	_	94	_	72	_	2	0.6	401	761	46T221810	1	120	171	11	2	0.6	0.52	1.31	1.95	1.28	8.82
	_	180	_	125	_	100	_	2.5	0.6	538	1 070	46T221813-1	1	122	165	12.5	2	0.6	0.26	2.55	3.80	2.50	11.6
	_	200	_	92	_	74	_	2.5	1	556	868	46T30222JR/74	1	124	188	9	2.5	1	0.42	1.61	2.39	1.57	11.6
	_	200	_	121	_	101	_	2.5	1	750	1 280	46T32222JR/101	1	124	190	10	2.5	1	0.42	1.61	2.39	1.57	15.9
	_	220	_	145	_	115	_	3	1	902	1 430	46T222215	1	124	206	15	2.5	1	0.33	2.03	3.02	1.98	23.8
115	_	190	_	106	_	80	_	4	1.5	520	965	46T231911	1	133	177	13	3	1.5	0.42	1.62	2.42	1.59	10.7
	_	230	_	116	_	84	_	3	SP	631	1 060	46T232312	1	129	219	16	2.5	1	0.73	0.92	1.37	0.90	20.9
120	_	180	_	46	_	41	_	2.5	0.6	185	317	46224	1	132	170	2.5	2	0.6	0.35	1.95	2.90	1.91	3.81
	_	180	_	58	_	46	_	2.5	0.6	247	460	46224A	1	132	169	6	2	0.6	0.35	1.95	2.90	1.91	4.66
	_	200	_	62	_	55	_	2.5	0.6	292	470	46324	1	132	184	3.5	2	0.6	0.35	1.95	2.90	1.91	7.28
	_	200	_	78	_	62	_	2.5	0.6	387	672	46324A	1	132	185	8	2	0.6	0.35	1.95	2.90	1.91	9.14
	_	200	_	100	_	84	_	2.5	0.6	533	1 010	46324AS	1	132	190	8	2	0.6	0.35	1.95	2.90	1.91	12.0
FAL 1 2 13												l .	1						1				

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (120) ~ (130) mm

		Во	undar	y dime	nsions	5				Basic loa				Mo		dime	ensior	15	Constant	Axial	load fa	ctors	(Refer.)
	1		1		ı			1 2)	2)	(kľ	N)	Bearing No. 1)	Design		,	mm)		2)					Mass
d	1/05 4	<i>D</i>		<i>T</i>		C			$r_1^{(2)}$	$C_{\rm r}$	C_{0r}			$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}^{\ 2)}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	mın.					min.	min.	min.	max.	max.					
120	_	215	_	97	_	78	_	2.5		595		46T30224JR/78	1	134	203	9.5			0.44		2.31		13.9
	_	215	_	132	_	109	_	2.5	1	806	1 380	46T32224JR/109	1	134	204	11.5	2.5	1	0.44	1.55	2.31	1.52	19.8
125	_	180	_	85	_	75	_	3	0.6	389	858	46T251809	1	139	174	5	2.5	0.6	0.31	2.21	3.29	2.16	6.8
	_	230	-	116	_	84	_	4	SP	631	1 060	46T252312	1	143	219	16	3	1	0.73	0.92	1.37		19.5
	_	235	_	142	_	114	_	SP	SP	897	1 650	46T252414	1	137.2	217	14	2	SP	0.37	1.83	2.72	1.79	26.2
	_	235	-	145	-	115	_	4	1.5	897	1 650	46T252415	1	143	217	15	3	1.5	0.37	1.83	2.72	1.79	26.4
127.000	5.0000	169.975	6.6919	58.738	2.3125	49.213	1.9375	1.6	1	225	501	L225849/L225812D	1	136	162	4.8	1.6	1	0.33	2.03	3.02	1.98	3.45
	5.0000	182.563	7.1875	85.725	3.3750	73.025	2.8750	3.6	0.8	389	858	48290/48220D	1	140	174	6.4	3.6	0.8	0.31	2.21	3.29	2.16	6.95
	5.0000	196.850	7.7500	101.600	4.0000	85.725	3.3750	3.6	0.8	534	1 120	67388/67322D	1	140	189	7.9	3.6	0.8	0.34	1.96	2.92	1.92	10.9
	5.0000	200.025	7.8750	101.600	4.0000	85.725	3.3750	3.6	0.8	534	1 120	67388/67325D	1	140	189	7.9	3.6	0.8	0.34	1.96	2.92	1.92	11.6
	5.0000	215.900	8.5000	106.363	4.1875	80.963	3.1875	3.6	1.6	551	1 100	74500/74851D	1	140	205	12.7	3.6	1.6	0.49	1.38	2.06	1.35	15.0
	5.0000	228.600	9.0000	115.888	4.5625	84.138	3.3125	3.6	2.4	558	918	97500/97901D	1	140	213	15.9	3.6	2.4	0.74	0.92	1.36	0.90	17.8
	5.0000	228.600	9.0000	115.888	4.5625	84.138	3.3125	3.6	2.4	737	1 300	HM926747/HM926710D	1	140	219	15.9	3.6	2.4	0.74	0.92	1.36	0.90	19.6
	5.0000	234.950	9.2500	142.875	5.6250	114.300	4.5000	6.4	1.6	897	1 650	95500/95927D	1	145	217	14.3	6.4	1.6	0.37	1.83	2.72	1.79	25.8
127.792	5.0312	228.600	9.0000	115.888	4.5625	84.138	3.3125	3.6	2.4	737	1 300	HM926749/HM926710D	1	140	219	15.9	3.6	2.4	0.74	0.92	1.36	0.90	19.5
128.588	5.0625	206.375	8.1250	107.950	4.2500	82.550	3.2500	3.2	0.8	558	1 100	799/792D	1	140	195	12.7	3.2	0.8	0.46	1.47	2.19	1.44	12.9
130	_	180	_	69	_	55	_	2	0.6	322	663	46T261807	1	140	174.9	7	2	0.6	0.33	2.03	3.02	1.98	4.77
	_	200	_	52	_	46	_	2.5	0.6	239	425	46226	1	142	187	3	2	0.6	0.35	1.95	2.90	1.91	5.57
	_	200	_	65	_	52	_	2.5	0.6	319	618	46226A	1	142	185	6.5	2	0.6	0.35	1.95	2.90	1.91	7.06
130.000	5.1181	206.375	8.1250	107.950	4.2500	82.550	3.2500	3.6	0.8	558	1 100	797/792D	1	143	195	12.7	3.6	0.8	0.46	1.47	2.19	1.44	12.7
130	_	210	_	64	_	57	_	2.5	0.6	322	535	46326	1	142	196	3.5	2	0.6	0.36	1.87	2.79	1.83	7.81
	_	210	-	80	_	64	_	2.5	0.6	424	723	46326A	1	142	198	8	2	0.6	0.36	1.87		1.83	9.57
	_	210	_	109	_	90	_	2.5	0.6	647	1 190	46T262111	1	142	198	9.5	2	0.6	0.26	2.55	3.80	2.50	13.4
	_	214	_	115	_	98	_	2.5	1	667	1 220	46T262112	1	142	204	8.5	2	1	0.33	2.03	3.02	1.98	15
	_	230	-	98	_	78.5	_	3	1	646	1 020	46T30226JR/78.5	1	148	218	9.5	3	1	0.44	1.55	2.31	1.52	15.7
								<u> </u>											1			\longrightarrow	

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

TDO, TDOS type *d* (130) ~ (140) mm

		Во	unda	ry dimer	nsions	i				Basic load				Мо			ension	S	Constant	Axial	load fa	ctors	(Refer.)
	1		ĺ		1			ı		(kN	N)	Bearing No. 1)	Design			(mm)							Mass
d	1/25.4	D	1/25.4	T	1/25.4	C			<i>r</i> ₁	$C_{\rm r}$	C_{0r}			da	$D_{\rm a}$	S_a	ra	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/23.4		1/23.4	mm	1/25.4		1/25.4	min.	111111.					min.	min.		max.	IIIax.					
130	_	230	_	149	_	120	_	4	1	928	1 650	46T262315A	1	148	222	14.5	3	1	0.43	1.57			24.2
	_	280	_	137	_	107.5	_	4	1.5	1 130	1 670	46T30326JR/107.5	1	152	255	15	4	1.5	0.35	1.96	2.91	1.91	38.1
130.175	5.1250	196.850	7.7500	101.600	4.0000	85.725	3.3750	3.6	0.8	534	1 120	67389/67322D	1	143	189	7.9	3.6	0.8	0.34	1.96	2.92	1.92	10.4
	5.1250	206.375	8.1250	107.950	4.2500	82.550	3.2500	3.6	8.0	558	1 100	799A/792D	1	143	195	12.7	3.6	8.0	0.46	1.47	2.19	1.44	12.6
133	_	216	_	106	_	81	_	3	1	551	1 100	46T2622	1	147	205	12.5	2.5	1	0.49	1.38	2.06	1.35	14.1
133.350	5.2500	177.008	6.9688	57.150	2.2500	47.625	1.8750	1.6	0.8	241	557	L327249/L327210D	1	142	169	4.8	1.6	0.8	0.35	1.94	2.89	1.90	3.63
	5.2500	190.500	7.5000	85.725	3.3750	73.025	2.8750	3.6	0.8	405	944	48385/48320D	1	146	182	6.4	3.6	0.8	0.32	2.10	3.13	2.06	7.63
	5.2500	196.850	7.7500	101.600	4.0000	85.725	3.3750	3.6	0.8	534	1 120	67390/67322D	1	146	189	7.9	3.6	0.8	0.34	1.96	2.92	1.92	9.88
	5.2500	196.850	7.7500	101.600	4.0000	85.725	3.3750	7.9	0.8	534	1 120	67391/67322D	1	155	189	7.9	7.9	0.8	0.34	1.96	2.92	1.92	9.81
	5.2500	200.025	7.8750	101.600	4.0000	85.725	3.3750	3.6	0.8	534	1 120	67390/67325D	1	146	189	7.9	3.6	0.8	0.34	1.96	2.92	1.92	10.5
	5.2500	215.900	8.5000	106.363	4.1875	80.963	3.1875	3.6	1.6	551	1 100	74525/74851D	1	146	205	12.7	3.6	1.6	0.49	1.38	2.06	1.35	13.9
	5.2500	234.950	9.2500	142.875	5.6250	114.300	4.5000	9.5	1.6	897	1 650	95525/95927D	1	158	217	14.3	9.5	1.6	0.37	1.83	2.72	1.79	24.3
	5.2500	234.950	9.2500	142.875	5.6250	114.300	4.5000	4.7	1.6	897	1 650	95528/95927D	1	148	217	14.3	4.7	1.6	0.37	1.83	2.72	1.79	24.4
136.525	5.3750	190.500	7.5000	85.725	3.3750	73.025	2.8750	3.6	0.8	405	944	48393/48320D	1	149	182	6.4	3.6	0.8	0.32	2.10	3.13	2.06	7.18
	5.3750	215.900	8.5000	106.363	4.1875	80.963	3.1875	3.6	1.6	551	1 100	74537/74851D	1	149	205	12.7	3.6	1.6	0.49	1.38	2.06	1.35	13.4
	5.3750	228.600	9.0000	123.825	4.8750	98.425	3.8750	3.6	1.6	753	1 460	896/892D	1	149	215	12.7	3.6	1.6	0.42	1.60	2.39	1.57	19.2
139.700	5.5000	215.900	8.5000	106.363	4.1875	80.963	3.1875	3.6	1.6	551	1 100	74550/74851D	1	152	205	12.7	3.6	1.6	0.49	1.38	2.06	1.35	12.8
	5.5000	215.900	8.5000	106.363	4.1875	80.963	3.1875	6.4	1.6	551	1 100	74550A/74851D	1	158	205	12.7	6.4	1.6	0.49	1.38	2.06	1.35	12.8
	5.5000	228.600	9.0000	123.825	4.8750	98.425	3.8750	3.6	1.6	753	1 460	898/892D	1	152	215	12.7	3.6	1.6	0.42	1.60	2.39	1.57	18.5
	5.5000	228.600	9.0000	123.825	4.8750	98.425	3.8750	6.4	1.6	753	1 460	898A/892D	1	158	215	12.7	6.4	1.6	0.42	1.60	2.39	1.57	18.5
	5.5000	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	719	1 460	82550/82932D	1	152	225	12.7	3.6	1.6	0.44	1.53	2.27	1.49	22.6
	5.5000	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	856	1 660	HM231132/HM231111D	1	152	223	12.7	3.6	1.6	0.32	2.12	3.15	2.07	22.5
	5.5000	254.000	10.0000	149.225	5.8750	111.125	4.3750	7.1	1.6	941	1 830	99550/99102D	1	159	237	19.1	7.1	1.6	0.41	1.66	2.47	1.62	31.1
	5.5000	307.975	12.1250	200.025	7.8750	155.575	6.1250	9.5	2.4	1 740	2 900	HH234031/HH234011D	1	164	285	22.2	9.5	2.4	0.33	2.07	3.08	2.02	68.3
140	_	210	_	53	_	47	_	2.5	0.6	239	404	46228	1	152	196	3	2	0.6	0.33	2.03	3.02	1.98	5.85

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TDO, TDOS type *d* (140) ~ (150) mm

		Во	ounda	ry dime	nsions	;				Basic load				Mo			ension	S	Constant	Axial	load fa	actors	(Refer.)
	1			1 _	1	_				(kľ	N)	Bearing No. 1)	Design	1	,	(mm)							Mass
d mm	1/25.4	D mm	1/25.4	mm T	1/25.4	C mm	1/25.4	r min.	r_1	$C_{\rm r}$	C_{0r}			$d_{\rm a}$ min.	D_{a} min.	S_a	$r_{ m a}$ max.	r _b	e	Y_2	Y_3	Y_0	(kg)
-																							
140	_	210	_	66	_	53	_	2.5	0.6	360	639	46228A	1	152	199	6.5	2	0.6	0.47		2.12		7.18
	_	225 225	_	68 85		61 68	_	3	1	360 475	564 836	46328 46328A	1	154 154	210 212	3.5 8	2.5 2.5	1	0.35 0.35	1.95 1.95		1.91 1.91	9.56 11.8
									.				'					-					
	_	230 230	_	120 140		94 110	_	4	1	688 804	1 360 1 480	46T282312 46T282314	1	158 154	212 218	13 15	3 2.5	1	0.42 0.35	1.60 1.95		1.56 1.91	18.7 20.3
		240	_	132		106	_	4	1.5	719		46T282413	1	158	225	13	3	1.5	0.33	1.53		1.49	23.6
								-	1.0				,				-	1.0	****				
	_	250 270	_	153 170		125.5 125	_	3	1	1 090 1 210	1 920 2 130	46T32228JR/125.5 46T282717	1	158 158	238 253	14 22.5	3 3	1	0.44 0.44	1.55 1.55		1.52 1.52	30.2 41.5
		270		170		120		4	'	1 2 10	2 130	401202/1/	1	100	200	22.3	3	1	0.44	1.55	2.31	1.32	41.5
142.875	5.6250	200.025	7.8750	87.315	3.4376	73.025	2.8750	7.9	0.8	422	982	48684/48620D	1	164	191	7.1	7.9	0.8	0.34	2.01	2.99	1.96	7.98
	5.6250	200.025		87.315	3.4376	73.025		3.6	0.8	422	982	48685/48620D	1	156	191	7.1	3.6	8.0	0.34	2.01	2.99	1.96	8.06
	5.6250	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	719	1 460	82562/82932D	1	156	225	12.7	3.6	1.6	0.44	1.53	2.27	1.49	21.9
146.050	5.7500	193.675	7.6250	65.085	2.5624	53.975	2.1250	1.6	0.8	321	750	36690/36620D	1	155	186	5.6	1.6	0.8	0.37	1.83	2.73	1.79	4.96
	5.7500	193.675		65.085		53.975		4.8	0.8	321	750	36691/36620D	1	161	186	5.6	4.8	0.8	0.37	1.83		1.79	4.93
	5.7500	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	719	1 460	82576/82932D	1	159	225	12.7	3.6	1.6	0.44	1.53	2.27	1.49	21.1
	5.7500	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	856	1 660	HM231140/HM231111D	1	159	223	12.7	3.6	1.6	0.32	2.12	3.15	2.07	21.0
	5.7500	254.000	10.0000	149.225	5.8750	111.125	4.3750	7.1	1.6	941	1 830	99575/99102D	1	166	237	19.1	7.1	1.6	0.41	1.66	2.47	1.62	29.4
	5.7500	268.288	10.5625	160.338	6.3125	125.413	4.9375	6.4	1.6	1 130	2 090	EE107057/107105D	1	164	249	17.5	6.4	1.6	0.39	1.74	2.59	1.70	38.1
	5.7500	304.800	12.0000	135.733	5.3438	97.633	3.8438	3.2	1.6	1 030	1 600	EE750576/751204D	1-P	158	268	19.1	3.2	1.6	0.33	2.03	3.02	1.98	43.2
149.225	5.8750	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	719	1 460	82587/82932D	1	162	225	12.7	3.6	1.6	0.44	1.53	2.27	1.49	20.4
	5.8750	236.538	9.3125	131.763	5.1875	106.363	4.1875	6.4	1.6	856	1 660	HM231148/HM231111D	1	167	223	12.7	6.4	1.6	0.32	2.12			20.2
	5.8750	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	856	1 660	HM231149/HM231111D	1	162	223	12.7	3.6	1.6	0.32	2.12	3.15	2.07	20.3
150	_	225	_	56	_	50	_	3	1	278	476	46230	1	164	213	3	2.5	1	0.33	2.03	3.02	1.98	7.09
	_	225	_	70	_	56	_	3	1	377	703	46230A	1	164	213	7	2.5	1	0.33	2.03	3.02	1.98	8.82
	_	245	_	108	_	80	_	4	1.5	552	989	46T302511	1	168	227	14	3	1.5	0.35	1.93	2.88	1.89	17.2
	_	250	_	80	_	71	_	3	1	467	786	46330	1	164	233	4.5	2.5	1	0.35	1.95	2.90	1.91	14.6
	_	250	_	100	_	80	_	3	1	595	1 070	46330A	1	164	234	10		1	0.35	1.95		1.91	17.6
	_	250	_	137	_	112	_	3	1	816	1 510	46T302514A	1	164	238	12.5	2.5	1	0.41	1.66	2.47	1.62	24.3

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (150) ~ 160.325 mm

		Во	ounda	ry dime	nsions	5				Basic load				Мо	unting	g dime	ension	s	Constant	Axial	load fa	ctors	(Refer.)
d mm	1/25.4	D mm	1/25.4	T mm	1/25.4	C mm	1/25.4	r min.	$r_1^{\ 2)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{\rm a}$	$r_{ m a}$ max.	$r_{ m b}^{2)}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
150	_ _ _	250 250 250	_ _ _	140 142 145	_ _ _	115 112 115	_ _ _		SP SP 1.5	816 816 816	1 510	46T302514B 46T302514 46T302515	1 1 1	164 164 168	239 237 239	12 15 15	2.5 2.5 3		0.41 0.41 0.41	1.66 1.66 1.66	2.47 2.47 2.47	1.62	28.0 25.1 25.7
	_ _ _	260 270 270 280	_ _ _	150 109 164 160		115 87 130 104	_ _ _	4 3 3 4	1.5 1 1	944 827 1 210 1 030	1 740 1 330 2 130 1 730	46T302615 46T30230JR/87 46T32230JR/130 46T302816	1 1 1	168 168 168	246 255 254 265	17.5 11 17 28	3 3 3	1.5 1 1	0.43 0.44 0.44 0.81	1.57 1.55 1.55 0.83			30.4 24.6 38 38.7
150.813	5.9375	244.475	9.6250	107.950	4.2500	79.375	3.1250	3.6	1.6	552	989	81593/81963D	1	163	227	14.3	3.6	1.6	0.35	1.93	2.88		16.7
152.400	6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	222.250 244.475 254.000 268.288 307.975 307.975	9.6250 10.0000 10.5625 12.1250	100.010 107.950 149.225 160.338 200.025 200.025	4.2500 5.8750 6.3125 7.8750	76.200 79.375 111.125 125.413 146.050 155.575	3.1250 4.3750 4.9375 5.7500	3.6 7.1 6.4 9.5	0.8 1.6 1.6 1.6 2.4 2.4	541 552 941 1 130 1 360 1 740	1 190 989 1 830 2 090 2 300 2 900	M231649/M231610D 81600/81963D 99600/99102D EE107060/107105D EE450601/451215D HH234048/HH234011D	1 1 1 1 1	165 165 172 171 177 177	210 227 237 249 275 285	11.9 14.3 19.1 17.5 27 22.2	3.6 3.6 7.1 6.4 9.5 9.5	0.8 1.6 1.6 1.6 2.4 2.4	0.33 0.35 0.41 0.39 0.33	2.03 1.93 1.66 1.74 2.07 2.07	2.88 2.47 2.59	1.62 1.70 2.03	11.9 16.4 27.7 36.2 61.6 63.7
155	-	330	_	180	_	120	_	6	1.5	1 490	2 410	46T313318A	1	183	315	30	5	1.5	0.81	0.83	1.24	0.82	70.0
158.750	6.2500	225.425	8.8750	85.725	3.3750	69.850	2.7500	3.6	8.0	442	1 140	46780R/46720D	1	171	215	7.9	3.6	8.0	0.38	1.76	2.62	1.72	10.7
160	_ _ _	240 240 270	_ _ _	60 75 86	_	53 60 76	_ _ _	3 3 3	1 1 1	324 406 592	565 756 950	46232 46232A 46332	1 1 1	174 174 174	228 226 252	3.5 7.5 5	2.5	1 1 1	0.33 0.33 0.35	2.03 2.03 1.95	3.02 3.02 2.90	1.98	8.71 10.6 18.8
	_ _ _	270 270 280 290	_ _ _	108 149 150		86 120 125	_ _ _	3 4 3	1 1 1	727 1 040 1 090 1 360	1 270 1 970 2 000 2 420	46332A 46T322715 46T322815 46T32232JR/144	1 1 1	174 174 178	252 257 262 274	11 14.5 12.5	2.5	1 1 1	0.35 0.40 0.32 0.44	1.95 1.70 2.12 1.55			23.1 32.4 36.2 47.6
160.325	6.3120	288.925	11.3750	142.875	5.6250		4.3750		1.6				1	180	271	15.9		1.6	0.32		3.15		37.2

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d **165** ~ **175** mm

		Bounda	ry dime	nsions	•				Basic load					Мо		g dime	ension	S	Constant	Axial	load fa	ctors	(Refer.)
d	1	D	T		C		r ²⁾	$r_1^{(2)}$	`		Bearing No. 1)		Design	$d_{\rm a}$	$D_{\rm a}$	S_a	r_a	$r_{\rm b}$					Mass
mm	1/25.4	mm 1/25.4		1/25.4	mm		min.	-	$C_{\rm r}$	C_{0r}				min.	min.	-	max.		е	Y_2	Y_3	Y_0	(kg)
165	_	290 —	143	_	113	_	SP	1.5	1 080	1 950	46T332914		1	185	273	15	4	1.5	0.32	2.12	3.15	2.07	40.0
	_	290 —	150	_	125	_	6	1	1 170	2 140	46T332915		1	193	269	12.5	5	1	0.32	2.12	3.15	2.07	40.1
165.100		215.900 8.5000	58.740		47.625		_	0.8	264	600	L433749/L433710D		1	174	207	5.6	1.6	0.8	0.36		2.76	1.81	5.06
	6.5000	225.425 8.8750	85.725		69.850		3.6	8.0	442	1 140	46790R/46720D		1	177.3	215	7.9	3.6	0.8	0.38	1.76		1.72	9.64
	6.5000	247.650 9.7500	103.188	4.0625	84.138	3.3125	3.6	8.0	593	1 400	67780/67720D		1	178	238	9.5	3.6	0.8	0.44	1.54	2.29	1.50	16.9
	6.5000	254.000 10.0000	101.600	4.0000	76.200	3.0000	4.8	1.6	649	1 240	M235145/M235113D		1	180	240	12.7	4.8	1.6	0.32	2.12	3.15	2.07	17.0
	6.5000	288.925 11.3750	142.875	5.6250	111.125	4.3750	7.1	1.6	943	1 920	94649/94114D		1	185	270	15.9	7.1	1.6	0.47	1.44	2.15	1.41	37.7
	6.5000	288.925 11.3750	142.875	5.6250	111.125	4.3750	7.1	1.6	1 140	2 090	HM237535/HM237510D		1	185	271	15.9	7.1	1.6	0.32	2.12	3.15	2.07	35.9
	6.5000	288.925 11.3750	146.050	5.7500	114.300	4.5000	7.1	1.6	1 140	2 090	HM237535/		1	185	271	15.9	7.1	1.6	0.32	2.12	3.15	2.07	36.5
											HM237511XD												
168.275		247.650 9.7500	103.188		84.138				593	1 400	67782/67720D		1	181	238	9.5	3.6	0.8	0.44	1.54		1.50	16.3
	6.6250	250.000 9.8425	103.190		84.140		-	SP	701	1 410	46T342510		1	180.3	236	9.5	2	0.5	0.33	2.03		1.98	16.1
	6.6250	360.000 14.1732	190.000	7.4803	130.000	5.1181	SP	SP	1 610	2 570	46T343619		1	186.1	339	30	4	1	0.80	0.85	1.26	0.83	83.9
170.000	6.6929	254.000 10.0000	101.600	4.0000	76.200	3.0000	4.8	1.6	649	1 240	M235149/M235113D		1	185	240	12.7	4.8	1.6	0.32	2.12	3.15	2.07	16.0
170	_	260 —	67	_	60	_	3	1	382	642	46234		1	184	243	3.5	2.5	1	0.33	2.03	3.02	1.98	11.4
	_	260 —	84	_	67	_	3	1	502	969	46234A		1	184	244	8.5		1	0.33	2.03		1.98	14.7
	_	280 —	88	-	78	_	3	1	599	1 050	46334		1	184	263	5	2.5	1	0.33	2.06	3.06	2.01	19.8
	_	280 —	110	_	88	_	3	1	776	1 390	46334A		1	184	260	11	2.5	1	0.33	2.06	3.06	2.01	24.7
	_	310 —	195	_	150	_	5	1.5	1 610	2 790	46T343120-1		1	192	292	22.5	4	1.5	0.33	2.03	3.02	1.98	58.1
171.450	6.7500	288.925 11.3750	142.875	5.6250	111.125	4.3750	7.1	1.6	943	1 920	94675/94114D		1	191	270	15.9	7.1	1.6	0.47	1.44	2.15	1.41	35.9
174.625	6.8750	247.650 9.7500	103.188		84.138			0.8	593		67786/67720D		1	196	238	9.5	7.9	0.8	0.44	1.54		1.50	14.8
	6.8750	247.650 9.7500	103.188		84.138			0.8	593		67787/67720D		1	187	238	9.5	3.6	8.0	0.44	1.54		1.50	14.9
	6.8750	288.925 11.3750	142.875	5.6250	111.125	4.3750	7.1	1.6	943	1 920	94687/94114D		1	194	270	15.9	7.1	1.6	0.47	1.44	2.15	1.41	34.9
	6.8750	288.925 11.3750	142.875	5.6250	111.125	4.3750	7.1	1.6	1 080	1 950	HM237542/HM237510D		1	194	271	15.9	7.1	1.6	0.32	2.12	3.15	2.07	33.1
175	_	320 —	180	_	140	_	5	1.5	1 460	2 530	46T3532		1	197	301	20	4	1.5	0.32	2.12	3.15	2.07	56.7
FN1 - 1 7 - 1 N	AAZIL 11.						-				ava plus talarancas. Pafar ta	1	2) SD in			2.00							

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 177.800 ~ (187.325) mm

d mm 1/25	25.4	D	1						(kN	d ratings			Мо	(mm)						actors	(Refer.)
177.800 7.00		mm 1/25.4	mm T	1/25.4	C mm	1/25.4		$r_1^{\ 2)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	Design ³⁾	$d_{ m a}$ min.	D_{a} min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}^{2)}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
	0000	227.013 8.937	66.672	2.6249	52.388	2.0625	1.6	0.8	304	805	36990/36920D	1	186	220	7.1	1.6	0.8	0.44	1.53	2.28	1.50	6.18
7.00	0000	247.650 9.750	103.188	4.0625	84.138	3.3125	3.6	0.8	593	1 400	67790/67720D	1	190	238	9.5	3.6	0.8	0.44	1.54	2.29	1.50	14.2
7.00	0000	247.650 9.750	103.188	4.0625	84.138	3.3125	10.4	0.8	593	1 400	67791/67720D	1	204	238	9.5	10.4	8.0	0.44	1.54	2.29	1.50	14.0
7.00	0000	269.875 10.625	119.063	4.6875	93.663	3.6875	3.6	1.6	704	1 610	M238840/M238810D	1	190	255	12.7	3.6	1.6	0.33	2.03	3.02	1.98	23.0
7.00	0000	285.750 11.250	136.525	5.3750	92.075	3.6250	6.4	1.6	760	1 430	EE91702/91113XD	1*	196	264	22.2	6.4	1.6	0.43	1.57	2.34	1.53	28.5
7.00	0000	288.925 11.375	142.875	5.6250	111.125	4.3750	7.1	1.6	943	1 920	94700/94114D	1	197	270	15.9	7.1	1.6	0.47	1.44	2.15	1.41	33.9
7.00	0000	288.925 11.375	142.875	5.6250	111.125	4.3750	7.1	1.6	1 080	1 950	HM237545/HM237510D	1	197	271	15.9	7.1	1.6	0.32	2.12	3.15	2.07	32.1
7.00	0000	288.925 11.375	146.050	5.7500	114.300	4.5000	7.1	1.6	1 080	1 950	HM237545/	1*	197	271	15.9	7.1	1.6	0.32	2.12	3.15	2.07	32.7
7.0	0000	004 000 40 000	1 17 000		00.405	0.0750	0.4	4.0	000	4 000	HM237511XD		400	000	047	0.4	4.0	0.00	4.07	0.70	4.00	07.0
7.00	0000	304.800 12.000		5.8204				1.6	939	1 600	EE280702/281201D	ı	196	282	24.7	6.4	1.6	0.36	1.87	2.79	1.83	37.2
7.00		320.675 12.625		7.3125	138.112				1 280	2 450	EE222070/222127D	1	190	298	23.8	3.6	1.6	0.40		2.50		59.0
7.00	0000	320.675 12.625	185.738	7.3125	138.113	5.4375	3.6	1.6	1 460	2 530	H239640/H239612D	1	190	301	23.8	3.6	1.6	0.32	2.12	3.15	2.07	56.6
179.975 7.08	0856	317,500 12.500	146.050	5.7500	111.125	4.3750	3.6	1.6	1 040	2 270	93708/93127D	1	193	295	17.5	3.6	1.6	0.52	1.29	1.92	1.26	47.2
	0856	319.976 12.597	146.050	5.7500	111.125				1 040		93708/93128XD	1*	193	295	17.5		1.6	0.52		1.92		48.3
180 —		280 —	74		66		3	1	464	801	46236	1	194	263	4	2.5	1	0.33	2.02	3.02	1 00	15.5
		280 —	93		74		3	1	584	1 080	46236A	1	194	261	9.5	2.5	1	0.33		3.02		19.0
_	_	300 —	96	_	85	_	4	1.5	693	1 240	46336	1	198	277	5.5	3	1.5	0.33				25.8
_		300 —	120	_	96	_	4	1.5	894	1 630	46336A	1	198	279	12	3	1.5	0.33	2.06	3.06	2.01	31.3
_	_	300 —	163	_	134	_	4	1.0	1 210	2 240	46T363016	1	198	282	14.5	3	1.5	0.33	2.03		1.98	42.2
_	_	320 —	127	_	99	_	4	1.5	1 060	1 740	46T30236JR/99	1	202	297	14	4	1.5	0.45	1.5		1.47	40.1
_	_	320 —	192	_	152	_	4	1.5	1 640	3 030	46T32236JR/152	1	202	303	20	Δ	1.5	0.45	1.5	2 23	1.47	62.5
_	_	340 —	170	_	140	_	5	1.5	1 540	2 530	46T363417	1	202	314	15	4	1.5	0.32	-	3.15		63.2
184.150 7.25	2500	266.700 10.500	103.188	3 4.0625	84.138	3.3125	3.6	0.8	614	1 520	67883/67820D	1	197	257	9.5	3.6	0.8	0.48	1.41	2.11	1.38	18.7
184.15	_	288.925 —	142.88	_	111.12	_	SP	SP	968	1 920	46T372914	1	203.2	276	15.9	4	SP	0.40	1.68	2.50	1.64	31.7
187.325 7.37	3750	266.700 10.500	103.188	3 4.0625	84.138	3.3125	3.6	0.8	614	1 520	67884/67820D	1	200	257	9.5	3.6	0.8	0.48	1.41	2.11	1.38	18.0
	3750	269.875 10.625			93.663			1.6	704	1 610	M238849/M238810D	1	200	255	12.7	3.6	1.6	0.33		3.02		20.4
7.37	3750	282.575 11.125	107.950	4.2500	79.375	3.1250			702		87737/87112D	1	200	267	14.3	3.6	1.6	0.42				21.4

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.3) * means no lubrication holes or grooves on double outer ring.

d (187.325) ~ 200 mm

		В	ounda	ry dime	nsions	1				Basic load				Мо	unting	dime	ensior	15	Constant	Axial	load fa	actors	(Refer.)
1		D	1	T	1	С		r	r_1	(KI	')	Bearing No. 1)	Design	$d_{\rm a}$	D_a	S_a	$r_{\rm a}$	$r_{\rm b}$					Mass
d mm	1/25.4	mm	1/25.4	-	1/25.4		1/25.4		-	C_{r}	C_{0r}			min.	min.	min.	max.	-	e	Y_2	Y_3	Y_0	(kg)
187.325	7.3750	320.675	12.6250	185.738	7.3125	138.113	5.4375	5.6	1.6	1 460	2 530	H239649/H239612D	1	204	301	23.8	5.6	1.6	0.32	2.12	3.15	2.07	52.6
190	_	290	_	75	_	67	_	3	1	487	866	46238	1	204	272	4	2.5	1	0.32	2.12	3.15	2.07	16.5
	_	290	_	94	_	75	_	3	1	632	1 170	46238A	1	204	274	9.5	2.5	1	0.33	2.03	3.02	1.98	20.0
	_	320	_	104	_	92	_	4	1.5	808	1 450	46338	1	208	298	6	3	1.5	0.35	1.95	2.90	1.91	31.9
	_	320	_	130	_	104	_	4	1.5	1 020	1 860	46338A	1	208	298	13	3	1.5	0.35	1.95	2.90	1.91	39.0
	_	320	_	171	_	134	_	4	1	1 490	2 800	46T383217C	2	208	301	18.5	3	1	0.32	2.12	3.15	2.07	51.0
	_	340	_	133	_	105	_	4	1.5	1 250	2 060	46T30238JR/105	1	212	318	14	4	1.5	0.44	1.55	2.31	1.52	47.8
	_	340	_	204	_	160	_	4	1.5	1 870	3 480	46T32238JR/160	1	212	323	22	4	1.5	0.44	1.55	2.31	1.52	75.1
190.500	7.5000	266.700	10.5000	103.188	4.0625	84.138	3.3125	3.6	0.8	614	1 520	67885/67820D	1	203	257	9.5	3.6	0.8	0.48	1.41	2.11	1.38	17.2
	7.5000	282.575	11.1250	107.950	4.2500	79.375	3.1250	3.6	1.6	702	1 450	87750/87112D	1	203	267	14.3	3.6	1.6	0.42	1.62	2.42	1.59	20.7
	7.5000	317.500	12.5000	146.050	5.7500	111.125	4.3750	4.3	1.6	1 040	2 270	93750/93127D	1	205	295	17.5	4.3	1.6	0.52	1.29	1.92	1.26	43.8
	7.5000	368.300	14.5000	193.675	7.6250	136.525	5.3750	6.4	1.6	1 610	2 920	EE420751/421451D	1	209	334	28.6	6.4	1.6	0.40	1.68	2.50	1.64	85.2
193.675	7.6250	282.575	11.1250	107.950	4.2500	79.375	3.1250	3.6	1.6	702	1 450	87762/87112D	1	206	267	14.3	3.6	1.6	0.42	1.62	2.42	1.59	19.8
196.850	7.7500	254.000	10.0000	61.910	2.4374	47.625	1.8750	1.6	0.8	322	773	L540049/L540010D	1	206	244	7.1	1.6	0.8	0.40	1 70	2.53	1 66	7.12
	7.7500	257.175		85.725		66.675		3.6		459	1 260	LM739749/LM739710D	1	210	247	9.5	3.6		0.45		2.25		11.2
200	_	310	_	82	_	73	_	3	1	572	1 040	46240	1	214	288	4.5	2.5	1	0.32	2.12	3.15	2.07	21.4
	_	310	_	103	_	82	_	3	1	713	1 380	46240A	1	214	289	10.5	2.5	1	0.32	2.12	3.15	2.07	26.3
	_	310	_	152	_	123	_	3	1	1 290	2 670	46T403115	1	214	298	14.5	2.5	1	0.43	1.57	2.34	1.53	39.9
	_	310	_	170	_	140	_	3	1	1 240	2 730	46T4031	1	214	292	15	2.5	1	0.33	2.03	3.02	1.98	44.9
	_	320	_	146	_	110	_	5	1.5	1 040	2 270	46T403215	1	222	295	18	4	1.5	0.52	1.29	1.92	1.26	41.5
	_	330	_	180	_	140	_	4	1.5	1 340	2 690	46T403318	1	218	307	20	3	1.5	0.36	1.87	2.79	1.83	56
	_	340	_	112	_	100	_	4	1.5	939	1 580	46340	1	218	316	6	3	1.5	0.35	1.95	2.90	1.91	39.6
	_	340	_	140	_	112	_	4	1.5	1 110	2 040	46340A	1	218	319	14	3	1.5	0.35	1.95	2.90	1.91	48.2
	_	356	_	152	_	111	_	6	1.5	1 250	2 610	46T403615	1	209	333	20	5	1.5	0.33	2.04	3.04	2.00	61.6
	_	360	_	142	_	110	_	4	1.5	1 360	2 240	46T30240JR/110	1	222	336	16	4	1.5	0.44	1.55	2.31	1.52	56.5

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 200.025 ~ (220) mm

		Bounda	ry dime	nsions	•				Basic load				Мо		dime	ension	S	Constant	Axial	load fa	ctors	(Refer.)
	1	_	_	1			r ²⁾	$r_1^{(2)}$	(K1	1)	Bearing No. 1)	Design	ı	,								Mass
d mm	1/25.4	D mm 1/25.4	T mm	1/25.4	C mm	1/25.4			$C_{\rm r}$	C_{0r}			d _a min.	D_{a} min.	$S_{\rm a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
200.025		317.500 12.5000	146.050		111.125			1.6	1 040	2 270	93787/93127D	1	215		17.5		1.6	0.52	1.29	1.92	1 26	40.5
200.023	7.8750	355.600 14.0000	152.400		111.125			1.6	1 250		EE130787/131401D	1	220	330	20.6		1.6	0.32	2.04		2.00	61.8
	7.8750	384.175 15.1250	238.125		193.675			1.6	2 480		H247535/H247510D	1-P	219	362	22.2		1.6	0.33	2.03			126
203.200		276.225 10.8750	90.485		73.025		3.6	0.8	643		LM241149/LM241110D	1	217	265	8.7	3.6	0.8	0.32		3.15		14.7
	8.0000	282.575 11.1250	101.600		82.550			0.8	598		67983/67920D	1	217	272	9.5	3.6	0.8	0.51	1.33			18.3
	8.0000	292.100 11.5000	125.415	4.9376	101.600	4.0000	3.6	1.6	934	2 050	M241547/M241510D	1	217	278	11.9	3.6	1.6	0.33	2.03	3.02	1.98	24.9
	8.0000	317.500 12.5000	146.050	5.7500	111.125	4.3750	4.3	1.6	1 040	2 270	93800/93127D	1	218	295	17.5	4.3	1.6	0.52	1.29	1.92	1.26	39.3
	8.0000	317.500 12.5000	146.050	5.7500	111.125	4.3750	7.9	1.6	1 040	2 270	93800A/93127D	1	225	295	17.5	7.9	1.6	0.52	1.29	1.92	1.26	39.2
	8.0000	368.300 14.5000	193.675	7.6250	136.525	5.3750	3.2	1.6	1 610	2 920	EE420801/421451D	1	216	334	28.6	3.2	1.6	0.40	1.68	2.50	1.64	79.4
	8.0000	406.400 16.0000	196.850	7.7500	127.000	5.0000	6.4	3.2	1 630	2 920	EE114080/114161D	1	222	368	34.9	6.4	3.2	0.79	0.85	1.27	0.83	105
204.788	8.0625	292.100 11.5000	125.415	4.9376	101.600	4.0000	3.6	1.6	934	2 050	M241549/M241510D	1	218	278	11.9	3.6	1.6	0.33	2.03	3.02	1.98	24.4
206.375	8.1250	282.575 11.1250	101.600	4.0000	82.550	3.2500	3.6	0.8	598	1 410	67985/67920D	1	220	271.5	9.5	3.6	0.8	0.51	1.33	1.97	1.30	17.5
	8.1250	317.500 12.5000	127.000	5.0000	88.900	3.5000	4	1.6	753	1 450	EE132084/132126D	1	221	293	19.1	4	1.6	0.31	2.15	3.21	2.11	30.9
	8.1250	336.550 13.2500	211.138	8.3125	169.863	6.6875	3.2	1.6	1 770	3 800	H242649/H242610DC	2	219	318	20.6	3.2	1.6	0.33	2.03	3.02	1.98	69.7
209.550	8.2500	282.575 11.1250	101.600	4.0000	82.550	3.2500	3.6	0.8	598	1 410	67989/67920D	1	223	272	9.5	3.6	8.0	0.51	1.33	1.97	1.30	16.7
	8.2500	317.500 12.5000	146.050	5.7500	111.125	4.3750	4.3	1.6	1 040	2 270	93825/93127D	1	225	295	17.5	4.3	1.6	0.52	1.29	1.92	1.26	37.0
	8.2500	333.375 13.1250	149.225	5.8750	114.300	4.5000	6.4	1.6	1 210	2 480	HM743345/HM743310D	1	229	316	17.5	6.4	1.6	0.44	1.54	2.29	1.50	45.9
210	_	300 —	110	_	85	_	1	1	752	1 550	46T423011	1	224	287	12.5	1	1	0.38	1.78	2.64	1.74	21.8
212.725	8.3750	285.750 11.2500	98.425	3.8750	76.200	3.0000	3.6	0.8	611	1 560	LM742745/LM742710D	1	226	277	11.1	3.6	0.8	0.48	1.40	2.09	1.37	16.8
215.900	8.5000	285.750 11.2500	98.425	3.8750	76.200	3.0000	3.6	0.8	611	1 560	LM742749/LM742710D	1	230	277	11.1	3.6	0.8	0.48	1.40	2.09	1.37	15.9
	8.5000	406.400 16.0000	195.263	7.6875	147.638	5.8125	6.4	1.6	1 930	3 480	EE820085/820161D	1	235	372	23.8	6.4	1.6	0.39	1.71	2.55	1.67	103
219.075	8.6250	358.775 14.1250	196.850	7.7500	181.440	7.1433	SP	SP	1 660	3 590	46T443620	2	237.9	338	7.7	4	1	0.33	2.03	3.02	1.98	78.3
220	_	340 —	90	_	80	_	4	1.5	677	1 240	46244	1	238	319	5	3	1.5	0.32	2.12	3.15	2.07	27.8
	_	340 —	113	_	90	_	4	1.5	832	1 620	46244A	1	238		11.5	3	1.5	0.32		3.15		34.2
FN1-17-13												0) 00 :-										

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

Double-row tapered roller bearings _

TDO, TDOS type

d (220) ~ 234.950 mm

		Bour	ıdar	y dimer	sions	;				Basic load			D i .		ountin	g dime	ension	15	Constant	Axial	load fa	ctors	(Refer.)
$_{\rm mm}^{~d}$	1/25.4	<i>D</i> mm 1/2	25.4	T mm	1/25.4	C mm	1/25.4	$r^{2)}$ min.	$r_1^{\ 2)}$ min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	Design	$d_{ m a}$ min.	D_{a} min.	S_{a} min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
220	_	370 -	_	120	_	107	_	5	1.5	1 070	1 810	46344	1	242	346	6.5	4	1.5	0.35	1.95	2.90	1.91	49.1
	_	0.0	-	150	_	120	_	5	1.5	1 330	2 470	46344A	1	242	343	15	4	1.5	0.35			1.91	60.1
	_	400 -		150	_	114	_	4	1.5	1 730	2 880	46T30244JR/114	1	242	371	18	4	1.5	0.42	1.61	2.39	1.57	75.8
220.663	8.6875	314.325 12.3	3750	131.763	5.1875	106.363	4.1875	6.4	1.6	1 050	2 450	M244249/M244210D	1	240	299	12.7	6.4	1.6	0.33	2.03	3.02	1.98	30.5
225.425	8.8750	355.600 14.0	0000	152.400	6.0000	111.125	4.3750	6.7	1.6	1 250	2 610	EE130889/131401D	1	245	330	20.6	6.7	1.6	0.33	2.04	3.04	2.00	51.8
228.397	8.9920	431.800 17.0	0000	196.850	7.7500	111.125	4.3750	6.4	3.2	1 700	2 890	EE113089/113171D	1-P	248	397	42.9	6.4	3.2	0.88	0.76	1.14	0.75	111
228.460	8.9945	431.800 17.0	0000	196.850	7.7500	111.125	4.3750	6.4	3.2	1 700	2 890	EE113091/113171D	1-P	248	397	42.9	6.4	3.2	0.88	0.76	1.14	0.75	111
228.600	9.0000	327.025 12.8	3750	114.300	4.5000	82.550	3.2500	6.4	1.6	802	1 860	8573/8520D	1	248	310	15.9	6.4	1.6	0.41	1.66	2.47	1.62	28.2
	9.0000	355.600 14.0	0000	152.400	6.0000	111.125	4.3750	7.1	1.6	1 130	2 630	96900/96140D	1	249	332	20.6	7.1	1.6	0.59	1.14	1.70	1.12	52.3
	9.0000	355.600 14.0	0000	152.400	6.0000	111.125	4.3750	6.7	1.6	1 250	2 610	EE130902/131401D	1	248	330	20.6	6.7	1.6	0.33	2.04	3.04	2.00	50.4
	9.0000	355.600 14.0	0000	152.400	6.0000	114.300	4.5000	6.4	1.6	1 320	2 740	HM746646/HM746610D	1	248	339	19.1	6.4	1.6	0.47	1.43	2.12	1.40	51.5
	9.0000	358.775 14.1		152.400		117.475			1.6	1 330	3 170	M249732/M249710D	1	242	343	17.5		1.6	0.33	2.03		1.98	56.4
	9.0000	400.050 15.7	7500	187.325	7.3750	136.525	5.3750	10.4	1.6	1 690	3 210	EE430900/431576D	1	256	374	25.4	10.4	1.6	0.44	1.54	2.29	1.50	87.4
	9.0000	425.450 16.7	7500	209.550	8.2500	158.750	6.2500	7.1	1.6	2 010	3 950	EE700091/700168D	1	249	382	25.4	7.1	1.6	0.33	2.03	3.02	1.98	123
	9.0000	488.950 19.2	2500	345.000	13.5827	220.000	8.6614	SP	SP	3 640	7 010	46T464935B	1-P	246.0	465	62.5	4	1	0.94	0.72	1.07	0.70	298
230	_	380 -	_	200	_	160	_	4	1	1 940	4 070	46T463820	1	248	354	20	3	1	0.26	2.55	3.80	2.50	86.1
	_	410 -	-	180	_	120	_	5	1.5	1 700	3 060	46T464118	1	252	381	30	4	1.5	0.55	1.23	1.82	1.20	89.5
	_	420 -	-	200	-	160	_	5	1.5	1 960	3 630	46T464220	2	252	391	20	4	1.5	0.47	1.43	2.12	1.40	114
	_	430 -	_	215	_	130	_	6	1.5	2 060	3 700	46T464322A	1-P	258	410	42.5	5	1.5	0.94	0.72	1.07	0.70	126
231.775	9.1250	358.775 14.1	250	152.400	6.0000	117.475	4.6250	6.4	1.6	1 330	3 170	M249734/M249710D	1	251	343	17.5	6.4	1.6	0.33	2.03	3.02	1.98	55.0
234.950	9.2500	327.025 12.8	3750	114.300	4.5000	82.550	3.2500	6.4	1.6	802	1 860	8575/8520D	1	254	310	15.9	6.4	1.6	0.41	1.66	2.47	1.62	26.2
	9.2500	355.600 14.0	0000	152.400	6.0000	111.125	4.3750	7.1	1.6	1 130	2 630	96925/96140D	1	256	332	20.6	7.1	1.6	0.59	1.14	1.70	1.12	49.5
	9.2500	384.175 15.1	250	238.125	9.3750	193.675	7.6250	6.4	1.6	2 480	5 370	H247548/H247510D	1-P	254	362	22.2	6.4	1.6	0.33	2.03	3.02	1.98	104
	9.2500	384.175 15.1	250	238.125	9.3750	193.675	7.6250	6.4	1.6	2 480	5 370	H247549/H247510D	1-P	254	362	22.2	6.4	1.6	0.33	2.03	3.02	1.98	104

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 237.330 ~ (254.000) mm

		В	ounda	ry dime	nsions	,				Basic load				Мо	-	•	nsion	s	Constant	Axial	load fa	ctors	(Refer.)
	1		ı		ĺ	_		r ²⁾	2)	(kN	٧)	Bearing No. 1)	Design	,		(mm)		2)					Mass
d mm	1/25.4	D mm	1/25.4	T mm	1/25.4	C mm		min. r	$r_1^{(2)}$	$C_{\rm r}$	C_{0r}			d _a min.	D_{a} min.	Sa	$r_{ m a}$ max.	$r_{\rm b}^{2)}$	e	Y_2	Y_3	Y_0	(kg)
237.330	9.3437	358.775	14.1250	152.400	6.0000	117.475	4.6250	6.4	1.6	1 330	3 170	M249736/M249710D	1	257	343	17.5	6.4	1.6	0.33	2.03	3.02	1.98	52.6
240	_	360	_	92	_	82	_	4	1.5	768	1 430		1	258	338	5	3	1.5	0.32	2.12	3.15	2.07	29.6
	_	360	_	115	_	92	_	4	1.5	990	1 980	46248A	1	258	341	11.5	3	1.5	0.32	2.12	3.15	2.07	36.9
	_	360	_	170	_	142	_	4	1	1 300	3 090	46T483617	2	258	345	14	3	1	0.33	2.03	3.02	1.98	57.3
	_	400	_	128	_	114	_	5	1.5	1 190	2 180	46348	1	262	377	7	4	1.5	0.35	1.95	2.90	1.91	59.0
	_	400	_	160	_	128	_	5	1.5	1 540	3 060	46348A	1	262	373	16	4	1.5	0.35	1.95	2.90	1.91	76.2
	_	400	_	209	_	168	_	5	1.5	2 200	4 370	46T484021	1	262	378	20.5	4	1.5	0.33	2.03	3.02	1.98	98.5
	_	407	_	216	_	185	_	SP S	SP	2 340	4 810	46T484122	1	258.8	385	15.5	4	SP	0.33	2.03	3.02	1.98	111
	_	440	_	274	_	224	_	5	1.5	3 360	6 850	46T484427	1	249	412	25	4	1.5	0.33	2.03	3.02	1.98	179
																							-
241.300	9.5000	327.025		114.300		82.550			1.6	802			1	261	310	15.9		1.6	0.41		2.47		24.1
	9.5000	349.148		127.000		101.600			1.6	950	2 050		1	261	330	12.7	6.4	1.6	0.35	1.91		1.86	36.4
	9.5000	355.498	13.9960	127.000	5.0000	101.600	4.0000	6.4	1.6	950	2 050	EE127095/127139D	1	261	330	12.7	6.4	1.6	0.35	1.91	2.84	1.86	39.1
	9.5000	368.300	14.5000	120.650	4.7500	85.725	3.3750	6.4	1.6	870	1 850	EE170950/171451D	1	261	336	17.5	6.4	1.6	0.36	1.86	2.77	1.82	41.7
	9.5000	393.700	15.5000	157.163	6.1875	109.538	4.3125	6.4	1.6	1 270	3 090	EE275095/275156D	1	261	378	23.8	6.4	1.6	0.40	1.68	2.50	1.64	73.3
	9.5000	406.400	16.0000	155.575	6.1250	107.950	4.2500	6.4	1.6	1 270	3 090	EE275095/275161D	1	261	378	23.8	6.4	1.6	0.40	1.68	2.50	1.64	79.3
	9.5000	406.400	16.0000	215.900	8.5000	184.150	7.2500	6.4	1.6	2 340	4 810	H249148/H249111D	1	261	385	15.9	6.4	1.6	0.33	2.03	3.02	1.98	110
	9.5000	444.500	17.5000	209.550	8.2500	158.750	6.2500	6.4	1.6	2 200	3 960	EE923095/923176D	1	261	407	25.4	6.4	1.6	0.34	2.01	2.99	1.96	128
	9.5000	488.950	19.2500	254.000	10.0000	196.850	7.7500	6.4	1.6	2 880	5 570	EE295950/295192D	1	261	446	28.6	6.4	1.6	0.31	2.18	3.24	2.13	209
244.475	9.6250	380.898	14.9960	171.450	6.7500	127.000	5.0000	6.4	1.6	1 350	2 930	EE126097/126149D	1	264	357	22.2	6.4	1.6	0.52	1.31	1.95	1.28	65.9
	9.6250	381.000		171.450		127.000		1		1 350	2 930		1	264	357	22.2	6.4		0.52	1.31	1.95		66.0
-																							
247.650	9.7500	368.300	14.5000	120.650	4.7500	85.725	3.3750	6.4	1.6	870	1 850	EE170975/171451D	1	267	336	17.5	6.4	1.6	0.36	1.86	2.77	1.82	39.4
	9.7500	406.400	16.0000	247.650	9.7500	203.200	8.0000	6.4	1.6	2 770	6 250	HH249949/HH249910D	1-P	267	383	22.2	6.4	1.6	0.33	2.03	3.02	1.98	123
249.250	9.8130	380.898	14.9960	171.450	6.7500	127.000	5.0000	6.4	1.6	1 350	2 930	EE126098/126149D	1	269	357	22.2	6.4	1.6	0.52	1.31	1.95	1 28	63.5
L-13.L30	9.8130	381.000		171.450		127.000			1.6	1 350	2 930		1	269	357	22.2	6.4		0.52	_	1.95		63.5
																							-
254.000	10.0000	347.663	13.6875	101.600	4.0000	69.850	2.7500	3.6	1.6	808	1 690	LM249748/LM249710D	1	268	332	15.9	3.6	1.6	0.33	2.03	3.02	1.98	24.1
EAL 1 2 13								·				ava plus talaranasa Bafar ta	2) CD in										

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (254.000) ~ 260.350 mm

		Bounda	ry dime	nsions	;				Basic load				Mo			ension	s	Constant	Axial	load fa	actors	(Refer.)
	1		ı	ĺ			l.		(kN	۷)	Bearing No. 1)	Design			(mm)							Mass
mm	l 1/25.4	<i>D</i> mm 1/25.4	mm T	1/25.4	C mm	1/25.4	r min.	r_1 min.	$C_{\rm r}$	C_{0r}			d_{a} min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	<i>Y</i> ₂	Y_3	Y_0	(kg)
254.00	10.0000	358.775 14.1250	152.400	6.0000	117.475	4.6250	3.6	1.6	1 330	3 170	M249749/M249710D	1	268	343	17.5	3.6	1.6	0.33	2.03	3.02	1.98	45.0
	10.0000	365.125 14.3750	130.175	5.1250	98.425	3.8750	6.4	1.6	970	2 150	EE134100/134144D	1	273	346	15.9	6.4	1.6	0.37	1.80	2.69	1.76	39.8
	10.0000	393.700 15.5000	157.163	6.1875	109.538	4.3125	6.4	1.6	1 270	3 090	EE275100/275156D	1	273	378	23.8	6.4	1.6	0.40	1.68	2.50	1.64	67.3
	10.0000	406.400 16.0000	155.575	6.1250	107.950	4.2500	6.4	1.6	1 270	3 090	EE275100/275161D	1	273	378	23.8	6.4	1.6	0.40	1.68	2.50	1.64	73.4
	10.0000	422.275 16.6250	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252343/HM252311D	1	274	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	87.0
	10.0000	422.275 16.6250	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252344/HM252311D	1	274	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	87.0
	10.0000	422.275 16.6250	178.592	7.0312	139.700	5.5000	6.7	1.6	1 730	3 360	HM252343/HM252310D	1	274	400	19.4	6.7	1.6	0.33	2.03	3.02	1.98	89.8
	10.0000	422.275 16.6250	178.592	7.0312	139.700	5.5000	6.7	1.6	1 730	3 360	HM252344/HM252310D	1	274	400	19.4	6.7	1.6	0.33	2.03	3.02	1.98	89.8
	10.0000	431.724 16.9970	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252343/HM252315D	1	274	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	93.3
	10.0000	431.724 16.9970	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252344/HM252315D	1	274	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	93.3
	10.0000	533.400 21.0000	276.225	10.8750	165.100	6.5000	6.4	1.6	3 050	5 600	HH953749/HH953710D	1-P	273	496	55.6	6.4	1.6	0.94	0.72	1.07	0.70	267
260	_	400 —	104	_	92	_	5	1.5	935	1 830	46252	1	282	373	6	4	1.5	0.33	2.03	3.02	1.98	44.6
	_	400 —	130	_	104	_	5	1.5	1 210	2 480	46252A	1	282	376	13	4	1.5	0.32	2.12	3.15	2.07	54.8
	_	400 —	146	-	108	_	6	1.5	1 300	2 570	46T524015	1	288	374	19	5	1.5	0.39	1.71	2.54	1.67	65.0
	_	400 —	185	_	146	_	5	1.5	1 790	3 690	46T524019	1	282	378.4	19.5	4	1.5	0.29	2.32	3.45	2.26	77.1
	_	440 —	144	_	128	_	5	1.5	1 510	2 880	46352	1	282	410	8	4	1.5	0.35	1.95	2.90	1.91	83.8
	_	440 —	172	-	145	_	5	1.5	1 770	3 170	46T524417	1	282	414	13.5	4	1.5	0.43	1.59	2.36	1.55	97
	_	440 —	180	_	144	_	5	1.5	2 010	3 960	46352A	1	282	409	18	4	1.5	0.35	1.95	2.90	1.91	105
	_	440 —	224	_	180	_	5	1.5	2 700	5 350	46T524422	1	282	409	22	4	1.5	0.24	2.84	4.23	2.78	130
	_	530 —	275	_	163.9	_	6	1.5	2 790	4 910	46T525328	1-P	288	506	55	5	1.5	1.18	0.57	0.85	0.56	255
260.35	50 10.2500	365.125 14.3750	130.175	5.1250	98.425	3.8750	6.4	1.6	970	2 150	EE134102/134144D	1	280	355	15.9	6.4	1.6	0.37	1.80	2.69	1.76	37.2
	10.2500	400.050 15.7500	155.575	6.1250	107.950	4.2500	9.5	1.6	1 300	2 570	EE221026/221576D	1	286	372	23.8	9.5	1.6	0.39	1.71	2.54	1.67	58.4
	10.2500	422.275 16.6250	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252348/HM252311D	1	280	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	83.6
	10.2500	422.275 16.6250	178.592	7.0312	139.700	5.5000	6.7	1.6	1 730	3 360	HM252348/HM252310D	1	280	400	19.4	6.7	1.6	0.33	2.03	3.02	1.98	86.3
	10.2500	422.275 16.6250	178.592	7.0312	139.700	5.5000	6.7	1.6	1 730	3 360	HM252349/HM252310D	1	280	400	19.4	6.7	1.6	0.33	2.03	3.02	1.98	86.3
	10.2500	431.724 16.9970	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252348/HM252315D	1	280	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	89.9
	10.2500	431.724 16.9970	173.038	6.8125	128.588	5.0625	6.7	1.6	1 730	3 360	HM252349/HM252315D	1	280	398	22.2	6.7	1.6	0.33	2.03	3.02	1.98	89.9
	10.2500	488.950 19.2500	254.000	10.0000	196.850	7.7500	6.4	1.6	2 880	5 570	EE295102/295192D	1	280	446	28.6	6.4	1.6	0.31	2.18	3.24	2.13	194
ENL. 1 . 7 . 12												-										

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 263.525 ~ 280.192 mm

	Boundary dimensions									Basic loa				Мо	unting		nsior	ıs	Constant	Axial	load fa	ctors	(Refer.)
	i				i			ı		(kl	N)	Bearing No. 1)	Design		((mm)							Mass
d		D		T		C		r ²⁾	$r_1^{(2)}$	$C_{\rm r}$	C_{0r}		J	$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}^{\ 2)}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm 1/	/25.4	mm	1/25.4	mm	1/25.4	min.	min.	O _I	O01			min.	min.	min.	max.	max.		* 2	* 3	-0	
263.525	10.3750	355.600 14	.0000	127.000	5.0000	101.600	4.0000	3.6	1.6	1 040	2 550	LM451345/LM451310D	1	277	343	12.7	3.6	1.6	0.36	1.87	2.79	1.83	33.1
266.700	10.5000	355.600 14	.0000	127.000	5.0000	101.600	4.0000	3.6	1.6	1 040	2 550	LM451349/LM451310D	1	280	343	12.7	3.6	1.6	0.36	1.87	2.79	1.83	31.8
	10.5000	357.200 14.	.0630	127.000	5.0000	101.600	4.0000	3.6	1.6	1 040	2 550	LM451349/LM451312D	1	280	343	12.7	3.6	1.6	0.36	1.87	2.79	1.83	32.5
	10.5000	393.700 15.	.5000	157.163	6.1875	109.538	4.3125	6.4	1.6	1 270	3 090	EE275105/275156D	1	286	378	23.8	6.4	1.5	0.40	1.68	2.50	1.64	60.9
	10.5000	406.400 16.	.0000	155.575	6.1250	107.950	4.2500	6.4	1.6	1 270	3 090	EE275105/275161D	1	286	378	23.8	6.4	1.6	0.40	1.68	2.50	1.64	67.1
	10.5000	422,275 16.	.6250	178.598	7.0314	139.700	5.5000	6.7	1.6	1 680	3 420	EE551050/551663D	1	287	390	19.4	6.7	1.6	0.33	2.03	3.02	1.98	82.6
	10.5000	431.724 16	.9970	173.038	6.8125	128.588	5.0625	6.7	1.6	1 680	3 420	EE551050/551701D	1	287	389	22.2	6.7	1.6	0.33	2.03	3.02	1.98	85.9
269.875	10.6250	381.000 15.	.0000	158.750	6.2500	123.825	4.8750	6.4	1.6	1 460	3 350	M252349/M252310D	1	289	364	17.5	6.4	1.6	0.33	2.03	3.02	1.98	51.4
273.050	10.7500	393,700 15.	.5000	157.163	6.1875	109.538	4.3125	6.4	1.6	1 270	3 090	EE275108/275156D	1	292	378	23.8	6.4	1.6	0.40	1.68	2.50	1 64	57.6
	10.7500	406.400 16		155.575		107.950					3 090	EE275108/275161D	1	292	378	23.8		1.6	0.40		2.50		63.8
-																							
279.400	11.0000	469.900 18	.5000	200.025	7.8750	149.225	5.8750	9.5	1.6	2 100	4 370	EE722110/722186D	1	305	431	25.4	9.5	1.6	0.38	1.79	2.67	1.75	127
	11.0000	488.950 19	.2500	254.000	10.0000	196.850	7.7500	1.2	1.6	2 880	5 570	EE295110/295192D	1	288	446	28.6	1.2	1.6	0.31	2.18	3.24	2.13	178
279.982	11.0229	380.898 14	.9960	139.700	5.5000	107.950	4.2500	3.6	1.6	1 140	2 820	LM654642/LM654610D	1	294	371	15.9	3.6	1.6	0.43	1.57	2.34	1.53	42.7
280	_	400	_	150	_	120		SP	SP	1 310	2 950	46T564015	1	302	386	15	4	SP	0.39	1 75	2.61	1 71	66.0
200		400		100		120		OI.	01	1 010	2 330	401304013	'	002	000	10	7	01	0.00	1.70	2.01	1.7 1	
280.000	11.0236	406.400 16	.0000	149.225	5.8750	117.475	4.6250	6.4	1.6	1 310	2 950	EE128112/128160D	1	299	383	15.9	6.4	1.6	0.39	1.75	2.61	1.71	58.8
	11.0236	406.400 16	.0000	149.225	5.8750	117.475	4.6250	6.4	1.6	1 310	2 950	EE128114/128160D	1	299	383	15.9	6.4	1.6	0.39	1.75	2.61	1.71	58.8
280	_	420	_	106	_	94	_	5	1.5	1 010		46256	1	302	395	6	4	1.5	0.33	2.03	3.02		46.9
	_		-	133	_	106	_	5	1.5	1 250	2 610	46256A	1	302	394	13.5	4	1.5	0.33	2.03	3.02		58.9
	_	460		146	_	130	_	6	2	1 550	2 930	46356	1	308	430	8	5	2	0.35	1.95	2.90	1.91	90.0
	_	460	-	183	_	146	_	6	2	2 040	3 940	46356A	1	308	434	18.5	5	2	0.35	1.95	2.90	1.91	111
	_	500	-	195	_	145	_	6	1.5	2 500	4 520	46T565020-1	1-P	308	461	25	5	1.5	0.40	1.68	2.50	1.64	150
280.192	11 0312	406.400 16	0000	120.650	4 7500	85.725	3 3750	6.7	1.6	894	1 980	EE101103/101601D	1	300	375	17.5	6.7	1.6	0.41	1.66	2.47	1.62	45.5
	11.0312	406.400 16.		149.225		117.475			1.6		2 950	EE128111/128160D	1	300	383	15.9	6.7	1.6	0.41		2.61	-	58.6
		700.400 10.	.5000	143.223	3.0700	111.413	1.0200	0.7	1.0	1 010	2 300	LL123111/120100D	'	300	303	10.3	0.7	1.0	0.03	1.73	2.01	1.71	50.0

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 285.750 ~ 304.800 mm

		Bounda	ry dime	nsions	;				Basic load				Мо			ension	s	Constant	Axial	load fa	ctors	(Refer.)
	1	_	l _	1			r ²⁾		(KI	N)	Bearing No. 1)	Design	,		(mm)							Mass
d mm	1/25.4	D mm 1/25.4	T mm	1/25.4	C mm				$C_{\rm r}$	C_{0r}			d _a min.	$D_{ m a}$ min.	$S_{\rm a}$	$r_{ m a}$ max.	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
-		111111 1/23.4			111111	1/23.4	1111111.	111111.					111111.			IIIdX.	IIIax.					
285.750		358.775 14.1250	76.200		53.975			1.6	412		545112/545142D	1	299	345	11.1	3.6	1.6	0.49	1.38		1.35	15.5
	11.2500	380.898 14.9960	139.700		107.950			1.6	1 140	2 820	LM654649/LM654610D	1	299	371	15.9		1.6	0.43	1.57		1.53	39.9
	11.2500	501.650 19.7500	203.200	8.0000	120.650	4.7500	6.4	3.2	1 940	3 460	EE147112/147198D	1	305	467	41.3	6.4	3.2	0.83	0.81	1.20	0.79	142
288.92	5 11.3750	406.400 16.0000	165.100	6.5000	130.175	5.1250	6.4	1.6	1 720	4 420	M255449/M255410D	1	308	388	17.5	6.4	1.6	0.34	2.00	2.97	1.95	64.7
290	_	400 —	120	_	90	_	5	1.5	1 190	2 600	46T584012	1	312	385	15	4	1.5	0.42	1.61	2.40	1.58	40.1
	_	405 —	165	-	130	_	SP	1	1 490	3 750	46T584117	2	309	388	17.5	4	1	0.34	2.00	2.97	1.95	61.2
292.100) 11.5000	374.650 14.7500	104.775	4.1250	79.375	3.1250	3.6	1.6	802	1 940	L555249/L555210D	1	306	361	12.7	3.6	1.6	0.40	1.68	2.50	1.64	25.6
	11.5000	469.900 18.5000	200.025	7.8750	149.225	5.8750	9.5	1.6	2 100	4 370	EE722115/722186D	1	318	431	25.4	9.5	1.6	0.38	1.79	2.67	1.75	118
	11.5000	558.800 22.0000	298.450	11.7500	222.250	8.7500	6.4	1.6	4 040	8 000	EE790114/790223D	1-P	311	515	38.1	6.4	1.6	0.40	1.71	2.54	1.67	307
298.450) 11.7500	444.500 17.5000	146.050	5.7500	98.425	3.8750	7.9	1.6	1 240	2 760	EE291175/291751D	1	321	414	23.8	7.9	1.6	0.38	1.79	2.66	1.75	69.3
300	_	440 —	139	_	100	_	4	0.6	1 360	2 870	46T604414	1	318	412	19.5	3	0.6	0.37	1.80	2.69	1.76	63.8
	_	460 —	118	_	105	_	5	1.5	1 290	2 400	46260	1	322	436	6.5	4	1.5	0.32	2.12	3.15	2.07	64.6
	_	460 —	148	-	118	_	5	1.5	1 630	3 230	46260A	1	322	433	15	4	1.5	0.32	2.12	3.15	2.07	80.2
	_	500 —	160	_	142	_	6	2	1 980	3 540	46360	1	328	469	9	5	2	0.35	1.95	2.90	1.91	116
	_	500 —	200	_	160	_	6	2	2 270	4 630	46360A	1	328	466	20	5	2	0.35	1.95	2.90	1.91	144
	_	500 —	200	_	160	_	6	1.5	2 500	4 650	46360D	1	328	475	20	5	1.5	0.40	1.68	2.50	1.64	139
300.038	3 11.8125	422.275 16.6250	174.625	6.8750	136.525	5.3750	6.4	1.6	1 700	4 030	HM256849/HM256810D	1	320	403	19.1	6.4	1.6	0.34	2.00	2.98	1.96	70.1
304.800	12.0000	393.700 15.5000	107.950	4.2500	82.550	3.2500	6.4	1.6	899	2 360	L357049/L357010D	 1	325	379	12.7	6.4	1.6	0.36	1.88	2.80	1.84	30.7
	12.0000	412.750 16.2500	123.825	4.8750	92.075	3.6250	6.4	1.6	1 020	2 410	EE109120/109163D	1	325	394	15.9	6.4	1.6	0.43	1.58	2.35	1.55	42.1
	12.0000	444.500 17.5000	146.050	5.7500	98.425	3.8750	7.9	1.6	1 240	2 760	EE291201/291751D	1	328	414	23.8	7.9	1.6	0.38	1.79	2.66	1.75	65.9
	12.0000	495.300 19.5000	162.245	6.3876	120.650	4.7500	6.4	1.6	1 880	3 840	EE941205/941951D	1	315	463	20.8	6.4	1.6	0.40	1.68	2.50	1.64	112
	12.0000	495.300 19.5000	168.595	6.6376	127.000	5.0000	6.4	1.6	1 880	3 840	EE941205/941953D	1	315	463	20.8	6.4	1.6	0.40	1.68	2.50	1.64	117
	12.0000	495.300 19.5000	196.850	7.7500	146.050	5.7500	16	1.6	2 180	4 680	EE724119/724196D	1	344	458	25.4	16	1.6	0.40	1.68	2.50	1.64	135
	12.0000	495.300 19.5000	196.850	7.7500	146.050	5.7500	16	1.6	2 180	4 680	EE724120/724196D	1	344	458	25.4	16	1.6	0.40	1.68	2.50	1.64	135
	12.0000	558.800 22.0000	298.450	11.7500	222.250	8.7500	1.2	1.6	4 040	8 000	EE790120/790223D	1-P	315	515	38.1	1.2	1.6	0.40	1.71	2.54	1.67	293
												1	1									

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

TDO, **TDOS** type *d* **310** ~ **(340)** mm

		Bounda	ry dime	nsions	6				Basic load				Мо		g dime	ension	IS	Constant	Axial	load fa	actors	(Refer.)
,	1						r ²⁾		(K1	٧)	Bearing No. 1)	Design	d		S_a							Mass
$\frac{d}{\text{mm}}$	1/25.4	<i>D</i> mm 1/25.4	mm T	1/25.4	C mm	1/25.4		-	$C_{\rm r}$	C_{0r}			$d_{ m a}$ min.	$D_{ m a}$ min.	-	$r_{ m a}$ max.	$r_{ m b}$ max.	e	<i>Y</i> ₂	Y_3	Y_0	(kg)
310	_	470 —	200	_	149	_	SP	1.5	2 180	4 810	46T624720	1	336	445	25.5	5	1.5	0.38	1.76	2.62	1.72	113
311.150	12.2500	558.800 22.0000	190.500	7.5000	111.125	4.3750	9.5	3.2	1 880	3 490	EE148122/148221D	1	338	505	39.7	9.5	3.2	0.88	0.77	1.15	0.75	171
317.500	12.5000	444.500 17.5000	146.050	5.7500	98.425	3.8750	7.9	1.6	1 240	2 760	EE291250/291751D	1	341	414	23.8	7.9	1.6	0.38	1.79	2.66	1.75	58.9
	12.5000	447.675 17.6250	180.975	7.1250	146.050	5.7500	3.6	1.6	1 920	4 770	HM259049./HM259010D.	1	328	428	17.5	3.6	1.6	0.33	2.02	3.00	1.97	83.0
317.5	_	558.8 —	254	_	174	_	6	1.5	3 100	6 050	46T645625A	1-P	345.5	538	40	5	1.5	0.81	0.83	1.23	0.81	231
317.500	12.5000	622.300 24.5000	304.800	12.0000	174.625	6.8750	14.3	3.2	3 810	6 990	H961649/H961610D	1-P	354	585	65.1	14.3	3.2	0.94	0.72	1.07	0.70	378
320	_	480 —	121	_	108	_	5	1.5	1 430	2 700	46264	1	342	452	6.5	4	1.5	0.32	2.12	3.15	2.07	71.6
	_	480 —	151	_	121	_	5	1.5	1 650	3 410	46264A	1	342	454	15	4	1.5	0.32	2.12	3.15	2.07	87.7
	_	480 —	215	_	163	_	5	1.5	2 590	5 610	46T644822AC	2	342	460	26	4	1.5	0.46	1.47	2.19	1.44	123
	_	540 —	176	_	157	_	6	2	2 440	4 570	46364	1	348	502	9.5	5	2	0.35	1.95	2.90	1.91	154
	_	540 —	220	_	176	_	6	2	2 610	5 390	46364A	1	348	497	22	5	2	0.35	1.95		1.91	190
	_	550 —	240	_	180	_	5	2.5	3 300	6 420	46T645524AC	2	342	514	30	4	2	0.40	1.68	2.50	1.64	221
329.870	12.9870	533.400 21.0000	165.100	6.5000	114.300	4.5000	4.8	1.6	1 870	3 580	EE971298/972102D	1	346.5	494	25.4	4.8	1.6	0.33	2.03	3.02	1.98	124
	12.9870	546.100 21.5000	177.800	7.0000	152.400	6.0000	4.8	3.2	1 870	3 580	EE971298/972151D	1	347	500	12.7	4.8	3.2	0.33	2.03	3.02	1.98	150
330	_	500 —	190	_	150	_	6	1.5	2 230	4 720	46T665019	1	358	473	20	5	1.5	0.39	1.74	2.59	1.70	120
330.200	13.0000	482.600 19.0000	133.350	5.2500	88.900	3.5000	7.1	1.6	1 050	2 500	EE161300/161901D	1	352	454	22.2	7.1	1.6	0.50	1.35	2.01	1.32	74.8
	13.0000	482.600 19.0000	177.800	7.0000	127.000	5.0000	6.4	1.6	1 850	4 100	EE526130/526191D	1	350	454	25.4	6.4	1.6	0.39	1.73	2.57	1.69	96.4
	13.0000	482.600 19.0000	177.800	7.0000	127.000	5.0000	3.2	1.6	1 850	4 100	EE526132/526191D	1	344	454	25.4	3.2	1.6	0.39	1.73	2.57	1.69	96.5
330.25	_	528 —	292		210	_	5	1.5	3 670	8 280	46T665329	1	353	507	41	4	1.5	0.43	1.57	2.34	1.53	223
333.375	13.1250	469.900 18.5000	190.500	7.5000	152.400	6.0000	6.4	1.6	2 320	5 680	HM261049/HM261010D	1-P	354	449	19.1	6.4	1.6	0.33	2.02	3.00	1.97	97.6
340	_	500 —	150	_	120	_	6	2	1 780	3 630	46T685015	1-P	368	476	15	5	2	0.42	1.62	2.42	1.59	91.4
	_	500 —	249.225	_	203.2	_	5	1	2 670	6 450	46T6850	1	362	477	23	4	1	0.33	2.03	3.02	1.98	155
	-	520 —	133	_	118	_	6	2	1 550	3 070	46268	1	368	489	7.5	5	2	0.32	2.12	3.15	2.07	95.3
	14/1 :1										avo plus tolorances. Pofor to	2) SD in										

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (340) ~ 368.249 mm

	Boundary dimensions								Basic load				Мо			ension	S	Constant	Axial	load fa	ctors	(Refer.)
	1						1		(kľ	4)	Bearing No. 1)	Design			(mm)							Mass
d		D	T		C			r_1	$C_{\rm r}$	C_{0r}	_	_	$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm 1/25.4	mm	1/25.4	mm	1/25.4	min.	min.	•				min.	min.	min.	max.	max.					<u> </u>
340	_	520 —	165	_	133	_	6	2	1 930	4 060	46268A	1	368	491	16	5	2	0.32	2.12	3.15	2.07	117
	_	580 —	190	_	169	_	6	2	2 540	4 620	46368	1	368	539	10.5	5	2	0.35	1.95	2.90	1.91	198
	_	580 —	238	_	190	_	6	2	3 160	6 340	46368A	1	368	543	24	5	2	0.35	1.95	2.90	1.91	244
	_	580 —	241	_	170	_	6	1.5	3 480	6 890	46T685824	1	368	540	35.5	5	1.5	0.43	1.57	2.34	1.53	237
	_	580 —	305	_	241	_	6	1.5	4 410	10 100	46T685831C	2-P	368	544	32	5	1.5	0.46	1.47		1.44	319
342.900	13.5000	533.400 21.0000	165.100		114.300			1.6	1 870		EE971354/972102D	1	360	494	25.4	4.8	1.6	0.33	2.03			115
	13.5000	546.100 21.5000	177.800	7.0000	152.400	6.0000	4.8	3.2	1 870	3 580	EE971354/972151D	1	360	500	12.7	4.8	3.2	0.33	2.03	3.02	1.98	141
346.075	12 6250	482,600 19.0000	133.350	E 2500	88.900	2 5000	7.1	1.6	1.050	2 500	EE161363/161901D	1	200	454	22.2	7.1	1.0	0.50	1.35	2.01	1.32	66.1
340.075	13.6250	488.950 19.2500	200.025		158.750			1.6	1 050 2 310	5 800	HM262749/HM262710D	1	368 366	454 467	20.6	7.1 6.4	1.6 1.6	0.33	2.02		1.97	111
	10.0200	400.550 15.2500	200.023	7.0730	130.730	0.2300	0.4	1.0	2 310	3 000	HW202749/HW202710D	'	300	407	20.0	0.4	1.0	0.33	2.02	3.00	1.31	1111
349.250	13.7500	514.350 20.2500	193.675	7.6250	152.400	6.0000	6.4	1.6	2 180	5 070	EE333137/333203D	1	370	483	20.6	6.4	1.6	0.37	1.80	2.69	1.76	126
355	_	515 —	194	_	152.4	_	6.4	1.5	2 190	5 110	46T715219C	2	383	478	20.8	5	1.5	0.37	1.84	2.74	1.80	121
355.600	14.0000	444,500 17.5000	136.525	5.3750	111.125	4.3750	3.6	1.6	1 110	3 450	L163149/L163110D	1	370	428	12.7	3.6	1.6	0.31	2.20	3.27	2.15	45.0
000.000	14.0000	482.600 19.0000	133.350		88.900			1.6	1 050	2 500	EE161400/161901D	1	377	454	22.2	7.1	1.6	0.50	1.35		1.32	60.7
	14.0000	501.650 19.7500	155.575		107.950			1.6	1 350		EE231400/231976D	1	376	481	23.8	6.4	1.6	0.44	1.53		1.50	87.2
	14.0000	514.350 20.2500	155.575	6 1250	107.950	4 2500	6.4	1.6	1 350	3 280	EE231400/232026D	1	376	481	23.8	6.4	1.6	0.44	1.53	2.28	1.50	95.7
	14.0000	514.350 20.2500	193.675		152.400			1.6	2 180		EE333140/333203D	1	376	483	20.6	6.4	1.6	0.44	1.80		1.76	120
	1 1.0000	314.330 20.2000	133.073	7.0200	132.400	0.0000	0.4	1.0	2 100	3 07 0	LL333140/333203D	'	370	400	20.0	0.4	1.0	0.57	1.00	2.03	1.70	120
360	_	540 —	134	_	120	_	6	2	1 660	3 290	46272	1	388	510	7	5	2	0.32	2.12	3.15	2.07	93.0
	_	540 —	169	_	134	_	6	2	2 020	4 230	46272A	1	388	512	17.5	5	2	0.32	2.12	3.15	2.07	124
	_	540 —	184	_	140	_	6	1.5	2 400	4 980	46T725418	1	388	510	22	5	1.5	0.29	2.32	3.45	2.26	131
	_	590 —	320	_	260	_	6	1.5	4 920	11 500	46T725932	1	388	556	30	5	1.5	0.35	1.95	2.90	1.91	328
	_	600 —	192	_	171	_	6	2	2 680	4 880	46372	1	388	557	10.5	5	2	0.35	1.95		1.91	206
	_	600 —	240	_	192	_	6	2	3 660	7 230	46372A	1-P	388	568	24	5	2	0.39	1.74		1.70	254
368,249	14.4980	523.875 20.6250	214.313	8.4375	169.863	6.6875	6.4	1.6	2 860	7 060	46T745221	1	388	505	22.2	6.4	1.6	0.33	2.03	3.02	1.98	138
000.270	14.4980	523.875 20.6250	214.313		169.863			1.6	2 730		HM265049/HM265010D	1-P	388	505	22.2	6.4	1.6	0.33			1.98	119
FNL. L. Z. 1N										- 700			- 50					2.00				

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 368.300 ~ (400) mm

	Boundary dimensions									Basic load				Mo	unting		nsion	s	Constant	Axial	load fa	ctors	(Refer.)
	1		1		1			1		(kN	1)	Bearing No. 1)	Design		,	(mm)							Mass
d		D		T		C		r ²⁾		$C_{\rm r}$	C_{0r}		_	$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	min.					min.	min.	min.	max.	max.					
368.300) 14.5000	596.900	23.5000	203.200	8.0000	133.350	5.2500	9.5	2.4	2 710	5 410	EE181453/182351D	1-P	395	555	34.9	9.5	2.4	0.41	1.63	2.42	1.59	203
370	_	680	_	280	_	188	_	6	2.5	3 890	8 610	46T746828AC	2-P	398	630	46	5	2	0.87	0.78	1.16	0.76	422
371.475	5 14.6250	501.650	19.7500	155.575	6.1250	107.950	4.2500	6.4	1.6	1 350	3 280	EE231462/231976D	1	392	481	23.8	6.4	1.6	0.44	1.53	2.28	1.50	76.2
	14.6250	514.350	20.2500	155.575	6.1250	107.950	4.2500	6.4	1.6	1 350	3 280	EE231462/232026D	1	392	481	23.8	6.4	1.6	0.44	1.53	2.28	1.50	84.7
380	_	520	_	149	_	112	_	5	1.5	1 740	3 990	46T765215	1	402	493	18.5	4	1.5	0.29	2.32	3.45	2.26	82
	_	560	_	135	_	122	_	6	2	1 740	3 560	46276	1	408	530	6.5	5	2	0.32	2.12	3.15	2.07	100
	-	560	-	171	_	135	_	6	2	2 240	4 670	46276A	1	408	531	18	5	2	0.39	1.74	2.59	1.70	129
	_	620	_	194	_	173	_	6	2	2 870	5 220	46376	1	408	582	10.5	5	2	0.39	1.74	2.59	1.70	215
	_	620	_	241	_	170	_	6	1.5	3 440	7 080	46T766224	1	408	575	35.5	5	1.5	0.46	1.47	2.19		255
	_	620	_	243	_	194	_	6	2	3 490	7 360	46376A	1	408	587	24.5	5	2	0.35	1.95	2.90	1.91	265
381.000	n 15.0000	508.000	20.0000	139.700	5.5000	88.900	3.5000	6.4	1.6	1 180	2 980	EE192150/192201D	1	401	480	25.4	6.4	1.6	0.53	1.27	1.89	1 24	66.7
301.000	15.0000	546.100		222.250		177.800		6.4	1.6	3 260	8 430	HM266447/HM266410D	1-P	401	520	22.2	6.4	1.6	0.33	2.03	3.02		166
	15.0000	590.550		244.475		193.675		6.4		3 390	8 930	M268730/M268710D	1-P	401	565	25.4	6.4	1.6	0.33		3.02		244
384.175	5 15.1250	546.100	21.5000	222.250	8.7500	177.800	7.0000	6.4	1.6	3 260	8 430	HM266449/HM266410D	1-P	404	520	22.2	6.4	1.6	0.33	2.03	3.02	1.98	163
385	_	550	_	220	_	180	_	SP	1.5	3 260	8 430	46T775522	1-P	408	524	20	4	1.5	0.33	2.03	3.02	1.98	170
390	_	630	_	254	_	170	_	6	1.5	3 460	7 490	46T786325	1-P	418	601	42	5	1.5	0.76	0.88	1.31	0.86	290
393.700	15.5000	539.750	21.2500	142.875	5.6250	101.600	4.0000	6.4	1.6	1 490	3 810	EE234154/234213D	1	414	515	20.6	6.4	1.6	0.48	1 42	2.11	1 39	89.0
0000	15.5000	546.100		158.750		117.475			1.6	1 490	3 810	EE234154/234216D	1	414	515	20.6		1.6	0.48		2.11		102
396.875	5 15.6250	539.750	21.2500	142.875	5.6250	101.600	4.0000	6.4	1.6	1 490	3 810	EE234156/234213D	1	417	515	20.6	6.4	1.6	0.48	1.42	2.11	1 39	86.8
000.07	15.6250	546.100		158.750		117.475				1 490		EE234156/234216D	1	417	515	20.6	6.4	1.6	0.48		2.11		100
400	_	540	_	140	_	100	_	6	1.5	1 490	3 840	46T805414	1	428	510	20	5	1.5	0.48	1.42	2.11	1.39	81.8
	_	600	_	148	_	132	_	6	2	1 870	3 720	46280	1	428	560	8	5	2	0.32	2.12	3.15	2.07	135
	_	600	_	185	_	148	_	6	2	2 420	5 150	46280A	1	428	563	18.5	5	2	0.32	2.12	3.15	2.07	167

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (400) ~ (431.800) mm

	Boundary dimensions							Basic load					Mou	_	dime	ension	ıs	Constant	Axial	load fa	actors	(Refer.)		
	1		1		1			1 2)	2)	(kľ	N)	Bearing No. 1)	Des				(mm)							Mass
d		D		T		C		r ²⁾		$C_{ m r}$	C_{0r}			a	-	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	mın.	mın.					m	n.	min.	min.	max.	max.					
400	_	600	-	205	_	150	_	6	1.5	2 830	6 270	46T806021	1	4:	28	560	27.5	5	1.5	0.40	1.68	2.50	1.64	187
	_	650	-	200	_	178	_	6	3	2 980	5 920	46380	1	4:	28	605	11	5	2.5	0.35	1.95	2.90	1.91	243
	_	650	-	250	_	200	_	6	3	4 060	8 850	46380A	1-	P 4	28	610	25	5	2.5	0.35	1.95	2.90	1.91	306
	-	650	_	280	_	180	_	6	2.5	3 890	8 610	46T806528AC	2-	P 4	28	625	50	5	2	0.87	0.78	1.16	0.76	335
406.400	16.0000	539.750	21.2500	142.875	5.6250	101.600	4.0000	6.4	1.6	1 490	3 810	EE234160/234213D	1	4:	28	515	20.6	6.4	1.6	0.48	1.42	2.11	1.39	80.2
	16.0000	546.100	21.5000	158.750	6.2500	117.475	4.6250	6.4	1.6	1 490	3 810	EE234160/234216D	1	4:	28	515	20.6	6.4	1.6	0.48	1.42	2.11	1.39	92.6
	16.0000	574.675	22.6250	157.163	6.1875	106.363	4.1875	6.7	1.6	1 630	3 880	EE285160/285228D	1	4:	28	535	25.4	6.7	1.6	0.50	1.35	2.01	1.32	113
	16.0000	574.675	22.6250	175.000	6.8898	118.000	4.6457	SP	SP	2 030	4 620	46T815718	1-	P 4:	26.4	550	28.5	4	2	0.70	0.97	1.44	0.94	126
	16.0000	590.550	23.2500	228.600	9.0000	174.625	6.8750	9.5	1.6	3 060	7 070	EE833160X/833233D	1	4:	34	560	27	9.5	1.6	0.32	2.08	3.10	2.04	188
	16.0000	609.524	23.9970	177.800	7.0000	133.350	5.2500	7.9	1.6	2 600	6 060	EE736160/736239D	1	4	31	575	22.2	4	7.9	0.35	1.95	2.90	1.91	164
	16.0000	609.600	24.0000	187.325	7.3750	123.825	4.8750	6.7	1.6	2 440	5 280	EE911600/912401D	1	4:	28	570	31.8	6.7	1.6	0.38	1.76	2.62	1.72	167
	16.0000	673.100	26.5000	192.639	7.5842	127.000	5.0000	6.4	1.6	2 530	5 240	EE571602/572651D	1	4:	28	620	32.8	6.4	1.6	0.40	1.68	2.50	1.64	232
	16.0000	673.100	26.5000	192.639	7.5842	152.400	6.0000	6.4	1.6	2 530	5 240	EE571602/572653D	1	4	28	630	20.1	6.4	1.6	0.40	1.68	2.50	1.64	242
409.575	16.1250	546.100	21.5000	185.738	7.3125	147.638	5.8125	6.4	1.6	2 280	5 740	M667948/M667911D	1	4	31	530	19.1	6.4	1.6	0.42	1.62	2.42	1.59	110
415.925	16.3750	590.550	23.2500	244.475	9.6250	193.675	7.6250	6.4	1.6	3 390	8 930	M268749/M268710D	1-	P 43	37	565	25.4	6.4	1.6	0.33	2.03	3.02	1.98	203
420	_	620	_	150	_	134	_	6	2	2 010	4 130	46284	1	4	18	590	8	5	2	0.33	2.03	3.02	1.98	142
	_	620	_	188	_	150	_	6	2	2 700	5 660	46284A	1	4	18	589	19	5	2	0.39	1.74	2.59	1.70	176
	_	620	_	190	_	125	_	6	1.5	2 060	4 380	46T846219	1	4	18	583	32	5	1.5	0.35	1.95	2.91	1.91	184
	_	622.3	_	240	_	135	_	7.5	1.5	2 700	5 920	46T846224	1	4	6	605	52.5	6	1.5	0.87	0.78	1.16	0.76	214
	_	700	_	224	_	200	_	6	3	3 700	6 880	46384	1	4	18	656	12	5	2.5	0.39	1.74	2.59	1.70	325
	_	700	_	274	_	200	_	6	2.5	4 820	9 570	46T847027	1-	P 4	18	650	37	5	2	0.32	2.12	3.15	2.07	386
	_	700	_	280	_	224	_	6	3	4 810	9 620	46384A	1-	P 4	18	659	28	5	2.5	0.39	1.74	2.59	1.70	400
430.213	16.9375	603.250	23.7500	159.639	6.2850	104.775	4.1250	6.4	1.6	1 680	3 770	EE241693/242377D	1	4	51	565	27.4	6.4	1.6	0.53	1.28	1.91	1.26	113
431.800	17,0000	571.500	22 5000	155.575	6 1250	111.125	/ 37E0	3.2	1.6	1 680	4 270	LM869448/LM869410D		4	17	555	22.2	3.2	16	0.55	1.24	1.84	1 21	97.3
431.600	17.0000	603.250		159.639		104.775			1.6		3 770	EE241701/242377D			17 53	565	27.4	3.2 6.4	1.6	0.53		1.84		97.3 112
	17.0000	003.230	20.1000	109.039	0.2000	104.773	4.1230	0.4	1.0	1 000	3110	EE241/U1/2423//D	l l	4	JO	300	21.4	0.4	1.0	0.55	1.20	1.91	1.20	112

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (431.800) ~ 482.600 mm

Boundary dimensions	Basic load ratings	Mounting dimensions	Constant Axial load factors (Refer.)
d D T C r² 2 r₁² mm 1/25.4 mm 1/25.4 mm 1/25.4 min. min.	Cr. Co.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
431.800 17.0000 673.100 26.5000 192.639 7.5842 127.000 5.0000 6.4 1.6 17.000 673.100 26.5000 192.639 7.5842 152.400 6.0000 6.4 1.6		1 453 620 32.8 6.4 1.6 1 453 630 20.1 6.4 1.6	0.40 1.68 2.50 1.64 207 0.40 1.68 2.50 1.64 217
440 - 650 - 157 - 140 - 6 3 - 650 - 196 - 157 - 6 3 - 720 - 283 - 226 - 6 3	2 260 4 430 46288 3 000 6 370 4 940 10 100 46388A	1 468 622 8.5 5 2.5 1 468 620 19.5 5 2.5 1-P 468 679 28.5 5 2.5	0.33 2.03 3.02 1.98 156 0.39 1.74 2.59 1.70 198 0.40 1.68 2.51 1.65 418
441.325 17.3750 660.400 26.0000 195.263 7.6875 138.113 5.4375 10.4 1.6	2 320 5 260 EE737173/737261D	1 471 615 28.6 10.4 1.6	0.37 1.80 2.69 1.76 207
447.675 17.6250 635.000 25.0000 257.175 10.1250 206.375 8.1250 6.4 1.6	3 930 10 500 M270749/M270710D	1-P 469 605 25.4 6.4 1.6	0.33 2.03 3.02 1.98 247
457.200 18.0000 596.900 23.5000 165.100 6.5000 120.650 4.7500 9.5 1.6 18.0000 605.000 23.8190 165.100 6.5000 120.650 4.7500 SP SP	1 920 5 230 EE244180/244236D 1 920 5 230 46T916117	1 485 570 22.2 9.5 1.6 2-P 489 575 22 6 0.8	0.40 1.67 2.48 1.63 108 0.40 1.67 2.48 1.63 130
460 - 680 - 163 - 145 - 6 3 - 680 - 204 - 163 - 6 3 - 680 - 229 - 175 - 6 2.5 - 760 - 240 - 214 - 7.5 4 - 760 - 300 - 240 - 7.5 4	2 500 5 340 46292 3 220 6 850 46292A 3 430 7 390 467926823 4 580 9 000 46392 5 680 11 600 46392A	1-P 488 637 9 5 2.5 1-P 488 646 20.5 5 2.5 1 488 645 27 5 2 1-P 496 710 13 6 3 1-P 496 718 30 6 3	0.37 1.83 2.72 1.78 196 0.39 1.74 2.59 1.70 232 0.32 2.12 3.15 2.07 251 0.39 1.74 2.59 1.70 424 0.39 1.74 2.59 1.70 506
479.425 18.8750 679.450 26.7500 276.225 10.8750 222.250 8.7500 6.4 1.6 18.8750 679.450 26.7500 276.225 10.8750 222.250 8.7500 6.4 1.6 4.4 1.6 1.6 1.6 1.6 1.6 1.6		2-P 490 649 27 6.4 1.6 1-P 500 650 27 6.4 1.6	0.33 2.03 3.02 1.98 309 0.33 2.03 3.02 1.98 296
480 - 615 - 120 - 94 - 3 1 - 700 - 165 - 147 - 6 3 - 700 - 206 - 165 - 6 3 - 700 - 275 - 200 - 6 3 - 790 - 248 - 221 - 7.5 4 - 790 - 310 - 248 - 7.5 4	1 460 3 620 46T966212 2 530 5 300 46296 3 220 7 230 46296A 4 320 10 300 46T967028 4 640 8 920 46396 5 990 12 400 46396A	1 494 590 13 2.5 1 1 508 672 9 5 2.5 1 508 666 20.5 5 2.5 1-P 508 676 37 5 2.5 1-P 516 742 13.5 6 3 1-P 516 749 31 6 3	0.35 1.95 2.90 1.91 80.1 0.33 2.03 3.02 1.98 186 0.33 2.03 3.02 1.98 240 0.55 1.24 1.84 1.21 350 0.39 1.74 2.59 1.70 457 0.39 1.74 2.59 1.70 560
482.600 19.0000 615.950 24.2500 184.150 7.2500 146.050 5.7500 6.4 1.6 19.0000 634.873 24.9950 177.800 7.0000 142.875 5.6250 6.4 1.6	2 260 6 590 EE243190/243251D	1 505 595 19.1 6.4 1.6 1 505 610 17.5 6.4 1.6	0.33 2.03 3.02 1.98 125 0.34 1.97 2.93 1.93 143

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 488.671 ~ 546.100 mm

Boundary dimensions	Basic load ratings			Mour	ting di (mn	mensio	ns	Constant	Axial	load fa	ctors	(Refer.)
d D T C r r ₁ mm 1/25.4 mm 1/25.4 mm 1/25.4 mm 1/25.4 min. min.	$C_{\rm r}$ $C_{0\rm r}$	Bearing No. 1)	Design	-	D_a S	_	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	Mass (kg)
488.671 19.2390 660.400 26.0000 206.375 8.1250 158.750 6.2500 6.4 1.6	3 100 7 910	EE640191/640261D	1-P	510	630 23	.8 6.4	1.6	0.31	2.20	3.27	2.15	186
488.950 19.2500 634.873 24.9950 180.975 7.1250 136.525 5.3750 6.4 1.6 19.2500 660.400 26.0000 206.375 8.1250 158.750 6.2500 6.4 1.6		LM772748/LM772710D EE640192/640261D	1 1-P		615 22 630 23		1.6 1.6	0.47 0.31		2.12 3.27		135 186
489.026 19.2530 634.873 24.9950 177.800 7.0000 142.875 5.6250 6.4 1.6	2 260 6 590	EE243192/243251D	1	510	610 17	.5 6.4	1.6	0.34	1.97	2.93	1.93	136
490 - 640 - 179 - 144 - 7.5 2	2 430 6 480	46T986418	1	526	615 17	.5 6	2	0.37	1.80	2.69	1.76	139
498.475 19.6250 634.873 24.9950 177.800 7.0000 142.875 5.6250 6.4 1.6	2 260 6 590	EE243196/243251D	1	520	310 17	.5 6.4	1.6	0.34	1.97	2.93	1.93	126
500 — 720 — 167 — 149 — 6 3 — 720 — 209 — 167 — 6 3 — 830 — 264 — 235 — 7.5 4 — 830 — 330 — 264 — 7.5 4	3 500 7 850 5 220 10 900	462/500 462/500A 463/500 463/500A	1-P 1-P 1-P	528 536	679 9 690 21 776 14 784 33	.5 6	2.5 2.5 3	0.40 0.42 0.39 0.39	1.62 1.74	2.54 2.41 2.59 2.59	1.58 1.70	210 258 559 669
506 - 636 - 187 - 147 - 7 2	2 400 7 110	2TR506	1	542	620 20	6	2	0.35	1.95	2.90	1.91	126
508.000 20.0000 736.600 29.0000 186.502 7.3426 114.300 4.5000 6.4 1.6	2 520 5 150	EE982003/982901D	1-P	530	690 36	.1 6.4	1.6	0.48	1.42	2.11	1.39	220
515 - 720 - 140 - 180 - 6 3	2 840 6 550	2TR515C3	1-P	540	682 20	5	2.5	0.39	1.74	2.59	1.70	204
520.700 20.5000 736.600 29.0000 186.502 7.3426 114.300 4.5000 6.4 1.6	2 520 5 150	EE982051/982901D	1-P	545	690 36	.1 6.4	1.6	0.48	1.42	2.11	1.39	205
530 - 780 - 185 - 163 - 6 3 - 780 - 185 - 163 - 6 3 - 780 - 231 - 185 - 6 3	3 430 7 070	2TR530D 462/530 462/530A	2-P 1-P 1-P	558	732 11 744 11 746 23	5	2.5 2.5 2.5	0.47 0.39 0.39	1.74	2.12 2.59 2.59	1.70	283 280 351
533.400 21.0000 812.800 32.0000 269.875 10.6250 187.325 7.3750 9.5 3.2	4 530 11 000	EE626210/626321D	1-P	565	760 41	.3 9.5	3.2	0.44	1.54	2.29	1.50	459
536.575 21.1250 761.873 29.9950 311.15 12.2500 247.65 9.7500 6.4 1.6	5 630 14 400	M276449/10CD	2-P	555	726 32	6.4	1.6	0.33	2.03	3.02	1.98	424
546.100 21.5000	2 420 6 100	EE542215/542291D	1-P	570	705 25	.4 6.4	3.2	0.51	1.33	1.97	1.30	181

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 558.800 ~ (609.600) mm

	Boundary dimensions						Basic loa				Мо	unting	dime	nsion	s	Constant	Axial	load fa	actors	(Refer.)			
	1									(kl	N)	Bearing No. 1)	Design		(mm)							Mass
d		D		T		C		r 2)	$r_1^{(2)}$	$C_{\rm r}$	C_{0r}			$d_{\rm a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	min.	-1	~01			min.	min.	min.	max.	max.			- 3	-0	
558.800	0 22.0000	736.600	29.0000	165.100	6.5000	114.300	4.5000	6.4	3.2	2 420	6 100	EE542220/542291D	1-P	580	705	25.4	6.4	3.2	0.51	1.33	1.97	1.30	167
	22.0000	736.600	29.0000	187.328	7.3751	138.113	5.4375	6.4	1.6	2 960	8 050	EE843220/843291D	1-P	580	710	24.6	6.4	1.6	0.34	1.97	2.93	1.93	198
	22.0000	736.600	29.0000	225.425	8.8750	160	6.2992	6.4	1.6	3 220	9 180	2TR559	1-P	580	720	32.7	6.4	1.6	0.70	0.97	1.44	0.94	239
	22.0000	736.600	29.0000	225.425	8.8750	177.800	7.0000	6.4	1.6	3 590	9 870	LM377449/LM377410D	1-P	580	710	23.8	6.4	1.6	0.35	1.95	2.90	1.91	240
	22.0000	742.950	29.2500	187.328	7.3751	138.113	5.4375	6.4	1.6	2 960	8 050	EE843220/843292D	1-P	580	710	24.6	6.4	1.6	0.34	1.97	2.93	1.93	206
																						-	
560	_	735	_	225	_	180	_	6	1.5	3 590	9 870	46T117423	2-P	588	710	22.5	5	1.5	0.35	1.95	2.90	1.91	236
560.000	0 22.0472	740.000	29.1339	190.000	7.4803	140.000	5.5118	SP	SP	2 960	8 050	2TR560B	1-P	585	715	25	4	0.8	0.34	1.97	2.93	1.93	220
560	_	820	_	195	_	173	_	6	3	3 420	7 940	2TR560L	2-P	595	768	11	5	2.5	0.39	1.74	2.59		336
	_	820	_	195	-	173	_	6	3	3 710	7 990	462/560	1-P	588	779	11	5	2.5	0.39	1.74	2.59	-	330
	_	820	_	244	_	195	_	6	3	4 760	11 000	462/560A	1-P	588	774	24.5	5	2.5	0.33	2.03	3.02	1.98	410
	_	920	_	280	_	246	_	7.5	4	5 990	11 700	463/560	1-P	596	863	17	6	3	0.39	1.74	2.59	1.70	694
	_	920	_	350	_	280	_	7.5	4	7 830	16 400	463/560A	1-P	596	869	35	6	3	0.39	1.74	2.59	1.70	856
571.500	0 22.5000	812.800	32.0000	333.375	13.1250	263.525	10.3750	6.4	1.6	6 510	17 500	M278749/10D	1-P	600	778	35	6.4	1.6	0.33	2.03	3.02	1.98	526
580	_	800	_	300	_	235	_	7	3	5 760	15 400	2TR580A	1-P	608	768	32.5	6	2.5	0.33	2.03	3.02	1.98	425
590	_	990	_	400	_	270	_	7.5	2.5	8 880	19 000	2TR590	1-P	626	940	65	6	2	0.70	0.97	1.44	0.94	1 140
600	_	870	_	200	_	176	_	6	3	3 930	8 290	462/600	1-P	628	833	12	5	2.5	0.39	1.74	2.59	1.70	369
	_	870	_	250	_	200	_	6	3	5 330	12 600	462/600A	1-P	628	826	25	5	2.5	0.33	2.03	3.02		466
	_	870	_	269	_	198	_	6	2.5	5 650		2TR600J	1-P	628	830	35.5	5	2	0.40	1.68	2.50		494
	_	980	_	300	_	264	_	7.5	4	6 950	13 900	463/600	1-P	636	920	18	6	3	0.37	1.80	2.69	1 76	850
-		300		300		204		7.5	4	0 930	13 900	403/000	1-1	030	320	10	0	3	0.37	1.00	2.09	1.70	030
602.94	5 23.7380	787.400	31.0000	206.375	8.1250	158.750	6.2500	6.4	1.6	3 390	9 940	EE649237/649311D	1-P	625	755	23.8	6.4	1.6	0.37	1.82	2.70	1.78	252
	23.7380	793.750	31.2500	206.375	8.1250	158.750	6.2500	6.4	1.6	3 390	9 940	EE649237/649313D	1-P	625	755	23.8	6.4	1.6	0.37	1.82	2.70	1.78	261
609.600	O 24.0000	787.400	31.0000	206.375	8.1250	158.750	6.2500	6.4	1.6	3 390	9 940	EE649240/649311D	1-P	635	755	23.8	6.4	1.6	0.37	1 82	2.70	1 78	241
333.00	24.0000	793.750		206.375		158.750			1.6	3 390	9 940	EE649240/649313D	1-P	635	755	23.8		1.6	0.37	_	2.70	-	251

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (609.600) ~ (850) mm

	Boundary dimensions									Basic loa				IV	lounting		ensior	15	Constant	Axial	load fa	actors	(Refer.)
	ĺ		ı		1			2)	2)	(k)	N)	Bearing No. 1)	Desig			(mm)							Mass
d mm	1/25.4	D mm	1/25.4	T mm	1/25.4	C mm	1/25.4		$r_1^{(2)}$	$C_{ m r}$	C_{0r}			d_{a} min.	$D_{ m a}$ min.	S _a	$r_{ m a}$ max.	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
-																							
609.600	24.0000	812.800	32.0000	190.500	7.5000	146.050	5.7500	6.4	3.2	3 280	8 590	EE743240/743321D	1-P	635	770	22.2	6.4	3.2	0.33	2.06	3.06	2.01	250
630	_	800	_	180	_	140	_	6	2	2 960	8 310	2TR630	1-P	658	775	20	5	2	0.37	1.80	2.69	1.76	210
	_	920	_	212	_	186	_	7.5	4	4 490	9 550	462/630	1-P	666	878	13	6	3	0.39	1.74	2.59	1.70	446
	_	920	_	265	_	212	_	7.5	4	5 870	13 800	462/630A	1-P	666	874	26.5	6	3	0.33	2.03	3.02	1.98	556
	_	1 030	_	389	_	315	_	7.5	4	9 750	21 600	463/630A	1-P	666	978	37	6	3	0.39	1.74	2.59	1.70	1 210
670	_	880	_	185	_	130	_	6	2	3 310	8 780	2TR670A	1-P	700	843	27.5	5	2	0.45	1.50	2.23	1.46	270
	_	980	_	230	_	202	_	7.5	4	4 860	11 500	462/670	1-P	706	931	14	6	3	0.39	1.74	2.59	1.70	568
	_	980	_	288	_	230	_	7.5	4	6 700	15 900	462/670A	1-P	706	938	29	6	3	0.39	1.74	2.59	1.70	689
682.625	26.8750	965.200	38.0000	396.875	15.6250	311.15	12.2500	9.5	1.6	9 150	25 400	2TR683-1	2-P	710	926	42.8	9.5	1.6	0.33	2.03	3.02	1.98	886
685.800	27.0000	876.300	34.5000	200.025	7.8750	152.400	6.0000	6.4	1.6	3 510	10 800	EE655270/655346D	1-P	710	850	23.8	6.4	1.6	0.42	1.62	2.42	1.59	280
710	-	1 030	_	236	_	208	_	7.5	4	5 250	12 300	462/710	1-P	746	968	14	6	3	0.39	1.74	2.59	1.70	623
	_	1 030	_	295	_	236	_	7.5	4	7 130	16 600	462/710A	1-P	746	983	29.5	6	3	0.37	1.80	2.69	1.76	748
	_	1 150	_	393	_	345	_	9.5	5	11 100	24 600	463/710A	1-P	754	1 098	24	8	4	0.39	1.74	2.59	1.70	1 530
711.200	28.0000	914.400	36.0000	190.500	7.5000	139.700	5.5000	6.4	1.6	3 020	8 930	EE755280/755361D	1-P	735	880	25.4	6.4	1.6	0.38	1.78	2.65	1.74	290
723.900	28.5000	914.400	36.0000	187.325	7.3750	139.700	5.5000	3.2	1.6	3 020	8 930	EE755285/755361D	1-P	745	880	23.8	3.2	1.6	0.38	1.78	2.65	1.74	266
749.300	29.5000	990.600	39.0000	338.000	13.3071	265.000	10.4331	6.4	3.2	7 850	23 900	LM283649/LM283610D	1-P	775	960	36.5	6.4	3.2	0.32	2.12	3.15	2.07	681
780		1 150	_	330	_	210	_	7.5	2.5	7 600	18 500	2TR780	1-P	816	1 090	60	6	2	0.70	0.97	1.44	0.94	1 050
800	_	1 150	_	258	_	227	_	7.5	4	6 420	15 500	462/800	1-P	836	1 104	15.5	6	3	0.39	1.74	2.59	1.70	845
	_	1 150	_	323	-	258	_	7.5	4	8 580	21 100	462/800A	1-P	836	1 098	32.5	6	3	0.33	2.03	3.02	1.98	1 020
812.800	32.0000	1 016.000	40.0000	190.500	7.5000	146.050	5.7500	6.4	1.6	3 730	10 500	EE762320/762401D	1-P	840	980	22.2	6.4	1.6	0.43	1.59	2.36	1.55	321
850	_	1 120	_	266	_	190	_	6	2.5	6 340	17 100	2TR850D	1-P	878	1 080	38	5	2	0.46	1.47	2.19	1.44	641

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (850) ~ 1 450 mm

		В	ounda	ry dime	nsions	5				Basic loa (k)		Bearing No. 1)	Design	Me	ounting	g dime	ension	ns	Constant	Axial	load f	actors	(Refer.)
$_{\rm mm}^{~d}$	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	mm T	1/25.4	C mm	1/25.4	$r^{2)}$ min.	$r_1^{\ 2)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No.	Design	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{\rm a}$ min.	$r_{ m a}$ max.	$r_{ m b}^{2)}$ max.	e	Y_2	Y_3	Y_0	(kg)
850		1 360 1 360	_	400 500		352 400	_		SP SP	12 400 16 000	27 300 37 700	463/850 463/850A	1-P 1-P	904 904	1 284 1 287	24 50	10 10	SP SP	0.39 0.39	1.74 1.74	2.59 2.59		2 170 2 710
950		1 250 1 250 1 280	_ _ _	272 298 280		174 220 246	_ _ _	SP 7.5 7.5	3 3 4	6 270 7 660 7 740	17 500 21 900 20 600	2TR950B 2TR950 2TR950J	1-P 1-P 1-P	986 986 986	1 200 1 190 1 220	49 39 17	12 6 6	2.5 2.5 3	0.73 0.33 0.33	0.92 2.03 2.03	1.37 3.02 3.02	0.90 1.98 1.98	786 896 986
1 270.000	50.0000	1 435.100	56.5000	146.050	5.7500	101.600	4.0000	6.4	3.2	2 920	11 800	LL889049/LL889010D	1	1 300	1 410	22.2	6.4	3.2	0.57	1.18	1.76	1.16	296
1 370	_	1 605	_	210	_	150	_	7.5	4	5 240	18 900	2TR1370B	1-P	1 406	1 560	30	6	3	0.55	1.24	1.84	1.21	660
1 450	_	1 770	_	290	_	170	_	6	2.5	7 700	25 200	2TR1450	1-P	1 486	1 703	60	5	2	0.61	1.11	1.66	1.09	1 260

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

TNA type

d 101.600 ~ 174.625 mm

Design	Desig
Boundary dimensions	Basic le

		В	Sounda	ary dime	nsion	s					d ratings N)			Мс	unting	dime	nsion	s	Constant	Axial	load fa	ictors	Mass
d mm	1/25.4	$_{\rm mm}^{D}$	1/25.4	T mm		C mm	1/25.4	r min. r		$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} min.	D_{a} min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
101.600	4.0000	168.275	6.6250	92.075	3.6250	69.850	2.7500	3.6	0.8	385	698	NA691/672D	2	120	156	11.2	3.6	0.8	0.47	1.43	2.14	1.40	7.36
104.775	4.1250	180.975	7.1250	104.775	4.1250	85.725	3.3750	3.6	1.6	494	876	NA782/774D	2	123	165	9.6	3.6	1.6	0.39	1.75	2.61	1.71	10.5
114.300	4.5000 4.5000	190.500 212.725	7.5000 8.3750	106.363 142.875		80.963 117.475			1.6 1.6	520 771		NA71450/751D NA938//932D	2	133 133	177 192	12.7 12.7		1.6 1.6	0.42 0.33		2.42 3.09		11.0 21.2
115	_	210	-	143	_	118	_	4	1.5	880	1 400	46T232114	1	133	201	12.5	3	1.5	0.33	2.07	3.09	2.03	19.4
127.000	5.0000 5.0000 5.0000	182.563 206.375 234.950	7.1875 8.1250 9.2500	85.725 107.950 142.875	4.2500	73.025 82.550 114.300	3.2500	3.6	0.8 0.8 1.6	389 558 897	1 100	NA48291/48220D NA798/792D NA95500//95927D	2 2 1	145 145 145	173 194 216	6.4 12.7 14.3		0.8 0.8 1.6	0.31 0.46 0.37	1.47	3.29 2.19 2.72	1.44	6.99 13.2 25.6
133.350	5.2500	215.900	8.5000	106.363	4.1875	80.963	3.1875	3.6	1.6	551	1 100	NA74525//74851D	1	152	204	12.7	3.6	1.6	0.49	1.38	2.06	1.35	14.0
136.525	5.3750	190.500	7.5000	85.725	3.3750	73.025	2.8750	3.6	0.8	405	944	NA48390//48320D	1	155	181	6.4	3.6	0.8	0.32	2.10	3.13	2.06	7.20
139.700	5.5000	244.475	9.6250	107.950	4.2500	79.375	3.1250	3.6	1.6	552	989	NA81550/81963D	2	158	226	14.3	3.6	1.6	0.35	1.93	2.88	1.89	18.8
142.875	5.6250	200.025	7.8750	93.665	3.6876	73.025	2.8750	3.6	8.0	422	982	NA48686/48620D	2	161	190	10.3	3.6	0.8	0.34	2.01	2.99	1.96	8.43
146.050		236.538 241.300	9.3125 9.5000	131.763 131.763		106.363 106.363			1.6 1.6	719 719		NA82576/82932D NA82576/82951D	2	164 164	224 224	12.7 12.7	3.6 3.6	1.6 1.6	0.44 0.44		2.27 2.27		21.1 22.6
149.225	5.8750	236.538	9.3125	131.763	5.1875	106.363	4.1875	3.6	1.6	856	1 660	HM231149NA/HM231111D	2	168	222	12.7	3.6	1.6	0.32	2.12	3.15	2.07	20.4
152.400		244.475 254.000	9.6250 10.0000	107.950 149.225		79.375 111.125			1.6 1.6	552 941		NA81600/81963D NA99600/99102D	2	171 171	226 236	14.3 19.1	3.6 3.6	1.6 1.6	0.35 0.41		2.88 2.47		16.4 27.8
165.100	6.5000	288.925	11.3750	142.875	5.6250	111.125	4.3750	3.6	1.6	1 080	1 950	HM237536NA/HM237510D	2	184	270	15.9	3.6	1.6	0.32	2.12	3.15	2.07	36.1
165.496		225.425 225.425	8.8750 8.8750	95.250 95.250		69.850 69.850		3.6 3.6	0.8			NA46790R/46720D NA46791R/46720D	2 2	184 184	215 215	12.7 12.7	3.6 3.6	0.8	0.38 0.38		2.62 2.62		10.3 10.3
174.625	6.8750	247.650	9.7500	103.188	4.0625	84.138	3.3125	3.6	0.8	593	1 400	NA67787//67720D	1	193	237	9.5	3.6	0.8	0.44	1.54	2.29	1.50	14.9

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TNA type

d 177.800 ~ 406.400 mm

	Во	unda	ry dime	nsion	s					nd ratings N)				ounting	g dime	ension	s	Constant	Axial	load fa	ctors	Mass
d mm 1/25.4	D mm 1	/25.4	T mm	1/25.4	C mm	1/25.4		r_1 min.	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} min.	D_{a} min.	S_{a} min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
177.800 7.0000 7.0000	247.650 9 282.575 11	9.7500 1.1250		4.0625 4.2500	84.138 79.375		3.6 3.6	0.8			NA67790/67720D NA87700//87112D	2	196 196	237 266	9.5 14.3	3.6 3.6	0.8	0.44 0.42		2.29 2.42		14.2 23.5
7.0000	288.925 11	1.3750	142.875	5.6250	111.125	4.3750	5.6	1.6	943	1 920	NA94700//94114D	1	206	269	15.9	5.6	1.6	0.47	1.44	2.15	1.41	33.3
187.325 7.3750	320.675 12	2.6250	185.738	7.3125	138.113	5.4375	5.6	1.6	1 460	2 530	H239649NA/H239612D	2	216	300	23.8	5.6	1.6	0.32	2.12	3.15	2.07	52.7
190.500 7.5000	266.700 10	0.5000	109.538	4.3125	84.138	3.3125	3.6	0.8	581	1 410	NA67885SW//20D	1	209	257	12.7	3.6	0.8	0.48	1.42	2.11	1.38	17.5
203.200 8.0000 8.0000	317.500 12 317.500 12		120.650 146.050		88.900 111.125			1.6 1.6			NA132083//132126D NA93800/93127D	1 2	232 232	292 294	15.9 17.5		1.6 1.6	0.31 0.52		3.21 1.92		30.6 39.3
228.600 9.0000	355.600 14	4.0000	146.050	5.7500	111.125	4.3750	6.4	1.6	1 250	2 610	NA130902/131401D	2	257	330	17.5	6.4	1.6	0.33	2.04	3.04	2.00	49.4
241.300 9.5000	368.300 14	4.5000	120.650	4.7500	85.725	3.3750	6.4	1.6	870	1 850	NA170950//171451D	1	270	335	17.5	6.4	1.6	0.36	1.86	2.77	1.82	41.8
244.475 9.6250	349.148 13	3.7460	133.350	5.2500	101.600	4.0000	6.4	1.6	950	2 050	NA127096/127136D	2	273	329	15.9	6.4	1.6	0.35	1.91	2.84	1.86	36.3
254.000 10.0000 10.0000 10.0000	422.275	6.6250 6.6250 6.9970	173.038 173.038 173.038	6.8125	128.588 128.588 128.588	5.0625	6.4 6.4 6.4	1.6	1 730	3 360	HM252343NA/HM252311D HM252344NA/HM252311D HM252343NA/HM252315D	2 2 2	282 282 282	397 397 397	22.2 22.2 22.2	6.4	1.6 1.6 1.6	0.33 0.33 0.33	2.03 2.03 2.03	3.02	1.98	87.2 87.2 93.5
10.0000	431.724 16 431.724 16	6.9970 6.9970	173.038 173.038	6.8125 6.8125	128.588 128.588		6.4 6.4		1 730 1 680		HM252344NA/HM252315D NA551002/551701D	2 2	282 282	397 388	22.2 22.2		1.6 1.6	0.33 0.33	2.03 2.03	3.02 3.02		93.5 93.0
260.350 10.2500 10.2500 10.2500		5.7500 6.6250 6.9970	146.050 173.038 173.038	6.8125	107.950 128.588 128.588	5.0625	6.4 6.4 6.4	1.6 1.6 1.6		3 360	NA221026/221576D HM252349NA/HM252311D HM252349NA/HM252315D	2 2 2	289 289 289	371 397 397	19.1 22.2 22.2		1.6 1.6 1.6	0.39 0.33 0.33	2.03	2.54 3.02 3.02	1.98	56.7 87.3 93.6
304.800 12.0000	444.500 17	7.5000	139.700	5.5000	98.425	3.8750	6.4	1.6	1 240	2 760	NA291201//291751D	1	333	413	20.6	6.4	1.6	0.38	1.79	2.66	1.75	63.8
355.600 14.0000	501.650 19	9.7500	146.050	5.7500	107.950	4.2500	6.4	1.6	1 350	3 280	NA231400//231976D	1	384	480	19.1	6.4	1.6	0.44	1.53	2.28	1.50	82.2
400 —	590	-	185	_	123	_	6	1.5	2 400	5 110	46T8059NA-1	1	428	558	31	5	1.5	0.32	2.12	3.15	2.07	148
406.400 16.0000	574.675 22	2.6250	157.163	6.1875	106.363	4.1875	6.4	1.6	1 630	3 880	NA285160//285228D	1	435	535	25.4	6.4	1.6	0.50	1.35	2.01	1.32	112

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 65 ~ 133.350 mm

		Bou	ndary	/ dimen	sions	5				Basic load					Mounti	ng dir		ons		Constant	Axial	load fa	actors	(Refer.)
d mm	1/25.4	D mm	1/25.4	mm T	1/25.4	W mm	1/25.4	r min.		$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} max.	D_{i} max.	` ′	S	$r_{ m a}$ max.	r _b	e	Y_2	Y_3	Y_0	Mass (kg)
65	_	100	_	98	_	98	_	1.5	0.3	309	550	47T131010	1	73	91.5	87	3.6	1.5	0.3	0.46	1.47	2.19	1.44	2.82
80	_	115	_	88	_	88	_	1.5	1.5	265	543	47T1611	1	91	106.5	102	3.4	1.5	1.5	0.33	2.03	3.02	1.98	2.99
95	_	130	_	100	_	100	_	1.5	1.5	347	729	47T191310	1	104	121.5	117	3.5	1.5	1.5	0.33	2.03	3.02	1.98	3.83
100	_ _ _	140 140 170	_ _ _	104 104 155	_ _ _	104 104 155	_ _ _	2 2 2	2.5 1 2.5	338 407 787	661 852 1 470	37220 37220A 47T2017	1 1 1	112 110 119	130 130 160	125 125 149	3.8 4.1 5.7	2 2 2	2 1 2	0.28 0.40 0.35	1.68	3.53 2.50 2.90	1.64	4.6 4.8 14.7
105	_	160	_	150	_	150	_	1.5	1	747	1 420	47T211615	1	118	151.5	146	5.9	1.5	1	0.33	2.03	3.02	1.98	10.6
110	_ _ _	155 160 180	_ _ _	114 115 154 170	_ _ _	114 115 154 170	_ _ _	2 1.5 2	2.5 1 2.5	475 548 882 989	955 1 030 1 530 1 770	37222 47T221612 47T221815 47T221817	1 1 1	121 121 127 126	145 151.5 170 174.5	140 146 162 162	4.8 5.2 5.9 6.5	2 1.5 2	2 1 2	0.33 0.43 0.39	1.57 1.74	3.02 2.34 2.59 3.02	1.53 1.70	6.45 7.63 15.4
115	_	155 160	_	115 120	_	115 120	_ _		0.6	437 560	1 020 1 160	47T231612A 47T231612	1	126 124	146.5 151.5	142 147	3.4 5.7	1.5 1.5	0.6 0.6	0.40 0.35		2.50 2.90		6.12 7.2
120	_ _ _ _	170 170 200 210	_ _ _	124 130 132 174	_ _ _ _	124 130 132 174	_ _ _ _	2 1.5 2 2.5	2.5	472 591 706 1 110	943 1 290 1 200 1 770	37224 47T241713 47324 47T242117	1 1 1	135 133 143 143	160 161.5 190 198	155 155 178 188	4.1 4.4 5.7 4	2 1.5 2	2 2 2 2.5	0.28 0.40 0.35 0.33	2.37 1.68 1.95 2.03	3.53 2.50 2.90 3.02	1.64 1.91	8.56 9.38 16.5 24.5
120.650	4.7500 4.7500 4.7500		6.5625	106.365 152.414 139.703	6.0006	152.400	6.0000	3.3	1.6	322 637 712	771 1 460 1 450	L624549D/514/514D LM124449D/410/410D M224749D/710/710D	1 1 1	130 132 133	153 155 166	147 150 159	5.1 2.3 4.9	1.6 3.3 1.6	1.6 1.6 0.8	0.43 0.29 0.33	2.30	2.32 3.42 3.02	2.25	6.24 9.84 11.1
127.000	5.0000	182.563	7.1875	158.750	6.2500	158.750	6.2500	3.2	1.6	778	1 720	48290D/20/20D	1	140	171	166	3.7	3.2	1.6	0.31	2.21	3.29	2.16	13.6
130	_	184	_	134	_	134	_	2	2.5	645	1 330	37226	1	143	174	169	4.3	2	2	0.33	2.03	3.02	1.98	11
133.350	5.2500	196.850	7.7500	193.675	7.6250	193.675	7.6250	3.2	1.6	1 070	2 240	67390D/22/22D	1	148	185	180	5.6	3.2	1.6	0.34	1.96	2.92	1.92	19.8

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 135 ~ 170 mm

		Bou	ndar	y dimen	sions	5				Basic loa (kl		Bearing No. 1)	Design		Mounti	ng din		ons		Constant	Axial	load fa	ctors	(Refer.)
$_{\rm mm}^{d}$	1/25.4	$_{\mathrm{mm}}^{D}$	1/25.4	mm T		mm W		r min.		$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	$d_{ m a}$ max.	D_{i} max.	-	S min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
135	_	180 195	_	160 160	_	160 160	_	1.5 1.5		559 938	1 290 1 930	47T271816 47T272016	1 1	146 147	171.5 186.5	166 179	1.4 3.9	1.5 1.5	1 0.6	0.33 0.33	2.03 2.03	3.02 3.02		10.7 15.4
136.525	5.3750 5.3750					161.925 161.925		_		809 809		47T271916 48393D/20/20D	2	150 150	179 179	174 174	4.8 4.8	3.2	1.6	0.32		3.13 3.13		14.3 14.3
139.700	5.5000					157.166					1 960	48680D/20/20D	1	157	187	182	4	3.3	0.8	0.34		2.99		16.6
140		198 210 225	_	144 114 145		144 114 145	_	2 2 2.5	2.5	623	1 650 1 130 1 610	37228 47228 47328	1 1 1	157 160 161	188 200 213	183 190 203	5.3 6 6.5	2 2 2	2 2 2.5	0.28 0.27 0.40	2.47	3.61 3.67 2.50	2.41	13.6 13.7 21.2
145	_	195	_	130	_	130	_	1.5			1 550	47T292013	1	158	186.5	177		1.5	0.6	0.40		2.50		11.1
150	_	210 212	_	190 155	_	190 155	_ _	2 2.5	0.6 3	993 774	2 270 1 640	47T302119 37230	1	163 168	200 200	190 190	5 6	2	0.6 2.5	0.39 0.28		2.59 3.53		20.2 16.7
152.400	6.0000	222.250	8.7500	174.625	6.8750	174.625	6.8750	1.6	1.6	1 080	2 390	M231649D/610/610D	1	168	213	201	6	1.6	1.6	0.33	2.03	3.02	1.98	22.8
160	- - -	226 250 265	_ _ _	165 145 173	_ _ _	165 145 173	_ _ _	2.5 2.5 2.5	3	1 090	1 870 1 870 2 400	37232 47T322515 47T322717	1 1 1	178 182 193	214 238 253	204 226 241	6 6.5 7	2 2 2	2.5 2.5 1	0.28 0.33 0.35	2.03	3.53 3.02 2.90	1.98	20.1 25.4 37.6
165.100	6.5000	225.425	8.8750	168.275	6.6250	165.100	6.5000	3.2	0.8	868	2 140	46791D/20/21D	1	180	213	203	4.5	3.2	0.8	0.38	1.77	2.63	1.73	19.7
168.275	6.6250	247.650	9.7500	192.088	7.5625	192.088	7.5625	3.2	1.6	1 190	2 800	67782D/20/21D	1	189	236	226	5	3.2	1.6	0.44	1.54	2.29	1.50	31.7
170	_ _ _	230 240 240	_ _ _	175 175 175 160	_ _ _	175 175 175	_ _ _	2.5	1.5	1 030 1 020 1 120	2 310	47T342318 37234A 47T342418A 47T342616	1 1 2	183 189 184	220 228 228 248	210 218 218	6 5 7.5	2 2 2	1 2.5 1.5 2.5	0.40 0.33 0.40 0.35	1.68 2.03 1.68 1.95		1.98 1.64	19.9 24.2 24.7 28.5
	_ _ _	260 280 280	_ _ _	181 185	_ _ _	181 185	_ _ _	2.5 2.5 2.5	3	1 330		471342616 47334/181 47334	1 1 1	194 202 202	248 268 268	238 250 250	6 6 6	2 2 2	2.5 2.5 2.5	0.35 0.33 0.33	2.03	3.02 3.02	1.98	28.5 44 44.8

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 177.800 ~ 205 mm

		Вои	ındarı	y dimen	sion	S					d ratings	2			Mount	ing din		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm	1/25.4	D mm	1/25.4	T mm		W mm		r min.	-	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} max.	D _s	-	S min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	Mass (kg)
177.800	7.0000	247.650	9.7500	192.088	7.5625	192.088	7.5625	3.2	1.6	1 190	2 800	67791D/20/21D	1	189	235	225	5	3.2	1.6	0.44	1.54	2.29	1.50	28.4
	7.0000	279.400	11.0000	234.948	9.2499	234.950	9.2500	3.2	1.6	1 660	3 290	82681D/20/20D	1	197	267	251	6.5	3.2	1.6	0.52	1.29	1.92	1.26	52.5
	7.0000	285.750	11.2500	222.245	8.7498	222.500	8.7598	3.2	1.6	1 520	2 860	EE91700D/112/113XD	1	201	273	251	3.5	3.2	1.6	0.43	1.57	2.34	1.53	53.7
180	_	250	_	185	_	185	_	2.5			2 550	47T362519	1	198	238	228	6	2	2.5	0.33	2.03	3.02		26.9
	_	254	_	185	_	185	_	2.5		1 140		37236	1	198	242	232	6	2	2.5	0.33	2.03	3.02		29.1
	_	260	_	160	_	160	_	2.5		1 090		47T362616	1	198	248	238	5	2	1	0.37	1.80	2.69		26.4
	_	260	_	200	_	200	_	2	2.5	1 390		47T362620	1	200	250	240	4.5	2	2	0.31	2.15	3.20	-	33.6
	_	280	_	181	_	181	_		3	1 510		47T362818A	1	204	268	253	8	2	2.5	0.33	2.03	3.02		40.8
	_	300	_	202	_	202	_	3	4	1 580	2 750	47336	'	211	286	267	5.5	2.5	3	0.35	1.95	2.90	1.91	54.9
	_	300	_	280	_	280	_	3	4	2 400	4 430	47T363028	1	211	286	270	6	2.5	3	0.33	2.03	3.02	1.98	78.4
187	_	270	_	210	_	210	_	2.5	1	1 660	3 570	47T372721B	1	205	258	248	8	2	1	0.33	2.03	3.02	1.98	39.1
187.325	7.3750	269.875	10.6250	211.138	8.3125	211.138	8.3125	3.2	1.6	1 410	3 220	M238849D/810/810D	1	206	257	245	5	3.2	1.6	0.33	2.03	3.02	1.98	39.5
190	_	268	_	196	_	196	_	2.5	3	1 210	2 760	37238	1	210	256	246	6	2	2.5	0.33	2.03	3.02	1.98	33.4
	_	270	_	160	_	160	_	2.5	1	1 170	2 370	47T382716	1	208	258	248	7	2	1	0.40	1.68	2.50	1.64	28.3
190.000	7.4803	270.000	10.6299	190.000	7.4803	190.000	7.4803	3.2	1.6	1 160	2 810	4TR3827	1	208	257	244	6	3.2	1.6	0.48	1.42	2.11	1.38	34.7
190.500	7.5000	266.700	10.5000	188.913	7.4375	187.325	7.3750	3.2	1.6	1 160	2 810	67885D/67820/67820D	1	208.5	255.3	245.1	6	3.2	1.6	0.48	1.42	2.11	1.38	32.4
198.438	7.8125	284.163	11.1875	225.425	8.8750	225.425	8.8750	3.2	1.6	1 740	3 780	M240648D/611/611D	1	215	271	260	5	3.2	1.6	0.33	2.03	3.02	1.98	44.7
200	_	280	_	206	_	206	_	2.5	1.5	1 670	3 830	47T402821	1	216	268	258	6.5	2	1.5	0.39	1.71	2.54	1.67	39.7
	_	282	_	206	_	206	_	2.5	3	1 490	3 380	37240	1	223	270	260	5.5	2	2.5	0.28	2.43	3.61	2.37	39.6
	_	340	_	234	_	234	_	3	4	2 340	4 150	47T403423	1	234	326	302	6	2.5	4	0.40	1.68	2.50	1.64	86
203.200	8.0000	317.500	12.5000	209.550	8.2500	215.900	8.5000	3.2	3.2	1 510	2 900	EE132082D/125/126D	1	235	304	284	7	3.2	3.2	0.31	2.15	3.21	2.11	61
	8.0000					266.700		l			4 540	93800D/125/127D	1	223	304	278	6.5	3.2	1.6	0.52		1.92		78.8
205	_	320	_	205	_	205	_	3	4	1 740	3 030	47T413221	1	230	306	292	7.5	2.5	3	0.46	1.46	2.17	1.42	58.9

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 206.375 ~ 235 mm

		Bound	ary d	limen	sions	;					d ratings				Mount	_		ions		Constant	Axial	load fac	tors	(Refer.)
	1		1			I		1		(k	N)	Bearing No. 1)	Design			(mm)								Mass
d		D		T		W		r		$C_{\rm r}$	C_{0r}			$d_{\rm a}$	L	-	S	$r_{\rm a}$	$r_{\rm b}$	e	Y_2	Y_3	Y_0	(kg)
mm	1/25.4	mm 1/2		mm										max.	max.	min.	min.	max.	max.					
206.375	8.1250	282.575 11.1								1 200	2 830	67985D/20/20D	1	219	270	259	7	3.2	0.8	0.51		1.97		33.9
	8.1250	282.575 11.1								1 200	2 830	67986D/20/21D	1	222	270	259	7	3.2	8.0	0.51	1.33	1.97		34.8
	8.1250	282.575 11.1	250 21	10.000	8.2677	210.000	8.2677	3.2	0.8	1 380	3 010	47T412821A	1	219	270	260	3.5	3.2	0.8	0.43	1.57	2.34	1.53	36.2
215.090	8.4681	311.150 12.2	500 22	28.600	9.0000	228.600	9.0000	3.2	1.6	1 750	4 040	47T433123	1	233	297	278	7	3.2	1.6	0.40	1.68	2.50	1.64	57.5
215.900	8.5000	288.925 11.3	750 17	77.800	7.0000	177.800	7.0000	3.2	0.8	1 220	3 120	LM742749D/714/714D	1	229	276	265	5.5	3.2	8.0	0.48	1.40	2.09	1.37	32.8
	8.5000	336.550 13.2	500 26	66.700	10.5000	266.700	10.5000	3.2	6.4	2 430	4 760	47T433427	1	238	323	304	6.5	3.2	6.4	0.50		2.00		85.1
216.103	8 5080	330.200 13.0	000 26	30 975 1	10 6250	262 525	10 3750	2 2	16	2 500	5 120	47T433327	1	237	316	300	7	3.2	1.6	0.46	1 47	2.19	1 11	81.6
210.103	0.0000	330.200 10.0	200	03.070	10.0200	203.323	10.0700	3.2	1.0	2 300	3 120	4/143532/	'	231	310	300	1	3.2	1.0	0.40	1.47	2.13	1.44	01.0
220	_	300 -	- 23	30	_	230	_	2.5	3	1 750	4 040	47T443023	1	231	288	278	6.5	2	2.5	0.40	1.68	2.50	1.64	45.1
	_	310 -	- 22	26	_	226	_	3	4	1 690	3 880	37244	1	242	296	285	6	2.5	3	0.33	2.03	3.02	1.98	52
	-	320 –	- 20	01	_	201	_	3	3	1 660	3 760	47T443220	1	247	306	290	5.5	2.5	2.5	0.33	2.03	3.02	1.98	52.4
	_	320 -	- 25	50	_	250	_	2.5	3	1 930	4 230	47T443225	1	244	308	293	6.5	2	2.5	0.35	1.95	2.90	1.91	64.7
	_	330 -	- 26	60	_	260	_	3	1	2 350	5 070	47T443326A	1	243	316	299	9	2.5	1	0.40	1.68	2.50	1.64	78.4
	_	330 -	- 26	60	_	260	_	3	1	2 330	4 860	47T443326B	2	238	316	300	8	2.5	1	0.55	1.24	1.84	1.21	77.5
	_	340 -	- 19	90	_	190	_	3	4	1 490	2 910	47244	1	260	326	308	6	2.5	3	0.28	2.43	3.61	2.37	62.2
	_	340 -	- 28	30	_	280	_	3	1	2 720	5 580	47T443428-1	1	247	326	308	10	2.5	1	0.33	2.03	3.02	1.98	95.1
	_	340 -	- 30	05	_	305	_	3	4	2 910	5 940	47T443431	1	244	326	307	8	2.5	3	0.35	1.95	2.90	1.91	99.6
220.662	8.6875	314.325 12.3	750 29	90.000 1	11.4173	290.000	11.4173	3.2	1.6	2 300	5 050	47T443129A	1	240	300	289	4.5	3.2	1.6	0.33	2.03	3.02	1.98	70
220.663	8.6875	314.325 12.3	750 23	39.713	9.4375	239.713	9.4375	3.2	1.6	2 100	4 890	M244249D/210/210D	1	241	300	288	5	3.2	1.6	0.33	2.03	3.02	1.98	59
225	_	320 -	- 23	30	_	230	_	2	2.5	1 670	3 730	4TR225A	1	246	310	293	5	2	2	0.37	1.80	2.69	1.76	57
228.600	9.0000	311.150 12.2	500 20	00.025	7.8750	200.025	7.8750	3.2	1.6	1 660	3 760	LM245149D/110/110D	1	247	297	287	5.5	3.2	1.6	0.33	2.03	3.02	1.98	41.8
230		315 –	- 19	90	_	190	_	2	2.5	1 510	3 470	47T463119	1	248	305	290	7.5	2	2	0.37	1.80	2.69	1.76	43
234.950	9.2500	327.025 12.8	750 19	96.850	7.7500	196.850	7.7500	3.2	1.6	1 600	3 720	8576D/20/20D	1	255	313	299	5.5	3.2	1.6	0.41	1.66	2.47	1.62	50.1
235		325 -	- 24	40	_	240	_	2.5	1.5	2 200	5 310	47T473324	1	254	313	301	8.5	2	1.5	0.33	2.03	3.02	1.98	60.5

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 240 ~ (260) mm

'		Воц	undary	y dimen	isions	5				Basic loa						Mount	ing din		ons		Constant	Axial	load fa	ctors	(Refer.)
	1			ı		l		ı	2)	(kl	N)	Bearing No. 1)	Desig		,		(mm)								Mass
d mm	1/25.4	D mm	1/25.4	mm T	1/25.4	mm			$r_1^{(2)}$	$C_{\rm r}$	C_{0r}				$d_{ m a}$ nax.	D		S	r _a	r _b	e	Y_2	Y_3	Y_0	(kg)
	1/23.4				1/23.4		1/23.4		111111.					- 11	IIdX.	max.	min.		max.	IIIdX.					
240	_	320		250	_	250	_	2	1	1 880	4 760	47T483225B	1		257	310	299	7.5	2	1	0.33	2.03	3.02		54.2
	_	338		248	_	248	_	3	4	2 360	5 360	37248	1		259	324	312	8.5	2.5	3	0.39	1.74		1.70	68.4
	_	338	_	248	_	248	_	3	4	2 360	5 360	37248/DP1	2		259	324	312	8.5	2.5	3	0.39	1.74	2.59	1.70	68.4
	_	360	_	194	_	194	_	3	4	1 830	3 580	47248	1		272	346	327	8.5	2.5	3	0.32	2.12	3.15		66.5
	_	360		214	_	214	_	3	2.5	2 170	4 340	47T483621	1		268	346	328	9	2.5	2.5	0.40	1.68	2.50		75.4
	_	360	_	308.5	_	308.5	_	3	2.5	3 320	7 400	47T483631A	1		268	346	329	9.5	2.5	2.5	0.26	2.55	3.80	2.50	112
	_	365	_	290	_	290	_	2	SP	2 870	5 930	47T483729	1		265	355	333	9	2	0.8	0.46	1.47	2.19	1.44	108
	_	410	_	270	_	270	_	4	2.5	3 220	5 520	47T484127A	1		281	392	369	8.5	3	2	0.40	1.68	2.50	1.64	144
241.478				228.600				-			4 920	47T483523A	1		267	335	319	8.5	3.2	1.6	0.35		2.84		72.9
	9.5070	349.148	13.7460	228.600	9.0000	228.600	9.0000	3.2	1.6	1 900	4 100	EE127097D/135/136D	1		267	335	319	5.5	3.2	1.6	0.35	1.91	2.84	1.86	70.4
244.475	9.6250	327.025	12.8750	193.675	7.6250	193.675	7.6250	3.2	1.6	1 470	3 500	47T493319	1		259	313	303	5.5	3.2	1.6	0.55	1.24	1.84	1.21	44.4
	9.6250			193.675							3 780	LM247748D/710/710D	1		265	313	305	7.5	3.2	1.6	0.32	2.10	3.13	2.06	44.4
	9.6250	381.000	15.0000	304.800	12.0000	304.800	12.0000	4.8	3.2	2 700	5 870	EE126096D/150/151D	1		269	364	336	6	4.8	3.2	0.52	1.31	1.95	1.28	129
-																									
247.650	9.7500	400.050	15.7500	253.995	9.9998	249.235	9.8124	6.4	1.6	2 600	5 140	EE220975D/1575/1576D	1		292	379	359	7.5	6.4	1.6	0.39	1.71	2.54	1.67	123
250	_	350	_	240	_	240	_	2.5	1	2 180	4 970	47T503524	1		270	338	324	6	2	1	0.40	1.68	2.50	1.64	70
	_	365	_	270	_	270	_	3	1.5	2 650	6 340	47T503627	1		277	351	330	8	2.5	1.5	0.33	2.03	3.02	1.98	96.7
254.000	10.0000			147.000							2 910	47T513615	1		290	345	331	/	3.2	1.6	0.33		3.02		46.9
	10.0000			269.875 269.875							6 340 6 030	47T513627A 47T513627B	2		277 272	345 345	330 331	8 7.5	3.2	1.6 1.6	0.33 0.46		3.02 2.19		85.8 85.5
	10.0000										0 030		'		212	343	331	7.5	3.2	1.0	0.40	1.47		1.44	00.0
	10.0000			269.875							6 030	47T513627C	2		272	345	331	7.5	3.2	1.6	0.46	1.47		1.44	86.1
	10.0000	358.775	14.1250	269.875	10.6250	269.875	10.6250	3.2	3.2	2 650	6 340	M249748D/710/710D	1		277	345	330	8	3.2	3.2	0.33	2.03	3.02	1.98	86
260	_	360	_	272	_	272	_	3	1	2 910	7 020	47T523627A	1		280	346	335	9	2.5	1	0.33	2.03	3.02	1.98	83.6
	_	368		268	_	268	_	4	5	2 510	6 020	37252	1		286	350	338	6	3	4	0.33	2.03	3.02		88.4
	_	400	_	220	_	220	_	4	1.5	2 390	4 520	47T524022	1		295	382	364	7.5	3	1.5	0.40	1.68	2.50	1.64	98.5
	_	400	_	255	_	255	_	7.5	5	2 620	5 400	47T524026	1		296	400	360	9	6	4	0.39	1 72	2.56	1 68	113
	_	400	_	320		320	_	4	5		7 070	47T524032	1		294	382	361	8.5	3	4	0.33		3.02		145
_		100		520		020		Ľ		3 2.10	, 0,0					302	001	0.0		'	0.00	2.00	J.UL	1.00	1.10

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (260) ~ 288.925 mm

	Bounda	ry dim	ension	s					d ratings				Mount	ing dir		ions		Constant	Axial	load fa	ctors	(Refer.)
	_	1	_	1 .		1		(K	N)	Bearing No. 1)	Design	J	r	(mm)	,							Mass
d mm 1/25.4	D mm 1/25.	4 mm	T 1/25.4		V 1/25.4		r ₁	$C_{\rm r}$	C_{0r}			$d_{\rm a}$ max.	max.	-	S	$r_{ m a}$ max.	r _b	e	Y_2	Y_3	Y_0	(kg)
-			1/23.		1/23.4																	-
260 —	440 —	300	_	300	_	4	5	3 470	6 880	47352	1	311	422	392	10	3	4	0.35	1.95	2.90	1.91	188
260.350 10.2500	422.275 16.625	317.50)0 12.500	0 314.325	12.3750	3.2	6.4	3 470	6 720	HM252348D/310/310D	1	304	407	384	1	3.2	6.4	0.33	2.03	3.02	1.98	167
266.700 10.5000	335.600 13.212	228.60	9.000	0 230.188	9.0625	3.2	1.6	1 850	5 260	47T533423	1	281	322	312	7	3.2	1.6	0.28	2.43	3.61	2.37	46.4
10.5000	355.600 14.000	0 228.60	9.000	0 230.188	9.0625	3.2	1.6	2 230	5 690	47T533623B	1	285	342	332	8	3.2	1.6	0.36	1.87	2.79	1.83	62.7
10.5000	355.600 14.000	228.60	9.000	0 230.188	9.0625	3.2	1.6	1 980	4 830	76589D/20/20D	1	285	342	331	7	3.2	1.6	0.37	1.83	2.73	1.79	59.8
10.5000	393.700 15.500	269.87	78 10.625	1 269.878	3 10.6251	6.4	1.6	2 990	6 460	47T533927-1	1	294	373	361	8.5	6.4	1.6	0.40	1.68	2.50	1.64	112
269.875 10.6250	381.000 15.000	282.57	75 11.125	0 282.575	11.1250	3.2	3.2	2 930	6 690	M252349D/310/310D	1	291	367	350	6	3.2	3.2	0.33	2.03	3.02	1.98	98.4
270 —	364 —	260	_	260		3	1.5	2 370	5 720	47T543626	1	285	350	338	4.5	2.5	1.5	0.42	1 59	2.37	1.56	72.8
_	410 —	222	_	222	_	4	5		4 380	47254	1	308	392	372	6.5	3	4	0.42		3.74		100
276.225 10.8750	393.700 15.500	269.87	78 10.625	1 269.878	10.6251	6.4	1.6	2 730	5 830	47T553927	1	299	373	363	4.5	6.4	1.6	0.40	1.68	2.50	1.64	101
279.400 11.0000	393.700 15.500	269.87	75 10.625	269.875	10.6250	6.4	1.6	2 660	5 990	47T563927A	2	305	373	363	9.5	6.4	1.6	0.40	1.68	2.50	1.64	101
11.0000	393.700 15.500	269.87	75 10.625	269.875	10.6250	6.4	1.6	2 660	5 990	47T563927B	1	305	373	363	9.5	6.4	1.6	0.40	1.68	2.50	1.64	101
11.0000	410.000 16.141	7 310.00	00 12.204	7 310.000	12.2047	6.4	1.6	3 120	7 290	47T564131	2	308	389	374	8	6.4	1.6	0.40	1.68	2.50	1.64	140
279.578 11.0070	380.898 14.996	244.47	75 9.625	0 244.475	9.6250	3.2	1.6	2 280	5 650	LM654644D/610/610D	1	303	367	356	6.5	3.2	1.6	0.43	1.57	2.34	1.53	80.4
280 —	380 —	290	_	290	_	2	2	2 810	6 940	47T563829	1	300	370	354	6	2	2	0.33	2.03	3.02	1.98	91.8
_	380 —	290	_	290	_	2	1	2 810		47T563829A	2	300	370	354	6	2	1	0.33	2.03	3.02		92.1
_	395 —	288	_	288	_	4	2	2 880	6 900	37256X	1	303	377	363	8	3	2	0.40	1.68	2.50	1.64	110
_	395 —	288	_	288	_	4	2	2 880	6 900	47T564029A	2	303	377	363	8	3	2	0.40	1.68	2.50	1 64	110
_	420 —	225	_	225	_	4	5	2 390	4 950	47256	1	322	402	382	8.5	3	4	0.40	2.69		2.63	104
_	460 —	324	_	324	_	5	6	4 300		47T564632	1-P	321	438	415	10.5	4	5	0.46		2.19		214
280.268 11.0342	379.887 14.956	2 244.47	75 9.625	0 244.475	9.6250	3.2	1.6	2 280	5 650	47T563824	1	303	366	355	6.5	3.2	1.6	0.43	1.57	2.34	1.53	80
285.750 11.2500	380.898 14.996	0 244.47	75 9.625	0 244.475	9.6250	3.2	1.6	2 280	5 650	LM654648D/610/610D	1	303	367	356	6.5	3.2	1.6	0.43	1.57	2.34	1.53	75.6
288.925 11.3750	406.400 16.000								8 840	M255449D/410/410D	1	316	392	373	9	3.2		0.34		2.97		127

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 292.100 ~ (320) mm

	Boundar	y dimen	sions	5					nd ratings N)				Mount	_		ons		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	D mm 1/25.4	mm T		И	1/25.4		$r_1^{(2)}$	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	d_{a} max.	D max.	(mm) O _a min.	S	$r_{ m a}$ max.	r _b	e	Y_2	Y_3	Y_0	Mass (kg)
292.100 11.5000	422.275 16.6250							3 170	6 830	EE330116D/166/167D	1	321	407	387	7.5		6.4	0.32	2.11	3.14	2.06	124
300 — — — — —	420 — 424 — 430 —	310 310 300	_ _ _	310 310 300		3 4 3	1 5 4	3 390 3 000 3 320	6 570	47T604231 37260 47T604330	1 1 1	325 334 328	406 406 416	388 391 393	8.5 6 10	2.5 3 2.5	1 4 3	0.34 0.28 0.35	2.00 2.37 1.95	2.98 3.53 2.90	2.32	132 134 141
_ _ _	430 — 460 — 460 —	310 248 360	_ _ _	310 248 360	_ _ _	3 4 4	2.5 1.5 5	3 520 3 060 4 300		47T604331 47T604625 47T604636	1 1 1	332 342 339	416 442 442	399 416 416	10 8.5 9	2.5 3 3	2 1.5 4	0.40 0.40 0.33	1.68 1.68 2.03	2.50 2.50 3.02	1.64	146 149 220
_ _ _	470 — 470 — 470 —	270 292 292 350	_ _ _	270 292 292	_	4 4 4	5 SP 1.5	3 500 3 980 4 120	7 870	47T604727A 47T604729B 47T604729C 47T605035	1 1-P 1-P	338 341 343 346	452 452 452 482	426 428 428 451	8 8.5 9.5	3 3 3	4 2 1.5	0.40 0.40 0.33 0.40	1.68 1.68 2.03	3.02	1.64 1.98	165 193 198 270
300.038 11.8125	500 — 422.275 16.6250			350 311.150		-	3.2		8 050	HM256849D/810/810D	1	325	407	388	7	3.2	3.2	0.40		2.50		136
304.648 11.9940 11.9940	438.048 17.2460 438.048 17.2460						-	3 230 3 230	6 980 6 980	47T614428C M757448D/410/410D	2	331 331	420 420	403 403	7 7	4.8 4.8	3.2 3.2	0.47 0.47		2.15 2.15		133 132
304.800 12.0000 12.0000 12.0000	419.100 16.5000 482.600 19.0000 495.300 19.5000	377.825	14.8750	365.125	14.3750	6.4	3.2	4 820		M257149D/110/110D 47T614838A EE724121D/195/196D	1 1-P 1	331 343 355	398 461 474	387 437 438	7 1 7	6.4 6.4 6.4	1.6 3.2 3.2	0.33 0.47 0.40	1.43	3.02 2.12 2.50	1.40	110 250 267
304.902 12.0040	412.648 16.2460	266.7	10.5000	266.7	10.5000	3.2	3.2	2 990	7 280	M257248D/210/210D	1	328	398	383	7	3.2	3.2	0.32	2.12	3.15	2.07	101
310 — —	430 — 460 —	310 325	_	310 325	_ _	3 4	3 5	3 520 4 200		47T624331A 47T6246A	1	332 346	416 442	399 421	10 12	2.5 3	2.5 4	0.40 0.32		2.50 3.15		135 188
317.500 12.5000 12.5000 12.5000	422.275 16.6250 447.675 17.6250 447.675 17.6250	327.025	12.8750	327.025	12.8750	6.4	1.6	4 120	7 450 9 820 10 100	LM258649D/610/610D 47T644533J 47T644533L	1 1-P 1	341 341 344	407 426 426	392 411 411	8.5 7.5 11.5	3.2 6.4 6.4	1.6 1.6 1.6	0.32 0.33 0.33	2.02	3.15 3.00 3.02	1.97	104 161 161
320 — —	440 — 460 —	335 325	_	335 325	_ _	2 4	2.5 2.5	3 590 4 030		47T644434 47T644633	1 1	341 349	430 442	408 424	5.5 10	2	2 2.5	0.40 0.42	1.68 1.62	2.50 2.42		149 175

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (320) ~ 355.600 mm

		Bour	ıdary	dimer	sion	5				Basic load rati	ngs				Mount	_		ions		Constant	Axial	load fa	ctors	(Refer.)
,	1	D		7	,				1.	(kN)		Bearing No. 1)	Design	d	D	(mm)) S	1*	15.					Mass
d mm	1/25.4	D mm	1/25.4	mm	1/25.4		W 1/25.4		r_1 min.	$C_{\rm r}$ $C_{\rm c}$	Or			d_{a} max.	max.	'a min.		$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	(kg)
320	_	460		338	_	338		4	5	3 500 8 5	ign	37264	1	356	442	421	8.5	3	4	0.33	2.03	3.02	1 98	183
320	_	480		254	_	254	_	4	2.5	3 400 6 9		47T644825	1-P	358	462	437	9	3	2	0.40	1.68	2.50		161
	_	480		260	_	260	_	4	5	3 360 6 8	390	47T644826	1	359	462	437	11.5	3	5	0.40	1.68	2.50		165
	_	480	_	360	_	360	_	4	1	4 970 11 0	000	47T644836-1	1-P	352	462	442	9	3	1	0.47	1.43	2.12	1.40	229
	_	500	_	380	_	380	_	4	1.5	5 540 11 9	900	47T645038	1-P	363	482	454	11.5	3	1.5	0.33	2.03	3.02	1.98	284
	-	540	_	364	_	364	_	5	6	5 380 10 6	000	47364	1	376	518	479	8.5	4	5	0.32	2.12	3.15	2.07	340
325	_	430	_	230	-	230	_	3	1	2 410 5 8	300	47T654323	1	347	416	401	8.5	2.5	1	0.40	1.68	2.50	1.64	88.5
327	_	445	_	230	_	230	_	3	1	2 620 6 0	080	47T654523	1	353	431	413	9	2.5	1	0.40	1.68	2.50	1.64	102
330.200	13.0000	444.500 1	7.5000	301.625	11.8750	301.62	5 11.8750	3.2	3.2	3 550 9 2	260	47T664430	1	357	430	414	10	3.2	3.2	0.26	2.55	3.80	2.50	134
	13.0000	508.000 2	20.0000	307.975	12.1250	307.97	5 12.1250	6.4	1.6	4 320 8 5	500	47T665131A	1	372	486	462	8	6.4	1.6	0.33	2.03	3.02	1.98	219
335.000	13.1890	460.000 1	8.1102	342.900	13.5000	342.90	0 13.5000	3.2	1.6	3 960 9 3	390	47T674634/DP	2	361	445	428	7.5	3.2	1.6	0.40	1.68	2.50	1.64	165
337.375	13.2825	469.900 1	8.5000	342.900	13.5000	342.90	0 13.5000	3.2	1.6	4 630 11 4	100	HM261049D/010/010D	1-P	360	455	432	9	3.2	1.6	0.33	2.02	3.01	1.97	190
340	_	480	_	350	_	350	_	5	6	4 700 11 7	'00	37268A	1-P	371	458	443	9.5	4	6	0.33	2.03	3.02	1.98	198
	_	520		278	_	278	_	5	6	4 040 8 1	10	47T685228	1	384	498	473	9	4	6	0.40		2.50		212
	-	520	_	323	_	323	_	5	6	4 380 8 9	930	47T685232	1	381	498	473	10	4	5	0.40	1.68	2.50	1.64	242
343.052	13.5060	457.098 1	7.9960	254.000	10.0000	254.000	0 10.0000	3.2	1.6	2 850 6 9	950	47T694625	1	363	442	425	6	3.2	1.6	0.47	1.43	2.12	1.40	111
	13.5060	457.098 1	7.9960	254.000	10.0000	254.000	0 10.0000	3.2	1.6	2 850 6 9	950	47T694625/DP3	2	363	442	425	6	3.2	1.6	0.47	1.43	2.12	1.40	111
346.075	13.6250	488.950 1	9.2500	358.775	14.1250	358.77	5 14.1250	3.2	3.2	4 620 11 6	600	HM262749D/10/10D	1	378	474	449	8	3.2	3.2	0.33	2.02	3.00	1.97	214
347.663	13.6875	469.900 1	8.5000	292.100	11.5000	292.100	0 11.5000	3.2	3.2	3 600 9 0	040	M262449D/10/10D	1	374	455	436	10	3.2	3.2	0.33	2.03	3.02	1.98	145
355	_	490	_	316	_	316	_	2	2.5	4 160 10 0	000	47T714932	1	385	480	455	12.5	2	2	0.33	2.03	3.02	1.98	180
355.600	14.0000	482.600 ¹	9.0000	269.875	10.6250	265.113	3 10.4375	3.2	1.6	3 390 7 8	860	47T714827-1	1	386	468	450	8	3.2	1.6	0.26	2.55	3.80	2.50	139
	14.0000	482.600 1						1		3 060 7 0		LM763449D/410/410D	1	381	468	450	3.5	3.2	1.6	0.47		2.14		136
	14.0000	488.950 1	9.2500	317.500	12.5000	317.500	0 12.5000	3.2	1.6	4 370 10 9	900	M263349D/310/310D	1-P	383	474	452	7.5	3.2	1.6	0.33	2.03	3.02	1.98	182

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TQO type *d* **360 ~ 380 mm**

		Bou	ındary	/ dimer	nsions	5				Basic load ratings				Mount			ions		Constant	Axial	load fa	ctors	(Refer.)
	ı			1 _		1		1		(kN)	Bearing No. 1)	Design	,	r	(mm)								Mass
d mm	1/25.4	D	1/25.4	mm T	1/25.4	W	1/25.4		r_1	$C_{\rm r}$ $C_{0\rm r}$			$d_{ m a}$ max.	max.	'a min.	S	r _a	r _b	e	Y_2	Y_3	Y_0	(kg)
	1/23.4	mm	1/23.4		1/23.4		1/23.4		111111.								max.	IIIdX.					
360	_	480	_	375	_	375	_	3	4	3 930 9 910	47T724838A	1	383	466	446	3.5	2.5	3	0.40		2.50		177
	_	480	_	375	_	375	_	3	1	4 190 11 100	47T724838C	1	381	466	448	5	2.5	1	0.33	2.03		1.98	183
	_	508	_	370	_	370	_	5	6	4 840 11 500	47T725137	1	392	486	471	7	4	6	0.33	2.03	3.02	1.98	232
	_	520	_	370	_	370	_	5	6	4 920 11 400	47T725237	1	395	498	476	8.5	4	5	0.33	2.03	3.02	1.98	259
	_	520	_	410	_	410	_	5	6	5 970 14 300	47T725241	1-P	395	498	479	8.5	4	5	0.33	2.03	3.02	1.98	292
	_	540	_	280	_	280	_	5	6	3 790 7 820	47272	1	406	518	490	10	4	5	0.32	2.12	3.15	2.07	221
	_	540	_	280	_	280	_	5	6	3 760 8 000	47T725428	1	402	518	489	10.5	4	5	0.55	1.24	1.84	1.21	224
	_	540	_	460	_	460	_	4	5	6 440 15 800	47T7254	1	408	522	492	9.5	3	4	0.27		3.67		373
368.300						382.588		l		5 530 13 600	47T745238B	1-P	404	502	483	9	6.4	3.2	0.29		3.45		269
	14.5000					382.588		1		5 620 14 100	47T745238D	1	403	508	483	7.5	3.2	1.6	0.33	2.03	3.02		265
	14.5000	523.875	20.6250	382.588	15.0625	382.588	15.0625	6.4	3.2	5 920 14 500	47T745238J	1-P	401	502	485	10.5	6.4	3.2	0.33	2.03	3.02	1.98	268
	14.5000	523.875	20.6250	382.588	15.0625	382.588	15.0625	6.4	3.2	5 460 13 600	HM265049D/010/010D	1-P	403	502	483	7	6.4	3.2	0.33	2.03	3.02	1.98	269
	14.5000	563.000	22.1654	382.588	15.0625	382.588	15.0625	6.4	3.2	6 300 13 600	47T745638	1-P	417	541	516	10.5	6.4	3.2	0.29	2.32	3.45	2.26	344
370	_	516	_	346	_	346	_	4	1.5	4 880 11 700	47T745235	1-P	398	498	479	9	3	1.5	0.40	1.68	2.50	1.64	216
								·															
374.650	14.7500	501.650	19.7500	260.350	10.2500	260.350	10.2500	3.2	1.6	2 930 7 750	47T745026	1	399	486	459	7	3.2	1.6	0.43	1.56	2.32	1.52	145
380	_	520	_	360	_	360	_	5	6	4 610 12 200	47T765236	1	417	498	484	11	4	5	0.32	2.12	3.15	2.07	225
	_	520	_	400	_	400	_	4	2.5	5 020 13 000	47T765240	1	404	502	482	9.5	3	2	0.40		2.50		248
	-	536	_	390	_	390	_	5	6	5 760 12 900	37276	1	415	514	496	7.5	4	5	0.40	1.68	2.50	1.64	268
	_	560	_	282	_	282	_	5	6	3 670 7 580	47276	1	429	538	511	9	4	5	0.27	2.47	3.67	2.41	232
	_	560	_	285	_	285	_	4	5	4 600 10 000	47T765629	1-P	428	542	513	11	3	4	0.27	2.47		2.41	246
	_	560	_	285	_	285	_	4	5	4 420 9 240	47T765629A	1	427	542	515	11	3	5	0.27	2.47		2.41	244
		560	_	325	_	325	_	5	6	5 330 11 900	47T765633A	1-P	427	538	514	11	4	5	0.27	2.47	3.67	2.41	278
		560		360		390		4	1.5	5 310 11 800	471765635A 471765639	1	422	542	514	9	3	1.5	0.27	1.95		1.91	307
		560		370		370		5	6	5 910 13 600	47T765637	1-P	423	538	515	10	4	5	0.33	2.03		1.98	312
	_	580	_	500	_	500	_	5 5	6	7 410 17 500 6 130 12 700	47T765850 47376	1	427	558	529 552	10.5	4	5 5	0.33	2.03		1.98	478 476
		620 620	_	400 418.5	_	400 418.5	_	5	6 6	7 080 14 000	47T766242	1-P	445 435	598 598	561	6.5 10	4	5 5	0.32 0.46	2.12	2.19	2.07	476
FN1 - 1 - 2 - 1 > 1		320		110.0		710.0		J	U	7 000 14 000	471700242	' '	700	000	001	10	7	J	0.70	1.77	2.10		700

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 384.175 ~ (431.800) mm

	Boundar	y dimen	sions	5				Basic load ratings (kN)				Mount	ing dir		ons		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	D mm 1/25.4	mm T		W mm		r min.		$C_{\rm r}$ $C_{0\rm r}$	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	` '	S	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
384.175 15.1250								6 530 16 900 6 220 16 200	HM266449D/410/410D 47T775547	1-P 1	418 418	524 524	502 503	10.5 7.5	6.4 6.4	3.2 3.2	0.33 0.33		3.02 3.02		315 360
390 — —	510 — 510 —	350 350	_	350 350	_ _	3	1.5 1	4 300 11 700 4 150 11 200	47T785135A 47T785135B	1 1	413 415	496 496	478 479	10.5 5.5		1.5 1	0.33 0.29		3.02 3.45		186 183
395 —	545 —	288.7	_	270.3	_	7.5	5	3 330 7 680	47T795529	1	433	509	494	3	6	4	0.43	1.57	2.34	1.53	190
400 — — — —	560 — 564 — 590 — 600 —	380 412 304 308	_ _ _	380 412 304 308	_ _ _ _	4 4 4 5	1.5 2.5 1.5	5 970 15 200 6 470 16 500 4 760 10 200 4 810 9 930	47T805638A 47T805641 47T805930A 47280	1-P 1-P 1-P	435 432 449 452	542 546 572 578	519 522 540 548	10 9 7.5 9	3 3 3	1.5 2.5 1.5	0.33 0.40 0.33 0.33	1.68 2.03	3.02 2.50 3.02 3.02	1.64 1.98	296 329 289 310
406.400 16.0000 16.0000 16.0000	546.100 21.5000 562.000 22.1260	330.000 381.000	12.9921 15.0000	330.000 381.000	12.9921 15.0000	6.4 6.4	3.2 3.2	3 960 9 540 4 800 12 400 5 990 15 000 5 990 15 000	47T815529 47T815533B 47T815638 M267949D/910/910XD	1 1-P 1	435 434 439 438.3	524 524 540 544	509 509 524 524	9.5 8.5 9.5 9.5	6.4 6.4 6.4 6.4	1.6 3.2 3.2 3.2	0.47 0.40 0.33 0.33	1.68 2.03	2.12 2.50 3.02 3.02	1.64 1.98	184 214 284 291
409.575 16.1250	546.100 21.5000	334.963	13.1875	334.963	13.1875	6.4	1.6	4 570 11 500	M667947D/911/911D	1	432	524	509	8.5	6.4	1.6	0.42	1.62	2.42	1.59	213
415.925 16.3750	590.550 23.2500	434.975	17.1250	434.975	17.1250	6.4	3.2	7 060 18 800	47T835943A	1-P	455	568	543	10	6.4	3.2	0.33	2.03	3.02	1.98	391
420 — — — —	560 — 560 — 592 — 620 — 650 —	370 437 432 312 460	_ _ _ _	370 437 432 312 460	_ _ _ _	5 4 5 5	6 1.5 6 6	4 950 13 600 5 620 14 900 6 030 15 700 4 810 10 400 8 560 18 300	47T845637 47T845644 37284 47284 47T846546	1 1 1 1	459 450 460 473.5 468	538 542 570 598 622	527 526 544 567 595	12 4 7.5 10 8.5	4 3 4 4 5	5 1.5 5 5	0.32 0.26 0.33 0.33 0.40	2.55 2.03 2.03	3.15 3.80 3.02 3.02 2.50	2.50 1.98 1.98	252 283 374 328 558
430 —	570 — 570 —	336 380		336 380		4	1.5	4 790 12 500 5 640 15 900	47T865734C 47T865738	1	460 463	552 552	536 534	10 10.5	3	1.5 1.5	0.36 0.26		2.79 3.80		232 269
431.800 17.0000								5 070 13 500 4 290 11 300	47T865734 LM769349D/310/310D	1-P 1	460 463	549 549	534 534	10 7	6.4 6.4	1.6 1.6	0.36 0.48		2.79 2.10		232 231

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d (431.800) ~ 479.425 mm

		Boundar	y dimer	nsions	5				Basic load ratings				Mount	ing dii (mm		ons		Constant	Axial	load fa	ctors	(Refer.)
d	Ì	D	7	-	V	17	r	r_1	, ,	Bearing No. 1)	Design	$d_{\rm a}$	I.) _a	S	$r_{\rm a}$	r_{b}					Mass
mm	1/25.4	mm 1/25.4	_	1/25.4		1/25.4			$C_{\rm r}$ $C_{0{\rm r}}$			max.	max.	min.		max.		e	Y_2	Y_3	Y_0	(kg)
431.800	17.0000	635.000 25.0000	355.600	14.0000	355.600	14.0000	6.4	6.4	6 310 13 700	EE931170D/250/251XD	1-P	481	612	586	8	6.4	6.4	0.32	2.10	3.13	2.06	385
432.003	17.0080	609.524 23.9970	317.500	12.5000	317.500	12.5000	6.4	3.6	5 210 12 100	EE736173D/238/239D	1-P	474	586	562	9	6.4	3.6	0.35	1.94	2.89	1.90	291
440	-	580 —	420	_	420	_	4	1.5	5 730 15 400	47T885842	1-P	467	562	544	1.5	3	1.5	0.26		3.80		288
		620 — 620 —	454 454	_	454 454		6	6 5	7 110 17 500 7 610 19 800	37288 47T886246	1 1-P	482 474	592 602	576 573	9 10.5	5 3	5 5	0.40 0.40		2.50 2.50		417 436
		635 —	430	_	430	_	5	6	7 560 18 000	47T886443	1-P	485	613	587	9.5	4	5	0.33	2.03		1.98	450
	_	635 —	470		470		5	2.5	8 510 20 900	47T886447	1-P	483	613	588	10.5	4	2	0.33	2.03		1.98	500
	_	650 —	326	_	326	_	6	6	5 080 11 000	47288	1-P	500	622	595	11	5	5	0.28	2.43	3.61	2.37	361
	_	650 —	334	_	334	_	6	6	5 490 12 200	47288A	1	500	622	595	9.5	5	5	0.28	2.43	3.61	2.37	375
	_	660 —	450	_	450	_	5	2	8 690 19 000	47T886645	1	489	638	610	9.5	4	2	0.32	2.12	3.15	2.07	532
447.675	17.6250	635.000 25.0000	463.550	18.2500	463.550	18.2500	6.4	3.2	7 860 21 000	M270749D/710/710D	1-P	491	612	584	8	6.4	3.2	0.33	2.03	3.02	1.98	472
449.949	17.7145	594.949 23.4232	368.000	14.4882	368.000	14.4882	5	2.5	5 980 16 200	M270449D/10/10D	1-P	478	573	557	9	5	2	0.33	2.03	3.02	1.98	278
450	_	580 —	450	_	450	_	6	1.5	5 130 14 600	47T905845	1	475	552	537	2	5	1.5	0.26	2.55	3.80	2.50	286
457.200	18.0000	596.900 23.5000	279.400	11.0000	276.225	10.8750	3.2	1.6	4 260 11 400	47T916028A	1-P	485	581	560	8.5	3.2	1.6	0.47	1.43	2.12	1.40	307
	18.0000	660.400 26.0000	323.847	12.7499	323.850	12.7500	6.4	3.2	5 700 12 700	EE737179D/260/261D	1-P	501	637	603	9	6.4	3.2	0.37	1.80	2.69	1.76	365
460	_	586 —	280	_	280	_	3	1	3 710 9 810	47T925928	1	483	572	555	10.5	2.5	1	0.44	1.52	2.26	1.49	177
	-	615 —	360	_	360	_	3	1	5 000 13 300	47T926236	1	490	601	572	8	2.5	1	0.47	1.43	2.12	1.40	292
	-	625 —	421	_	421	_	4	1.5	6 920 18 800	47T926342	1-P	495	607	582	8	3	1.5	0.33	2.03	3.02	1.98	386
	_	650 —	474	_	474	_	6	6	7 680 19 400	37292	1	500	622	598	8	5	5	0.33	2.03	3.02	1.98	495
	_	680 —	375	_	375	_	5	2	6 500 15 200	47T926838	1	515	658	618	10.5	4	2	0.36		2.79		475
	_	730 —	440	_	440	_	6	3	8 650 17 700	47T927344	1-P	519	702	662	13	5	2.5	0.47	1.43	2.12	1.40	710
475.000	18.7008	600.000 23.6220	368.000	14.4882	368.000	14.4882	4.8	1.6	4 970 15 100	47T956037A	1	501	581	566	10.5	4.8	1.6	0.26	2.55	3.80	2.50	246
479.425	18.8750	679.450 26.7500	495.300	19.5000	495.300	19.5000	6.4	3.2	9 660 25 400	47T966850	1-P	523	656	641	12.5	6.4	3.2	0.33	2.03	3.02	1.98	591
	18.8750	679.450 26.7500	495.300	19.5000	495.300	19.5000	6.4	3.2	8 480 22 200	M272749D/710/710D	1-P	524	656	627	7.5	6.4	3.2	0.33	2.03	3.02	1.98	575

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 480 ~ (508.000) mm

	Boundary dimensions	Basic load ratings				Mount	ing di		ions		Constant	Axial	load fac	tors (Re	Refer.)
d mm 1/25.4	D T W rmm 1/25.4 mm 1/25.4 mm 1/25.4 mir	$C_r = C_{0r}$	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	(mm) a min.	S	$r_{ m a}$ max.	$r_{ m b}$ max.	e	<i>Y</i> ₂	Y_3	M	lass (kg)
480 — —	678 — 494 — 494 — 6 700 — 390 — 390 — 5		37296 47T967039	1-P 1-P	520 536	650 678	629 647	9.5 11	5 4	5 6	0.33 0.33		3.02 3.02		563 508
480.000 18.8976	700.000 27.5591 420.000 16.5354 420.000 16.5354 6.4	5.4 3.2 8 060 18 800	47T967042C	1	531	677	644	10.5	6.4	3.2	0.35	1.95	2.90	1.91 5	540
482.600 19.0000 19.0000 19.0000 19.0000	615.950 24.2500 330.200 13.0000 330.200 13.0000 6.6. 615.950 24.2500 330.200 13.0000 330.200 13.0000 6.6. 615.950 24.2500 330.200 13.0000 330.200 13.0000 6.6. 615.950 24.2500 330.200 13.0000 330.200 13.0000 6.6.	6.4 6.4 4 830 13 400 6.4 4.8 5 270 15 000	47T976233 4TR19A 4TR19B 4TR19D	2-P 1-P 1-P	512 512 509 508	593 593 593	573 573 573 573	6 6.5 10.5	6.4 6.4 6.4	6.4 6.4 4.8	0.44 0.44 0.33 0.36	1.54	3.02	1.51 2- 1.98 2-	240 240 243 240
19.0000 19.0000 19.0000	615.950 24.2500 420.000 16.5354 420.000 16.5354 4 647.700 25.5000 417.512 16.4375 417.512 16.4375 6.647.700 25.5000 417.512 16.4375 417.512 16.4375 6.6	2.5 5 810 16 700 6.4 3.2 7 390 20 300	47T976242 47T976542A M272647D/610/610D	1 2-P 1-P	508 514 514	597 624 624	577 603 604	6 9.5 9.5	4 6.4 6.4	2.5 3.2 3.2	0.26 0.33 0.33	2.55 2.03 2.03	3.80 3.02 3.02	2.50 2 1.98 3	296 397 395
488.950 19.2500 19.2500	622.300 24.5000 365.125 14.3750 365.125 14.3750 3.60.400 26.0000 361.950 14.2500 365.125 14.3750 6.400 365.125 14.3750 365.125		47T986236 EE640193D/260/261D	1 1-P	516 527	605 637	585 616	7.5 11	3.6 6.4	3.6 7.9	0.33 0.31		3.02 3.27		262 357
489.026 19.2530 19.2530	634.873 24.9950 320.675 12.6250 320.675 12.6250 3.0 634.873 24.9950 320.675 12.6250 320.675 12.6250 3.0		EE243193D/250/251D LM772749D/710/710D	1	526 513	618 618	595 594	9.5 9.5	3.2 3.2	3.2 3.2	0.34 0.47	1.97 1.43	2.93 2.12		263 261
490 — —	625 — 385 — 385 — 4 625 — 385 — 4		47T986339A 47T986339B	1	520 517	607 607	587 587	9.5 4.5		1.5 1.5	0.28 0.32		3.61 3.15		290 285
500 — — —	640 — 450 — 450 — 4 670 — 515 — 515 — 5 705 — 515 — 515 — 6	6 9 110 25 700	4TR500M 4TR500B 372/500	2-P 1-P 1-P	527 530 544	622 648 677	602 626 651	10.5 11 8.5	3 4 5	1.5 5 6	0.24 0.32 0.37		4.23 3.15 2.69	2.07 5	352 510 641
_ _ _	710 — 430 — 425 — 5 720 — 400 — 400 — 6 760 — 420 — 420 — 2	6 7 990 18 700	4TR500T 4TR500J 4TR500Q	1 1-P 1-P	547 552 566	688 692 750	658 663 696	12 12.5 11.5	4 5 2	3 5 6	0.37 0.33 0.39	1.80 2.03 1.74	3.02	1.98 5	528 547 698
501.650 19.7500 19.7500	673.100 26.5000 387.350 15.2500 400.050 15.7500 6.2711.200 28.0000 520.700 20.5000 520.700 20.5000 6.4	6.4 3.2 6 670 17 300 6.4 3.2 9 820 26 400	EE641198D/265/266D M274149D/110/110D	1-P 1-P	538 549	650 687	628 656	9.5 10.5	6.4 6.4	3.2 3.2	0.31 0.33		3.20 3.02		386 673
508.000 20.0000	716.000 28.1890 528.000 20.7874 528.000 20.7874 8	3.2 10 100 26 300	4TR508	1-P	549	689	664	9.5	8	3.2	0.35	1.95	2.90	1.91 6	679

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d (508.000) ~ 558.750 mm

	Boundary	y dimensio	15				Basic load ratings				Mount	ing dir		ons		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25		W 1/25.4	r min.	-	$C_{\rm r}$ $C_{0{\rm r}}$	Bearing No. 1)	Design	d_{a} max.	D max.	,	S	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
508.000 20.0000	762.000 30.0000	463.550 18.25	463.55	50 18.2500	6.4	6.4	9 060 19 900	EE531201D/300/301XD	1-P	564	738	696	11.5	6.4	6.4	0.38	1.78	2.65	1.74	736
509.948 20.0767	654.924 25.7844	379.000 14.92	13 377.00	0 14.8425	6.4	1.6	5 780 16 700	4TR510A	1-P	534	632	612	7	6.4	1.6	0.41	1.64	2.44	1.60	315
510 — —	655 — 730 —	379 — 520 —	0	_ _	5 5	2.5 6	6 540 18 600 10 500 27 300	4TR510L 4TR510Q	1-P 1-P	540 559	633 708	613 674	9 13	4	2.5 6	0.26 0.33		3.80 3.02		320 728
514.350 20.2500 20.2500	673.100 26.5000 673.100 26.5000							4TR514A LM274449D/410/410D	1 1-P	545 547	650 650	630 630	11 9	6.4 6.4	3.2 3.2	0.33 0.33		3.02 3.02		392 399
519.113 20.4375	736.600 29.0000	536.575 21.12	536.57	75 21.1250	6.4	3.2	10 600 27 200	M275349D/310/310D	1-P	562	712	681	10.5	6.4	3.2	0.33	2.03	3.02	1.98	743
520 —	735 —	535 —	535	_	5	2.5	10 600 27 200	4TR520	1-P	564	713	681	11.5	4	2.5	0.33	2.03	3.02	1.98	726
520.700 20.5000	711.200 28.0000	400.050 15.75	400.05	50 15.7500	6.4	3.2	7 000 17 500	LM275349D/10/10D	1-P	562	687	663	7	6.4	3.2	0.33	2.03	3.02	1.98	438
530 — — — —	730 — 730 — 750 — 750 —	540 — 540 — 480 — 480 —	535 480	_ _ _ _	5 4 5 6 5	SP SP 6	10 200 27 900 9 460 25 000 9 930 24 700 9 630 24 100	4TR530-1 4TR530-2 4TR530B 4TR530C	1-P 1 1-P	570 567 584 579	708 712 722 728	677 677 695 695	9 6 11.5 9.5	4 3 5 4	3 3 5	0.34 0.34 0.32 0.32	1.96 2.12	2.92 2.92 3.15 3.15	1.92 2.07	686 669 680 673
535 — —	750 — 760 —	560 — 560 —		_ _	5 6		11 100 29 400 11 300 28 800	4TR535 372/535	1-P 1-P	579 587	728 732	695 703	10.5 10	4 5	5 5	0.33 0.33		3.01 3.01		761 815
536.575 21.1250	761.873 29.9950	558.800 22.00	558.80	00 22.0000	6.4	3.2	11 300 28 800	M276449D/410/410D	1-P	578	738	700	9	6.4	3.2	0.33	2.03	3.02	1.98	820
540 — —	690 — 760 —	400 — 560 —	400 560	_ _	5 5	2.5 6	6 710 19 800 11 400 30 600	4TR540 4TR540A	1-P 1-P	566 587	668 738	648 704	10.5 10.5	4	2	0.40 0.33		2.50 3.02		369 808
550 —	685 —	350 —	350	_	4	1.5	5 280 16 100	4TR550C	1	579	667	647	8	3	1.5	0.29	2.32	3.45	2.26	287
555.625 21.8750	698.500 27.5000	349.250 13.75	349.25	50 13.7500	6.4	3.2	5 710 17 000	4TR555	1-P	586	675	655	9.5	6.4	3.2	0.33	2.03	3.02	1.98	312
558.750 21.9980	965.300 38.0039	495.300 19.50	495.30	0 19.5000	7.5	7.5	12 500 25 700	4TR559B	1-P	685	934	855	11.5	7.5	7.5	0.33	2.03	3.02	1.98	1 570
ENT. L 3 15 M/L-11.					, ,		100 : 1	rios have plus telerances. Pefer to	2) SD in/				,							

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 558.800 ~ 609.600 mm

	Boundar	y dime	nsion	s				Basic load ratings				Mount	_		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	mm	r 1/25.4		V 1/25.4	r min.		(kN) $C_{\rm r}$ $C_{0\rm r}$	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	(mm) _a min.	S	$r_{ m a}$ max.	$r_{ m b}$ max.	e	<i>Y</i> ₂	<i>Y</i> ₃	Y_0	Mass (kg)
558.800 22.0000 22.0000 22.0000 22.0000	736.600 29.0000 736.600 29.0000 736.600 29.0000 736.600 29.0000	322.263 409.575	3 12.6875 3 16.1250	322.263 409.575	3 12.6875 5 16.1250	6.4 6.4	3.2	7 660 21 500 5 920 16 100 6 920 18 800 8 070 22 200	4TR559N EE843221D/290/291D 4TR559J 4TR559	1-P 1-P 1	594 607 598 593	712 712 712 712	689 692 691 690	10.5 9.5 10	6.4 6.4 6.4	3.2 3.2 3.2	0.35 0.34 0.35	1.97 1.95	2.90 2.93 2.90 2.90	1.93 1.91	477 371 463 497
22.0000 22.0000	736.600 29.0000 736.600 29.0000	450.000	17.7165	450.000	17.7165	4	3	8 220 23 100 8 990 25 500	4TR559A 4TR559A LM277149DA/110/110D	1-P 1-P	594 595	717 712	692	9	4 6.4	3.2	0.35 0.35 0.33	1.95		1.91	525 521
560 — —	805 — 920 —	590 620	_	590 620	_	6 7.5		13 000 33 700 15 200 32 800	372/560 4TR560	1-P 1-P	614 643	777 884	744 823	10.5 12	5 6	5 6	0.33 0.40	2.03 1.68	3.02 2.50		1 000 1 650
570 — —	780 — 810 —	515 590	_	515 590	_	5 5		10 100 27 400 13 000 35 000	4TR570A 4TR570C	1-P 1-P	618 625	758 788	726 751	10 14	4	2	0.42 0.33		2.39 3.02		737 1 000
571.500 22.5000 22.5000	812.800 32.0000 812.800 32.0000						-		4TR572 M278749D/710/710D	2-P 1-P	625 625	789 789	751 751	13 14	6.4 6.4	3.2 3.2	0.33 0.33		3.02 3.02		1 020 1 020
580 —	770 —	510	_	510	_	4	1.5	10 300 29 600	4TR580	1-P	618	752	723	12	3	1.5	0.33	2.03	3.02	1.98	671
584.200 23.0000 23.0000	730.250 28.7500 762.000 30.0000						-	5 580 17 300 7 330 20 800	4TR584 LM778549D/510/510D	1-P 1-P	613 617	712 738	692 715	6.5 8.5	3.2 6.4	1.6 3.2	0.43 0.47		2.34 2.12		326 468
585.788 23.0625	771.525 30.3750	479.425	18.8750	479.425	18.8750	6.4	3.2	9 140 25 600	LM278849D/810/810D	1-P	622	747	725	11	6.4	3.2	0.33	2.03	3.02	1.98	599
595.312 23.4375	844.550 33.2500	615.950	24.2500	615.950	24.2500	6.4	3.2	13 600 36 900	M280049D/010/010D	1-P	651	820	780	8	6.4	3.2	0.33	2.03	3.02	1.98	1 130
600 –	855 —	620	_	620	_	5	6	14 000 37 900	4TR600B	1-P	658	833	792	13	4	5	0.33	2.03	3.02	1.98	1 160
603.250 23.7500	857.250 33.7500	622.300	24.5000	622.300	24.5000	6.4	3.2	14 500 38 500	M280249D/210/210XD	1-P	652	833	788	12	6.4	3.2	0.33	2.03	3.02	1.98	1 170
609.600 24.0000 24.0000 24.0000 24.0000	787.400 31.0000 787.400 31.0000 813.562 32.0300 817.400 32.1811	361.950 479.425) 14.2500 j 18.8750	361.950 479.425) 14.2500 5 18.8750	6.4 6.4	3.2 3.2	6 790 19 900 9 350 27 100	4TR610A EE649241D/310/311D 4TR609 4TR610	2-P 1-P 1-P	650 650 657 660	763 763 789 793		13 13 9 7	6.4 6.4 6.4	3.2 3.2 3.2 3.2	0.37 0.37 0.33	1.82 2.03	2.70 2.70 3.02 3.02	1.78 1.98	455 459 710 531

[[]Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

TQO type *d* 620 ~ 680 mm

	Boundar	y dimer	sions	s				Basic load ratings				Mount	ing di		ions		Constant	Axial	load fa	ctors	(Refer.)
d mm 1/25.4	D mm 1/25.4	mm T		mm	1/25.4	r min.		$C_{\rm r}$ $C_{0\rm r}$	Bearing No. 1)	Design	$d_{ m a}$ max.	E max.) _a	S	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
620 —	800 —	365	_	365	_	5	2.5	7 590 21 000	4TR620	1-P	661	778	756	14	4	2	0.32	2.12	3.15	2.07	474
630 —	920 —	457.15	_	457.15	_	6	3	11 500 26 200	4TR630B	1-P	698	892	846	11.5	5	2.5	0.33	2.03	3.02	1.98	1 050
635 —	900 —	660	_	660	_	6	6	15 000 39 700	4TR635	1-P	690	872	832	7	5	5	0.33	2.03	3.02	1.98	1 350
635.000 25.0000	901.700 35.5000	654.050	25.7500	654.050	25.7500	6.4	3.2	15 000 39 700	M281049D/010/010XD	1-P	691	877	833	7	6.4	3.2	0.33	2.03	3.02	1.98	1 360
646.112 25.4375	857.250 33.7500	542.925	21.3750	542.925	21.3750	6.4	3.2	11 400 34 100	LM281049D/10/10D	1-P	690	833	801	13	6.4	3.2	0.33	2.03	3.02	1.98	881
649.924 25.5876	914.898 36.0196	674.000	26.5354	672.000	26.4567	6	3.6	15 900 43 800	M281349D/10/10D	1-P	703	891	844	12	6	3.6	0.33	2.03	3.02	1.98	1 430
650 —	1 030 —	558.5	_	558.5	_	12	7.5	15 900 36 200	47T130103	1-P	749	986	925	10.5	10	6	0.32	2.12	3.15	2.07	1 850
657.225 25.8750	933.450 36.7500	676.275	26.6250	676.275	26.6250	6.4	3.3	17 300 46 000	M281649D/610/610D	1-P	713	909	864	9.5	6.4	3.3	0.33	2.03	3.02	1.98	1 530
659.924 25.9813	854.924 33.6584	318.480	12.5386	318.480	12.5386	9.5	4.8	6 240 16 000	EE749259D/334/335D	1-P	700	820	800	8	9.5	4.8	0.35	1.92	2.86	1.88	462
660 —	855 —	320	_	320	_	4	5	6 320 18 000	4TR660D	1-P	705	837	799	11.5	3	4	0.47	1.43	2.12	1.40	481
660.400 26.0000 26.0000								6 860 21 100 6 860 21 100	4TR660C L281149D/110/110D	2-P 1-P	691 691	789 789	775 775	8	6.4 6.4	3.2 3.2	0.33 0.33		3.02 3.02		402 405
670 —	960 —	700	_	700	_	7.5	5	17 800 48 100	4TR670	1-P	732	924	884	13	6	4	0.33	2.03	3.02	1.98	1 710
676 —	910 —	620	_	620	_	5	2	14 600 43 300	4TR676	1-P	724	888	849	13.5	4	2	0.33	2.03	3.02	1.98	1 180
679.450 26.7500	901.700 35.5000	552.450	21.7500	552.450	21.7500	6.4	3.2	12 800 36 100	LM281849D/810/810D	1-P	724	877	847	11.5	6.4	3.2	0.33	2.03	3.02	1.98	973
680 —	870 —	460	_	460	_	4	2.5	9 060 27 400	47T13608746	1-P	710	852	820	9	3	2.5	0.50	1.34	2.00	1.32	677
680.000 26.7717	970.000 38.1890	740.000	29.1339	740.000	29.1339	6.4	3.2	18 800 52 800	4TR680B	1-P	743	946	896	9	6.4	3.2	0.33	2.03	3.02	1.98	1 790
680 —	1 020 —	555	_	555	_	6	3	15 300 36 700	4TR680C	1-P	771	992	934	14.5	5	2.5	0.32	2.12	3.15	2.07	1 650

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

d 685.800 ~ 825.500 mm

Boundary dimensions	Basic load ratings (kN)				Moun	ting di		ions		Constant	Axial	load fa	ctors	(Refer.)
d D T W r r	2) Cr. Cor.	Bearing No. 1)	Design	$d_{\rm a}$		O _a	S		$r_{\rm b}$	e	Y_2	Y_3	Y_0	Mass (kg)
mm 1/25.4 mm 1/25.4 mm 1/25.4 mm 1/25.4 mm 1/25.4 min. mi 685.800 27.0000 876.300 34.5000 355.600 14.0000 352.425 13.8750 6.4 3.		4TR686A	1-P	734	max. 852	min. 824	min.	6.4	3.2	0.42	1.62	2.42	1.59	554
27.0000 876.300 34.5000 355.600 14.0000 352.425 13.8750 6.4 3.	7 390 23 100	4TR686D	2-P	734	852	823	11	6.4	3.2	0.42	1.62	2.42	1.59	555
708.025 27.8750 930.275 36.8250 565.150 22.2500 565.150 22.2500 6.4 3.	13 800 40 300	4TR708B	1-P	753	906	878	11	6.4	3.2	0.33	2.03	3.02	1.98	1 050
710.000 27.9528 900.000 35.4331 410.000 16.1417 410.000 16.1417 6 3	9 190 27 300	4TR710	1-P	750	877	853	11.5	6	2.5	0.35	1.95	2.90	1.91	636
711.200 28.0000 914.400 36.0000 317.500 12.5000 317.500 12.5000 6.4 6. 28.0000 914.400 36.0000 355.600 14.0000 355.600 14.0000 6.4 3.		4TR711 47T1429136	1-P 1-P	774 753	890 890	868 860	11.5 10.5		6.4 3.2	0.38 0.38		2.65 2.65		538 598
			- ' '							0.00				
714.375 28.1250 1 016.000 40.0000 704.850 27.7500 704.850 27.7500 6.4 3.	2 19 500 52 200	M383240D/210/210D	1-P	776	992	940	14.5	6.4	3.2	0.35	1.92	2.86	1.88	1 900
717.550 28.2500 946.150 37.2500 565.150 22.2500 565.150 22.2500 6.4 3.	2 13 600 39 500	LM282847D/810/810D	1-P	764	922	890	12.5	6.4	3.2	0.33	2.03	3.02	1.98	1 090
730 — 1 035 — 755 — 755 — 5 2.	5 19 600 54 300	4TR730	1-P	795	1 013	955	11	4	2	0.33	2.03	3.02	1.98	2 080
730.250 28.7500 1 035.050 40.7500 755.650 29.7500 755.650 29.7500 6.4 3.	19 600 54 300	M283449D/410/410D	1-P	795	1 011	955	11	6.4	3.2	0.33	2.03	3.02	1.98	2 080
749.300 29.5000 990.600 39.0000 605.000 23.8189 605.000 23.8189 6.4 3.	2 15 700 47 700	LM283649D/610/610D	1-P	801	966	929	13	6.4	3.2	0.32	2.12	3.15	2.07	1 320
750.000 29.5276 950.000 37.4016 410.000 16.1417 410.000 16.1417 4 2.	9 700 29 000	4TR750	1-P	791	929	900	11.5	4	2	0.40	1.68	2.50	1.68	705
750 - 1130 - 690 - 690 - 7.5 7.	19 500 45 800	4TR750A	1-P	821	1 094	1 023	13	6	6	0.46	1.47	2.19	1.44	2 500
760 - 1 080 - 630 - 630 - 6 3	17 800 46 300	4TR760	1-P	829	1 052	999	17.5	5	2.5	0.40	1.68	2.50	1.64	1 900
762.000 30.0000 1 066.800 42.0000 736.600 29.0000 723.900 28.5000 12.7 SP 30.0000 1 1079.500 42.5000 787.400 31.0000 787.400 31.0000 12.7 4.	19 900 55 900	4TR762 M284249D/210/210XD	1-P 1-P	829	1 030 1 043	986 998	6 11	12.7 12.7	6.4 4.8	0.33 0.33		3.02 3.02		2 070 2 360
30.0000 1 0/9.500 42.5000 /6/.400 31.0000 /6/.400 31.0000 12.7 4.	5 22 200 62 700	M284249D/210/210XD	1-1	831	1 043	998	11	12.7	4.0	0.33	2.03	3.02	1.98	2 300
785.000 30.9055 1 040.000 40.9449 560.000 22.0472 560.000 22.0472 7.5 5	15 300 44 400	4TR785B	1-P	846	1 009	978	13	7.5	5	0.26	2.55	3.80	2.50	1 340
800 — 1120 — 820 — 820 — 7.5 6	24 100 70 200	4TR800	1-P	869	1 084	1 038	13.5	6	5	0.33	2.03	3.02	1.98	2 590
825.500 32.5000 1 168.400 46.0000 844.550 33.2500 844.550 33.2500 12.7 4.	26 000 72 300	M285848D/10/10D	1-P	897	1 132	1 083	15.5	12.7	4.8	0.33	2.03	3.02	1.98	2 980

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

d 840 ~ 1 020 mm

		Bounda	ary	dimen	sions						Basic loa	nd ratings N)			D		Moun	ting dii (mm		ons		Constant	Axial	load fa	actors	(Refer.)
d mm	1/25.4	<i>D</i> mm 1/25	5.4	T mm	1/25.4	mm	W 1/2:	5.4 m	<i>r i</i> nin. m		$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No. 1)		Design	d_{a} max.	max.	O _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
840	_	1 170 —	- 8	840	_	840	_	- 7	7.5	7.5	25 600	74 600	4TR840		1-P	911	1 134	1 089	16	6	6	0.33	2.03	3.02	1.98	2 880
863.600 ³	4.0000	1 130.300 44.50 1 219.200 48.00								- 1			LM286249D/210/21 EE547341D/480/48		1-P 1-P	920 947	1 093 1 182	1 063 1 130	15 9	12.7 12.7	4.8 4.8	0.32 0.33	2.08 2.03	3.10 3.02	2.04 1.98	1 840 3 390
938.213 3	6.9375	1 270.000 50.00	000	825.500	32.5000	825.50	0 32.5	000 12	2.7	4.8	26 800	79 800	LM287649D/610/61	10D	1-P	1 007	1 233	1 187	17.5	12.7	4.8	0.33	2.03	3.02	1.98	3 130
939.800 3	7.0000	1 333.500 52.50	000 9	952.500	37.5000	952.50	0 37.5	000 12	2.7	4.8	33 500	95 400	LM287849D/810/81	10D	1-P	1 022	1 297	1 235	15.5	12.7	4.8	0.33	2.03	3.02	1.98	4 380
1 020	_	1 570 —	- 9	900	_	900	_	- 7	7.5	7.5	36 500	98 800	4TR1020		1-P	1 172	1 534	1 413	21	6	6	0.33	2.03	3.02	1.98	6 890

[Note] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

45D type

d 346.075 ~ 509.948 mm

Design 2

Design 1-P

Design 2-P

		Bounda	y dimen	sions					Basic loa		Pageing No. 1)	Dooleyn		Mount	ing di		ons		Con- stant		ial loa actors		(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25		V 1/25.4	X_1 mm	X ₂ mm	$r^{2)}$ min.	$r_1^{2)}$ min.	$C_{\rm r}$	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ max.	D max.	na min.	S min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	<i>Y</i> ₂	Y_3	Y_0	(kg)
346.075 13.6250	488.950 19.2500	417.000 16.41	417.000) 16.4173	242.375	67.750	3.2	3.2	4 620	11 600	45D694942	2	378	478	449	8	3.2	3.2	0.33	2.02	3	1.97	240
360 —	450 —	350 —	350	_	225	100	2	1.5	2 660	7 460	45D724535	1	380	440	425	5.5	2	1.5	0.29	2.32	3.45	2.26	109
380 —	530 —	540 —	540	_	340	140	4	3	5 510	13 800	45D765354	1-P	412	512	488	11	3	2.5	0.26	2.55	3.8	2.5	323
384.175 15.1250	546.100 21.5000	514.350 20.250	514.350	20.2500	320.675	127.000	6.4	3.2	6 530	16 900	45D775551	1-P	418	529	502	10.5	6.4	3.2	0.33	2.03	3.02	1.98	386
385.762 15.1875	514.350 20.2500	317.500 12.500	317.500	12.5000	164.500	11.500	3.2	3.2	4 380	11 000	45D775132	1	415	503	483	9	3.2	3.2	0.26	2.55	3.8	2.5	180
400 —	530 —	370 —	370	_	202	34	3	1	4 930	12 900	45D805337	1	428	516	497	11.5	2.5	1	0.26	2.55	3.8	2.5	213
406.400 16.0000	562.000 —	381.000 —	381.000) —	196.924	12.700	6.4	3.2	5 990	15 000	45D815638	1	439	545	524	9.5	6.4	3.2	0.33	2.03	3.02	1.98	286
409.575 16.1250 16.1250	540.000 21.2598 546.100 21.5000				235.000 238.075	60.000 76.150	3 6.4	2 1.6	5 030 4 570	14 000 11 500	45D825441 45D825540	1 1-P	439 432	528 529	507 511	11 8.5	3 6.4	2 1.6	0.26 0.42		3.8 2.42		255 228
430 —	575 —	500 —	500	_	295	90	SP	2	5 670	14 900	45D865850	2	460	575	539	4.5	5	2	0.26	2.55	3.8	2.5	350
431.800 17.0000	571.500 22.5000	400.000 15.74	400.000	15.7480	238.075	76.150	6.4	3	4 790	12 500	45D865740	1-P	460	554	536	10.5	6.4	3	0.36	1.87	2.79	1.83	281
460 — —	586 — 680 —	500 — 390 —	500 390	_	325 225	150 60	3 5	3 1.5	5 300 6 020	15 500 13 700	45D925950 45D926839	1 1	487 518	572 658	555 619	11.5 11.5	2.5 4	2.5 1.5	0.26 0.36	2.55 1.87	3.8 2.79	2.5 1.83	319 429
480 —	700 —	470 —	470	_	267	64	5	1.5	8 060	18 800	45D967047	2	531	678	644	11	4	1.5	0.35	1.95	2.9	1.91	599
482 —	632 —	520 —	520	_	320	120	1.5	1.5	6 840	18 800	45D966352A	1-P	510	623.5	593	7	2	1.5	0.26	2.55	3.8	2.5	416
482.600 19.0000 19.0000 19.0000	615.950 24.2500 615.950 24.2500 615.950 24.2500	425.000 16.73 488.750 19.24 500.000 19.68	488.750) 19.2421	237.000 300.750 314.250	49.000 112.750 182.500	4 4 6.4	1.5 SP 6.4	5 810 5 810 4 830	16 700 16 700 13 400	45D976243 45D976249 45D976250A	1 2 1-P	510 500 512	601 601 599	585 585 583	11 11 6.5	4 4 6.4	1.5 2 6.4	0.26 0.26 0.44	2.55 2.55 1.54	3.8	2.5 2.5 1.51	292 329 358
486 —	654.924 —	500 —	500	_	315.5	131	3	3	6 560	17 000	45D976550-1	1-P	523	640	610	11	2.5	2.5	0.28	2.43	3.61	2.37	455
509.948 20.0767	654.924 25.7844	500.000 19.68	500.000	19.6850	310.000	120.000	3	1.5	6 450	19 000	4TR510C	1-P	539	642	617	10	3	1.5	0.28	2.43	3.61	2.37	405

[[]Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

²⁾ SP indicates the specially chamfered form.

45D type

d 510 ~ 685.800 mm

Design 1-P Design 2

Design 2-P

		Boundary	dimensions					Basic loa (kl	_	Bearing No. 1)	Design		Mount	ing di		ons		Con- stant		ial loa actors		(Refer.)
d mm 1/25.4	<i>D</i> mm 1/25.4	T mm 1/25.4	W mm 1/25.4	X_1 mm	X ₂ mm	$r^{2)}$ min.	r_1 min.	C_{r}	C_{0r}	Bearing No.	Design	$d_{ m a}$ max.	D max.	nin.	S min.	$r_{\rm a}^{\ 2)}$ max.		e	Y_2	Y_3	Y_0	(kg)
510 —	655 —	379 —	377 —	199.5	12	5	2	6 540	18 600	4TR510L-2	1-P	540	633	619	9	4	2	0.26	2.55	3.8	2.5	320
558.800 22.0000	736.600 29.0000	514.000 20.2362	514.000 20.2362	293.337	72.674	6.4	3.2	8 990	25 500	4TR559P-1	1-P	595	719	693	11.5	6.4	3.2	0.33	2.03	3.02	1.98	576
609.600 24.0000	813.562 32.0300	548.000 21.5748	548.000 21.5748	317.000	86.000	SP	6.4	10 200	28 500	4TR610D	2-P	653	792	764	11.5	SP	6.4	0.33	2.03	3.02	1.98	776
685.800 27.0000	876.300 34.5000	580.000 22.8346	580.000 22.8346	340.000	100.000	6.4	3.2	11 000	34 900	4TR686J	1-P	730	859	829	14	6.4	3.2	0.26	2.55	3.8	2.5	875

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page 190 for details of applicable tolerance standards.

2) SP indicates the specially chamfered form.

d **75 ~ 234.950 mm**

Design 2-P

			В	oundary d	imensi	ons				Basic load				Con- stant	Axial loa	d factors	(Refer.)
d mm	1/25.4	D mm	1/25.4	mm T	1/25.4	W mm	1/25.4	$r^{1)}$ min.	$r_1^{\ 1)}$ min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	e	Y_2	Y_3	Mass (kg)
75	_	120 135	_ _	150 180	_ _	150 187	_ _	2 1.5	1 1.5	424 455	764 776	47TS151215 47TS151418	1	0.33 0.87	2.03 0.78	3.02 1.16	6.4 10.7
140	_	198	_	174	_	174	_	4	1	803	1 630	47TS282017	1	0.47	1.43	2.12	16.3
150	_	210	_	240	_	240	_	1.5	0.5	993	2 270	47TS302124	1	0.39	1.74	2.59	23.5
170	_	240 250	_ _	175 230	_ _	175 230	_	2.5 2.5	1.5 1.5	980 1 370	1 990 2 860	47TS342418 47TS342523	1	0.26 0.26	2.55 2.55	3.8 3.8	23.9 37.7
190.500	7.5000	266.700	10.5000	188.913	7.4375	187.325	7.3750	3.2	1	1 060	2 270	47TS382719A	1	0.46	1.47	2.19	27.6
195	_	270	_	250	_	250	_	2.5	1	1 420	3 550	47TS392725-1	1	0.4	1.68	2.5	43.6
200	_	300	_	300	_	300	_	4	1.6	2 260	4 900	47TS403030	1	0.26	2.55	3.8	73.5
203.200	8.0000	317.500	12.5000	266.700	10.5000	266.700	10.5000	5	1.6	2 060	4 010	47TS413227	1	0.4	1.68	2.5	76.8
206.375	8.1250 8.1250	282.575 282.575	11.1250 11.1250	190.500 240.000	7.5000 9.4488	190.500 210.000	7.5000 8.2677	3.2 3	1	1 100 1 450	2 240 3 380	47TS412819 47TS412824	1	0.51 0.43	1.33 1.57	1.97 2.34	33.5 39.6
215.900	8.5000	288.925	11.3750	177.800	7.0000	177.800	7.0000	3.2	1	1 060	2 350	47TS432918	1	0.4	1.68	2.5	30.6
220	_ _ _	295 320 330	- - -	315 290 260	_ _ _	315 290 260		SP 3 5	SP 2 2.5	1 540 2 200 2 100	3 910 4 700 4 220	47TS443032A 47TS443229B 47TS443326	1 1 1	0.4 0.39 0.4	1.68 1.74 1.68	2.5 2.59 2.5	55.8 73.9 79.5
220.663	8.6875 8.6875	314.325 314.325	12.3750 12.3750	239.713 330.000	9.4375 12.9921	239.713 330.000	9.4375 12.9921	3.2 3.2	3 3	1 680 2 360	3 410 5 650	47TS443124 47TS443133	1	0.33 0.26	2.03 2.55	3.02 3.8	51.9 79.2
225	_	320	_	230	_	230	_	3	1.5	1 630	3 350	47TS453223A	1	0.47	1.43	2.12	56.9
228.600	9.0000	311.150	12.2500	200.025	7.8750	200.025	7.8750	3.2	SP	1 330	2 850	47TS463120-1	1	0.4	1.68	2.5	41.3
234.950	9.2500	327.025	12.8750	196.850	7.7500	196.850	7.7500	3.2	1	1 490	3 310	47TS473320A	2	0.4	1.68	2.5	48.1

[Note] 1) SP indicates the specially chamfered from.

d 240 ~ 279.578 mm

Design 2-P

Boundary dimensions											Basic load ratings (kN)		Bearing No.	Design	Con- stant		,	(Refer.)
$\begin{array}{c} d \\ \text{mm} \end{array}$	1/25.4	$_{\mathrm{mm}}^{D}$	1/25.4	mm T	1/25.4	mm W	1/25.4	r min.	$r_1^{\ 1)}$ min.	C_{r}	C_{0r}		bearing No.	Design	e	Y_2	Y_3	(kg)
240	_	320	_	294	_	294	_	4	1	1 880	4 760		47TS483229-1	1	0.33	2.03	3.02	63.6
	_	338	_	248	_	248	_	3	1.5	1 890	4 120		47TS483425B	1	0.47	1.43	2.12	66
	_	338	_	290	_	290	_	3	1	2 360	5 360		47TS483429	1	0.39	1.74	2.59	78
	_	338 338	_	320 340	_	320 340	_	3	1 1	2 430 2 450	5 890 5 930		47TS483432 47TS483434A	1	0.28	2.43 1.68	3.61 2.5	87.3 88
		330		340		340		J	ı	2 400	5 950		4/15405454A	1	0.4	1.00	2.5	00
241.478	9.5070	349.148	13.7460	228.600	9.0000	228.600	9.0000	3.2	SP	2 000	4 110		47TS483523A	2	0.35	1.91	2.84	67.5
244.475	9.6250	327.025	12.8750	193.675	7.6250	193.675	7.6250	5	1.5	1 280	2 790		47TS493319	1	0.33	2.03	3.02	41.5
	9.6250	381.000	15.0000	304.800	12.0000	304.800	12.0000	5	1.6	2 700	5 240		47TS493830	1	0.47	1.43	2.12	124
245	_	345	_	310	_	310	_	3	1.5	2 520	6 020		47TS493531-2	1	0.4	1.68	2.5	89.9
250		365		270	_	270	_	3	1.5	2 260	4 730		47TS503727A-1	1	0.4	1.68	2.5	94.2
254.000	10.0000	358.775	14.1250	269.875	10.6250	269.875	10.6250	3.2	1.6	2 130	4 760		47TS513627A-1	1	0.55	1.24	1.84	82
	10.0000	358.775	14.1250	269.875	10.6250	269.875	10.6250	3.2	1.5	2 520	6 010		47TS513627B	2	0.4	1.68	2.5	85
260	_	365	_	340	_	340	_	3.5	1.6	2 800	6 530		47TS523734-5	1	0.4	1.68	2.5	110
	_	370	_	354	_	354	_	4	1.5	3 100	7 410		47TS523735	1	0.26	2.55	3.8	120
266.700	10.5000	355.600	14.0000	228.600	9.0000	230.188	9.0625	3.2	1.6	1 940	4 880		47TS533623B	2	0.36	1.87	2.79	60
275	_	385	_	340	_	340	_	3	1.5	2 970	7 400		47TS553934	1	0.4	1.68	2.5	121
276.225	10.8750	393.700	15.5000	269.875	10.6250	269.875	10.6250	3.2	1.6	2 350	5 040		47TS553927-4	1	0.47	1.43	2.12	100
	10.8750	393.700	15.5000	269.875	10.6250	269.875	10.6250	3.2	SP	2 770	6 510		47TS553927A	2	0.4	1.68	2.5	105
279.400	11.0000	393.700	15.5000	269.875	10.6250	269.875	10.6250	3.2	1.6	2 350	5 040		47TS563927	1	0.47	1.43	2.12	99.5
	11.0000	393.700	15.5000	269.875	10.6250	269.875	10.6250	3.2	SP	2 770	6 510		47TS563927B	2	0.4	1.68	2.5	101
	11.0000	393.700	15.5000	320.000	12.5984	320.000	12.5984	3.2	1.5	2 880	6 900		47TS563932-2	1	0.4	1.68	2.5	124
279.578	11.0070	380.898	14.9960	244.475	9.6250	244.475	9.6250	3.2	SP	2 270	5 360		47TS563824	2	0.4	1.68	2.5	78.3

[Note] 1) SP indicates the specially chamfered from.

d 280 ~ 317.500 mm

Design 2-P

			В	oundary d	imensi	ons				Basic load		Bearing No.	Design	Con- stant	Axial loa	d factors	(Refer.)
d		D		T		W		r	$r_1^{(1)}$	$C_{\rm r}$	C_{0r}	2008	200.811	e	Y_2	Y_3	(kg)
mm	1/25.4	mm	1/25.4	mm	1/25.4	mm	1/25.4	min.	min.	- 1	- 01					,	-
280	_	380	_	290	_	290	_	3.2	SP	2 720	6 940	47TS563829A	2	0.33	2.03	3.02	93.8
	_	395	_	290	_	290	_	3	2.5	2 640	5 940	47TS564029	1	0.4	1.68	2.5	110
	_	395	_	340	_	340	_	3	1.5	2 960	7 110	47TS564034A	1	0.4	1.68	2.5	130
	_	410	_	268	_	268	_	5.4	1.6	2 240	4 510	47TS564127	1	0.33	2.03	3.02	118
	_	412	_	340	_	340	_	4	2	3 350	7 220	47TS564134	1	0.28	2.43	3.61	154
	_	430	_	350	_	350	_	3.5	1.5	3 940	8 190	47TS564335	1	0.4	1.68	2.5	178
285	_	400		340	_	340		3	1.5	3 190	7 610	47TS574034	1	0.4	1.68	2.5	131
285.750	11.2500	380.898	14.9960	244.475	9.6250	244.475	9.6250	3.2	1	2 000	4 600	47TS573824A	1	0.43	1.57	2.34	73.2
290	_	400		346	_	346		4	1.5	3 070	7 860	47TS584035	1	0.4	1.68	2.5	128
	_	400	_	420	_	420	_	4	1.5	3 070	7 860	47TS584042C	1	0.4	1.68	2.5	155
	_	420	_	380	_	380	_	3	1.2	3 640	8 260	47TS584238	1	0.4	1.68	2.5	175
	_	450	_	415	_	415	_	4	1.5	4 460	9 460	47TS584542	1	0.47	1.43	2.12	238
300	_	400	_	254		254	_	4	5	2 220	5 300	47TS604025	1	0.28	2.43	3.61	84.6
300	_	420	_	310	_	310	_	4	3.5	2 890	6 670	47TS604231	1	0.4	1.68	2.5	128
304.648	11.9940	438.048	17.2460	279.400	11.0000	280.990	11.0626	4	1.6	2 570	5 380	47TS614428B-10	1	0.47	1.44	2.15	135
304.040	11.9940	438.048	17.2460	279.400	11.0000	279.400	11.0000	3.2	1.6	3 140	6 860	47TS614428C-1	2	0.4	1.68	2.13	135
304.800	12.0000	419.100	16.5000	269.875	10.6250	269.875	10.6250	6.4	2	2 490	5 420	47TS614227	1	0.33	2.03	3.02	100
	12.0000	501.650	19.7500	336.550	13.2500	296.550	11.6752	4	4	4 280	8 570	47TS615034	1-P	0.33	2.03	3.02	257
304.902	12.0040	412.648	16.2460	266.700	10.5000	266.700	10.5000	3.2	0.8	2 750	6 820	47TS614127D	2	0.39	1.74	2.59	99.5
310	_	430	_	310	_	310	_	3	1	3 010	6 880	47TS624331-4	1	0.4	1.68	2.5	131
	_	430	_	350	_	350	_	3.5	1.5	3 280	7 870	47TS624335A	1	0.4	1.68	2.5	148
	_	430	_	350	_	350	_	3.5	SP	3 280	7 870	47TS624335B-2	1	0.4	1.68	2.5	148
	_	457.098	_	390	_	390	_	4	1.5	4 200	9 500	47TS624639	1	0.32	2.12	3.15	220
317.500	12.5000	447.675	17.6250	367.000	14.4488	367.000	14.4488	4	1.6	3 680	8 500	47TS644537-1	1	0.4	1.68	2.5	176

[Note] 1) SP indicates the specially chamfered from.

d 320 ~ 406.400 mm

Design 2-P

			В	oundary d	imensi	ons				Basic loa		Bassian Na	D	Con- stant	Axial loa	d factors	(Refer.)
d mm	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	T mm	1/25.4	W mm	1/25.4	$r^{1)}$ min.	$r_1^{\ 1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	e	<i>Y</i> ₂	<i>Y</i> ₃	Mass (kg)
320	_ _ _	440 480 480	_ _ _	335 360 420	_ _ _	335 360 420	_ _ _	4 4 4	1 1.5 1.5	3 140 4 210 5 470	7 330 8 800 12 100	47TS644434 47TS644836B 47TS644842	1 1-P 1-P	0.4 0.47 0.26	1.68 1.43 2.55	2.5 2.12 3.8	146 220 262
330.302	13.0040	438.023	17.2450	254.000	10.0000	247.650	9.7500	3.2	1.6	2 190	4 960	47TS664425	1	0.46	1.47	2.19	95.8
335.000	13.1890	460.000	18.1102	342.900	13.5000	342.900	13.5000	3.3	1.5	3 740	9 290	47TS674634A	1	0.4	1.68	2.5	167
342.875	13.4990	488.900	19.2480	410.000	16.1417	410.000	16.1417	4	2	4 620	11 600	47TS684941	1	0.33	2.02	3	233
342.875	_	560	_	500	_	500	_	5	2.5	7 210	15 000	47TS685650	1-P	0.33	2.03	3.02	495
343.052	13.5060 13.5060	457.098 457.098	17.9960 17.9960	254.000 299.000	10.0000 11.7717	254.000 299.000	10.0000 11.7717	3.2 3.2	0.8 SP	2 870 3 310	7 030 9 010	47TS694625D-1 47TS694630B	2 2	0.4 0.4	1.68 1.68	2.5 2.5	110 135
346.075	13.6250	488.950	19.2500	358.775	14.1250	358.775	14.1250	4	2	3 780	8 310	47TS694936	1	0.33	2.03	3.02	210
350	_	480		420	_	420	_	SP	1.5	3 700	9 100	45DS704842C	1-P	0.4	1.68	2.5	217
355	_	490	_	316	_	316	_	2	1.6	3 540	7 920	47TS714932	1	0.33	2.03	3.02	169
355.600	14.0000	482.600	19.0000	269.875	10.6250	265.112	10.4375	3.2	1.5	2 680	6 090	47TS714827	1-P	0.47	1.43	2.12	134
360	-	480		375	_	375	-	3	1	4 120	10 600	47TS724838A	1	0.4	1.68	2.5	181
374.650	14.7500	501.650	19.7500	260.350	10.2500	250.825	9.8750	3.2	1.6	3 120	7 470	47TS755026A	2	0.33	2.03	3.02	136
380	_	580	_	370	_	370	_	3	SP	5 690	12 300	47TS765837	1-P	0.33	2.03	3.02	353
395	_	545	_	360	_	360	_	6	1.6	3 790	8 930	47TS795536A	1	0.47	1.43	2.12	242
406.400	16.0000 16.0000 16.0000	546.100 546.100 546.100	21.5000 21.5000 21.5000	288.925 330.000 357.400	11.3750 12.9921 14.0709	288.925 330.000 357.400	11.3750 12.9921 14.0709	6.4 4 3.2	1 1.5 1.6	3 620 4 310 3 960	8 190 10 500 9 540	47TS815529D-2 47TS815533A 47TS815536A	2-P 2-P 1	0.47 0.43 0.47	1.43 1.57 1.43	2.12 2.34 2.12	195 204 220

[Note] 1) SP indicates the specially chamfered from.

d 410 ~ (482.600) mm

Design 2-P

			В	oundary d	imensi	ons				Basic loa		December No.	Di	Con- stant	Axial loa	d factors	(Refer.)
$_{\rm mm}^{~d}$	1/25.4	D mm	1/25.4	T mm	1/25.4	W mm	1/25.4	$r^{1)}$ min.	$r_1^{\ 1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	e	<i>Y</i> ₂	Y_3	Mass (kg)
410	-	546	_	400	_	400	_	4	1.5	4 630	12 000	47TS825540	1	0.26	2.55	3.8	255
415.925	16.3750	590.550	23.2500	434.975	17.1250	434.975	17.1250	4	1.5	6 390	15 600	47TS835944A	2-P	0.4	1.68	2.5	377
420		560 574 620		437 480 395	_ _ _	437 480 320	_ _ _	4 3 SP	3 1.6 SP	5 620 6 730 5 160	14 900 17 800 11 600	47TS845644 47TS845748 47TS846240	1 1-P 1-P	0.26 0.28 0.47	2.55 2.43 1.43	3.8 3.61 2.12	298 352 390
430	_	575	_	380	_	380	_	3.2	SP	5 200	14 300	47TS865838A	2-P	0.26	2.55	3.8	276
431.800	17.0000	571.500	22.5000	336.550	13.2500	336.550	13.2500	3.2	1.5	4 440	11 600	47TS865734A	2	0.4	1.68	2.5	229
440	_ _ _	590 620 635	_ _ _	480 454 470	- - -	480 454 413	- - -	4 4 5	SP 1.5 2	6 870 6 580 6 870	18 700 16 100 15 700	47TS885948A-3 47TS886245-1 47TS886447	2-P 1-P 1	0.26 0.33 0.33	2.55 2.03 2.03	3.8 3.02 3.02	362 430 461
450	_	595	_	420	_	420	_	5	1.5	6 110	16 300	47TS906042	1-P	0.26	2.55	3.8	308
457.200	18.0000 18.0000	596.900 596.900	23.5000 23.5000	279.400 279.400	11.0000 11.0000	276.225 276.225	10.8750 10.8750	3.2 3.2	1.6 1.6	3 760 3 300	9 520 8 180	47TS916028C 47TS916028D	2-P 2-P	0.47 0.7	1.43 0.97	2.12 1.44	191 187
460	_	620	_	470	_	470	_	4	1.5	7 060	19 300	47TS926247	1-P	0.26	2.55	3.8	412
479.425	18.8750	679.450	26.7500	495.300	19.5000	495.300	19.5000	6.4	2	8 030	19 600	47TS966850	1-P	0.33	2.03	3.02	562
480.000	18.8976	647.700	25.5000	417.512	16.4375	417.512	16.4375	6.4	SP	6 680	17 400	47TS966542	1-P	0.33	2.03	3.02	391
480	-	700	_	470	_	470	_	5	1.5	8 080	18 800	47TS967047	1-P	0.32	2.12	3.15	621
482.600	19.0000 19.0000 19.0000 19.0000	615.950 615.950 615.950 615.950	24.2500 24.2500 24.2500 24.2500	330.200 330.200 330.200 385.000	13.0000 13.0000 13.0000 15.1575	330.200 330.200 330.200 385.000	13.0000 13.0000 13.0000 15.1575	6.4 3.2 3.2 6.4	1.6 1.6 1.6 1.6	4 310 4 360 4 510 5 270	11 700 11 800 12 400 15 000	4TRS19B 4TRS19C 4TRS19D 47TS976239	1-P 2 2-P 1-P	0.44 0.4 0.4 0.33	1.54 1.68 1.68 2.03	2.3 2.5 2.5 3.02	240 229 239 278
	19.0000	615.950	24.2500	420.000	16.5354	420.000	16.5354	6.4	1.6	5 090	14 500	47TS976242	1	0.33	2.03	3.02	302

[Note] 1) SP indicates the specially chamfered from.

d (482.600) ~ (711.200) mm

Design 2-P

			В	oundary d	limensi	ons				Basic loa		D i N.	D	Con- stant	Axial loa	d factors	(Refer.)
d mm	1/25.4	D mm	1/25.4	mm T	1/25.4	mm W	1/25.4	r min.	$r_1^{\ 1)}$ min.	C_{r}	$C_{0\mathrm{r}}$	Bearing No.	Design	e	Y_2	Y_3	Mass (kg)
482.600	19.0000 19.0000	615.950 647.700	24.2500 25.5000	425.000 417.512	16.7323 16.4375	425.000 417.512	16.7323 16.4375	6.4 6.4	1.6 1.6	5 090 6 680	14 500 17 400	47TS976243 47TS976542A	1 1-P	0.33	2.03 2.03	3.02 3.02	306 382
488.950	19.2500	622.300	24.5000	365.125	14.3750	365.125	14.3750	6.4	1.5	4 320	12 200	47TS986236	1	0.4	1.68	2.5	270
492		655		480	_	480		5	1.5	7 450	21 200	47TS986648	1-P	0.33	2.03	3.02	449
509.948	20.0767	654.924	25.7844	379.000	14.9213	377.000	14.8425	6.4	1.5	5 370	15 200	4TRS510B	1-P	0.41	1.64	2.44	320
530	_	715	_	590	_	590	_	5	1.5	10 300	28 900	4TRS530A	1-P	0.26	2.55	3.8	664
558.800	22.0000 22.0000 22.0000 22.0000 22.0000	736.600 736.600 736.600 736.600 736.600	29.0000 29.0000 29.0000 29.0000 29.0000	372.263 409.575 450.000 480.000 500.000	14.6560 16.1250 17.7165 18.8976 19.6850	372.263 409.575 450.000 480.000 500.000	14.6560 16.1250 17.7165 18.8976 19.6850	7 6 6 6 6	SP 1.5 1.5 1.5 1.6	6 910 6 850 7 180 7 960 8 220	16 100 18 600 19 700 22 700 23 100	4TRS559J 4TRS559C 4TRS559A 4TRS559B 4TRS559	1-P 1-P 1-P 1-P	0.34 0.35 0.35 0.4 0.35	1.97 1.95 1.95 1.68 1.95	2.93 2.9 2.9 2.5 2.9	425 475 507 547 560
585.788	23.0625	771.525	30.3750	479.425	18.8750	479.425	18.8750	6.4	1.5	8 730	24 400	4TRS586A	1-P	0.33	2.03	3.02	613
595.312	23.4375	844.550	33.2500	615.950	24.2500	615.950	24.2500	6.4	3.6	12 700	32 200	4TRS595B	1-P	0.33	2.03	3.02	1 120
600	_	870	_	700	_	700	_	5	4	15 100	39 400	4TRS600A	1-P	0.33	2.03	3.02	1 370
609.600	24.0000 24.0000	787.400 813.562	31.0000 32.0300	361.950 540.000	14.2500 21.2598	361.950 540.000	14.2500 21.2598	6.4 6.4	3.2 1.5	5 920 10 200	14 900 28 500	4TRS610 4TRS610A	1-P 1-P	0.4 0.33	1.68 2.03	2.5 3.02	430 775
679.450	26.7500	901.700	35.5000	552.450	21.7500	552.450	21.7500	6.4	3	11 100	30 600	4TRS679	1-P	0.33	2.03	3.02	951
685.800	27.000	876.300	34.5000	355.600	14.0000	352.425	13.8750	6.4	3.2	6 130	16 300	4TRS686A	1-P	0.42	1.62	2.42	520
704.850	27.7500	914.400	36.0000	552.450	21.7500	552.450	21.7500	6.4	3.2	11 300	33 400	4TRS705	1-P	0.33	2.03	3.02	940
711.200	28.0000 28.0000	914.400 914.400	36.0000 36.0000	317.500 387.350	12.5000 15.2500	317.500 387.350	12.5000 15.2500	3.2 6.4	SP 3.2	6 070 7 160	16 700 19 400	4TRS711N 4TRS711A	2-P 1-P	0.46 0.38	1.47 1.78	2.19 2.65	507 615

[Note] 1) SP indicates the specially chamfered from.

d (711.200) ~ 800 mm

Design 2-P

			В	oundary d	imensi	ons				Basic load	-	Bearing No.	Design	Con- stant		d factors	(Refer.)
$\begin{array}{c} d \\ \text{mm} \end{array}$	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	T mm	1/25.4	W mm	1/25.4	<i>r</i> min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Boaring ito.	Doorgii	e	Y_2	Y_3	(kg)
711.200	28.0000 28.0000	914.400 914.400	36.0000 36.0000	410.000 420.000	16.1417 16.5354	410.000 420.000	16.1417 16.5354	6.4 6.4	3.2 3.2	7 610 7 870	20 500 22 200	4TRS711 4TRS711L	1-P 1-P	0.44	1.54 1.68	2.29 2.5	670 678
800	_	1 130	_	780	_	780	_	6	1.5	21 900	58 800	4TRS800	1-P	0.26	2.55	3.8	2 520

Spherical roller bearings

Koyo

- Spherical roller bearings feature a large load rating capacity. This type of bearing is suitable for low- or medium-speed applications which involve heavy or impact loading.
- The spherical roller bearing is self-aligning, insensitive to misalignment of the shaft relative to the housing, and to shaft bending.
- Bearing with tapered bore can be easily mounted/dismounted by using an adapter assembly or withdrawal sleeve.
- 1) 240 and
- 241 series ··········· 1 : 30 (supplementary code K30)
- 2) Others 1 : 12 (supplementary code K)

■ Cylindrical bore

■ Tapered bore

	R, RR type	RH, RHR type	RHA type
Roller	Convex asymmetrical roller	Convex symmetrical roller	Convex symmetrical roller
Cage	Copper alloy prong type machined cage	Pressed steel cage	Copper alloy integral type machined cage
Inner ring (with or	With center rib	Without center rib (floating guide ring)	Without center rib (floating guide ring)
without rib)	With ribs on both sides (to prevent rollers from falling)	Without ribs on both sides	With ribs on both sides (to prevent rollers from falling)
Characteristics	Superior to RH, RHR and RHA types in high-speed performance.	The load rating capacity is large (There are some exceptional ca specifications.)	

• Outer rings can be provided with lubrication holes, a lubrication groove and an anti-rotation pin hole.

Suppleme	ntary code	Number	
With lubrication holes and lubri- cation groove	With lubrication holes, lubrication groove and anti- rotation pin hole	of lubri- cation holes	Hole layout
W33	W3N	31)	3 equally spaced positions ¹⁾
W33A	W3NA	4	4 equally spaced positions
-	W3NB	5	6 equally spaced positions ²⁾
W33C	W3NC	6	6 equally spaced positions
-	W3ND	7	8 equally spaced positions ²⁾
W33T	-	8	8 equally spaced positions

[Notes] 1) Also 4 or 6 holes are provided.

2) One hole is used for the antirotation pin.

• Inner rings can also be provided with lubrication holes and a lubrication groove.

	Innei	r ring	Oute	r ring
Supple- mentary code	Number of lubri- cation holes	Lubri- cation groove	Number of lubri- cation holes	Lubri- cation groove
W513	3	_	3	0
W518	3	_	3	_
W26	3	_	-	-

[Remark] Boldfaced codes indicate JTEKT standards.

■ Lubrication hole and lubrication groove dimensions (W33, W33A, W33C, W33T)

Unit: mm

	_	2	390	0	2	300	0	2	400	0	2	310	0	2	410	0	2	220	0	2	320	0	2	130	0	2	230	0
Bore diameter number	Nominal bore diameter	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h									
20 22 24 26	100 110 120 130	- - -	- - -	- - -	4 5 5 5	5 7 7 7	1 1 1 1.2	- 5 6	- 6 8	- 1.4 1.5	5 5 5 5	6 6 6	1.4 1.4 1.4 1.5	6 6 6	- 8 8 8	1.5 1.5 1.5	5 5 5 5	6 7 7 7	1.2 1.5 1.5 1.5	5 6 6	8 8 10 10	1.2 1.7 1.7 1.7	4 4 - -	6 6 -	1.2 1.2 - -	6 6 8 8	8 8 10 12	2 2 2.5 2.5
28 30 32 34	140 150 160 170	4 5 5 5	5 7 7 7	1 1 1.2 1.2	5 5 5 6	7 8 8 10	1.2 1.2 1.2 1.5	6 6 8	8 8 8 10	1.5 1.5 1.5 2	6 6 8 8	8 10 12 12	1.5 1.5 2 2	8 8 10 10	10 10 12 12	2 2 2 2	6 6 10 12	8 10 12 14	1.8 1.8 2.5 3	8 8 10 10	10 10 12 12	2.5 2.5 2.5 2.5	1 1 1 1		1 1 1 1	12 12 12 12	14 14 14 14	3 3 3
36 38 40 44	180 190 200 220	6 5 6 6	7 7 8 8	1.3 1.2 1.5 1.5	10	12 12 12 12	1.5 2.5 2.5 2.5	10 10 10 10	12 12 12 12	2.5 2.5 2.5 2.5	10 10 12 12	12 12 14 14	2.5 2.5 3	10 10 12 12	12 12 14 14	2 2 3 3		14 14 14 14	3 3 3	10 12 12 12	12 14 14 14	2.5 3 3 3	1 1 1 1	- - -	1 1 1 1	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4
48 52 56 60	240 260 280 300	6 10 10 10	8 12 12 12	1.5 2.5 2.5 2.5	12 12	12 14 14 14	2.5 3 3	10 12 12 12	12 14 14 14	2.5 3 3	12 12 12 12	14 14 14 14	3 3 3 3	12 12 12 12	14 14 14 14	3 3 3	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 14 14	16.5 16.5 16.5 16.5				1 1 1 1	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4
64 68 72 76	320 340 360 380	10 12 12 12	12 14 14 14	2.5 3 3 3	12 14 14 14	14 16.5 16.5 16.5	3 4 4 4	12 14 14 14	14 16.5 16.5 16.5	3 3 3 3	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 14 –	16.5 16.5 16.5	4 4 4 -	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	1111	- - -	1 1 1 1	14 14 14 -	16.5 16.5 16.5 –	4 4 4 -
80 84 88 92	400 420 440 460	12 12 14 14	14 14 16.5 16.5	3 3 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4		- - - -	1 1 1 1	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4			1 1 1 1			
96 /500 /530 /560	480 500 530 560	14 14 14 14	16.5 16.5 16.5 16.5	4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 16 16	16.5 16.5 20 20	4 4 5 5	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4	14 14 16 16	16.5 16.5 20 20	4 5 5 5		- - -	1 1 1 1	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4			1 1 1 1			1 1 1 1
/600 /630 /670 /710	600 630 670 710	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	14 14 14 14	16.5 16.5 16.5 16.5	4 4 4 4	16 16 16 16	20 20 20 20	5 5 5 5	16 16 16 16	20 20 20 20	5 5 5 5	16 16 25 25	20 20 30 30	5 5 7 7	1 1 1 1	- - -	1 1 1 1	16 16 - -	20 20 – –	5	1 1 1 1		1 1 1 1	1 1 1 1		1 1 1 1
/750 /800 /850 /900	750 800 850 900	15 15 15 16	20 20 20 20	4 4 4 5	15 15 15 15	20 20 20 20	4 4 4 5	16 16 20 20	20 20 25 25	5 5 5 5	16 16 20 20	20 20 25 25	5 5 5 5		- - -			- - -	1 1 1 1	1 1 1 1	- - -	1 1 1 1	1 1 1 1		1 1 1 1	1 1 1 1		
/950 /1 000 /1 060 /1 120	950 1 000 1 060 1 120	16 16 16 16	20 20 20 20	5 5 5 5	16 16 16 –	20 20 20 –	5 5 -	20 20 20 20	25 25 25 25	5 5 5 5		- - -	1 1 1 1		- - -	- - -		- - -	1 1 1 1		- - -			- - -			- - -	
/1 180 /1 250 /1 320 /1 400	1 180 1 250 1 320 1 400	16 16 20 20	20 20 25 25	5 5 5 5			1 1 1 1	1 1 1 1	- - -	1 1 1 1			1 1 1 1			- - - -					- - -	1 1 1 1			1 1 1 1			- - -

Boundary dimensions	The dimensions of standard series are as specified in JIS B 1512.
Tolerances	As specified in JIS B 1514, class 0. (refer to Table 2-2 on page 14.) Refer to Table 2-10 on page 30 for the tolerance of tapered bores.
Allowable aligning angle	23800R 0.017 rad (1°) 24100R, RH, RHA 0.044 rad (2.5°) 23900R 0.026 rad (1.5°) 22200R, RR, RH, RHR, RHA 0.026 rad (1.5°) 23000R, RH, RHA 0.026 rad (1.5°) 23200R, RH, RHA 0.044 rad (2.5°) 24000R, RH, RHA 0.035 rad (2°) 21300R, RH 0.017 rad (1°) 23100R, RH, RHA 0.026 rad (1.5°) 22300R, RR, RH, RHR, RHA 0.035 rad (2°)
Radial internal clearance	(Refer to Table 4-6 on page 50.)
Equivalent radial load	

d 100 ~ (140) mm

	,	dimensions		Basic loa		Bear	ring No.	Mounti	ng dime	nsions	Con- stant	Axial	load fa	ctors	(Refer.) (kg	
d	D	В	r (Refer.)	C_{r}	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	D_{a} max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
100	150 180	37 46	1.5 2.1	260 471	332 481	23020RH 22220RHR	23020RHK 22220RHRK	117 112	141 168	1.5 2	0.22 0.25	3.01 2.74	4.48 4.08	2.94 2.68	2.34 5.11	2.27 5.00
	180	46 60.3	2.1	532	48 I 629	23220RHR 23220RH	23220RHKK	112	168	2	0.25	2.74	3.11	2.08	6.85	6.66
	215	47	3	520	524	21320RH	21320RHK	114	201		0.22	3.02	4.49	2.95	8.79	8.68
	215	73	3	875	524 877	22320RHR	21320RHRK	114	201	2.5 2.5	0.22	1.95	2.90	1.91	13.2	12.9
110	170 180	45 50	2	375 481	486 605	23022RH 23122RH	23022RHK 23122RHK	120 120	160	2	0.24 0.29	2.84 2.36	4.23 3.51	2.78 2.31	3.85 5.72	3.74 5.54
	180	56 69	2 2	566	778	24122RH	23122RHK30	120	170 170	2	0.29	1.84	2.74	1.80	6.98	5.54 6.87
						22222RHR										
	200 200	53 69.8	2.1 2.1	613 672	642 792	23222RHR 23222RH	22222RHRK 23222RHK	122 122	188 188	2	0.26 0.34	2.64 1.99	3.93 2.96	2.58 1.94	7.37 9.76	7.21 9.48
	240	50	3	604	616	21322RH	21322RHK	124	226	2.5	0.21	3.19	4.75	3.12	11.8	11.7
	240	80	3	1 040	1 040	22322RHR	22322RHRK	124	226	2.5	0.33	2.03	3.02	1.98	18.1	17.7
120	180	46	2	392	524	23024RH	23024RHK	130	170	2	0.23	2.95	4.40	2.89	4.20	4.07
	180	60	2	482	709	24024RH	24024RHK30	130	170	2	0.30	2.23	3.32	2.18	5.43	5.34
	200	62	2	568	714	23124RH	23124RHK	130	190	2	0.29	2.34	3.49	2.29	7.98	7.74
	200	80	2	730	1 020	24124RH	24124RHK30	130	190	2	0.38	1.75	2.61	1.72	10.2	10.0
	215	58	2.1	707	764	22224RHR	22224RHRK	132	203	2	0.26	2.60	3.87	2.54	9.31	9.10
	215	76	2.1	771	956	23224RH	23224RHK	132	203	2	0.34	1.97	2.94	1.93	12.2	11.8
	260	86	3	1 120	1 130	22324RHR	22324RHRK	134	246	2.5	0.33	2.03	3.02	1.98	22.8	22.3
130	200	52	2	506	674	23026RH	23026RHK	140	190	2	0.24	2.87	4.27	2.80	6.15	5.97
	200	69	2	621	914	24026RH	24026RHK30	140	190	2	0.32	2.14	3.18	2.09	8.03	7.90
	210	64	2	618	799	23126RH	23126RHK	140	200	2	0.28	2.42	3.61	2.37	8.71	8.44
	210	80	2	750	1 080	24126RH	24126RHK30	140	200	2	0.36	1.90	2.83	1.86	10.8	10.6
	230	64	3	822	914	22226RHR	22226RHRK	144	216	2.5	0.26	2.55	3.80	2.50	11.6	11.3
	230	80	3	878	1 090	23226RH	23226RHK	144	216	2.5	0.33	2.05	3.05	2.00	14.4	14.0
	280	93	4	1 310	1 340	22326RHR	22326RHRK	148	262	3	0.33	2.03	3.02	1.98	28.5	27.9
140	210	53	2	527	723	23028RH	23028RHK	150	200	2	0.23	2.98	4.44	2.92	6.62	6.42

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (140) ~ (170) mm

		dimensions mm)			nd ratings N)	Bear	ring No.	Mounti	ng dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) (kg	(;)
d	D	В	r (Refer.)	C_{r}	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
140	210 225 225	69 68 85	2 2.1 2.1	636 706 849	957 940 1 220	24028RH 23128RH 24128RH	24028RHK30 23128RHK 24128RHK30	150 152 152	200 213 213	2 2 2	0.30 0.28 0.36	2.28 2.45 1.89	3.39 3.65 2.82	2.23 2.40 1.85	8.49 10.6 13.1	8.35 10.3 12.9
	250 250 300	68 88 102	3 3 4	948 1 010 1 470	1 030 1 290 1 570	22228RHR 23228RH 22328RH	22228RHRK 23228RHK 22328RHK	154 154 158	236 236 282	2.5 2.5 3	0.26 0.34 0.35	2.60 1.99 1.95	3.87 2.96 2.90	2.54 1.95 1.90	14.5 19.0 35.7	14.2 18.4 34.9
150	210 225 225	45 56 75	2 2.1 2.1	417 576 720	622 797 1 100	23930R 23030RH 24030RH	23930RK 23030RHK 24030RHK30	160 162 162	200 213 213	2 2 2	0.20 0.22 0.30	3.44 3.04 2.23	5.12 4.53 3.32	3.36 2.97 2.18	5.09 8.01 10.6	4.93 7.77 10.4
	250 250 270	80 100 73	2.1 2.1 3	897 1 100 1 080	1 230 1 590 1 200	23130RH 24130RH 22230RHR	23130RHK 24130RHK30 22230RHRK	162 162 164	238 238 256	2 2 2.5	0.30 0.38 0.25	2.24 1.77 2.69	3.34 2.64 4.00	2.19 1.73 2.63	16.4 19.9 18.9	15.9 19.6 18.5
	270 320 320	96 108 108	3 4 4	1 200 1 540 1 610	1 540 1 600 1 740	23230RH 22330R 22330RHA	23230RHK 22330RK 22330RHAK	164 168 168	256 302 302	2.5 3 3	0.34 0.38 0.35	1.96 1.78 1.93	2.93 2.64 2.87	1.92 1.74 1.88	24.5 43.6 40.3	23.8 42.7 39.4
160	220 240 240	45 60 80	2 2.1 2.1	426 663 825	649 924 1 270	23932R 23032RH 24032RH	23932RK 23032RHK 24032RHK30	170 172 172	210 228 228	2 2 2	0.19 0.22 0.30	3.60 3.01 2.24	5.37 4.48 3.34	3.52 2.94 2.19	5.37 9.74 12.9	5.20 9.44 12.7
	270 270 290	86 109 80	2.1 2.1 3	1 060 1 270 1 110	1 430 1 720 1 270	23132RH 24132RR 22232R	23132RHK 24132RRK30 22232RK	172 172 174	258 258 276	2 2 2.5	0.30 0.39 0.28	2.22 1.72 2.40	3.30 2.56 3.57	2.17 1.68 2.35	20.8 25.9 23.4	20.2 25.5 22.9
	290 290 290	80 104 104	3 3 3	1 120 1 290 1 370	1 320 1 650 1 780	22232RHA 23232RR 23232RHA	22232RHAK 23232RK 23232RHAK	174 174 174	276 276 276	2.5 2.5 2.5	0.27 0.38 0.36	2.49 1.79 1.87	3.71 2.66 2.78	2.44 1.75 1.83	21.9 31.0 29.4	21.4 30.1 28.5
	340 340	114 114	4 4	1 720 1 770	1 790 1 940	22332R 22332RHA	22332RK 22332RHAK	178 178	322 322	3	0.38 0.35	1.76 1.94	2.62 2.89	1.72 1.90	51.9 48.0	51.0 47.1
170	230 260	45 67	2 2.1	442 790	691 1 090	23934R 23034RH	23934RK 23034RHK	180 182	220 248	2	0.18 0.23	3.78 2.90	5.63 4.31	3.70 2.83	5.67 13.2	5.49 12.8

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (170) ~ (190) mm

R, RR	RH, RHR	RHA

		dimensions		Basic loa		Bear	ring No.	Mounti	ng dime (mm)	ensions	Con- stant	Axial	load fa	ctors	(Refer.) (kg	
d	D	В	r (Refer.)	C_{r}	$C_{0\mathrm{r}}$	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	D_{a} max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
170	260	90	2.1	1 000	1 540	24034RH	24034RHK30	182	248	2	0.32	2.11	3.15	2.07	17.5	17.2
	280	88	2.1	1 150	1 550	23134RH	23134RHK	182	268	2	0.29	2.30	3.43	2.25	21.9	21.2
	280	109	2.1	1 310	1 820	24134RR	24134RRK30	182	268	2	0.37	1.80	2.68	1.76	27.2	26.8
	310	86	4	1 190	1 390	22234R	22234RK	188	292	3	0.29	2.29	3.41	2.24	29.0	28.4
	310	86	4	1 260	1 490	22234RHA	22234RHAK	188	292	3	0.28	2.45	3.64	2.39	27.1	26.5
	310	110	4	1 560	1 920	23234RR	23234RRK	188	292	3	0.37	1.85	2.75	1.80	37.2	36.1
	310	110	4	1 510	1 940	23234RHA	23234RHAK	188	292	3	0.36	1.89	2.82	1.85	35.6	34.6
	360	120	4	1 830	1 920	22334R	22334RK	188	342	3	0.38	1.77	2.64	1.73	62.0	60.8
	360	120	4	1 990	2 200	22334RHA	22334RHAK	188	342	3	0.35	1.95	2.91	1.91	57.3	56.1
180	250	52	2	599	939	23936R	23936RK	190	240	2	0.19	3.55	5.29	3.48	8.22	7.97
	280	74	2.1	960	1 330	23036RH	23036RHK	192	268	2	0.24	2.84	4.23	2.78	17.4	16.9
	280	100	2.1	1 170	1 710	24036RR	24036RRK30	192	268	2	0.34	2.00	2.98	1.96	23.4	23.0
	300	96	3	1 250	1 800	23136R	23136RK	194	286	2.5	0.33	2.04	3.04	2.00	28.4	27.5
	300	96	3	1 330	1 790	23136RHA	23136RHAK	194	286	2.5	0.31	2.19	3.25	2.14	26.5	25.6
	300	118	3	1 520	2 120	24136RR	24136RRK30	194	286	2.5	0.38	1.78	2.65	1.74	34.4	33.9
	300	118	3	1 510	2 240	24136RHA	24136RHAK30	194	286	2.5	0.38	1.79	2.66	1.75	31.8	31.2
	320	86	4	1 220	1 450	22236R	22236RK	198	302	3	0.28	2.37	3.53	2.32	30.5	29.8
	320	86	4	1 320	1 610	22236RHA	22236RHAK	198	302	3	0.26	2.55	3.80	2.50	28.5	27.8
	320	112	4	1 640	2 100	23236RR	23236RRK	198	302	3	0.36	1.87	2.78	1.83	39.8	38.6
	320	112	4	1 650	2 170	23236RHA	23236RHAK	198	302	3	0.34	1.97	2.93	1.92	37.7	36.5
	380	126	4	2 180	2 360	22336R	22336RK	198	362	3	0.36	1.89	2.81	1.84	71.4	69.9
	380	126	4	2 180	2 410	22336RHA	22336RHAK	198	362	3	0.34	1.97	2.94	1.93	66.0	64.5
190	260	52	2	608	969	23938R	23938RK	200	250	2	0.18	3.69	5.50	3.61	8.40	8.10
	290	75	2.1	920	1 370	23038R	23038RK	202	278	2	0.25	2.67	3.97	2.61	18.8	18.2
	290	75	2.1	987	1 430	23038RHA	23038RHAK	202	278	2	0.25	2.75	4.10	2.69	17.2	16.6
	290	100	2.1	1 240	1 840	24038RR	24038RRK30	202	278	2	0.33	2.06	3.07	2.02	24.5	24.1
	290	100	2.1	1 220	1 920	24038RHA	24038RHAK30	202	278	2	0.32	2.14	3.19	2.09	22.4	22.0
	320	104	3	1 360	2 000	23138R	23138RK	204	306	2.5	0.34	1.96	2.92	1.92	35.5	34.4
	320	104	3	1 520	2 080	23138RHA	23138RHAK	204	306	2.5	0.31	2.14	3.19	2.10	33.2	32.1

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (190) ~ (220) mm

R, RR RH, RHR RHA

	,	dimensions		Basic load		Bear	ring No.	Mount	ing dime	nsions	Con- stant					(Refer.) l (kg	
d	D	В	r (Refer.)	C_{r}	$C_{0\mathrm{r}}$	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore	
190	320	128	3	1 740	2 470	24138RR	24138RRK30	204	306	2.5	0.39	1.74	2.59	1.70	43.0	42.4	
	320	128	3	1 760	2 630	24138RHA	24138RHAK30	204	306	2.5	0.38	1.76	2.63	1.72	40.1	39.5	
	340	92	4	1 390	1 730	22238R	22238RK	208	322	3	0.29	2.29	3.41	2.24	37.4	36.6	
	340	92	4	1 420	1 770	22238RHA	22238RHAK	208	322	3	0.27	2.52	3.76	2.46	34.9	34.1	
	340	120	4	1 830	2 370	23238RR	23238RRK	208	322	3	0.36	1.86	2.76	1.81	48.5	47.1	
	340	120	4	1 860	2 470	23238RHA	23238RHAK	208	322	3	0.35	1.94	2.89	1.90	44.9	43.5	
	400	132	5	2 380	2 610	22338R	22338RK	212	378	4	0.38	1.79	2.66	1.75	84.1	82.4	
	400	132	5	2 430	2 810	22338RHA	22338RHAK	212	378	4	0.34	1.99	2.97	1.95	77.7	76.0	
200	280	60	2.1	752	1 190	23940R	23940RK	212	268	2	0.20	3.44	5.13	3.37	12.0	11.6	
	310	82	2.1	1 110	1 670	23040R	23040RK	212	298	2	0.26	2.62	3.90	2.56	24.1	23.4	
	310	82	2.1	1 180	1 680	23040RHA	23040RHAK	212	298	2	0.25	2.68	3.99	2.62	22.0	21.3	
	310	109	2.1	1 420	2 110	24040RR	24040RRK30	212	298	2	0.33	2.02	3.00	1.97	31.2	30.7	
	310	109	2.1	1 430	2 230	24040RHA	24040RHAK30	212	298	2	0.33	2.06	3.07	2.02	28.5	28.0	
	340	112	3	1 740	2 350	23140RR	23140RRK	214	326	2.5	0.33	2.04	3.03	1.99	43.3	42.0	
	340	112	3	1 720	2 340	23140RHA	23140RHAK	214	326	2.5	0.32	2.10	3.13	2.06	40.8	39.5	
	340	140	3	2 020	2 820	24140RR	24140RRK30	214	326	2.5	0.40	1.68	2.49	1.64	53.3	52.5	
	340	140	3	2 000	2 970	24140RHA	24140RHAK30	214	326	2.5	0.41	1.65	2.46	1.62	49.5	48.7	
	360	98	4	1 620	2 050	22240RR	22240RRK	218	342	3	0.30	2.26	3.36	2.21	45.0	44.0	
	360	98	4	1 630	2 030	22240RHA	22240RHAK	218	342	3	0.27	2.50	3.72	2.45	42.0	41.0	
	360	128	4	1 940	2 610	23240R	23240RK	218	342	3	0.38	1.79	2.67	1.75	58.1	56.4	
	360	128	4	2 070	2 780	23240RHA	23240RHAK	218	342	3	0.35	1.92	2.86	1.88	55.1	53.4	
	420	138	5	2 510	2 750	22340R	22340RK	222	398	4	0.38	1.80	2.68	1.76	95.4	93.5	
	420	138	5	2 570	2 920	22340RHA	22340RHAK	222	398	4	0.34	1.99	2.97	1.95	88.1	86.2	
220	300	60	2.1	792	1 300	23944R	23944RK	232	288	2	0.18	3.70	5.50	3.61	13.0	12.6	
	340	90	3	1 230	1 890	23044R	23044RK	234	326	2.5	0.26	2.55	3.80	2.50	31.5	30.6	
	340	90	3	1 360	1 950	23044RHA	23044RHAK	234	326	2.5	0.25	2.69	4.01	2.63	28.8	27.9	
	340	118	3	1 650	2 480	24044RR	24044RRK30	234	326	2.5	0.33	2.04	3.04	2.00	40.5	39.8	
	340	118	3	1 670	2 630	24044RHA	24044RHAK30	234	326	2.5	0.33	2.08	3.09	2.03	37.0	36.4	
	370	120	4	1 800	2 700	23144R	23144RK	238	352	3	0.34	2.00	2.98	1.96	54.8	53.2	

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (220) ~ (260) mm

	- ,	- ,
R, RR	RH, RHR	RHA

	Boundary dimensions (mm)			Basic load ratings (kN)		Bear	ring No.	Mounting dimension (mm)		nsions	Con- stant	Axial	load fa	ctors	(Refer.) Mass (kg)	
d	D	В	r (Refer.)	C_{r}	$C_{0\mathrm{r}}$	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	D_{a} max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
220	370 370 370	120 150 150	4 4 4	1 990 2 350 2 320	2 790 3 390 3 550	23144RHA 24144RR 24144RHA	23144RHAK 24144RRK30 24144RHAK30	238 238 238	352 352 352	3 3 3	0.31 0.39 0.40	2.15 1.71 1.69	3.20 2.55 2.52	2.10 1.67 1.65	51.2 67.3 62.0	49.6 66.2 61.0
	400 400 400	108 108 144	4 4 4	2 000 1 980 2 350	2 410 2 440 3 200	22244RR 22244RHA 23244R	22244RRK 22244RHAK 23244RK	238 238 238	382 382 382	3 3 3	0.28 0.27 0.39	2.40 2.52 1.71	3.57 3.76 2.55	2.34 2.47 1.68	60.3 58.8 81.6	59.0 57.5 79.2
	400 460 460	144 145 145	4 5 5	2 520 2 980 2 960	3 350 3 380 3 470	23244RHA 22344R 22344RHA	23244RHAK 22344RK 22344RHAK	238 242 242	382 438 438	3 4 4	0.36 0.34 0.32	1.89 2.00 2.08	2.81 2.99 3.09	1.85 1.96 2.03	77.4 124 115	75.0 122 113
240	320 360 360	60 92 92	2.1 3 3	814 1 470 1 460	1 380 2 190 2 180	23948R 23048RR 23048RHA	23948RK 23048RRK 23048RHAK	252 254 254	308 346 346	2 2.5 2.5	0.17 0.25 0.24	3.95 2.71 2.83	5.88 4.04 4.21	3.86 2.65 2.77	14.0 33.9 31.9	13.5 32.9 30.9
	360 360 400	118 118 128	3 3 4	1 740 1 740 2 270	2 710 2 840 3 220	24048RR 24048RHA 23148RR	24048RRK30 24048RHAK30 23148RRK	254 254 258	346 346 382	2.5 2.5 3	0.31 0.30 0.32	2.20 2.24 2.11	3.27 3.33 3.14	2.15 2.19 2.06	43.5 39.6 67.2	42.9 39.0 65.1
	400 400 400	128 160 160	4 4 4	2 260 2 630 2 660	3 200 3 850 4 130	23148RHA 24148RR 24148RHA	23148RHAK 24148RRK30 24148RHAK30	258 258 258	382 382 382	3 3 3	0.31 0.39 0.39	2.19 1.75 1.72	3.25 2.60 2.56	2.14 1.71 1.68	63.1 82.7 76.6	61.1 81.4 75.3
	440 440 440	120 120 160	4 4 4	2 390 2 400 3 050	2 940 2 990 3 970	22248R 22248RHA 23248RR	22248RK 22248RHAK 23248RRK	258 258 258	422 422 422	3 3 3	0.29 0.27 0.38	2.35 2.49 1.78	3.50 3.71 2.64	2.30 2.43 1.74	85.0 79.4 110	83.2 77.6 107
	440 500 500	160 155 155	4 5 5	3 080 3 370 3 400	4 130 4 200 3 990	23248RHA 22348R 22348RHA	23248RHAK 22348RK 22348RHAK	258 262 262	422 478 478	3 4 4	0.36 0.35 0.32	1.87 1.94 2.12	2.78 2.89 3.16	1.83 1.90 2.07	104 157 145	101 154 142
260	360 400 400	75 104 104	2.1 4 4	1 140 1 660 1 840	1 880 2 570 2 720	23952R 23052R 23052RHA	23952RK 23052RK 23052RHAK	272 278 278	348 382 382	2 3 3	0.19 0.25 0.25	3.54 2.65 2.75	5.27 3.95 4.10	3.46 2.59 2.69	24.0 50.7 46.3	23.3 49.3 44.9
[Damask] Fa	400 400	140 140	4 4	2 270 2 250	3 570 3 670	24052RR 24052RHA	24052RRK30 24052RHAK30	278 278	382 382	3	0.33 0.33	2.02 2.06	3.01 3.07	1.98 2.02	66.3 60.3	65.2 59.4

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (260) ~ (300) mm

R, RR	RH, RHR	RHA

		dimensions		Basic loa		Bear	ring No.	Mounti	ng dime (mm)	nsions	Con- stant	Axial	Axial load factors		(Refer.) Mass (kg)	
d	D	В	r (Refer.)	$C_{\rm r}$	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	D_{a} max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
260	440 440 440	144 144 180	4 4 4	2 750 2 770 3 240	3 850 4 000 4 700	23152RR 23152RHA 24152RR	23152RRK 23152RHAK	278 278 278	422 422 422	3 3 3	0.33 0.32 0.40	2.05 2.12 1.69	3.06 3.16 2.51	2.01 2.08 1.65	92.2 87.4 114	89.4 84.6
	440 440 480	180 180 130	4 4 5	3 200 2 800	4 950 3 460	24152RHA 24152RHA 22252R	24152RRK30 24152RHAK30 22252RK	278 278 282	422 422 458	3 4	0.40 0.41 0.28	1.66 2.40	2.47 3.57	1.62 2.35	106 110	112 105 108
	480	130	5	2 790	3 430	22252RHA	22252RHAK	282	458	4	0.27	2.50	3.72	2.44	103	101
	480 480 540 540	174 174 165	5 5 6	3 440 3 590 3 540 3 900	4 640 4 900 4 380	23252R 23252RHA 22352R 22352RHA	23252RK 23252RHAK 22352RK	282 282 288	458 458 512		0.40 0.36 0.35 0.31	1.69 1.87 1.94	2.51 2.78 2.89 3.21	1.65 1.83 1.90 2.11	144 137 196 181	140 133 192 177
280	380 420 420	75 106 106	2.1 4 4	1 160 1 790 1 930	4 620 1 960 2 860 2 950	23956R 23056R 23056RHA	22352RHAK 23956RK 23056RK 23056RHAK	288 292 298 298	368 402 402	2 3 3	0.31 0.18 0.25 0.24	2.15 3.74 2.74 2.87	5.57 4.08 4.27	3.66 2.68 2.80	26.0 54.5 49.8	25.2 52.9 48.2
	420 420 460	140 140 146	4 4 5	2 360 2 380 2 900	3 780 4 000 4 160	24056RR 24056RHA 23156RR	24056RRK30 24056RHAK30 23156RRK	298 298 302	402 402 438	3 3 4	0.31 0.31 0.32	2.15 2.20 2.14	3.21 3.28 3.18	2.11 2.15 2.09	70.2 64.0 98.8	69.1 62.9 95.7
	460 460 460	146 180 180	5 5 5	2 930 3 380 3 300	4 290 5 140 5 240	23156RHA 24156RR 24156RHA	23156RHAK 24156RRK30 24156RHAK30	302 302 302	438 438 438	4 4 4	0.30 0.38 0.38	2.22 1.79 1.76	3.30 2.67 2.62	2.17 1.75 1.72	93.4 122 113	90.3 120 112
	500 500 500	130 130 176	5 5 5	2 630 2 900 3 360	3 380 3 670 4 910	22256R 22256RHA 23256R	22256RK 22256RHAK 23256RK	302 302 302	478 478 478	4 4 4	0.28 0.26 0.37	2.42 2.64 1.83	3.60 3.93 2.72	2.37 2.58 1.79	114 106 153	112 104 149
	500 580 580	176 175 175	5 6 6	3 760 3 940 4 390	5 300 4 910 5 260	23256RHA 22356R 22356RHA	23256RHAK 22356RK 22356RHAK	302 308 308	478 552 552	4 5 5	0.35 0.34 0.31	1.95 1.98 2.19	2.91 2.95 3.25	1.91 1.93 2.14	145 229 212	141 225 208
300	420 460 460	90 118 118	3 4 4	1 610 2 180 2 360	2 610 3 480 3 700	23960R 23060R 23060RHA	23960RK 23060RK 23060RHAK	314 318 318	406 442 442	2.5 3 3	0.20 0.25 0.24	3.42 2.69 2.79	5.09 4.00 4.16	3.34 2.63 2.73	40.0 75.8 68.9	38.8 73.7 66.8
	460	160	4	2 930	4 690	24060RR	24060RRK30	318	442	3	0.33	2.04	3.04	2.00	99.5	97.9

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (300) ~ (340) mm

R RR

и,	1111		

RH, RHR	RH.
RH, RHR	RH

	,	dimensions		Basic load		Bear	ing No.	Mount	ing dime (mm)	nsions	Con- stant	Axial load factors		(Refer.) (kg		
d	D	В	r (Refer.)	$C_{ m r}$	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
300	460	160	4	2 930	4 910	24060RHA	24060RHAK30	318	442	3	0.32	2.09	3.11	2.04	90.7	89.1
	500	160	5	3 430	5 030	23160RR	23160RRK	322	478	4	0.32	2.09	3.11	2.04	131	127
	500	160	5	3 410	4 970	23160RHA	23160RHAK	322	478	4	0.31	2.18	3.25	2.13	123	119
	500	200	5	4 150	6 280	24160RR	24160RRK30	322	478	4	0.40	1.67	2.49	1.63	162	160
	500	200	5	4 010	6 420	24160RHA	24160RHAK30	322	478	4	0.39	1.72	2.56	1.68	150	148
	540	140	5	3 360	4 330	22260R	22260RK	322	518	4	0.27	2.48	3.69	2.43	145	142
	540	140	5	3 320	4 360	22260RHA	22260RHAK	322	518	4	0.26	2.62	3.90	2.56	135	132
	540	192	5	4 290	5 910	23260R	23260RK	322	518	4	0.37	1.83	2.72	1.79	197	192
	540	192	5	4 430	6 310	23260RHA	23260RHAK	322	518	4	0.35	1.93	2.88	1.89	187	182
	620	185	7.5	4 890	5 430	22360R	22360RK	336	584	6	0.32	2.09	3.10	2.04	289	284
320	440	90	3	1 670	2 870	23964R	23964RK	334	426	2.5	0.19	3.61	5.38	3.53	43.0	41.7
	480	121	4	2 290	3 740	23064R	23064RK	338	462	3	0.24	2.76	4.11	2.70	81.2	78.8
	480	121	4	2 470	3 850	23064RHA	23064RHAK	338	462	3	0.24	2.87	4.27	2.80	74.5	72.1
	480	160	4	3 010	4 920	24064RR	24064RRK30	338	462	3	0.31	2.16	3.22	2.11	105	103
	480	160	4	3 050	5 230	24064RHA	24064RHAK30	338	462	3	0.31	2.21	3.29	2.16	93.4	91.4
	540	176	5	3 630	5 700	23164R	23164RK	342	518	4	0.33	2.04	3.04	2.00	171	166
	540	176	5	4 020	5 960	23164RHA	23164RHAK	342	518	4	0.32	2.13	3.17	2.08	160	155
	540	218	5	4 660	6 950	24164RR	24164RRK30	342	518	4	0.39	1.72	2.56	1.68	208	205
	540	218	5	4 530	7 190	24164RHA	24164RHAK30	342	518	4	0.40	1.70	2.52	1.66	199	196
	580	150	5	3 410	4 540	22264R	22264RK	342	558	4	0.28	2.41	3.59	2.35	175	171
	580	208	5	4 530	6 550	23264R	23264RK	342	558	4	0.38	1.76	2.62	1.72	249	242
	580	208	5	5 010	7 030	23264RHA	23264RHAK	342	558	4	0.36	1.90	2.83	1.86	236	229
340	460	90	3	1 690	2 980	23968R	23968RK	354	446	2.5	0.18	3.82	5.69	3.74	45.0	43.6
	520	133	5	2 660	4 330	23068R	23068RK	362	498	4	0.25	2.69	4.00	2.63	108	105
	520	133	5	2 910	4 470	23068RHA	23068RHAK	362	498	4	0.24	2.80	4.18	2.74	98.7	95.7
	520	180	5	3 650	5 970	24068RR	24068RRK30	362	498	4	0.33	2.06	3.06	2.01	142	140
	520	180	5	3 690	6 330	24068RHA	24068RHAK30	362	498	4	0.32	2.11	3.14	2.06	130	128
	580	190	5	4 100	6 430	23168R	23168RK	362	558	4	0.34	1.97	2.93	1.93	216	210
	580	190	5	4 600	6 720	23168RHA	23168RHAK	362	558	4	0.32	2.11	3.14	2.06	202	196

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (340) ~ 380 mm

	ח, חו	ח		пп, пп	П		ппа										
		dimensions (mm)		Basic loa		Веаг	ring No.	(mm) s				Con- stant	Axial	load fa	ctors	(kg)	
d	D	В	r (Refer.)	C_{r}	C_{0r}	Cylindrical bore	Tapered bore		d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
340	580	243	5	5 560	8 400	24168RR	24168RRK30		362	558	4	0.41	1.64	2.45	1.61	270	266
	580	243	5	5 470	8 810	24168RHA	24168RHAK30		362	558	4	0.42	1.61	2.39	1.57	259	255
	620	165	6	4 430	5 430	22268R	22268RK		368	592	5	0.28	2.43	3.61	2.37	221	216
	620	224	6	5 120	7 560	23268R	23268RK		368	592	5	0.38	1.77	2.63	1.73	306	297
	620	224	6	5 690	8 030	23268RHA	23268RHAK		368	592	5	0.36	1.88	2.81	1.84	290	281
360	480	90	3	1 710	3 060	23972R	23972RK		374	466	2.5	0.17	3.95	5.88	3.86	46.5	45.0
	540	134	5	2 850	4 800	23072R	23072RK		382	518	4	0.24	2.76	4.11	2.70	115	111
	540	134	5	3 030	4 770	23072RHA	23072RHAK		382	518	4	0.23	2.92	4.34	2.85	105	101
	540	180	5	3 790	6 300	24072RR	24072RRK30		382	518	4	0.31	2.15	3.21	2.11	149	147
	540	180	5	3 790	6 620	24072RHA	24072RHAK30		382	518	4	0.30	2.22	3.30	2.17	135	133
	600	192	5	4 720	7 040	23172R	23172RK		382	578	4	0.33	2.07	3.09	2.03	228	221
	600	192	5	4 810	7 210	23172RHA	23172RHAK		382	578	4	0.31	2.19	3.25	2.14	213	206
	600	243	5	5 060	7 690	24172R	24172RK30		382	578	4	0.39	1.74	2.59	1.70	287	283
	600	243	5	5 550	9 180	24172RHA	24172RHAK30		382	578	4	0.40	1.69	2.51	1.65	274	270
	650	170	6	4 710	5 830	22272R	22272RK		388	622	5	0.27	2.47	3.68	2.42	248	243
	650	232	6	6 060	8 810	23272R	23272RK		388	622	5	0.37	1.83	2.72	1.79	346	336
	650	232	6	6 200	9 050	23272RHA	23272RHAK		388	622	5	0.35	1.92	2.85	1.87	328	318
380	520	106	4	2 220	3 940	23976R	23976RK		398	502	3	0.19	3.62	5.39	3.54	70.0	67.9
	560	135	5	2 900	4 970	23076R	23076RK		402	538	4	0.24	2.79	4.16	2.73	122	118
	560	135	5	3 150	5 080	23076RHA	23076RHAK		402	538	4	0.22	3.03	4.51	2.96	112	108
	560	180	5	3 890	6 590	24076RR	24076RRK30		402	538	4	0.30	2.26	3.36	2.21	156	154
	560	180	5	3 880	6 910	24076RHA	24076RHAK30		402	538	4	0.29	2.32	3.45	2.27	142	139
	620	194	5	4 490	7 320	23176R	23176RK		402	598	4	0.31	2.18	3.24	2.13	240	233
	620	194	5	5 000	7 700	23176RHA	23176RHAK		402	598	4	0.30	2.26	3.36	2.21	224	217
	620	243	5	5 270	8 220	24176R	24176RK30		402	598	4	0.38	1.78	2.65	1.74	302	297
	620	243	5	5 840	9 840	24176RHA	24176RHAK30		402	598	4	0.38	1.78	2.65	1.74	288	283
	680	240	6	6 500	9 500	23276R	23276RK		408	652	5	0.36	1.85	2.76	1.81	386	375
	680	240	6	6 650	9 760	23276RHA	23276RHAK		408	652	5	0.35	1.94	2.89	1.90	365	354

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d 400 ~ (440) mm

R, RR	RH, RHR	RHA
,	,	

	Boundar	y dimensions		Basic Ioa		Bear	ring No.	Mount	ing dime	ensions	Con- stant	Axial	load fa	ctors	(Refer.)	
d	D	В	r (Refer.)	C_{r}	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
400	540	106	4	2 350	4 300	23980R	23980RK	418		3	0.18	3.76	5.59	3.67	73.0	70.7
	600	148	5	3 390	5 790	23080R	23080RK	422		4	0.24	2.84	4.23	2.78	155	151
	600	148	5	3 670	5 860	23080RHA	23080RHAK	422	578	4	0.23	2.94	4.37	2.87	142	138
	600	200	5	4 790	8 110	24080R	24080RK30	422	578	4	0.32	2.09	3.12	2.05	206	203
	600	200	5	4 590	8 140	24080RHA	24080RHAK30	422		4	0.31	2.21	3.29	2.16	192	189
	650	200	6	4 700	7 780	23180R	23180RK	428	622	5	0.31	2.19	3.25	2.14	273	265
	650	200	6	5 380	8 300	23180RHA	23180RHAK	428	622	5	0.29	2.30	3.43	2.25	255	247
	650	250	6	5 810	9 140	24180R	24180RK30	428	622	5	0.37	1.82	2.70	1.78	338	333
	650	250	6	6 260	10 600	24180RHA	24180RHAK30	428	622	5	0.37	1.82	2.71	1.78	322	317
	720	256	6	6 520	9 850	23280R	23280RK	428	692	5	0.37	1.80	2.69	1.76	468	454
	720	256	6	7 310	10 600	23280RHA	23280RHAK	428	692	5	0.35	1.92	2.86	1.88	441	427
420	560	106	4	2 330	4 320	23984R	23984RK	438	542	3	0.17	3.91	5.82	3.82	76.0	73.6
	620	150	5	3 500	6 120	23084R	23084RK	442	598	4	0.23	2.90	4.31	2.83	164	159
	620	150	5	3 810	6 230	23084RHA	23084RHAK	442	598	4	0.22	3.02	4.49	2.95	150	145
	620	200	5	4 490	7 600	24084R	24084RK30	442	598	4	0.30	2.23	3.32	2.18	212	209
	620	200	5	4 710	8 490	24084RHA	24084RHAK30	442	598	4	0.29	2.31	3.44	2.26	198	195
	700	224	6	5 580	9 110	23184R	23184RK	448	672	5	0.33	2.03	3.02	1.98	363	352
	700	224	6	6 300	9 630	23184RHA	23184RHAK	448	672	5	0.31	2.19	3.25	2.14	339	328
	700	280	6	6 810	10 600	24184R	24184RK30	448	672	5	0.40	1.71	2.54	1.67	445	438
	700	280	6	7 390	12 400	24184RHA	24184RHAK30	448	672	5	0.39	1.72	2.56	1.68	425	418
	760	272	7.5	8 120	11 500	23284R	23284RK	456	724	6	0.37	1.84	2.74	1.80	556	540
	760	272	7.5	8 220	11 900	23284RHA	23284RHAK	456	724	6	0.36	1.90	2.83	1.86	525	508
440	600	118	4	2 910	5 330	23988R	23988RK	458	582	3	0.18	3.75	5.58	3.66	101	97.8
	650	157	6	3 780	6 540	23088R	23088RK	468	622	5	0.24	2.76	4.11	2.70	188	183
	650	157	6	4 210	6 910	23088RHA	23088RHAK	468	622	5	0.22	3.04	4.53	2.97	172	167
	650	212	6	4 890	8 320	24088R	24088RK30	468	622	5	0.29	2.35	3.50	2.30	247	243
	650	212	6	5 270	9 560	24088RHA	24088RHAK30	468	622	5	0.30	2.28	3.39	2.23	231	227
	720	226	6	5 760	9 600	23188R	23188RK	468	692	5	0.33	2.08	3.09	2.03	378	366
	720	226	6	6 560	10 300	23188RHA	23188RHAK	468	692	5	0.30	2.25	3.34	2.20	353	341

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (440) ~ (500) mm

RHA

R, RR RH, RHR

	,	dimensions			nd ratings	Bear	ring No.	Mounti	ng dime	ensions	Con- stant	Axial	load fa	ctors	(Refer.) l	
d	D	В	r (Refer.)	$C_{ m r}$	$C_{0\mathrm{r}}$	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{\rm a}$	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
440	720 720 790	280 280 280	6 6 7.5	7 040 7 490 8 570	11 200 12 900 12 300	24188R 24188RHA 23288R	24188RK30 24188RHAK30 23288RK	468 468 476	692 692 754	5 5 6	0.38 0.38 0.36	1.76 1.79 1.86	2.62 2.67 2.77	1.72 1.75 1.82	460 439 613	453 432 595
	790	280	7.5	8 660	12 700	23288RHA	23288RHAK	476	754	6	0.35	1.93	2.88	1.89	580	562
460	600 620 680	90 118 163	3 4 6	1 800 2 900 4 050	3 660 5 350 7 170	23896R 23992R 23092R	23896RK 23992RK 23092RK	476 478 488	586 602 652	2.5 3 5	0.13 0.17 0.23	5.06 3.89 2.92	7.53 5.79 4.34	4.95 3.80 2.85	60.4 107 215	58.4 104 209
	680 680 680	163 218 218	6 6 6	4 500 5 720 5 640	7 430 10 100 10 300	23092RHA 24092R 24092RHA	23092RHAK 24092RK30 24092RHAK30	488 488 488	652 652 652	5 5 5	0.22 0.30 0.29	3.04 2.23 2.33	4.53 3.32 3.46	2.97 2.18 2.27	197 277 259	191 272 254
	760 760 760	240 240 300	7.5 7.5 7.5	6 480 7 200 7 280	10 800 11 200 12 200	23192R 23192RHA 24192R	23192RK 23192RHAK 24192RK30	496 496 496	724 724 724	6 6 6	0.33 0.30 0.35	2.07 2.22 1.95	3.09 3.31 2.90	2.03 2.17 1.91	450 420 550	436 406 541
	760 830 830	300 296 296	7.5 7.5 7.5	8 350 9 510 9 590	14 200 13 700 14 200	24192RHA 23292R 23292RHA	24192RHAK30 23292RK 23292RHAK	496 496 496	724 794 794	6 6 6	0.38 0.36 0.35	1.75 1.85 1.92	2.61 2.76 2.85	1.72 1.81 1.87	525 720 679	516 699 658
480	650 700 700	128 165 165	5 6 6	3 290 4 180 4 660	6 130 7 540 7 860	23996R 23096R 23096RHA	23996RK 23096RK 23096RHAK	502 508 508	628 672 672	4 5 5	0.18 0.22 0.22	3.75 3.01 3.12	5.59 4.47 4.64	3.67 2.94 3.05	123 225 206	119 218 199
	700 700 790	218 218 248	6 6 7.5	5 530 5 780 6 800	9 650 10 700 11 500	24096R 24096RHA 23196R	24096RK30 24096RHAK30 23196RK	508 508 516	672 672 754	5 5 6	0.29 0.28 0.32	2.32 2.41 2.09	3.45 3.59 3.12	2.26 2.35 2.05	287 268 503	282 263 488
	790 790 790	248 308 308	7.5 7.5 7.5	7 700 8 680 9 850	12 000 14 800 15 900	23196RHA 24196R 24196RHA	23196RHAK 24196RK30 24196RHAK30	516 516 516	754 754 754	6 6 6	0.30 0.39 0.38	2.24 1.74 1.78	3.34 2.59 2.65	2.19 1.70 1.74	470 606 580	455 597 568
	870 870	310 310	7.5 7.5	10 500 10 600	15 100 15 700	23296R 23296RHA	23296RK 23296RHAK	516 516	834 834	6 6	0.36 0.35	1.85 1.91	2.75 2.85	1.81 1.87	831 785	807 761
500	670	128	5	3 340	6 310	239/500R	239/500RK	522	648	4	0.17	3.87	5.76	3.79	131	127

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d (500) ~ 600 mm

	R, F	RR		RH, RH	IR		RHA									
	Boundar	ry dimensions (mm)		Basic loa		Bear	ring No.	Mounti	ng dime (mm)	nsions	Con- stant	Axial	load fa	ctors) Mass
d	D	В	r (Refer.)	C_{r}	$C_{0\mathrm{r}}$	Cylindrical bore	Tapered bore	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	e	<i>Y</i> ₁	Y_2	Y_0	Cylindrical bore	Tapered bore
500	720 720	167	6	4 480	8 090	230/500R 240/500R	230/500RK	528	692 692	5	0.23	2.94	4.37	2.87	235	228
	830	218 264	6 7.5	5 600 7 700	10 300 13 000	240/500R 231/500R	240/500RK30 231/500RK	528 536	794	5 6	0.28 0.33	2.39 2.05	3.56 3.05	2.34	297 595	292 577
	830	325	7.5	9 310	15 900	241/500R	241/500RK30	536	794	6	0.36	1.85	2.76	1.81	712	701
	920	336	7.5	11 000	16 700	232/500R	232/500RK	536	884	6	0.39	1.74	2.59	1.70	1 020	992
530	710	136	5	3 730	7 120	239/530R	239/530RK	552	688	4	0.17	3.86	5.75	3.78	157	152
	780	185	6	5 120	9 050	230/530R	230/530RK	558	752	5	0.24	2.84	4.23	2.78	314	304
	780	185	6	5 690	9 600	230/530RHA	230/530RHAK	558	752	5	0.22	3.08	4.59	3.02	307	297
	780	250	6	6 600	12 100	240/530R	240/530RK30	558	752	5	0.30	2.26	3.36	2.21	414	408
	870 870	272 335	7.5 7.5	8 970 10 300	14 200 18 000	231/530R 241/530R	231/530RK 241/530RK30	566 566	834 834	6 6	0.32 0.38	2.14 1.78	3.18 2.65	2.09 1.74	661 796	641 784
	980	355	9.5	13 100	18 900	232/530R	232/530RK	574	936	8	0.37	1.82	2.71	1.78	1 230	1 200
560	680	90	3	2 050	4 470	238/560R	238/560RK	574	666	2	0.12	5.70	8.48	5.57	70.0	67.0
	750	140	5	3 880	7 350	239/560R	239/560RK	582	728	4	0.17	3.96	5.90	3.87	182	176
	750	140	5	3 900	7 470	239/560RHA	239/560RHAK	582	728	4	0.16	4.35	6.48	4.26	178	172
	820	195	6	5 680	10 300	230/560R	230/560RK	588	792	5	0.24	2.83	4.21	2.77	353	342
	820	258	6	7 250	13 300	240/560R	240/560RK30	588	792	5	0.29	2.34	3.49	2.29	468	460
	920	280	7.5	9 750	15 500	231/560R	231/560RK	596	884	6	0.31	2.20	3.27	2.15	763	740
	920	355	7.5	10 700	18 400	241/560R	241/560RK30	596	884	6	0.39	1.75	2.60	1.71	945	930
	1 030	365	9.5	14 000	20 300	232/560R	232/560RK	604	986	8	0.36	1.86	2.77	1.82	1 390	1 350
	1 030	365	9.5	14 300	21 900	232/560RR	232/560RRK	604	986	8	0.36	1.86	2.77	1.82	1 400	1 360
600	800	150	5	4 420	8 550	239/600R	239/600RK	622	778	4	0.17	3.94	5.87	3.86	218	211
	870	200	6	6 870	11 900	230/600RR	230/600RRK	628	842	5	0.22	3.08	4.59	3.02	405	393
	870	200	6	6 820	12 300	230/600RRHA	230/600RRHAK	628	842	5	0.21	3.24	4.83	3.17	406	394
	870	272	6	8 110	15 500	240/600R	240/600RK30	628	842	5	0.30	2.27	3.38	2.22	546	538
	980	300	7.5	11 300	18 400	231/600R	231/600RK	636	944	6	0.31	2.18	3.25	2.13	917	888
	980	375	7.5	12 300	21 600	241/600R	241/600RK30	636	944	6	0.38	1.77	2.63	1.73	1 120	1 100
	1 090	388	9.5	16 100	24 000	232/600R	232/600RK	644	1 046	8	0.36	1.85	2.76	1.81	1 640	1 590

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d 630 ~ 800 mm

		dimensions		Basic loa		Bear	ring No.	Mounti	ng dime (mm)	ensions	Con- stant	Axial	load fa	ctors		Mass
d	D	В	r (Refer.)	$C_{ m r}$	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
630	850 920 920	165 212 290	6 7.5 7.5	5 060 7 510 9 010	9 680 13 000 17 200	239/630R 230/630RHA 240/630R	239/630RK 230/630RHAK 240/630RK30	658 666 666	822 884 884	5 6 6	0.18 0.21 0.29	3.81 3.19 2.30	5.67 4.75 3.42	3.73 3.12 2.25	277 484 659	268 469 650
	920 1 030 1 030	290 315 400	7.5 7.5 7.5	9 460 12 000 14 500	17 600 19 500 25 000	240/630RHA 231/630R 241/630R	240/630RHAK30 231/630RK 241/630RK30	666 666 666	884 994 994	6 6 6	0.28 0.31 0.38	2.37 2.19 1.75	3.53 3.26 2.61	2.32 2.14 1.72	654 1 070 1 330	643 1 040 1 310
	1 150	412	12	17 900	27 100	232/630R	232/630RK	684	1 096	10	0.37	1.84	2.74	1.80	1 940	1 880
670	900 980 980	170 230 308	6 7.5 7.5	5 540 8 590 10 900	10 800 15 500 20 400	239/670R 230/670R 240/670R	239/670RK 230/670RK 240/670RK30	698 706 706	872 944 944	5 6 6	0.17 0.22 0.3	3.92 3.01 2.28	5.83 4.47 3.39	3.83 2.94 2.23	317 609 813	308 589 800
	1 090 1 090	336 412	7.5 7.5	13 300 14 600	21 800 25 900	231/670R 241/670R	231/670RK 241/670RK30		1 054 1 054	6 6	0.31 0.37	2.17 1.83	3.23 2.73	2.12 1.79	1 270 1 520	1 240 1 500
710	950 1 030 1 030	180 236 315	6 7.5 7.5	6 440 8 980 11 700	12 900 16 300 22 000	239/710R 230/710R 240/710RHA	239/710RK 230/710RK 240/710RHAK	738 746 746	922 994 994	5 6 8	0.17 0.22 0.28	3.89 3.05 2.41	5.79 4.54 3.59	3.80 2.98 2.35	365 681 886	353 657 871
	1 150 1 150	345 438	9.5 9.5	14 800 18 100	24 800 32 200	231/710R 241/710R	231/710RK 241/710RK30		1 106 1 106	8	0.30 0.36	2.22 1.88	3.30 2.80	2.17 1.84	1 440 1 790	1 400 1 760
750	1 000 1 090 1 090	185 250 250	6 7.5 7.5	6 590 9 660 10 300	13 100 17 500 18 600	239/750R 230/750R 230/750RHA	239/750RK 230/750RK 230/750RHAK		972 1 054 1 054	5 6 6	0.17 0.22 0.21	4.00 3.14 3.20	5.95 4.67 4.76	3.91 3.07 3.12	410 809 799	396 781 775
	1 090 1 220	335 365	7.5 9.5	12 100 16 600	23 400 28 000	240/750R 231/750R	240/750RK30 231/750RK		1 054 1 176	6 8	0.28 0.30	2.39 2.22	3.55 3.31	2.33 2.17	1 060 1 720	1 040 1 670
800	1 060 1 060 1 150	195 195 258	6 6 7.5	7 410 7 310 10 800	15 200 14 900 20 100	239/800R 239/800RHA 230/800R	239/800RK 239/800RHAK 230/800RK	828	1 032 1 032 1 114	5 5 6	0.17 0.15 0.21	4.02 4.47 3.15	5.99 6.65 4.69	3.93 4.37 3.08	480 480 909	464 464 876
	1 150 1 280	345 375	7.5 9.5	14 100 17 300	27 500 29 400	240/800R 231/800R	240/800RK30 231/800RK		1 114 1 236	6 8	0.28 0.29	2.44 2.34	3.64 3.48	2.39 2.29	1 190 1 910	1 170 1 850

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

d 850 ~ 1 400 mm

	,															
		y dimensions (mm)			ad ratings N)	Bear	ring No.	Mounti	ng dime (mm)	ensions	Con- stant	Axial	load fa	ctors	(Refer.) (k	·
d	D	В	r (Refer.)	C_{r}	C_{0r}	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
850	1 120	200	6	8 010	16 700	239/850R	239/850RK	878	1 092	5	0.16	4.14	6.17	4.05	545	528
	1 220	272	7.5	12 000	22 600	230/850R	230/850RK	886	1 184	6	0.21	3.17	4.72	3.10	1 080	1 050
	1 220	365	7.5	14 600	30 000	240/850R	240/850RK30	886	1 184	6	0.28	2.34	3.61	2.37	1 410	1 390
	1 360	400	12	20 100	34 200	231/850R	231/850RK	904	1 306	10	0.30	2.26	3.37	2.21	2 290	2 220
900	1 180	206	6	8 570	18 100	239/900R	239/900RK		1 152		0.16	4.24	6.32	4.15	610	590
	1 280	280	7.5	12 900	24 800	230/900R	230/900RK		1 244		0.21	3.20	4.77	3.13	1 200	1 160
	1 280	375	7.5	17 000	34 100	240/900RHA	240/900RHAK	936	1 244	8	0.26	2.61	3.89	2.56	1 560	1 540
	1 420	412	12	21 000	37 100	231/900R	231/900RK	954	1 366	10	0.29	2.29	3.42	2.24	2 530	2 450
950	1 250	224	7.5	9 730	20 700	239/950R	239/950RK	986	1 214	6	0.16	4.15	6.18	4.06	755	731
	1 360	300	7.5	14 400	27 700	230/950R	230/950RK	986	1 324	6	0.21	3.20	4.77	3.13	1 470	1 420
	1 360	412	7.5	19 700	41 000	240/950RHA	240/950RHAK	986	1 324	8	0.27	2.51	3.74	2.46	1 980	1 950
1 000	1 220	165	6	5 800	13 620	238/1000R	238/1000RK		1 192	5	0.12	5.65	8.42	5.53	410	396
	1 320	236	7.5	10 300	21 500	239/1000R	239/1000RK			6	0.16	4.14	6.16	4.05	895	866
	1 420	308	7.5	15 400	30 000	230/1000R	230/1000RK	1 036	1 384	6	0.21	3.26	4.85	3.18	1 620	1 570
	1 420	412	7.5	20 300	41 800	240/1000R	240/1000RK30	1 036	1 384	6	0.26	2.57	3.82	2.51	2 120	2 090
1 060	1 280	165	6	6 060	14 500	238/1060R	238/1060RK	1 088	1 252	5	0.11	6.33	9.42	6.19	435	420
	1 400	250	7.5	11 900	25 300	239/1060R	239/1060RK		1 364	6	0.16	4.14	6.17	4.05	1 040	1 010
	1 500	438	9.5	21 300	45 300	240/1060R	240/1060RK30	1 104	1 456	8	0.27	2.51	3.74	2.46	2 490	2 450
1 120	1 460	250	7.5	12 300	26 600	239/1120R	239/1120RK	1 156	1 424	6	0.16	4.34	6.47	4.25	1 150	1 110
	1 580	345	9.5	19 000	37 200	230/1120R	230/1120RK	1 164	1 536	8	0.21	3.28	4.88	3.21	2 190	2 120
	1 580	462	9.5	23 800	51 000	240/1120R	240/1120RK30	1 164	1 536	8	0.28	2.45	3.65	2.40	2 900	2 860
1 180	1 540	272	7.5	13 600	29 800	239/1180R	239/1180RK	1 216	1 504	6	0.16	4.22	6.29	4.13	1 330	1 280
1 250	1 630	280	7.5	15 200	33 800	239/1250R	239/1250RK	1 286	1 594	6	0.16	4.31	6.41	4.21	1 600	1 550
1 400	1 820	315	9.5	18 300	41 400	239/1400R	239/1400RK	1 444	1 776	8	0.16	4.32	6.43	4.22	2 230	2 160

[Remark] For bearings with lubrication holes and lubrication grooves on the outer ring, refer to page 367 and 368.

Thrust ball bearings

Koyo

■ Single direction

- Axial load can be accommodated in one direction.
- Although it is designed to carry high axial load, is not suitable for high-speed operation.
- The rolling elements normally contacts the shaft washer (or housing washer) with contact angle 90°.

Boundary dimensions	As specified in JIS B 1512.
Tolerances	As specified in JIS B 1514, class 0 or 6. (refer to Table 2-7 on page 26.)
Allowable misalignment	Misalignment not allowed.
Amount of preload for thrust ball bearings	When a thrust ball bearing is rotated at high speed, balls slide on raceway due to centrifugal force and the gyro moment, which often causes the raceway to suffer from smearing or other defects. To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load determined by the following equation. $F_{a \text{ min}} = 5.1 \left[\frac{n}{1 000} \right]^2 \cdot \left[\frac{C_{0a}}{1 000} \right]^2 \times 10^{-3} \dots $
Standard cages	Pressed cage (Design 1) or machined cage (Design 2)
Equivalent axial load	

d 100 ~ (160) mm

-	$\frac{\phi d_{\rm a}}{}$
	$r_{ m a}$ $r_{ m a}$ $\phi D_{ m a}$

	dimer	nsions		load ratings (kN)		De-		nsions _{nm)}	Mounti	ing dime	ensions	(Refer.)	Bour	ndary d		s Basi	c load ratings		De-	Dime:		Mounti	ng dime	ensions	(Refer.)
(11	1111)			(KIN)	Bearing No.		d_1	D_1	d	\ /		Mass		(1111)	11)		(KIN)	Bearing No.	_	,	D_1	d	, ,		Mass
d D	T	r min.	$C_{\rm a}$	C_{0a}		sign	a_1 max.	D_1 min.	$d_{\rm a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)	d	D	T mir	C_a	C_{0a}		sign	d_1 max.	D_1 min.	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
		1111111.					IIIax.	111111.	111111.	IIIax.	IIIax.				11111	1.				IIIax.	111111.	111111.	IIIax.	IIIax.	
100 135	25	1	85	268	51120	1	135	102	121	114	1	0.990	160	270	87 3	410	1 340	51332	2	265	164	225	205	2.5	21.0
150	38	1.1	146	410	51220	1	150	103	130	120	1	2.36		320	130 5	681	2 410	51432	2	315	164	254	226	4	51.2
170	55	1.5	236	595	51320	1	170	103	142	128	1.5	5.11													
040	0.5	•	000	000	F4.400		005	400	405	4.45	0.5	440	170	215	34 1.1	134	510	51134	1	213	172	197	188	1	3.25
210	85	3	368	983	51420	2	205	103	165	145	2.5	14.6		240	55 1.5	261	834	51234	2	237	173	212	198	1.5	8.12
110 115	0.5	,	0.7	000	F4400		4.45	440	101	404		1.00		280	87 3	463	1 570	51334	2	275	174	235	215	2.5	22.0
110 145			87	288	51122	1	145	112	131	124	1	1.08													
160	38		152	450	51222	1	160	113	140	130	1	2.57		340	135 5	755	2 730	51434	2	335	174	270	240	4	60.0
190	63	2	267	704	51322	2	187	113	158	142	2	7.72									400				
230	95	3	379	1 070	51422	2	225	113	181	159	2.5	19.8	180	225	34 1.1			51136	1	222	183	207	198	1	3.39
														250	56 1.5			51236	2	247	183	222	208	1.5	8.68
120 155	25	1	89	305	51124	1	155	122	141	134	1	1.16		300	95 3	463	1 580	51336	2	295	184	251	229	2.5	28.1
170	39	1.1	154	470	51224	1	170	123	150	140	1	2.86													
210		2.1	311	869	51324	2	205	123	173	157	2	10.6	190	240	37 1.1			51138	1	237	193	220	210	1	3.95
											_			270	62 2	308		51238	2	267	194	238	222	2	11.7
250	102	4	480	1 460	51424	2	245	123	196	174	3	25.0		320	105 4	543	1 950	51338	2	315	195	266	244	3	36.0
400 170				252			4=0	100																	
130 170			104	350	51126	1	170	132	154	146	1	1.87	200	250	37 1.1			51140	1	247	203	230	220	1	4.13
190		1.5	203	620	51226	1	187	133	166	154	1.5	4.09		280	62 2	314	-	51240	2	277	204	248	232	2	12.2
225	75	2.1	330	958	51326	2	220	134	186	169	2	13.0		340	110 4	596	2 220	51340	2	335	205	282	258	3	42.9
270	110	4	498	1 540	51426	2	265	134	212	188	3	31.4													
					0-1-0							0111	220	270	37 1.1			51144	1	267	223	250	240	1	4.50
140 180	31	1	107	375	51128	1	178	142	164	156	1	2.02		300	63 2	342	1 310	51244	2	297	224	268	252	2	13.5
200	46		205	650	51228	1	197	143	176	164	1.5	4.46													
240		2.1	365	1 130	51328	1	235	144	199	181	2	15.5	240	300	45 1.5			51148	2	297	243	276	264	1.5	7.38
														340	78 2.1	442	1 800	51248	2	335	244	299	281	2	23.1
280	112	4	520	1 680	51428	2	275	144	222	198	3	33.9													
													260	320	45 1.5			51152	2	317	263	296	284	1.5	7.93
150 190			109	400	51130	1	188	152	174	166	1	2.15		360	79 2.1	445	1 880	51252	2	355	264	319	301	2	25.0
215			213	652	51230	2	212	153	189	176	1.5	5.64													
250	80	2.1	361	1 130	51330	2	245	154	209	191	2	16.3	280	350	53 1.5	329	1 430	51156	2	347	283	322	308	1.5	12.0
300	120	1	568	1 910	51430	2	295	154	238	212	3	41.6													
	120	7	300	1 310	31430		230	107	200	414	J	71.0	300	380	62 2	363		51160	2	376	304	348	332	2	17.5
160 200	31	1	112	425	51132	1	198	162	184	176	1	2.28		420	95 3	570	2 600	51260	2	415	304	371	349	2.5	42.5
225			223	718	51232	2	222	163	199	186	1.5	6.53													
220	JI	1.3	220	110	31232	۷	ددد	100	199	100	1.0	0.55	320	400	63 2	379	1 760	51164	2	396	324	368	352	2	19.0

d (320) ~ 600 mm

Design 2

Boun		dimen:	sions		oad ratings		De-		nsions m)	Mount	ing dime	ensions	(Refer.)
	(111)	1111)			(KIN)	Bearing No.		,		,	, ,		Mass
d	D	T	r	$C_{\rm a}$	C_{0a}	J	sign	d_1	D_1	$d_{\rm a}$	$D_{\rm a}$	$r_{\rm a}$	(kg)
			min.	_				max.	min.	min.	max.	max.	
320	440	95	3	577	2 710	51264	2	435	325	391	369	2.5	45.0
340		64	2	387	1 860	51168	2	416	344	388	372	2	20.5
	460	96	3	584	2 830	51268	2	455	345	411	389	2.5	48.0
360	440	65	2	394	1 960	51172	2	436	364	408	392	2	21.5
	500	110	4	701	3 500	51272	2	495	365	443	417	3	70.0
380	460	65	2	395	2 010	51176	2	456	384	428	412	2	23.0
	520	112	4	712	3 650	51276	2	515	385	463	437	3	74.0
400	480	65	2	402	2 110	51180	2	476	404	448	432	2	24.0
	540	112	4	722	3 810	51280	2	535	405	483	457	3	78.0
420	500	65	2	410	2 210	51184	2	495	424	468	452	2	25.0
	580	130	5	818	4 420	51284	2	575	425	515	485	4	111
440	540	80	2.1	522	2 930	51188	2	535	444	499	481	2	41.5
	600	130	5	832	4 620	51288	2	595	445	535	505	4	115
460	560	80	2.1	524	3 000	51192	2	555	464	519	501	2	43.0
-	620	130	5	847	4 830	51292	2	615	465	555	525	4	120
480	580	80	2.1	535	3 150	51196	2	575	484	539	521	2	44.0
500	600	80	2.1	546	3 300	511/500	2	595	505	559	541	2	46.0
530	640	85	3	603	3 750	511/530	2	635	535	595	575	2.5	57.5
560	670	85	3	613	3 930	511/560	2	665	565	625	605	2.5	60.5
600	710	85	3	628	4 200	511/600	2	705	605	665	645	2.5	64.0
				,									

Tapered roller thrust bearings

- Tapered roller thrust bearings come in three types, single direction type, double direction type, and screw-down spindle type (single direction full complement type). They suitable for extremely heavy axial load and impact load.
- The housing washer and shaft washer raceways are so designed that the extension lines of both raceways intersect at one point on the bearing centerline axis which promotes geometrically true rolling motion of the rolling elements.
- The contact areas between the rib provided for shaft washer and/or housing washer and the spherically
 ground roller large end face are designed so that the rollers can be guided securely, and proper oil film
 is formed.

■ Single direction (page 406)

- Bearings having ribs for both shaft and housing washers are suitable for the locations where the bearings can be securely fixed in radial direction, and mainly used for crane hook and swivel of oil excavator.
- If extremely heavy axial load is required, use the full complement type bearings (Design 2).
- Bearings having flat housing washer raceway (Design 3) allow some misalignment of shaft (against housing hole) during rotation.

■ Double direction (page 410)

- The bearing of this type can support axial load in both directions, and is mainly used to support the axial load on roll neck of rolling mills.
- Since the shaft washer is treated with a clearance fit to the shaft, the shaft washer must be tightened and fixed securely with a sleeve.
- The axial clearance is commonly adjusted by means of spacer. The bearing without spacer is pre-loaded by spring, etc. for use.
- Some bearings have lubrication holes and Orings on the spacer for oil mist lubrication.

■ For screw down spindles (Single direction full complement)

THR ··· Type (page 414)

THR ··· X Type (page 416)

- The bearings, suitable for low-speed and heavy load, have been designed for screw down spindles.
- The shaft washer surface is ground to convex or concave spherical surface to suit the profiles of the shaft end faces of screw-down spindles.
- Since the spherical shaft washer surface supports screw-down spindles, some misalignment of screw-down spindles during rotation is allowable.
- Some spindle runout is also allowable, since the housing washer raceway is designed flat.

- The bearings can be handled easily, as the shaft washer has the lifting hole in the center (some bearings have lifting nuts in the lifting holes: Design 2, 3, 5), and the housing washer also has lifting tapped hole.
- In many cases, housing washer is fixed to the housing with full dog point set screws. Thus, the outside surface is equipped with a groove to receive the tip of the set screws.

Boundary dimensions	Custom-manufactured to dimensions required for specific equipment.
Tolerances	Consult with JTEKT, as special tolerances are adopted for specific application. Generally equivalent to class 0 specified in JIS (refer to Table 2-8 on page 27).
Misalignment	No misalignment is allowable.
Standard cage	Machined cage
Equivalent load	Dynamic equivalent load $\cdots P_a = F_a$
	Static equivalent load $\cdots P_{0a} = F_a$

Mounting example of double direction tapered roller thrust bearing on the rolling mill roll neck

Mounting example of tapered roller thrust bearing for screw down spindle

d 114.3 ~ 254 mm

			В	oundary	dimens	sions					ad ratings	Bearing No.	Design		let radius	Mass
d mm	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	mm T	1/25.4	D_1 mm	d_1 mm	r 1)	$r_1^{(1)}$	C_{a}	C_{0a}	Bearing No.	Design	Shaft $r_{\rm a}$	Housing $r_{ m b}$	(kg)
114.3	-	250	_	53.975	_	250	114.3	4	4	959	3 960	THR2325	1	_	_	14.0
115	_	280	_	70	_	280	117	6	6	1 300	5 160	T232807	1	_	_	24.0
152.400	6.0000	317.500	12.5000	69.850	2.7500	317.500	152.400	6.4	6.4	1 520	6 530	T611	1	4	4	31.0
152.4	_	317.5	_	69.85	_	317.5	152.7	6.4	6.4	1 500	6 290	THR303207A	3	_	_	29.0
152.400	6.0000	317.500	12.5000	69.850	2.7500	317.500	152.400	6.4	6.4	1 990	9 410	T611V	2	4	4	31.0
168.275	6.6250 6.6250	304.800 304.800		69.850 69.850		304.800 302.500	168.275 169.000	6.4 6.4	6.4 6.4	1 310 1 190	5 170 4 530	T661 THR343007A	1 3	4 4	4 4	25.0 24.0
174.625		358.775		82.550		358.775	174.625	6.4	6.4	1 950	8 570	T691	1	4	4	45.0
174.025	6.8750	358.775		82.550		358.775	174.625	6.4	6.4	2 440	11 500	T691V	2	4	4	46.0
177.800	7.0000	368.300	14.5000	82.550	3.2500	368.300	177.800	7.9	7.9	2 070	9 150	T711	1	5	5	48.0
180	_	360	_	109	_	358	190	6	6	2 250	7 690	THR363611	3	_	_	47.0
203.200	8.0000	419.100	16.5000	92.075	3.6250	419.100	203.200	9.5	9.5	2 590	11 600	T811	1	6	6	69.0
203.2	_	419.1	_	92.075	_	416.7	203.2	9.5	9.5	2 560	11 200	THR404292	3	_	_	68.0
228.600	9.0000	482.600	19.0000	104.775	4.1250	482.600	228.600	SP	11.2	3 390	16 300	T911	1-1	7	7	107
234.950	9.2500 9.2500	546.100 546.100		127.000 127.000	5.0000 5.0000	546.100 546.100	234.950 234.950	15.9 15.9	15.9 15.9	4 470 5 560	21 500 28 400	T921 T921V	1 2	11 11	11 11	174 175
241	_	404	_	110	_	404	241	5	5	2 200	8 140	THR484011	3	3	3	62.0
241.300	9.5000	496.888	19.5625	129	5.0787	496.888	241.300	SP	SP	3 420	15 600	THR4850129	1	5	5	137
254	_	539.75	_	117.48	_	539.75	254	11.1	11.1	4 130	20 200	THR515412	3	_	_	143

[Note] 1) SP indicates the specially chamfered form.

d 279.400 ~ 830 mm

			В	Soundary	dimens	sions					ad ratings kN)	F	Bearing No.	Design		et radius nm)	Mass
mm d	1/25.4	$\begin{array}{c} D \\ \text{mm} \end{array}$	1/25.4	mm T	1/25.4	D_1 mm	d_1 mm	r 1)	$r_1^{(1)}$	$C_{\rm a}$	C_{0a}		bearing ivo.	Design	Shaft $r_{\rm a}$	Housing $r_{ m b}$	(kg)
279.400	11.0000 11.0000	603.250 603.250	23.7500 23.7500	136.520 136.520		603.250 603.250	279.400 279.700	SP 11.1	11.1 11.1	5 520 7 120	26 800 37 800		Γ1120 Γ1120V	1-1 2	7 7	7 7	210 220
290	_	395	_	80	_	395	291	SP	SP	1 200	4 780	Т	THR584008	3	2.5	2.5	30.0
300		663.5	_	165	_	658	306	12	12	6 370	30 000	Т	THR6066	3	_	_	312
340	_	460	_	96	_	460	340	4	4	1 510	6 960	Т	THR684610	3	_	_	53.6
406.4	_	711.2	_	146.05	_	711.2	406.4	SP	9.7	6 470	32 500	Т	Г16021	1-1	_	_	256
609.6	_	812.8	_	101.6	_	812.8	609.6	SP	SP	4 400	27 300	Т	THR610	3	_	_	152
749.3	_	955.975	_	127	_	952.5	749.8	5.1	5.1	5 590	30 500	Т	THR749	3	2	2	230
830	_	1 010	_	80	_	1 010	830	5	5	2 790	20 300	Т	THR830	1	_	_	136

[Note] 1) SP indicates the specially chamfered form.

d **94 ~ (380) mm**

Design 4 De	esign 4-P
-------------	-----------

		Bou	_	dimen	sions				nd ratings			Мо		dimensio	ns	Mass
d	D	T	В	d_1	d_2	r	r_1	$C_{\rm a}$	C_{0a}	Bearing No.	Design	$d_{\rm a}$	$D_{\rm a}$	$r_{\rm a}$	$r_{\rm b}$	(kg)
												min.	max.	max.	max.	
94	190	76	16	116	112	2.5	2.5	289	988	2THR191908	2	109	121	1.5	1.5	9.50
160	280	130	50	190	190	2	1.5	658	2 950	2THR322813	1	184	196	1	1	33.0
170	240 240	84 84	20 20	184 184	182 182	4	1.5 1.5	321 367	1 310 1 400	2THR342408A 2THR342408B	2 2	179 176	192 190	2.5 3	0.8 1	12.0 12.0
	240	04	20	104	102	4	1.5	307	1 400	21 NK3424UOD	2	170	190	ა	· ·	12.0
180	280	90	20	210	205	2	1	640	2 710	2THR362809A	4	199	216	1	0.5	19.0
	400	200	50	210	210	3	1	2 450	9 620	2THR364020	2	204	216	2	0.5	130
200	430	231	100	260	254	4	1.5	1 930	9 470	2THR404323-1	2	245	266	3	1	170
220	300	96	26	240	232	2	1	541	2 350	2THR443010	1	226	246	1	0.5	19.0
	300	96	22	240	232	2	1	541	2 350	2THR443010A	1	226	246	1	0.5	18.0
	340	130	39	250	245.6	2	1	922	3 870	2THR443413	4	239.6	256	1	0.5	40.0
	372	195	75	254	246	4	1.5	1 510	6 280	2THR443720	4	240	260	3	1	85.0
250	380	100	22	275	270	2	1.1	906	4 840	2THR503810	1	264	281	1	0.5	40.0
260	360	92	20	285	276	2	1	722	3 630	2THR52369	2	270	291	1	0.5	25.0
	360	92	20	285	276	2	1	722	3 630	2THR52369/DP	3	270	291	1	0.5	25.0
	400	120	25	290	280	4	2	1 210	5 820	2THR524012	2	276	298	2.5	1	50.0
291	520	266	118	349	349	12	2	2 130	10 800	2THR585227	2	343	357	10.5	1.5	245
320	440	108	20	355	349	4	2.5	881	4 570	2THR644411	1	344	363	2.5	1	45.0
	470	130	30	350	340	3	1	1 310	6 080	2THR644713	2	334	358	1.5	0.5	70.0
350	490	130	30	390	380	3	1	1 290	6 200	2THR704913A	1	374	398	1.5	0.5	70.0
	490	130	30	390	380	3	1	1 290	6 200	2THR704913A/DP	3	374	398	1.5	0.5	70.0
	490	130	30	390	380	4	2	1 290	6 200	2THR704913A/DP1	3	375	398	2.5	1	70.0
351	670	308	120	435	430	12	3	3 460	19 500	2THR706731	1	424	443	10	2	505
	670	319	131	435	430	12	3	3 460	19 500	2THR706732	1	 424	443	10	2	505
380	560	130	32	430	416	3	1.5	1 570	8 860	2THR765613	2	410	438	1.5	0.5	110

d (380) ~ 550 mm

Design 4 Design 4-P

	560 130 32 430 416 4						d ratings N)	Bearing No.	Design	Mo	_	dimensio m)	ons	Mass		
d	D	T	В	d_1	d_2	r	r_1	$C_{\rm a}$	C_{0a}	bearing No.	2 co.g	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
380						-	1.5 2.5	1 570 1 570	8 860 8 860	2THR765613A 2THR765613A/DP	3	410 410	438 438	1.5 2.5	0.5 1.5	110 100
420							1.5 1.5	2 570 2 760	14 000 14 500	2THR846217 2THR846524	2-P 2-P	449 480	473 504	1.5	0.5 1	160 260
440	650	240	90	492.5	485	7	1.5	2 870	15 200	2THR886524	4	479	502	5	0.5	270
470	720	200	40	535	516	5	3	3 490	19 700	2THR947220	2-P	508	545	3	2	270
482	680	250	90	535	524	7	2	3 090	16 000	2THR966825	4-P	516	545	5	1	280
520	860	382	168	625	610	20	2	5 220	32 800	2THR520	2-P	602	635	15	1	850
550	760	230	50	610	590	5	2	2 900	15 000	2THR550	2-P	580	622	3	1	290

THR...type (Full complement) *D* **149.225** ~ **641.350** mm

Design 1

Design 2

Design 3

	Boundary	dimen	sions				Basic load ratings	Bearing No.	Design				Dimer (m	nsions m)				Mass
<i>D</i> mm 1/25.4	D ₁ mm 1/25.4	D mm	1/25.4	mm T	1/25.4	r	C_{0a}	Bearing No.	Design	$R_{\rm s}$	В	D_3	T_1	U	V	G	G_1	(kg)
149.225 5.8750	146.863 5.7820	127.0	5.0000	47.625	1.8750	1.6	2 190	THR149	1	228.6	12.700	_	_	4.8	1.2	M12	_	6.00
174.625 6.8750	172.263 6.7820	152.4	6.0000	52.375	2.0620	1.6	2 860	THR175	2	230.0	12.700	_	_	4.8	1.2	M12	M16	8.00
203.200 8.0000	200.838 7.9070	177.8	7.0000	65.075	2.5620	1.6	3 970	THR203	1	254.0	15.875	_	_	6.35	1.2	M12	_	14.0
266.700 10.5000	264.338 10.4070	228.6	9.0000	80.963	3.1875	1.6	7 490	THR267-2	1	250	19.050	_	_	7.9	2.0	M20	_	30.0
320.675 12.6250	318.313 12.5320	279.4	11.0000	95.250	3.7500	1.6	11 700	THR321	1	381.0	22.225	_	_	10.3	2.4	M20	_	50.0
377.825 14.8750	375.463 14.7820	330.2	13.0000	111.125	4.3750	1.6	15 600	THR378	2	457.2	25.400	_	_	10.3	2.4	M24	M42	80.0
409.575 16.1250 16.1250	407.162 16.0300 407.213 16.0320	330.2 355.5	13.0000 13.9961	139.700 122.225		3.2 3.2	18 700 18 700	THR410A THR410	2 2	508.0 508.0	28.575 28.575	_	_	10.3 10.3	2.4 2.4	M24 M24	M30 M30	120 120
438.150 17.2500	435.788 17.1570	381.0	15.0000	130.175	5.1250	3.2	21 500	THR438	2	568.0	31.750	_	_	13.5	3.2	M24	M24	130
495.300 19.5000	492.938 19.4070	431.8	17.0000	146.050	5.7500	3.2	28 000	THR495A	2	558.8	34.925	_	_	12.7	3.175	M24	M24	190
524.000 20.6299	520.000 20.4724	457.2	18.0000	152.400	6.0000	3.2	32 700	THR524	1	635.0	34.925	_	_	13.5	3.2	(W1)	_	220
551.637 21.7180 21.7180 21.7180	539.750 21.2500 539.750 21.2500 539.750 21.2500	406.4 406.4 434.97	16.0000 16.0000 5 17.1250	158.750 158.750 158.750	6.2500	1 1.5 1.5	32 900 32 900 32 900	THR550A THR550A-1 THR550	3 2 3	635.0 635.0 635.0	25.400 25.400 25.400	495.3 495.3 495.3	117.064 117.064 115.888	10.31 10.31 9.525	2.39 2.39 2.54	M24 M24 M24	M30 M30 M30	230 250 250
581.025 22.8750	578.663 22.7820	508.0	20.0000	168.275	6.6250	3.2	38 400	THR581	2	711.2	38.100	_	_	13.5	3.2	M24	M42	300
609.600 24.0000 24.0000 24.0000 615.200 24.2200	609.600 24.0000 607.240 23.9071 609.600 24.0000 607.000 23.8976	436.0 — 436.0	17.1654 — 17.1654	177.800 177.800 177.800 161.800	7.0000 7.0000	3.2 3.2 3.2	44 600 44 600 44 600	THR610A THR610D THR610M THR615	2 2 3	635.0 — 635.0	38.100 38.100 38.100 38.100	 560.0	 87.800	13.5 13.5 13.5	3.2 3.2 3.2 3.5	M24 M24 M24 M24	M30 M30 M30	350 390 340
615.200 24.2200	638.988 25.1570	558.8	22.0000	184.150		3.2	49 400	THR641	2	762.0	38.100	_	_	13.5	3.2	M24	M30	330 400

THR...X type (Full complement) *D* 149.225 ~ 520.000 mm

Design 2

	Boundary	dimensions			$\begin{array}{c} \textbf{Basic load ratings} \\ (kN) \end{array}$	Bearing No.	Design			D	imensio (mm)	ns			Mass
<i>D</i> mm 1/25.4	<i>D</i> ₁ mm 1/25.4	<i>D</i> ₂ mm 1/25.4	T mm 1/25	.4 r	$C_{0\mathrm{a}}$	Bearing No.	Design	В	T_1	$R_{\rm s}$	U	V	G	G_1	(kg)
149.225 5.8750	146.863 5.7820	127.0 5.0000	54.528 2.14	68 1.6	2 190	THR149X	1	12.700	47.625	457.2	4.8	1.2	M12	_	6.00
174.625 6.8750	172.263 6.7820	152.4 6.0000	60.702 2.39		2 860	THR175X	2	12.700	52.375	457.2	4.8	1.2	M12	M16	10.0
6.8750 6.8750	172.263 6.7820 174.549 6.8720	152.4 6.0000 152.4 6.0000	61.001 2.44 60.708 2.39		2 860 2 860	THR175X-1 THR175X-2	1 2	12.700 12.700	52.388 52.375	800.0 457.0	4.8 4.8	1.2 1.2	W 1/2 M12	— M16	10.0 10.0
0.0700	174.549 0.0720	132.4 0.0000	00.708 2.0	1.0	2 000	1HR175X-2	2	12.700	JZ.31 J	437.0	4.0	1.2	IVIIZ	IVITO	10.0
203.200 8.0000	200.838 7.9070	177.8 7.0000	74.729 2.9		3 970	THR203X	1	15.875	65.075	508.0	6.35	1.2	M12	_	16.0
8.0000	200.838 7.9070	177.8 7.0000	74.729 2.94	21 1.6	3 970	THR203X-1	2	15.875	65.075	508.0	6.35	1.2	M12	M8	16.0
266.700 10.5000	264.338 10.4070	228.6 9.0000	93.491 3.66		7 730	THR267X	1	19.050	80.963	609.6	7.9	2.0	M20	_	35.0
10.5000	264.338 10.4070	228.6 9.0000	93.491 3.68	1.6	7 730	THR267X-2	2	19.050	80.963	609.6	7.9	2	M20	M30	35.0
275.000 10.8268	270.000 10.6299	234.0 9.2126	98.994 3.89	3.0	4 250	THR275X	1	20.000	85.000	609.6	_	_	_	_	40.0
320.675 12.6250	318.313 12.5320	279.4 11.0000	109.922 4.33	76 1.6	11 700	THR321AX	2	22.225	95.250	762.0	10.3	2.4	M36	M42	60.0
12.6250	318.313 12.5320	279.4 11.0000	109.922 4.3	76 1.6	11 700	THR321BX	2	22.225	95.250	762.0	_	_	M36	M42	60.0
12.6250	318.313 12.5320	279.4 11.0000	110.382 4.3	57 1.6	11 700	THR321X	1	22.225	95.250	762.0	10.3	2.4	M20	_	60.0
377.825 14.8750	375.463 14.7820	330.2 13.0000	127.639 5.03	1.6	15 600	THR378X	2	25.400	111.125	914.4	10.3	2.4	M24	M42	95.0
409.575 16.1250	407.213 16.0320	355.6 14.0000	139.979 5.5	10 3.2	18 700	THR410X	2	28.575	122.225	1 016.0	10.3	2.4	M24	M30	120
438.150 17.2500	435.788 17.1570	381.0 15.0000	149.442 5.88	35 3.2	21 500	THR438X	2	31.750	130.175	1 016.0	13.5	3.2	M12	M24	150
17.2500	435.788 17.1570	381.0 15.0000	149.882 5.9	09 3.2	21 500	THR438X-4	2	31.750	130.175	1 066.8	_	_	M12	M24	150
482.600 19.0000	480.210 18.9059	432.0 17.0078	144.065 5.65	18 3.2	24 600	THR483XC	2	38.100	130.180	1 905.0	13.5	3.2	M24	M30	180
490.220 19.3000	492.938 19.4070	431.8 17.0000	169.440 6.6	09 3.2	28 000	THR495X-1	1	34.925	146.050	1 066.8	12.7	3.2	M24	_	220
19.3000	492.938 19.4070	431.8 17.0000	169.440 6.6	09 3.2	28 000	THR495X-2	2	34.925	146.050	1 066.8	12.7	3.2	M24	M30	220
495.300 19.5000	492.938 19.4070	431.8 17.0000	169.440 6.6	09 3.2	28 000	THR495X	1	34.925	146.050	1 066.8	13.5	3.3	M24	_	220
19.5000	492.938 19.4070	431.8 17.0000	169.440 6.63	09 3.3	28 000	THR495X-3	2	34.925	146.050	1 066.8	13.5	3.3	M24	M30	240
514.350 20.2500	521.386 20.5270	403.2 15.8740	188.712 7.4	96 1.6	32 700	THR521X	2	34.925	154.813	635.0	_	_	W1	W1-1/4	250
520.000 20.4724	521.513 20.5320	457.2 18.0000	174.783 6.8	3.2	32 700	THR524X-1	1	34.925	152.400	1 270.0	12.7	3.2	M24	_	250

THR...**X** type (Full complement) *D* 523.875 ~ 900.000 mm

Design 2

	1/25.4 mm 1/25.2 18.000 177.10 1						Basic load ratings (kN)	Bearing No.	Design			D	(mm)	ns			Mass
<i>D</i> mm 1/25.4	•	_		T mm	1/25.4	r	$C_{0\mathrm{a}}$	Bearing No.	Design	В	T_1	$R_{\rm s}$	U	V	G	G_1	(kg)
523.875 20.6250	521.513 20.5320	457.2	18.0000	174.783	6.8812	3.2	32 700	THR524X	1	34.925	152.400	1 270.0	13.5	3.2	M24	_	250
533.400 21.0000	531.010 20.9059	457.2	18.0000	177.169	6.9752	1.6	32 700	THR533X	2	31.750	161.920	1 981.2	9.5	6	M24	M36	270
555.625 21.8750				189.438		3.2	36 300	THR556AX	2	38.100	165.100		12.7	3.2	1-8UNC		305
				189.438		3.2	36 300	THR556BX	2	38.100	165.100	1 270	_	_	M24	M36	310
21.8750	553.260 21.7819	482.6	19.0000	189.438	7.4582	3.2	36 300	THR556D-2X	2	38.100	165.100	1 270	11	6.7	M24	M36	320
21.8750	553.260 21.7819	482.6	19.0000	189.438	7.4582	3.2	36 300	THR556X-1	2	38.100	165.100	1 295.4	12.7	3.2	M24	M36	305
581.025 22.8750	578.663 22.7820	508.0	20.0000	192.511	7.5792	3.2	38 400	THR581X	2	38.100	168.275	1 422.4	13.5	3.2	M24	M42	340
22.8750	578.663 22.7820	508.0	20.0000	196.650	7.7421	3.2	38 400	THR581X-3	2	38.100	168.275	1 308.1	13.5	3.2	M24	M42	350
609.600 24.0000	607.238 23.9070	533.4	21.0000	202.831	7.9855	3.2	44 600	THR610X	2	38.100	177.800	1 524.0	13.5	3.2	M24	M30	390
24.0000	607.238 23.9070	533.4	21.0000	202.831	7.9855	3.2	44 600	THR610X-1	2	38.100	177.800	1 524.0	13.5	3.2	M30	M42	390
641.350 25.2500	638.988 25.1570	553.8	21.8031	211.492	8.3264	3.2	49 400	THR641X	2	38.100	184.150	1 524.0	13.5	3.2	M24	M30	450
25.2500	638.988 25.1570	558.8	22.0000	211.854	8.3407	3	49 400	THR641CX	2	38.100	184.150	1 524.0	_	_	M24	M42	460
710.000 27.9527	710.000 27.9527	630.0	24.8031	259.107	10.2011	3.5	54 900	THR710XA	2	40.000	200.000	1 400.0	_	_	M24	M48	680
800.000 31.4960	798.000 31.4173	720.0	28.3464	260.268	10.2468	5	71 800	THR800X	2	50.000	214.000	1 524.0	_	_	M30	M30	870
31.4960	840.000 33.0708	740.0	29.1338	265.000	10.4330	7	77 800	THR840X	2	50.000	221.000	1 800.0	_	_	M36	M48	940
847.600 33.3700	841.000 33.1102	650.0	25.5905	248.000	9.7638	5	77 800	THR848X	2	43.000	212.000	1 652.0	_	_	M42	M42	930
33.3700	841.000 33.1102	650.0	25.5905	248.000	9.7638	5	77 800	THR848X-1	2	43.000	212.000	1 652.0	_	_	M36	M42	890
900.000 35.4330	900.000 35.4330	870.0	34.2520	228.739	9.0055	2	81 100	THR900X	2	40.000	177.840	1 800.0	11.0	7.5	M24	M48	970
35.4330	930.000 36.6142	820.0	32.2835	275.000	10.8268	5	98 200	THR930XB	2	60.000	223.000	1 800.0	_	_	M36	M48	1 170

Spherical thrust roller bearings

Koyo

- Spherical thrust roller bearings are designed to carry high axial loads. They can also support radial load if magnitude is no more than 55 % of the axial load being carried.
- Having a spherical housing washer raceway surface, these bearings are self-alignings.
- These bearings are not suitable for high-speed rotation. In general, they are used with oil lubrication.

Boundary dimensions	As specified in JIS B 1512.
Tolerances	As specified in JIS B 1514, class 0. (refer to Table 2-8 on page 27.)
Allowable aligning angle	0.035 – 0.052 rad (2° – 3°) in general, depending on bearing series.
Amount of preload for spherical thrust roller bearings	Spherical thrust roller bearings sometimes suffer from scuffing, smearing, or other defects due to sliding which occurs between the roller and raceway surface under normal operation. To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load determined by the following equation. (the higher value determined by the two equations should be taken) $F_{a \text{ min}} = \frac{C_{0a}}{2\ 000}$ $F_{a \text{ min}} = 1.8F_r + 1.33 \left[\frac{n}{1\ 000}\right]^2 \cdot \left[\frac{C_{0a}}{1\ 000}\right]^2 \times 10^{-4}$ where : $F_{a \text{ min}} : \text{minimum necessary axial load} \qquad N$ $F_r : \text{radial load} \qquad N$ $n : \text{rotational speed} \qquad \min^{-1}$ $C_{0a} : \text{static axial load rating} \qquad N$
Standard cage	Machined cage
Equivalent axial load	Dynamic equivalent axial load $\cdots P_a = 1.2 \ F_r + F_a$ Static equivalent axial load $\cdots P_{0a} = 2.7 \ F_r + F_a$ (Note : $F_r/F_a \le 0.55$)

d 100 ~ (220) mm

Bound	lary di (mm		ions	Basic loa		Bearing No.				nsions _{im)}			Moun	ting dimen (mm)	sions	(Refer.)
d	D	T	r min.	$C_{\rm a}$	C_{0a}	Dearing No.	d_1	D_1	В	B_1	С	A	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
100	170 210	42 67	1.5 3	385 730	1 270 2 220	29320R 29420R	163 200	129 146	14 24	40 64	20.8 32	58 62	130 150	150 175	1.5 2.5	3.91 11.2
110	190 230	48 73	2 3	502 896	1 690 2 810	29322R 29422R	182 220	143 162	16 26	45.5 69	23 35	64 69	145 165	165 190	2 2.5	5.67 14.7
120	210 250	54 78	2.1 4	565 1 040	2 030 3 270	29324R 29424R	200 236	159 174	18 29	51 74	26 37	70 74	160 180	180 205	2	7.90 18.5
130	225 270	58 85	2.1 4	715 1 200	2 440 3 870	29326R 29426R	215 255	171 189	19 31	55 81	28 41	76 81	170 195	195 225	2	9.45 23.5
140	240 280	60 85	2.1 4	707 1 260	2 490 4 080	29328 29428R	230 268	183 199	20 31	57 81	29 41	82 86	185 205	205 235	2	11.1 24.6
150	250 300	60 90	2.1 4	767 1 380	2 740 4 620	29330R 29430R	240 285	194 214	20 32	57 86	29 44	87 92	195 220	215 250	2	11.7 29.6
160	270 320	67 95	3 5	862 1 590	3 070 5 370	29332 29432R	260 306	208 229	23 34	64 91	32 45	92 99	210 230	235 265	2.5 4	15.4 35.9
170	280 340	67 103	3 5	922 1 740	3 180 5 880	29334A 29434R	270 324	216 243	23 37	64 99	32 50	96 104	220 245	245 285	2.5 4	15.4 44.0
180	300 360	73 109	3 5	896 1 960	3 170 6 590	29336 29436R	290 342	232 255	25 39	69 105	35 52	103 110	235 260	260 300	2.5 4	20.7 52.2
190	320 380	78 115	4 5	1 170 2 230	4 230 7 690	29338 29438R	308 360	246 271	27 41	74 111	38 55	110 117	250 275	275 320	3 4	25.1 61.4
200	280 340 400	48 85 122	2 4 5	513 1 360 2 460	2 170 5 040 8 470	29240 29340 29440R	271 325 380	236 261 286	15 29 43	45 81 117	24 41 59	108 116 122	235 265 290	255 295 335	2 3 4	8.90 31.2 73.0
220	300 360	48 85	2 4	536 1 380	2 340 5 240	29244 29344	292 345	254 280	15 29	45 81	24 41	117 125	260 285	275 315	2 3	10.0

d (220) ~ (400) mm

	Boundary dimensions (mm) r		Basic loa (k	d ratings N)	Bearing No.				nsions nm)			Moun	ting dimen (mm)	sions	(Refer.)	
d	D	T	r min.	$C_{\rm a}$	C_{0a}	bearing No.	d_1	D_1	В	B_1	С	A	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
220	420	122	6	2 540	8 990	29444R	400	308	43	117	58	132	310	355	5	74.2
240	340	60	2.1	822	3 670	29248	330	283	19	57	30	130	285	305	2	16.7
	380	85	4	1 430	5 330	29348A	365	300	29	81	41	135	300	330	3	35.5
	440	122	6	2 610	9 510	29448R	420	326	43	117	59	142	330	375	5	83.0
260	360	60	2.1	838	3 720	29252	350	302	19	57	30	139	305	325	2	18.5
	420	95	5	1 540	6 040	29352	405	329	32	91	45	148	330	365	4	51.5
	480	132	6	3 100	11 100	29452R	460	357	48	127	64	154	360	405	5	110
280	380	60	2.1	826	3 730	29256	370	323	19	57	30	150	325	345	2	19.5
	440	95	5	1 760	6 870	29356	423	348	32	91	46	158	350	390	4	53.2
	520	145	6	3 650	13 600	29456R	495	387	52	140	68	166	390	440	5	137
300	420	73	3	1 060	4 880	29260	405	353	21	69	38	162	355	380	2.5	30.5
	480	109	5	1 970	7 780	29360	460	379	37	105	50	168	380	420	4	74.9
	540	145	6	3 880	14 900	29460R	515	402	52	140	70	175	410	460	5	146
320	440	73	3	1 430	6 480	29264R	430	372	21	69	38	172	375	400	2.5	32.7
	500	109	5	2 310	9 380	29364	482	399	37	105	53	180	400	440	4	78.0
	580	155	7.5	4 160	16 100	29464R	555	435	55	149	75	191	435	495	6	179
340	460	73	3	1 390	6 420	29268R	445	395	21	69	37	183	395	420	2.5	34.7
	540	122	5	3 050	12 700	29368R	520	428	41	117	59	192	430	470	4	106
	620	170	7.5	4 960	19 400	29468R	590	462	61	164	82	201	465	530	6	224
360	500	85	4	1 310	6 080	29272	485	423	25	81	44	194	420	455	3	51.8
	560	122	5	3 120	13 200	29372R	540	448	41	117	59	202	450	495	4	110
	640	170	7.5	5 150	20 600	29472R	610	480	61	164	82	210	485	550	6	231
380	520	85	4	1 380	6 610	29276	505	441	27	81	42	202	440	475	3	52.8
	600	132	6	3 540	15 000	29376R	580	477	44	127	63	216	480	525	5	141
	670	175	7.5	5 420	22 000	29476R	640	504	63	168	85	230	510	575	6	263
400	540	85	4	1 580	7 610	29280	526	460	27	81	42	212	460	490	3	55.3
	620	132	6	3 700	16 100	29380R	596	494	44	127	64	225	500	550	5	144

d (400) ~ 710 mm

Boun	dary di (mm		ions	Basic loa	d ratings N)	D in . N.				nsions	i		Moun	ting dimen	sions	(Refer.)
d	D	T	r min.	$C_{\rm a}$	C_{0a}	Bearing No.	d_1	D_1	В	B_1	C	A	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
400	710	185	7.5	6 200	25 300	29480R	680	534	67	178	89	236	540	610	6	315
420	580	95	5	1 850	8 750	29284	564	489	30	91	46	225	490	525	4	75.4
	650	140	6	4 060	17 700	29384R	626	520	48	135	68	235	525	575	5	169
	730	185	7.5	6 380	26 500	29484R	700	556	67	178	89	244	560	630	6	330
440	600	95	5	1 870	8 970	29288	585	508	30	91	49	235	510	545	4	77.9
	680	145	6	4 290	18 800	29388R	655	548	49	140	70	245	550	600	5	190
	780	206	9.5	7 290	30 000	29488R	745	588	74	199	100	260	595	670	8	423
460	620	95	5	1 950	9 620	29292	605	530	30	91	46	245	530	570	4	81.0
	710	150	6	3 680	15 800	29392	685	567	51	144	72	257	575	630	5	216
	800	206	9.5	7 520	31 600	29492R	765	608	74	199	100	272	615	690	8	438
480	650	103	5	2 300	11 600	29296	635	556	33	99	55	259	555	595	4	89.0
	730	150	6	3 650	15 800	29396	705	590	51	144	72	270	595	650	5	218
	850	224	9.5	8 690	36 300	29496R	810	638	81	216	108	280	645	730	8	548
500	870	224	9.5	8 650	36 400	294/500R	830	661	81	216	107	290	670	750	8	562
530	710	109	5	2 480	12 700	292/530	692	610	35	105	56	287	615	650	4	122
	800	160	7.5	4 790	26 000	293/530	772	648	54	154	76	295	650	715	6	285
	920	236	9.5	9 450	40 000	294/530R	880	700	87	228	114	309	705	795	8	664
560	750	115	5	2 770	13 900	292/560	732	644	37	111	60	302	645	690	4	145
	850	175	7.5	5 390	29 100	293/560	822	690	60	168	85	310	695	760	6	355
	980	250	12	9 890	40 500	294/560	940	729	90	242	120	328	750	835	10	793
600	800	122	5	2 950	15 500	292/600	780	688	39	117	65	321	690	735	4	171
	1 030	258	12	11 200	54 400	294/600	990	785	92	248	127	347	790	890	10	905
630	1 090	280	12	12 200	58 300	294/630	1 040	830	100	270	136	365	835	940	10	1 110
710	950	145	6	4 230	22 500	292/710	930	815	46	140	75	380	820	870	5	290
	1 220	308	15	15 400	76 300	294/710	1 165	925	113	298	150	415	930	1 050	12	1 520

d **800 ~ 1 060 mm**

Boun	dary di		ions	Basic loa	d ratings N)	Bearing No.				nsions nm)			Moun	ting dimen (mm)	sions	(Refer.) Mass
d	D	T	r min.	$C_{\rm a}$	C_{0a}	Dearing No.	d_1	D_1	В	B_1	C	A	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
800	1 180	230	9.5	9 170	45 700	293/800	1 146	965	78	222	112	440	975	1 055	8	850
1 060	1 400	206	9.5	8 860	52 000	292/1060	1 370	1 208	66	199	108	566	1 210	1 285	8	865

Bearings for continuous casting machines

Koyo

- In continuous casting machines, roll support bearings are used under heavy loads and at extremely low speed.
- In addition, the operating conditions are severe, resulting in exposure to splashing water and scales.
- SCP bearings for fixed side and SC bearings for free side are used for end of rolls.
- HSC bearing units with half-round outer ring is used for the intermediate support section of beetleshape rolls, such as driving rolls.
- JTEKT bearings for continuous casting machines are designed based on a full complement cylindrical
 roller bearing, with reference to maximized static load ratings. Crowning are set up on rolling surface of
 its rollers, according to the size of loads, which contributes to solve stress concentration at specific location.
- The bearing has the self-aligning mechanism to absorb roll bending and misalignment due to heavy load.

■ SC bearings (free side) (page 432)

 To accommodate thermal contraction and expansion of roll, the inner ring of this bearing are designed to move smoothly in the axial direction.

■ SCP bearings (fixed side) (page 432)

- The bearing has been developed for the purpose of improvement in short service life of spherical roller bearings most commonly used for continuous casting machines.
- The ribs provided for the inner and outer rings and loose rib allow accommodation of axial loads generated by thermal contraction and expansion of rolls.

■ HSC bearing units with half-round outer ring (page 438)

- To accommodate thermal contraction and expansion of roll, the inner ring and roller of this bearing are designed to move smoothly in the axial direction.
- This unit has unique structure, with a half-round outer ring placed on the loaded side only.
- This special half-round outer ring and compact seal design realizes a 15 % increase in static load rating over that of conventional products.
- The unique jacket design adjusts the flow of water and enables a high cooling efficiency, equivalent to that of conventional products with a lower water flow rate of 55 %.

d **50 ~ (110) mm**

SC bearings (free side)

SCP bearings (fixed side)

	,	dimensions nm)	r	Acceptable roll heat expansion	Basic load	1)	Bearing No.	Corresponding s	spherical rollo Basic load (kN	d ratings	Mass (kg)	(1	dimensions nm) D _a	Design
d	D	В	min.	(mm)	$C_{\rm r}$	C_{0r}		Dearing No.	$C_{\rm r}$	C_{0r}	(8)	min.	max.	
50	110	40	2	±4.5	164	254	SC101140VA	22310RHR	204	237	2.1	96	99	1
55	90	32	1.1	±3.5	89.9	202	SC119032VA	_	_	_	0.9	81	82	1
	100	25	1.5	±4	95.9	143	SC111025VA	22211RHR	124	144	0.9	93	93	1
65	120	31	1.5	±4	118	206	SC131231V-1A	22213RHR	178	211	1.7	110	111	1
	140	48	2.1	±5.5	238	393	SC131448VA	22313RHR	305	360	4.0	123	127	1
70	125	31	1.5	±6	126	213	SC141331VA	22214RHR	187	222	1.8	116	117	1
	150	51	2.1	±7.5	273	406	SC141551VA	22314RHR	348	413	4.7	132	137	1
75	130	31	1.5	±5	148	237	SC151331VA	22215RHR	193	236	1.9	120	121	1
85	150	65	3	±8	280	621	SC171565VA	24217RHB	370	558	5.4	129	137	1
	150	65	3	_	280	621	SCP171565VA	24217RHB	370	558	5.5	129	137	2
90	160	40	2	±4.5	240	427	SC181640-1VA	22218RHR	298	381	3.8	147	149	1
	160 160	40 52.4	2	±5.5	194 309	400 555	SCP181640V-1A SC181652VA	22218RHR 23218RH	298 336	381 482	3.9 4.9	147 144	149 148	2
	160	52.4 52.4	1.1		309 271	566	SC181652VA SCP181652V-2A	23218RH 23218RH	336	482	4.9 5.1	144	148	2
	160	45/48	2	±5.5	249	507	SC181645/48V-1A	23210NFI —		4 02	4.4	147	150	1
100	150	50	1.5	±6	232	543	SC201550VA	_	_	_	3.4	137	139	1
	150	50	1.5		232	543	SCP201550VA		_		3.4	137	139	2
	165	52	2	±5.5	279	600	SC201752V-1A	23120RH	328	510	4.8	149	153	1
105	160	56	2	±9	242	594	SC211656VA	24021RHA	317	550	4.4	144	149	1
110	170	45	2	±5.5	260	523	SC221745V-3A	23022RH	300	486	4.0	158	160	1
	170	45	2	_	260	523	SCP221745V-3A	23022RH	300	486	4.1	158	160	2
	170	60	2	±8	279	722	SC221760V-1A	24022RH	375	647	5.5	152	157	1
	170	64	2	±10	279	722	SC221764VA		_		5.8	151	157	1
	180	56	2	±7.5	296	667	SC221856V-8A	23122RH	385	605	6.1	162	167	1
	180	69	2	±9	355	842	SC221869V-3A	24122RH	469	778	7.6	157	164	1

d (110) ~ (150) mm

SC bearings (free side)

SCP bearings (fixed side)

	(m	dimensions nm)	r	Acceptable roll heat expansion	(1	ad ratings	Bearing No.	Corresponding Bearing No.	Basic loa	ler bearing d ratings N)	Mass (kg)	(m	dimensions m) D _a	Design
d	D	В	min.	(mm)	C_{r}	C_{0r}		2506.110	$C_{\rm r}$	C_{0r}	, 0,	min.	max.	
110	180 200	69 53	2 2.1	_	355 333	842 626	SCP221869V-3A SCP222053VA	24122RH 22222RHR	469 491	778 642	7.8 8.2	157 182	164 187	2 2
120	180 180	46 46	2 2	±6	231	588 588	SC241846V-2A SCP241846V-2A	23024RH 23024RH	314 314	524 524	4.5 4.6	168 168	170 170	1 2
	180	54	2	±12	246	516	SC241854VA	_	_	_	5.0	165	169	1
	180 180 180	58 60 56/46	2 2 2	±8 ±9 ±10	274 274 279	726 726 626	SC241858V-1A SC241860V-1A SC241856/46VA	24024RH —	397 —	709 —	5.7 5.8 5.2	164 163 165	168 168 169	1 1 1
	200 200	80 80	2 2	±9.5 —	521 431	1 120 1 040	SC242080VA SCP242080V-3A	24124RH 24124RH	605 605	1 020 1 020	11.1 12.0	174 174	183 183	1 2
130	200 200 200	52 69 69	2 2 2	±9 —	295 381 381	701 969 969	SCP262052V-1A SC262069V-1A SCP262069V-1A	23026RH 24026RH 24026RH	404 512 512	674 914 914	6.7 8.7 8.9	186 179 179	189 186 186	2 1 2
	200 210 210	79/69 64 80	2 2 2	±11 ±10 ±11.5	443 408 448	1 090 882 1 120	SC262079/69VA SC262164VA SC262180V-2A	23126RH 24126RH	— 494 620	— 799 1 080	9.6 9.2 11.9	177 190 184	185 196 193	1 1 1
	210 230	80 64	2 3	<u>+9</u>	448 442	1 120 950	SCP262180V-2A SC262364V-2A	24126RH 22226RHR	620 658	1 080 914	12.2 12.5	184 209	193 215	2
140	210 210 210	53 53 69	2 2 2	±6 — ±9.5	331 331 431	834 834 1 010	SC282153V-1A SCP282153V-1A SC282169RVA	23028RH 23028RH 24028RH	422 422 524	723 723 957	7.1 7.2 8.8	195 195 191	199 199 196	1 2 1
	210 225 225	69 68 68	2 2.1 2.1	±7 —	431 512 465	1 010 1 150 1 020	SCP282169RVA SC282368RVA SCP282368V-1A	24028RH 23128RH 23128RH	524 565 565	957 940 940	9.3 11.1 11.6	191 204 204	196 210 210	2 1 2
	225 225	85 85	2.1 2.1	±11.5	521 521	1 300 1 300	SC282385V-1A SCP282385V-1A	24128RH 24128RH	702 702	1 220 1 220	14.4 14.8	199 199	208 208	1 2
150	225 225	75 75	2.1 2.1	±9 —	492 492	1 220 1 220	SC302375V-6A SCP302375V-6A	24030RH 24030RH	593 593	1 100 1 100	11.4 11.8	203 203	209 209	1 2

d (150) ~ 220 mm

SC bearings (free side)

SCP bearings (fixed side)

	(n	dimensions nm)	r	Acceptable roll heat expansion	(1	ad ratings kN)	Bearing No.	Corresponding s Bearing No.	Basic loa	ller bearing ad ratings (N)	Mass (kg)	(m	dimensions nm) O _a	Design
d	D	В	min.	(mm)	$C_{\rm r}$	C_{0r}			$C_{\rm r}$	C_{0r}		min.	max.	
150	250	100	2.1	±14	666	1 650	SC3025100V-1A	24130RH	915	1 590	21.9	218	230	1
	270	96	3	±12	806	1 670	SC302796VA	23230RH	959	1 540	26.2	236	247	1
160	240	80	2.1	±13	542	1 280	SC322480-2VA	24032RH	679	1 270	13.6	216	225	1
	270	109	2.1	±13.5	867	1 980	SC3227109VA	24132RH	1 070	1 890	28.0	233	247	1
	340	114	4	±15	1 230	2 300	SC3234114VA	22332RHA	1 420	1 940	55.3	303	316	1
170	260	90	2.1	±14	622	1 560	SC342690V-1A	24034RH	828	1 540	18.7	232	241	1
	260	90	2.1	_	622	1 560	SCP342690V-1A	24034RH	828	1 540	19.1	232	241	2
	310	110	4	±14	1 010	2 180	SC3431110VA	23234RHA	1 210	1 940	40.1	270	285	1
180	280	100	2.1	±14	743	1 890	SC3628100V-1A	24036RH	984	1 830	25.0	248	260	1
	320	112	4	±15	950	2 350	SC3632112V-1A	23236RHA	1 320	2 170	43.5	280	295	1
	320	112	4	_	950	2 350	SCP3632112V-1A	23236RHA	1 320	2 170	44.1	280	295	2
190	290	75	2.1	_	595	1 530	SCP382975V-1A	23038RHA	789	1 430	20.3	268	274	2
	290	100	2.1	±14	768	2 030	SC3829100V-1A	24038RHA	1 010	1 920	26.1	259	269	1
	290	100	2.1	_	768	2 030	SCP3829100V-1A	24038RHA	1 010	1 920	26.8	259	269	2
	320	104	3	±12	1 030	2 270	SC3832104VA	23138RHA	1 210	2 080	37.2	288	298	1
	320	128	4	±15.5	1 120	2 790	SC3832128VA	24138RHA	1 460	2 630	46.7	278	293	1
	320	128	4	_	1 120	2 790	SCP3832128VA	24138RHA	1 460	2 630	47.8	278	293	2
	340	120	4	±16	1 110	2 720	SC3834120V-1A	23238RHA	1 490	2 470	53.0	301	315	1
200	310	82	2.1	_	692	1 810	SCP403182VA	23040RHA	940	1 680	25.9	282	291	2
	310	109	2.1	±11	978	2 550	SC403111RVA	24040RHA	1 180	2 230	33.5	273	286	1
	340	112	3	±16	1 080	2 490	SC4034112V-1A	23140RHA	1 380	2 340	46.0	304	317	1
	340	140	3	±19	1 350	3 090	SC4034140VA	24140RHA	1 660	2 970	56.1	292	313	1
220	370	150	4	±19	1 540	3 750	SC4437150VA	24144RHA	1 920	3 550	72.3	320	340	1

D 195 ~ (260) mm

Roll outside dia.				dimensions			Housing unit No.	Seal	type	Bearing No.	Acceptable roll heat	Basic loa	
D	d	В	Н	D_1	D_2	r	nousing unit No.	Recovery type	Non-recovery type	bearing No.	expansion (mm)	C_{r}	$C_{0\mathrm{r}}$
195	100	145	175	133	143	C8	PBA391H	_	0	HSC2017-1C3	±7	373	876
220	110 110	139 139	225 225	155 155	168 168	18 18	PBA399H PBA360H	0	_	HSC2219-7C3 HSC2219-6C3	±9 ±9	402 433	876 966
225	100	169	132	140	150	15	PBA328H	_	0	HSC2019C3	±8	603	1 250
230	110 110 110	113 113 141	185 185 246	160 160 160	173 173 173	13 13 18	PBA171H PBA171H PBA171AXH	_ _ _	0 - 0	HSC2219-3C3 HSC2219-8C3 HSC2219-1C3	±8 ±8 ±8	337 337 528	619 619 1 120
	110 110 110	148 148 150	351 351 190	160 160 160	173 173 173	13 13 15	PBA171AH PBA171AH PBA208H	_ _ _	<u> </u>	HSC2219C3 HSC2219-9C3 HSC2219-2C3	±8 ±8 ±8	421 421 554	846 846 1 190
	110 110 110	150 154 154	190 180 180	160 160 160	173 173 173	15 20 20	PBA208H PBA368H PBA404H	<u> </u>	_ O _	HSC2219-11C3 HSC2219-4C3 HSC2220C3	±8 ±8 ±9	554 554 575	1 190 1 190 1 270
235	140	145	175	175	186.5	C8	РВА339Н	_	0	HSC2821C3	±5	431	1 160
240	115 115 120	202 202 173	251 251 230	160 160 165	175 175 180	15 15 15	PBA316H PBA316H PBA396H	_ O O	<u> </u>	HSC2321C3 HSC2321-2C3 HSC2421-2C3	±10 ±10 ±9	745 745 673	1 550 1 550 1 510
250	120 120 120	151 153 153	190 185 145	172 175 175	185 190 190	20 20 20	PBA411H PBA336H PBA336AH	O _ _	_ 0 0	HSC2421-6C3 HSC2421C3 HSC2421C3	±9 ±8 ±8	576 651 651	1 310 1 380 1 380
	120 120 120	154 154 154	175 190 180	170 175 175	188 190 190	20 20 20	PBA378H PBA251H-2 PBA251H	0 0 -	_ _ O	HSC2421-1C3 HSC2421-4C3 HSC2421-3C3	±10 ±9 ±9	578 605 605	1 190 1 400 1 400
255	120 125	154	180	170	185	20	PBA407H PBA410H	0		HSC2421-5C3 HSC2522C3	±9 ±9	605 793	1 400
260	120	154	180	170	188	20	PBA379H	0		HSC2421-1C3	±9 ±10	578	1 190

D (260) ~ 320 mm

Roll outside dia.			Boundary d				Housing unit No.	Seal	type	Bearing No.	Acceptable roll heat	Basic loa	d ratings
D	d	В	Н	D_1	D_2	r	mousing unit ito.	Recovery type	Non-recovery type	Bearing No.	expansion (mm)	C_{r}	$C_{0\mathrm{r}}$
260	130	157	180	185	200	20	PBA412H	0	_	HSC2622-2C3	±9	623	1 480
265	140 140	175 191	242.5 250	190 190	205 205	20 20	PBA397H PBA355H	O —	<u> </u>	HSC2823-2C3 HSC2823-1C3	±9 ±7	699 721	1 640 1 710
270	130 140 140	154 126 126	190 205 205	185 199 199	200 212 212	20 16 16	PBA252H PBA176H PBA176H	_ _ 0	0	HSC2622C3 HSC2823C3 HSC2823-3C3	±9 ±8 ±8	623 505 505	1 480 992 992
	140 140	174 174	205 205	199 199	212 212	20 20	PBA207H PBA207H	0	<u> </u>	HSC2824-1C3 HSC2824-4C3	±8 ±8	863 863	1 980 1 980
275	150	163	175	190	203.5	C10	PBA389H	_	0	HSC3024C3	±7	711	1 800
280	130 130 145	174 174 196	205 160 260	185 185 200	200 200 215	20 20 20	PBA337H PBA337AH PBA356H		0	HSC2624C3 HSC2624C3 HSC2925-1C3	±8 ±8 ±6	846 846 840	1 910 1 910 1 930
290	140 140 145 145	139 139 178	215 215 215 215	208 208 208 208	223 223 223 223	16 16 20 20	PBA177H PBA177H PBA206H PBA206H	_ 0 _ 0	0	HSC2825C3 HSC2825-1C3 HSC2925C3 HSC2925-2C3	±8 ±8 ±8	863 863 967	1 980 1 980 2 260 2 260
295	145	208	270	200	215	20	PBA357H			HSC2926C3	±6	880	2 260
305	150	169	205	205	220	20	PBA408H	0		HSC3025C3	±8.5	855	1 990
310	140 140	184 184	215 175	205 205	220 220	20 20	PBA338H PBA338AH	_	0	HSC2827C3 HSC2827C3	±8 ±8	1 000 1 000	2 210 2 210
320	150 160 160	187 150 150	220 291 291	220 240 240	235 255 255	20 18 18	PBA380H PBA178H PBA178H		0	HSC3028C3 HSC3228C3 HSC3228-2C3	±9 ±8 ±8	1 040 816 816	2 370 1 680 1 680
	160 165	199 228	270 280	215 230	230 245	20 25	PBA398H PBA358H	0 —	<u> </u>	HSC3227C3 HSC3328C3	±9 ±6	1 000 1 030	2 410 2 550

D 340 ~ 370 mm

Roll outside dia.			-	dimensions m)			Housing unit No.	S	Seal ty	ype	Bearing No.	Acceptable roll heat	Basic loa	
D	d	В	Н	D_1	D_2	r		Recov	-	lon-recovery type	3	(mm)	C_{r}	$C_{0\mathrm{r}}$
340	180	235	280	245	260	25	PBA359H	_	=	0	HSC3630C3	±6	1 140	2 720
370	190	233	280	326	336	20	PBA324H	_	=	0	HSC3834C3	±7	1 540	3 540

- Since the bearing is used as the back up roll in multi-roll mills, the outer ring is designed thicker than ordinary bearings.
- Since high accuracy is required for these bearings under high pressure, they are designed to have high load rating and accuracy.
- Since several bearings are mounted on a shaft, radial runout of outer ring and variations of bearing section height per unit after assembly are minimized.
- Even if the outside surface of bearing's outer ring gets rough due to foreign matters caught in, the bearing can be used again by grinding.
- Bearings installed on the backing shaft come in cylindrical roller bearing and long cylindrical roller bearing. Either of both type bearings is used appropriately depending on the characteristics of rolling mills. Above all, the cylindrical roller bearing is most commonly used.
- These bearings are commonly used for the backing shafts of multi-roll mills.

d 31.75 ~ (130) mm, $F_{\rm w}$ 18 ~ 45 mm

	Bou	ndary dir (mm)	nensions			Basic loa (kl		Bearing No.	De-	Bearing section height at the time of manufacture (mm)	Mass	Compatible rolling mill model	Number of
d , $(F_{\rm w})$	D	T	C	r	r_1	$C_{\rm r}$	$C_{0\mathrm{r}}$	Bearing No.	sign	Н	(kg)	companies forming mini model	bearings used
(18)	35	_	46	0.5	_	33.8	52.0	04DC04046ADS	6	8.4875	0.225	Z-HIGH MILL	24
(25)	45	_	45	0.8		35.3	59.3	05DC05045ADS	6	9.9875	0.35	Z-HIGH MILL	64, 48
(28)	54	_	55	0.8	_	44.5	93.3	06DC05055DS	7	12.9875	0.677	Z-HIGH MILL	64
31.75	76.2	46.23	45.85	0.8	1.5	96.3	183	06DC0846A	9	22.200	1.27	ZR34	40
(45)	85	_	55	0.8	_	59.1	160	09DC09055DS	7	19.9925	1.69	Z-HIGH MILL	128
50	120	80	80	1.5	1.5	268	379	10DC1280DS	3	34.976	5.15	12-ROLL MILL	32
55	120	52.197	52	1.6	1.6	203	341	11DC1252	9	32.483	3.27	ZR24	40
65	165	70	70	1.5	2	424	586	13DC1770DS	10	49.982	8.83	20-ROLL MILL	40
70	160 160.07	90 90	90 90	1.5 1.5	1.5 1.5	347 379	546 667	14DC1690LDS-1 14DC1690ADS	11 1	44.977 45.000	10.1 10.5	ZR33 ZR33	40 32, 48
90	220 220 220	94 96 95	94 94 95	2 3 2	1.5 3 2	687 494 532	997 700 795	18DC2294DS 18DC2294/96DS 18DC2295DS	10 5 3	64.976 65.000 64.982	21.2 21.0 20.9	20-ROLL MILL 20-ROLL MILL 20-ROLL MILL	40 64 40
	220	130	130	2	2	699	1 130	18DC22130ADS	2	64.982	28.7	20-ROLL MILL	40, 32
99.995	225	120	120	3	3	625	995	20DC23120KDS-2	4	62.474	26.0	ZR23	32, 40, 48
100	225 225.021 225.021	100 80 120	100 80 120	3 1.5 1.5	1.5 1.5 1.5	547 607 814	838 991 1 440	20DC23100NDS-1 20DC23080DS 20DC23120MDS	11 8 1	62.480 62.474 62.474	21.7 18.2 27.2	ZR23 ZR23 ZR23	40 12 32
115	260	140	140	3	2	976	1 690	23DC26140DS	2	72.470	41.9	20-ROLL MILL	40
130	300.02 300.02 300.02	130 130 132	129 129 129	2 4 2	3 3.5 3	1 050 1 070 1 140	1 740 1 620 1 830	26DC30130DS 26DC30130BDS 26DC30132ADS	3 5 3	85.010 85.010 85.010	52.2 51.8 53.8	20-ROLL MILL 20-ROLL MILL 20-ROLL MILL	56 80 72
	300	160	159.5	4	3.5	1 330	2 340	26DC30160DS	1	84.9617	64.8	ZR22	40, 48

d (130) ~ 180 mm

	Bou	ndary di	mensions)				ad ratings N)	Bearing No.	De-	Bearing section height at the time of manufacture (mm)	Mass (kg)	Compatible rolling mill model	Number of
$d, (F_{\rm w})$	D	T	C	r	r_1	$C_{\rm r}$	$C_{0\mathrm{r}}$		sign	Н	(Kg)		bearings used
130	300 300	172.644 172.644	172.644 172.644	4	3.5 3.5	1 560 1 320	2 900 2 210	26DC30170MDS-5 26DC30170KDS-3	1 4	84.955 84.955	72.6 70.0	ZR22 ZR22	40, 48 40, 48
179.984	406.430	224.250	220	4	3	1 870	3 340	36DC41224KDS	4	113.181	150	ZR21	32, 48
180	406.420 406.42 406.420 406.42	171.04	171.04 171.04 217 224	4 4 4 4	4 3 0.5 3	2 060 1 550 2 350 2 290	3 810 2 700 4 500 4 230	36DC41171DS 36DC41171KDS 36DC41217DS+DP 36DC41224QDS	1 4 1 11	113.155 113.155 113.155 113.155	130 121 161 162	ZR21 ZR21 ZR21 ZR21	48, 56 48 40, 48 40, 48

___ Koyo

- These bearings are designed to support the main cutters of tunnel-boring machines.
- DTR···T (triple-row combined roller type) (page 452)

The DTR...T slewing rim bearing is a triplerow combined cylindrical roller bearing. This bearing is provided with various features required to support the main cutters of tunnelboring machines, including superior impact resistance, high load ratings, and excellent sealing performance. When used with forced oil circulation, this bearing is provided with oil supply and oil drain ports.

As the sealing mechanism of this bearing, a labyrinth, dust seal, or pressure-resistant seal featuring high sealing performance (resistant to a static pressure of 0.3 MPa) can be selected, depending on the lubrication method used.

For convenience of transportation, DTR···T bearings with the bearing rings split cylindrically into two or four parts are also available (SP/DTR···T).

■ 2TR··· (double-row tapered roller type) (page 460)

The 2TR... slewing rim bearing is a doublerow tapered roller bearing. To ensure high axial load ratings, this bearing features a large contact angle. Large-sized rollers are provided on the axial load-accommodating side.

The bearing ring on the non-gear side is made from bearing steel. It is treated through normal hardening, so therefore does not have any "soft zone," which an induction-hardened bearing may have, thus eliminating limits in determining the location of the non-gear-side bearing ring on machines or equipment.

The 2TR... bearing was developed to support the main cutters (oil bath lubrication) of tunnel-boring machines.

Slewing rim bearings for tunnel-boring machine

DTR...T type (With internal gear)

 $D_{\rm a}$ 2 550 ~ 5 200 mm

Bearing No.	De-	Outside dia.	Bore dia.	Height		ear dat ure angl				Din	nensi	ions				M		ing-l ter ri	nole of				g-ho r rin	le of	Rol		Basic static axial load	Gear spec	Induction	(Refer.)
bearing No.	sign	$D_{\rm a}$	$D_{\rm i}$	Н	D_{o}	Module	No. of tooth	b	$h_{\rm a}$	$h_{\rm i}$	0	$O_{\rm a}$	$O_{\rm i}$	U			Qty. $n_{\rm a}$	$d_{\rm a}$	$t_{\rm a}$ $d_{\rm a1}$ t	al Li	Qt	•	' _i t _i	d_{i1}	t_{i1}		rating C_{0a} (kN)	modification coefficient	tooth flanks and bottoms	(kg)
DTR2096TBGS	1 ¹⁾	2 550	2 096	240	2 128	16	133	190	175	210	30	2 298	2 324	4 2 1	1	2 500	48	φ24	110 M22	15 2 23	0 4	18 φ2	24 —	_	_ 23	57	20 900	_	0	2 150
DTR2156TBGS-1	1 ²⁾	2 595	2 156	240	2 184	14	156	190	175	210	30	2 384	2 383	3 2 2		2 545	48	φ24 1	120 M22	2 28	5 4	18 φ2	24 —	_	_ 24	28	19 000	_	0	2 140
DTR2176TBGS	1 ¹⁾	2 630	2 176	240	2 208	16	138	190	175	210	30	2 378	2 404	4 2 2		2 580	48	φ24 1	110 M22	15 2 31	0 4	18 φ2	24 —	_	_ 24	37	21 400	_	0	2 200
DTR2160TBGS	1	2 660	2 160	220	2 192	16	137	160	195	190	30	2 420	2 42	5 2 2		2 600	60	φ26 1	123 M24	50 2 30	0 6	60 φ2	26 —	_	_ 24	74	20 200	_	0	2 480
DTR2240TBGS	1 ¹⁾	2 705	2 240	240	2 272	16	142	190	175	210	30	2 451	2 47	7 2 3		2 655	60	φ24 1	110 M22	15 2 38	0 6	60 φ2	24 —	_	_ 25	10	22 300	_	0	2 360
DTR2296ATBGS-1	12)	2 735	2 296	200	2 324	16	142	190	175	210	30	2 451	2 47	7 2 3		2 655	60	φ24 1	110 M22	15 2 38	0 6	60 φ2	24 —	_	_ 25	50	29 500	_	0	2 360
DTR2208TBG	1	2 855	2 208	275	2 240	16	140	150	265	240	35	2 512	2 57	5 2 2		2 790	48	ф33 1	175 M30	0 2 35	0 4	18 ф3	3 —	_	_ 25	95	35 000	_	0	4 470
DTR2674TBGS	2	3 025	2 674	245	2 702	14	193	160	230	215	30	2 855	2 920	2 7		3 140	48	ф33 -		_ 2 81	0 4	18 ф3	33 30	M30	60 2 9	40	39 500	_	0	3 790
DTR2816TBGS	1	3 460	2 816	260	2 848	16	178	160	245	230	30	3 125	3 180	2 9		3 400	60	ф30 1	155 M27	0 2 96	0 7	72 φ3	80 —	_	_ 3 2	10	43 500	_	0	5 240
DTR2960TBGS-1	1	3 645	2 960	300	3 000	20	150	225	270	265	35	3 300	3 320	3 0	i	3 570	48	ф39 1	165 M36	3 14	0 6	60 ф3	19 —	_	_ 33	75	50 300	_	0	6 570
DTR3080TBGS	3	3 750	3 080	295	3 120	20	156	220	280	245	50	3 310	3 415	5 3 1		3 660	72	φ45 1	197 M42	3 26	0 7	72 —	_	M42	85 3 4	19	63 500	_	0	6 540
DTR3240ATBGS-1	1	3 925	3 240	300	3 280	20	164	225	270	265	35	3 580	3 600	3 3	;	3 850	48	ф39 1	165 M36	3 42	0 6	60 ф3	19 —	_	_ 36	55	53 000	_	0	7 120
DTR3250TBGS	1	3 925	3 250	300	3 280	20	164	225	270	265	35	3 570	3 610	3 3	;	3 850	48	ф39 1	165 M36	3 43	0 6	60 ф3	19 —	_	_ 36	55	53 000	0.25	0	6 970
DTR3834BTBGS	3	4 480	3 834	305	3 870	18	215	200	280	275	30	4 050	4 15	5 3 9	i	4 400	60	ф39 1	197 M36×3	33 4 00	0 6	60 ф3	9 40	M36×3	80 4 1	59	78 600	_	0	8 120
DTR3996TBGS-1	3	4 700	3 996	348	4 032	18	224	210	328	296	52	4 215	4 330	0 4 0	;	4 615	88	ф39 2	225 M36 1	3 4 17	5 8	38 φ3	9 50	M36	75 4 3	35	92 100	_	0	10 500
DTR4176ATBGS	1	5 200	4 176	380	4 224	24	176	290	345	340	40	4 560	4 75	5 43		5 080	100	ф48 2	230 M45	75 4 39	5 10	00 φ4	18 —	_	_ 47	33	159 000	_	0	6 970

[[]Notes] 1) Without oil seals.
2) With seal upper sideonly.

DTR...T type (With external gear)

D_a 2 688 ~ 4 550 mm

Bearing No.	De- sign	Outside dia. $D_{\rm a}$	Bore dia.	Height		iear dat ure angl Module	le 20°)	b	h_{a}	Din	nensi o	ons $O_{\rm a}$	$O_{ m i}$	U_{a}	Mour o	uter Qty.	_	g	L _i	in Qty.	ner	hole ring		PCD	Basic static axial load rating C_{0a} (kN)	Gear spec Addendum modification coefficient	Induction	(Refer.) Mass (kg)
DTR2060TAGS	1	2 688	2 060	260	2 656	16	166	160	230	245	30	2 340	2 395	2 610	2 550							155 N				_		3 780
DTR2150TAGS	1	2 830	2 150	300	2 800	20	140	180	240	285	60	2 480	2 540	2 730	2 650	48	ф39	_	2 235	48	ф39	178 N	36 70	2 445	39 500	0.25	0	4 670
DTR2045TAGS	1	2 880	2 045	310	2 840	20	142	225	275	300	35	2 375	2 567	2 774	2 700	44	φ42	_	2 125	40	ф42	195 N	39 70	2 420	79 700	_	0	6 320
DTR2020ATAG	1	2 950	2 020	400	2 900	25	116	270	355	375	45	2 420	2 550	2 825	2 720	64	φ48	_	2 120	48	ф48	265 N	145 70	2 430	53 100	_	0	8 700
DTR2350TAGS-1	1	3 030	2 350	295	3 000	20	150	180	235	280	60	2 649	2 745	2 930	2 860	48	ф39	_	2 425	48	ф39	197 N	36 83	2 645	47 700	0.25	0	4 980
DTR2510CTAGS	1	3 256	2 510	335	3 212	22	146	225	295	310	40	2 860	2 902	3 134	3 060	52	ф48	_	2 590	42	ф48	197 N	45 70	2 820	50 700	_	0	6 660
DTR2475TAGS-1	1	3 275	2 475	355	3 225	25	129	270	315	345	40	2 850	2 905	3 134	3 060	52	ф48	_	2 555	42	φ48	225 N	145 70	2 813	56 700	_	0	7 800
DTR2475TAGS-2	1	3 328	2 475	380	3 264	32	102	295	340	345	40	2 850	2 905	3 134	3 060	52	ф48	_	2 555	42	ф48	225 N	45 70	2 813	56 700	_	0	8 570
DTR2735TAGS	1	3 490	2 735	350	3 460	20	173	190	290	335	60	3 087	3 185	3 390	3 315	64	ф39	_	2 810	64	ф39	215 N	36 70	3 062	62 600	0.25	0	7 700
DTR2760TAGS-1	1	3 636	2 760	415	3 600	24	150	240	335	400	80	3 150	3 305	3 515	3 440	80	ф39	_	2 845	80	ф39	282 N	36 75	3 155	81 500	0.25	0	10 900
DTR2870TAGS-8	1	3 696	2 870	365	3 648	24	152	290	325	350	40	3 240	3 305	3 534	3 460	72	ф48	_	2 960	60	ф48	248 N	45 65	3 205	66 100	_	0	9 390
DTR2990TAG-1	2	3 740	2 990	350	3 696	22	168	190	295	335	60	3 410	3 470	3 630	3 535	48	M48	80	3 085	48	ф52	228 N	48 107	3 365	60 500	_	0	8 380
DTR3460TAGS	1 ¹⁾	3 984	3 460	245	3 920	14	280	190	215	245	30	3 722	3 735	3 865	3 815	48	ф33	_	3 515	48	ф33	140 N	30 50	3 663	40 600	_	0	4 350
DTR3400TAGS	1	4 250	3 400	365	4 200	25	168	290	325	350	40	3 770	3 873	4 120	4 030	100	φ48	_	3 490	80	ф48	248 N	45 65	3 745	84 600	_	0	11 300
DTR3330TAGS-3	1	4 268	3 330	435	4 224	22	192	290	395	415	40	3 810	3 893	4 140	4 050	100	ф48	_	3 420	80	ф48	287 N	45 85	3 745	99 600	_	0	14 800
DTR3205TAGS-1	1	4 464	3 205	550	4 416	24	184	400	500	480	50	3 650	4 042	4 340	4 230	100	ф62	_	3 295	80	ф48	320 N	145 85	3 755	200 000	_	0	25 600
DTR3450TAG	1	4 500	3 450	540	4 450	25	178	250	460	520	80	3 990	4 083	4 350	4 265	108	φ48	_	3 540	91	ф48	360 M ⁴	5×3 110	3 905	128 000	_	0	21 000
DTR3600ATAGS-1	1	4 550	3 600	435	4 500	25	180	300	390	415	45	4 080	4 163	4 410	4 320	100	ф48	_	3 690	80	φ48	287 N	45 85	4 015	107 000	_	0	16 100

[Note] 1) Without oil seals.

DTR...T type (With external gear) $D_{\rm a}$ 4 851 ~ 7 200 mm

Bearing No.	De-	Outside dia.	Bore dia.	Height		iear dat ure ang				Din	nensi	ons			Mounting-hole of outer ring	M		ing-h er ri	ole of		Roller	Basic static axial load	Addendum	cifications Induction hardened	(Refer.)
Dearing No.	sign	$D_{\rm a}$	$D_{\rm i}$	Н	D_{o}	Module	No. of tooth	b	ha	$h_{\rm i}$	0	$O_{\rm a}$	$O_{\rm i}$	$U_{\rm a}$	$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	$L_{\rm i}$	Qty. $n_{\rm i}$	$d_{\rm i}$	$t_{\rm i}$ $d_{\rm i1}$	t_{i1}	PCD	rating $C_{0a}\left(\mathrm{kN}\right)$	modification coefficient	tooth flanks and bottoms	
DTR3915TAGS	1	4 851	3 915	420	4 818	22	219	260	350	405	70	4 327	4 480	4 735	4 640 120 ø45 — 4	010	96	ф48 2	282 M45	75	4 330	113 000	0.25	0	16 500
DTR4075TAGS	1	4 851	4 075	365	4 818	22	219	260	295	345	70	4 440	4 538	4 740	4 650 96 \$\phi45 \cdots 4	160	96	φ45 2	225 M42	80	4 415	92 100	0.25	\circ	11 800
DTR4210TAG-2	3	5 202.4	4 210	400	5 152	28	184	224	335	390	119	4 710	4 780	5 070	4 950 60 \$\phi60 \cdot 4	330	72	ф60 2	297 M56	93	4 652	114 000	_	0	17 500
DTR4555ATAGS	1	5 500	4 555	420	5 456	22	248	260	380	405	40	4 975	5 117	5 385	5 290 120	650	96	ф48 2	282 M45	75	4 970	131 000	_	0	19 400
DTR4600TAG	1	5 544	4 600	420	5 500	22	250	260	380	405	40	5 075	5 160	5 430	5 335 96	695	96	ф48 2	282 M45	75	5 020	123 000	_	0	19 700
DTR4510TAG-1	1	5 550	4 510	440	5 500	25	220	320	390	430	50	5 035	5 140	5 420	5 310 100 \$\phi60 \cdot 4	620	100	ф60 3	300 M56	85	4 993	135 000	_	0	22 200
DTR5850TAG	1	7 200	5 850	535	7 140	30	238	300	455	515	80	6 415	6 713	7 045	6 930 120 ø62 — 5	960	120	ф62 З	375 M56	85	6 475	345 000	_	0	46 000

Slewing rim bearings for tunnel-boring machine

- Koyo

SP/DTR...T type (Splitted race and with external gear)

 $D_{\rm a}$ 2 950 ~ 7 140 mm

Design 1 (quarter split type)

quarter split type

double split type

Bearing No.	De-	Outside dia.	Bore dia.	Height		iear dat ure ang				Dim	ensi	ons			Mount	ing-ho er rin		M	ounti inne	ng-h er rir			Roller		Gear specifications Induction	(Refer.)
Bearing No.	sign	$D_{\rm a}$	$D_{\rm i}$	Н	D_{o}	Module	No. of tooth	b	$h_{\rm a}$	$h_{\rm i}$	0	$O_{\rm a}$	$O_{\rm i}$	$U_{\rm a}$	$L_{\rm a}$	Qty. $n_{\rm a}$	$d_{\rm a}$	$L_{\rm i}$	Qty.	$d_{\rm i}$ t	d_{i1}	t_{i1}	PCD	$\begin{array}{c} \text{rating} \\ C_{0a} \left(kN \right) \end{array}$	hardened tooth flanks and bottoms	(kg)
SP/DTR2020ATAG	1	2 950	2 020	400	2 900	25	116	270	355	375	45	2 420	2 550	2 825	2 720	64	ф50	2 120	48 ф	50 26	65 M45	70	2 430	47 200	0	8 700
SP/DTR4430TAG	1	5 550	4 430	410	5 500	25	220	250	360	390	50	4 925	5 140	5 420	5 310	80	ф62	4 550	80 ф	62 28	30 M56	110	4 955	159 000	0	22 300
SP/DTR4860TAG	1	6 050	4 860	450	6 000	25	240	250	370	430	80	5 370	5 640	5 920	5 810	80	ф62	4 980	80 ф	62 29	95 M56	85	5 420	222 000	0	28 000
SP/DTR5060TAG	1	6 250	5 060	450	6 200	25	248	250	370	430	80	5 570	5 840	6 120	6 010	80	ф62	5 180	80 ф	62 29	95 M56	85	5 620	232 000	0	29 100
SP/DTR5060TAG-2	1	6 250	5 060	450	6 200	25	248	285	405	430	45	5 570	5 840	6 120	6 010	80	ф62	5 180	72 ¢	62 30	00 M56	85	5 620	232 000	0	30 000
SP/DTR5060TAG-1	1	6 300	5 060	450	6 240	30	208	250	370	430	80	5 570	5 840	6 120	6 010	96	ф62	5 180	72 ¢	62 30	00 M56	85	5 620	232 000	0	29 700
SP/DTR5790TAG	1	7 140	5 790	535	7 080	30	236	300	455	515	80	6 340	6 685	6 985	6 870	120	ф62	5 900	96 ф	62 23	35 M56	85	6 415	319 000	0	45 600

2TR...type (with internal gear) D_a 2 580 ~ 3 800 mm

Design 1

Bearing No.	De-	Outside dia.	Bore dia.	Outer ring width		ear dat				Di	mens	ions					ting-ho ıter rir				g-hole r ring	of	axial load	Gear specifications Induction hardened	(Refer.)	
Dearing No.	sign	$D_{\rm a}$	$D_{\rm i}$	Н	D_{o}	Module	No. of tooth	b	$h_{\rm i}$	0	O_{a1}	$O_{\rm a}$	n2	$O_{\rm i}$	$U_{\rm i}$		$L_{\rm a}$	Qty. n _a	$d_{\rm a}$	$L_{\rm i}$	Qty. n _i	$d_{\rm i}$	$t_{\rm i}$	rating $C_{0a}(\mathrm{kN})$	tooth flanks and bottoms	(kg)
2TR2048-1CS	1	2 580	2 048	320	2 080	16	130	160	260	60	2 320	2 38	85 2	310	2 140		_	_	_	2 230	48	M30×3	50	13 600	0	3 530
2TR2376CS	2	2 800	2 376	180	2 400	12	200	130	180	_	2 582	2 60	05 2	550	2 450		2 750	84	ф23.5	2 500	84	M27	50	7 200	0	1 920
2TR2448-1CS	1	2 980	2 448	330	2 480	16	155	160	265	65	2 710	2 77	70 2	700	2 540		_	_	_	2 630	60	M30×3	50	15 200	0	4 240
2TR2450CS	1	2 980	2 464	330	2 492	14	178	160	265	65	2 710	2 77	70 2	700	2 540		_	_	_	2 630	60	M30×3	50	15 200	0	4 200
2TR3000ACS	2	3 500	2 996	210	3 024	14	216	160	210	-10	3 256	3 26	66 3	210	3 070		3 455	96	ф23	3 140	96	M33×3	50	10 000	0	3 300
2TR3180-1CS	1	3 797	3 180	330	3 220	20	161	220	285	45	3 516	3 58	80 3	488	3 305		_	_		3 405	96	M36×3	60	20 300	0	6 390
2TR3216CS	1	3 800	3 216	330	3 248	16	203	200	285	45	3 516	3 58	80 3	488	3 305		_	_	_	3 405	96	M33×3	55	20 300	0	6 200

Spherical roller bearing for wind turbine generator main shaft

Features of spherical roller bearing for wind turbine generator main shaft

- The bearing, featuring superior radial load rating, can accommodate radial load and axial load in both directions.
- Optimization of raceway profile allows stable rotation performance.
- It absorbs misaligement in mounting and deflection. (Allowable aligning angle: 1° or more)

Bearing No.	Bounda	ry dime (mm)	ensions	Bearing No.	Bounda	ary dime	ensions	Bearing No.	Bound	ary dime (mm)	nsions
	d	D	B		d	D	B	_	d	D	B
24156	280	460	180	24188	440	720	280	240/630	630	920	290
23060	300	460	118	24096	480	700	218	240/710	710	1 030	315
23160	300	500	160	230/530	530	780	185	230/750	750	1 090	250
23064	320	480	121	230/560	560	820	195	230/850	850	1 220	272
24064	320	480	160	240/600	600	870	272	240/900	900	1 280	375
23188	440	720	226	230/630	630	920	212	240/950	950	1 360	412

Back-up roll units for hot leveler

Bou	ndary (dimens _{m)}	ions	Bearing No.	Basic loa	d ratings N)	Mass	
D	d	R	L		$C_{\rm r}$	C_{0r}	(kg)	
190	75	191	280	RM783C	591	964	42	
200	90	230	310	RM962A	830	1 590	55	
255	120	300	410	RM876B	1 440	2 890	120	
310	130	370	480	RM1004	2 200	4 450	209	
320	150	277	380	RM782H	1 760	3 340	171	
412	180	295	420	RM736D	2 810	5 540	309	
442	185	320	460	RM821C	2 910	5 350	374	

Back-up roll units for tension leveler

Bou	ndaı	y dir		sions	Bearing No.		ad ratings (N)	Types	Bou	ndaı	ry dir (mm)		sions	Bearing No.		ad ratings (N)	Types
D	В	d	T	Н		$C_{\rm r}$	C ₀ r		D	В	d	T	Н		$C_{\rm r}$	C0r	
47	115	20	145	33.5	TLW47115	58.5	113	2	65	155	24	205	44.5	TLW65155A	92.6	187	2
										204	24	243	44.5	TLD65204	92.6	187	1
50	80	24	106	37	TLD50080	42	70.5	1		258	24	308	44.5	TLW65258A	92.6	187	2
	115	20	153	35	TLD50115	75.8	120	1		275	24	21/	44.5	TLD65275	92.6	187	1
	180	20	218	35	TLD50180	75.8	120	1		2/3	24	314	44.5	111003273	92.0	101	'
51	150	22	191	36.5	TLD51150	75.8	120	1	75	155	30	205	52.5	TLW75155E	147	253	2
31	240	22		36.5	TLD51130	75.8	120	1		170	30	215	52.5	TLD75170A	147	253	1
	240	22	201	30.3	11031240	75.0	120	Ľ		258	30	308	52.5	TLW75258E	147	253	2
53	128	24	178	38.5	TLW53128	53.3	122	2		265	30	310	52.5	TLD75265A	147	253	1
	218	24	268	38.5	TLW53218	53.3	122	2									-
								<u> </u>	90	170	31	218	60.5	TLW90170	149	227	2
63	163	22.2	204	42.5	TLD63163	92.6	187	1		280	31	328	60.5	TLW90280	149	227	2
	240	22	281	42.5	TLW63240	92.6	187	2									-
	275	22.2	316	42.5	TLD63275	92.6	187	1	130	285	69.5	348	99.75	TLW130285E	154	349	2
	352	22	393	42.5	TLW63352	92.6	187	2		450	69.5	513	99.75	TLW130450E	154	349	2

	В	ound	lary d (mr	imensi	ons		Bearing No.	Mass
D	F	SD	HW	P	TBW	HD		(kg)
30	1 250	8	92	10	1 466	26	WTL301250S08B	7.5
	1 500	8	92	10	1 716	26	WTL301500S08A	8.9
38	1 250	12	70	10	1 410	29	WTL381250AS12F	11.5
	1 500	12	92	10	1 716	32	WTL381500S12	14.2
40	1 250	12	80	10	1 482	29	WTL401250AS12E	13.1
	1 500	12	92	10	1 716	32	WTL401500AS12D-1	15.6
46	1 900	15	94	14.75	2 133.5	38	WTL461900S15	26.0
50	1 250	12	92	10	1 466	32	WTL501250S12D	20.2
	1 500	12	92	10	1 716	32	WTL501500AS12D-1	23.3
52	1 900	15	94	14.75	2 133.5	38	WTL521900S15B-1	32.5
60	1 250	12	80	10	1 482	29	WTL601250S12E	28.6
	1 500	25	110	15	1 810	56	WTL601500S25	36.5
	1 900	15	94	14.75	2 133.5	38	WTL601900S15B-1	43.0
80	1 250	12	92	10	1 466	32	WTL801250S12D	49.7
	1 500	12	92	10	1 716	32	WTL801500S12D-1	58.8
100	1 250	12	92	10	1 466	32	WTL1001250S12D	77.1
	1 500	12	92	10	1 716	32	WTL1001500S12	92.3

Ladder bearing for converter

Ladder bearings smoothly absorb (let off) thermal expansion of the trunnion ring during operation.

Bound	ary dime	ensions	Bearing No.	Basic static load rating (kN)	Converter capacity
A	B	C		C _{0r}	(ton)
83	340	90	THP83X340B	2 570	60
280	420	95	THP280X420	11 800	200
300	400	80	THP300X400B	6 690	150
400	400	85	THP400X400	14 900	200

Trunnion split bearing for converter

In integral type bearings, if they are required to be replaced at fixed side, all the tilting units surrounding the bearings must be removed, and exceedingly major replacement work has been required.

Use of split bearing enables easy handling of bearings and easy maintenance in the future.

Во	•	dimens	ions	Bearing No.	Basic loa	d ratings N)	Converter capacity
Bore diameter	Outside diameter	Inner ring width	Outer ring width	S	Cr	C_{0r}	(ton)
420	620	150	94	SP/92532W33CC3	2 130	4 060	160
750	1 090	395	250	SP/SR750W33-1C3	7 950	18 200	_
1 250	1 750	610	390	SP/SR1250W33-1C3	18 800	48 100	_
1 396	1 700	168+10	90	SP/SC1400CS780	2 780	8 620	_

Sealed bearing for sintered equipment

 Bearing for pressure roller Sealed type double-row cylindrical roller bearing

Wheel

 Wheel bearing Sealed type double-row tapered roller bearing

- Special seals are provided on both sides to prevent ingress of sintered dusts.
- Special heat resistant grease withstanding high temperature and long use is adopted.
- · High load rating full complement type.
- Thickness is optimized to secure strength of outer ring.
- Internal clearance of bearing is optimized.

Wheel bearing

- The seal mechanism prevents ingress of foreign matters into bearings.
- Special heat resistant grease withstanding high temperature and long use is adopted.
- Crowning is optimized to accommodate heavy load.
- Internal clearance of bearing is optimized.
- Bearing with the inner ring having locating snap ring to improve retrofitting performance is also available.

Bearing for pressure roller

Pressure roller

Bour	ndary (dimen: m)	sions	Bearing No.		ad ratings N)
d	D	В	C		$C_{\rm r}$	C_{0r}
120	210	132	132	24DCS21132V	449	1 400
130	210	150	150	26DCS21150V	540	1 830
160	250	140	140	32DCS25140BV	922	2 120

Wheel bearing

Boun	dary o	limens m)	sions	Bearing No.	Basic load rating (kN)		
d	D	В	C	S	$C_{\rm r}$	C_{0r}	
90	160	78	78	46T181608A-1RS-1	350	522	
100	180	100	100	46T201810RS-5	443	676	
110	200	90	90	46T222009BRS	477	704	

Spherical roller bearings for shaker screens

Features of the bearings for shaker screens

- Considering lubricant flow under vibration and lubricating status of sliding surface, outer ring guided cage in special profile is used.
- (2) The cage is made of high-tensile brass casting for sufficient strength and resistance to wear.
- (3) While the bearing is rotated, peripheral speed difference occurs to the double row rollers. To prevent damages to cage including wear and breakage, separate and non-incorporated, prong type machined cage is used.
- (4) For smooth rolling motion of rollers, asymmetrical rollers having cone center are adopted.
- (5) Especially, bearing outside diameter tolerance is held to a small allowable variation.
- (6) C3 or C4 bearing internal clearance is used.

Bearing No.	Bound	ary dime (mm)	ensions	Bearing No.	Boundary dimensions (mm)				
	d	D	B		d	D	B		
22320RROVSW502	100	215	73	22332ROVSW502	160	340	114		
22322RROVSW502	110	240	80	22334ROVSW502	170	360	120		
22324RROVSW502	120	260	86	22336ROVSW502	180	380	126		
22326RROVSW502	130	280	93	22338ROVSW502	190	400	132		
22328ROVSW502	140	300	102	22340ROVSW502	200	420	138		
22330ROVSW502	150	320	108						

Bearing number of spherical roller bearings (mainly 223 series) should be followed by "R (RR) OVS W502"

Regrinding jigs for bearings for backing shafts

- The regrinding jig grinds the outside surfaces of bearings used on the backing shafts of multi-roll mills with high precision.
- The jig hydraulically grinds the outside surface while turning the outer ring and retaining the inner ring stationary, while it completely nullifies any clearance on the fitting surface between the jig and bearing and the internal clearance of the bearing, minimizing radial runout.
- The jig grinds bearing assemblies without need of disassembly, causing improvement in workability of installation and removal.

Oil / air lubricator for steel making and rolling equipment

Supplementary table 1 (1) SI units and conversion factors

Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units
Angle	rad [radian(s)]	° [degree(s)] * ' [minute(s)] * " [second(s)] *	$1^{\circ} = \pi / 180 \text{ rad}$ $1' = \pi / 10 800 \text{ rad}$ $1'' = \pi / 648 000 \text{ rad}$	1 rad = 57.295 78°
Length	m [meter(s)]	Å [Angstrom unit] μ [micron(s)] in [inch(es)] ft [foot(feet)] yd [yard(s)] mile [mile(s)]	$\begin{array}{c} 1 \; \mathring{A} = 10^{-10} \; m = 0.1 \; nm = 100 \; pm \\ 1 \; \mu = 1 \; \mu m \\ 1 \; in = 25.4 \; mm \\ 1 \; ft = 12 \; in = 0.304 \; 8 \; m \\ 1 \; yd = 3 \; ft = 0.914 \; 4 \; m \\ 1 \; mile = 5 \; 280 \; ft = 1 \; 609.344 \; m \end{array}$	$\begin{array}{l} 1 \ m = 10^{10} \ \mathring{A} \\ \\ 1 \ m = 39.37 \ in \\ 1 \ m = 3.280 \ 8 \ ft \\ 1 \ m = 1.093 \ 6 \ yd \\ 1 \ km = 0.621 \ 4 \ mile \end{array}$
Area	m ²	a [are(s)] ha [hectare(s)] acre [acre(s)]		$1 \text{ km}^2 = 247.1 \text{ acre}$
Volume	m ³	(, L [liter(s)] * cc [cubic centimeters] gal(US) [gallon(s)] floz(US) [fluid ounce(s)] barrel(US) [barrels(US)]	$\begin{array}{c} 1 \; \ell = 1 \; dm^3 = 10^{-3} \; m^3 \\ 1 \; cc = 1 \; cm^3 = 10^{-6} \; m^3 \\ 1 \; gal(US) = 231 \; in^3 = 3.785 \; 41 \; dm^3 \\ 1 \; floz(US) = 29.573 \; 5 \; cm^3 \\ 1 \; barrel(US) = 158.987 \; dm^3 \end{array}$	$\begin{array}{l} 1\ m^3 = 10^3\ \ell \\ 1\ m^3 = 10^6\ cc \\ 1\ m^3 = 264.17\ gal \\ 1\ m^3 = 33\ 814\ floz \\ 1\ m^3 = 6.289\ 8\ barrel \end{array}$
Time	s [second(s)]	min [minute(s)] * h [hour(s)] * d [day(s)] *		
Angular velocity	rad/s			
Velocity	m/s	kn [knot(s)] m/h *	1 kn = 1 852 m / h	1 km / h = 0.539 96 kn
Acceleration	m/s ²	G	1 G = 9.806 65 m / s ²	$1 \text{ m/s}^2 = 0.101 97 \text{ G}$
Frequency	Hz [hertz]	c / s [cycle(s)/second]	$1 \text{ c / s} = 1 \text{ s}^{-1} = 1 \text{ Hz}$	
Rotational frequency	s ⁻¹	rpm [revolutions per minute] min ⁻¹ * r / min	1 rpm = 1 / 60 s ⁻¹	$1 s^{-1} = 60 \text{rpm}$
Mass	kg [kilogram(s)]	t [ton(s)] * Ib [pound(s)] gr [grain(s)] oz [ounce(s)] ton (UK) [ton(s)(UK)] ton (US) [ton(s)(US)] car [carat(s)]	$\begin{array}{c} 1 \ t = 10^3 \ kg \\ 1 \ lb = 0.453 \ 592 \ 37 \ kg \\ 1 \ gr = 64.798 \ 91 \ mg \\ 1 \ oz = 1/16 \ lb = 28.349 \ 5 \ g \\ 1 \ ton(UK) = 1016.05 \ kg \\ 1 \ ton(US) = 907.185 \ kg \\ 1 \ car = 200 \ mg \end{array}$	1 kg = 2.204 6 lb 1 g = 15.432 4 gr 1 kg = 35.274 0 oz 1 t = 0.984 2 ton(UK) 1 t = 1.102 3 ton(US) 1 g = 5 car

[Note] *: Unit can be used as an SI unit. No asterisk: Unit cannot be used. Supplementary table 1 (2) SI units and conversion factors

Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units
Density	kg/m ³			
Linear density	kg/m			
Momentum	kg·m/s			
Moment of momentum, angular momentum	$\left.\begin{array}{c} \\ \\ \\ \\ \end{array}\right\} \text{ kg·m}^2/\text{s}$			
Moment of inertia	kg·m ²			
Force	N [newton(s)]	dyn [dyne(s)] kgf [kilogram-force] gf [gram-force] tf [ton-force]	1 dyn = 10 ⁻⁵ N 1 kgf = 9.806 65 N 1 gf = 9.806 65×10 ⁻³ N 1 tf = 9.806 65×10 ³ N	$\begin{array}{c} 1 \text{ N} = 10^5 \text{ dyn} \\ 1 \text{ N} = 0.101 \text{ 97 kgf} \end{array}$
		lbf [pound-force]	1 lbf = 4.448 22 N	1 N = 0.224 809 lbf
Moment of force	N·m [Newton meter(s)]	gf·cm kgf·cm kgf·m tf·m lbf·ft	$\begin{array}{l} 1~gf\text{-}cm~=9.806~65\times10^{-5}~N\text{-}m\\ 1~kgf\text{-}cm~=9.806~65\times10^{-2}~N\text{-}m\\ 1~kgf\text{-}m~=9.806~65~N\text{-}m\\ 1~tf\text{-}m~=9.806~65\times10^{3}~N\text{-}m\\ 1~lbf\text{-}ft~=1.355~82~N\text{-}m \end{array}$	1 N·m = 0.101 97 kgf·m $1 N·m = 0.737 56 lbf·ft$
Pressure, Normal stress	$Pa \\ [Pascal(s)] \\ or \ N/m^2 \\ \{1 \ Pa = 1 \ N/m^2\}$	gf / cm² kgf / mm² kgf / m² lof / in² bar [bar(s)] at [engineering air pressure] mH ₂ O, mAq [meter water column] atm [atmosphere] mHg [meter merury column] Torr [torr]	$\begin{array}{l} 1~gf/cm^2~=9.806~65\times10~Pa\\ 1~kgf/mm^2=9.806~65\times10^6~Pa\\ 1~kgf/m^2~=9.806~65~Pa\\ 1~kgf/m^2~=6.894.76~Pa\\ 1~kgf/m^2~=6.894.76~Pa\\ 1~kgf/cm^2=9.806~65\times10^4~Pa\\ 1~kgf/cm^2=9.806~65\times10^3~Pa\\ 1~kgf/cm^2=9.806~65\times10^3~P$	$\begin{array}{lll} 1 \ MPa &= 0.101 \ 97 \ kgf \ / \ mm^2 \\ 1 \ Pa &= 0.101 \ 97 \ kgf \ / \ m^2 \\ 1 \ Pa &= 0.145 \times 10^{-3} \ lbf \ / \ in^2 \\ 1 \ Pa &= 10^{-2} \ mbar \\ \\ \end{array}$
Viscosity	Pa·s [pascal second]	P [poise] kgf·s / m ²	$10^{-2} P = 1 cP = 1 mPa \cdot s$ $1 kgf \cdot s / m^2 = 9.806 65 Pa \cdot s$	$1 \text{ Pa·s} = 0.101 \text{ 97 kgf·s} / \text{m}^2$
Kinematic viscosity	m ² /s	St [stokes]	$10^{-2} \text{ St} = 1 \text{ cSt} = 1 \text{ mm}^2 / \text{ s}$	
Surface tension	N/m			

Supplementary table 1 (3) SI units and conversion factors

Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units
Work, energy	J [joule(s)] {1 J=1 N·m}	eV [electron volt(s)] * erg [erg(s)] kgf·m lbf·ft	1 eV = (1.602 189 2± 0.000 004 6)×10 ⁻¹⁹ J 1 erg = 10 ⁻⁷ J 1 kgf·m = 9.806 65 J 1 lbf·ft = 1.355 82 J	1 J = 10 ⁷ erg 1 J = 0.101 97 kgf·m 1 J = 0.737 56 lbf·ft
Power	W [watt(s)]	erg / s [ergs per second] kgf·m / s PS [French horse-power] HP [horse-power (British)] lbf·ft / s	1 erg / s = 10 ⁻⁷ W 1 kgf·m / s = 9.806 65 W 1 PS = 75 kgf·m / s = 735.5 W 1 HP = 550 lbf·ft / s = 745.7 W 1 lbf·ft / s = 1.355 82 W	1 W = 0.101 97 kgf·m / s 1 W = 0.001 36 PS 1 W = 0.001 34 HP
Thermo-dynamic temperature	K [kelvin(s)]			
Celsius temperature	$\begin{bmatrix} \text{Celsius(s)} \\ \text{t } \mathbb{C} = (t + 273.15) \text{ K} \end{bmatrix}$	°F [degree(s) Fahrenheit]	$t {}^{\circ}F = \frac{5}{9} (t - 32) {}^{\circ}C$	$t^{\circ}C = (\frac{9}{5}t + 32)^{\circ}F$
Linear expansion coefficient	K ⁻¹	\mathbb{C}^{-1} [per degree]		
Heat	J [joule(s)] {1 J=1 N⋅m}	erg [erg(s)] kgf·m cal _{IT} [l. T. calories]	1 erg = 10 ⁻⁷ J 1 cal _{TT} = 4.186 8 J 1 Mcal _{TT} = 1.163 kW·h	$1 J = 10^7 \text{ erg}$ $1 J = 0.238 85 \text{ cal}_{\text{IT}}$ $1 \text{ kW} \cdot \text{h} = 0.86 \times 10^6 \text{ cal}_{\text{IT}}$
Thermal conductivity	W/(m·K)	W / (m⋅°C) cal / (s⋅m⋅°C)	$\begin{array}{c} 1 \text{ W } / \text{ (m-$^{\circ}$C)} = 1 \text{ W } / \text{ (m-$K)} \\ 1 \text{ cal } / \text{ (s-$m-$^{\circ}$C)} = \\ 4.186 \text{ 05 W } / \text{ (m-$K)} \end{array}$	
Coefficient of heat transfer	W/(m ² ·K)	$W / (m^2 \cdot \mathbb{C})$ cal / $(s \cdot m^2 \cdot \mathbb{C})$	$\begin{array}{c} 1 \text{ W } / \text{ (m}^2 \cdot ^{\circ}\text{C}) = 1 \text{ W } / \text{ (m}^2 \cdot \text{K)} \\ 1 \text{ cal } / \text{ (s} \cdot \text{m}^2 \cdot ^{\circ}\text{C}) = \\ 4.186 \text{ 05 W } / \text{ (m}^2 \cdot \text{K)} \end{array}$	
Heat capacity	J/K	J/ °C	1 J / °C = 1 J / K	
Massic heat capacity	J/(kg·K)	J/(kg⋅℃)		

[Note] * : Unit can be used as an SI unit.

No asterisk: Unit cannot be used.

Supplementary table 2 Inch/millimeter conversion

							Inches					
	Inch	0	1	2	3	4	5	6	7	8	9	10
							mm					
0	0	0	25.4000	50.8000	76.2000	101.6000	127.0000	152.4000	177.8000	203.2000	228.6000	254.0000
1/64		0.3969	25.7969	51.1969	76.5969	101.9969	127.3969	152.7969	178.1969	203.5969	228.9969	254.3969
1/32		0.7938	26.1938	51.5938	76.9938	102.3938	127.7938	153.1938	178.5938	203.9938	229.3938	254.7938
3/64		1.1906	26.5906	51.9906	77.3906	102.7906	128.1906	153.5906	178.9906	204.3906	229.7906	255.1906
1/16 5/64		1.5875 1.9844	26.9875 27.3844	52.3875 52.7844	77.7875 78.1844	103.1875 103.5844	128.5875 128.9844	153.9875 154.3844	179.3875 179.7844	204.7875 205.1844	230.1875 230.5844	255.5875 255.9844
3/32		2.3812	27.7812	53.1812	78.5812	103.9812	129.3812	154.7812	180.1812	205.5812	230.9812	256.3812
7/64		2.7781	28.1781	53.5781	78.9781	104.3781	129.7781	155.1781	180.5781	205.9781	231.3781	256.7781
1/8		3.1750	28.5750	53.9750	79.3750	104.7750	130.1750	155.5750	180.9750	206.3750	231.7750	257.1750
9/64		3.5719	28.9719	54.3719	79.7719	105.1719	130.5719	155.9719	181.3719	206.7719	232.1719	257.5719
5/32		3.9688	29.3688	54.7688	80.1688	105.5688	130.9688	156.3688	181.7688	207.1688	232.5688	257.9688
11/6		4.3656	29.7656	55.1656	80.5656	105.9656	131.3656	156.7656	182.1656	207.5656	232.9656	258.3656
3/16 13/6		4.7625 5.1594	30.1625 30.5594	55.5625 55.9594	80.9625 81.3594	106.3625 106.7594	131.7625 132.1594	157.1625 157.5594	182.5625 182.9594	207.9625 208.3594	233.3625 233.7594	258.7625 259.1594
7/32		5.5562	30.9562	56.3562	81.7562	100.7554	132.5562	157.9562	183.3562	208.7562	234.1562	259.5562
15/6		5.9531	31.3531	56.7531	82.1531	107.5531	132.9531	158.3531	183.7531	209.1531	234.5531	259.9531
1/4		6.3500	31.7500	57.1500	82.5500	107.9500	133.3500	158.7500	184.1500	209.5500	234.9500	260.3500
17/6		6.7469	32.1469	57.5469	82.9469	108.3469	133.7469	159.1469	184.5469	209.9469	235.3469	260.7469
9/32		7.1438	32.5438	57.9438	83.3438	108.7438	134.1438	159.5438	184.9438	210.3438	235.7438	261.1438
19/6		7.5406	32.9406	58.3406	83.7406	109.1406	134.5406	159.9406	185.3406	210.7406	236.1406	261.5406
5/16		7.9375	33.3375	58.7375	84.1375	109.5375	134.9375	160.3375	185.7375	211.1375	236.5375	261.9375
21/6 11/3		8.3344 8.7312	33.7344 34.1312	59.1344 59.5312	84.5344 84.9312	109.9344 110.3312	135.3344 135.7312	160.7344 161.1312	186.1344 186.5312	211.5344 211.9312	236.9344 237.3312	262.3344 262.7312
23/6		9.1281	34.5281	59.9281	85.3281	110.3312	136.1281	161.5281	186.9281	212.3281	237.7281	263.1281
3/8		9.5250	34.9250	60.3250	85.7250	111.1250	136.5250	161.9250	187.3250	212.7250		263.5250
25/6		9.9219	35.3219	60.7219	86.1219	111.5219	136.9219	162.3219	187.7219	213.1219	238.5219	263.9219
13/3		10.3188	35.7188	61.1188	86.5188	111.9188	137.3188	162.7188	188.1188	213.5188	238.9188	264.3188
27/6		10.7156	36.1156	61.5156	86.9156	112.3156	137.7156	163.1156	188.5156	213.9156	239.3156	264.7156
7/16		11.1125	36.5125	61.9125	87.3125	112.7125	138.1125	163.5125	188.9125	214.3125	239.7125	265.1125
29/6 15/3		11.5094 11.9062	36.9094 37.3062	62.3094 62.7062	87.7094 88.1062	113.1094 113.5062	138.5094 138.9062	163.9094 164.3062	189.3094 189.7062	214.7094 215.1062	240.1094 240.5062	265.5094 265.9062
31/6		12.3031	37.7031	63.1031	88.5031	113.9031	139.3031	164.7031	190.1031	215.1002	240.9031	266.3031
1/2		12.7000	38.1000	63.5000	88.9000	114.3000	139.7000	165.1000	190.5000	215.9000	241.3000	266.7000
33/6	4 0.515625	13.0969	38.4969	63.8969	89.2969	114.6969	140.0969	165.4969	190.8969	216.2969	241.6969	267.0969
17/3		13.4938	38.8938	64.2938	89.6938	115.0938	140.4938	165.8938	191.2938	216.6938	242.0938	267.4938
35/6		13.8906	39.2906	64.6906	90.0906	115.4906	140.8906	166.2906	191.6906	217.0906	242.4906	267.8906
9/16		14.2875	39.6875	65.0875	90.4875	115.8875	141.2875	166.6875	192.0875	217.4875	242.8875	268.2875
37/6 19/3		14.6844 15.0812	40.0844 40.4812	65.4844 65.8812	90.8844 91.2812	116.2844 116.6812	141.6844 142.0812	167.0844 167.4812	192.4844 192.8812	217.8844 218.2812	243.2844 243.6812	268.6844 269.0812
39/6		15.4781	40.4312	66.2781	91.6781	117.0781	142.4781	167.8781	193.2781	218.6781	244.0781	269.4781
5/8		15.8750	41.2750	66.6750	92.0750		142.8750	168.2750	193.6750	219.0750	244.4750	269.8750
41/6		16.2719	41.6719	67.0719	92.4719	117.8719	143.2719	168.6719	194.0719	219.4719	244.8719	270.2719
21/3		16.6688	42.0688	67.4688	92.8688	118.2688	143.6688	169.0688	194.4688	219.8688	245.2688	270.6688
43/6		17.0656	42.4656	67.8656	93.2656	118.6656	144.0656	169.4656	194.8656	220.2656	245.6656	271.0656
11/1 45/6		17.4625 17.8594	42.8625 43.2594	68.2625 68.6594	93.6625 94.0594	119.0625 119.4594	144.4625 144.8594	169.8625 170.2594	195.2625 195.6594	220.6625 221.0594	246.0625 246.4594	271.4625
23/3		18.2562	43.6562	69.0562	94.0594	119.4594	145.2562	170.2594	195.6594	221.0594	246.4594	271.8594 272.2562
47/6		18.6531	44.0531	69.4531	94.8531	120.2531	145.6531	171.0531	196.4531	221.8531	247.2531	272.6531
3/4		19.0500	44.4500	69.8500	95.2500	120.6500	146.0500	171.4500	196.8500	222.2500	247.6500	273.0500
49/6	4 0.765625	19.4469	44.8469	70.2469	95.6469	121.0469	146.4469	171.8469	197.2469	222.6469	248.0469	273.4469
25/3		19.8438	45.2438	70.6438	96.0438	121.4438	146.8438	172.2438	197.6438	223.0438	248.4438	273.8438
51/6		20.2406	45.6406	71.0406	96.4406	121.8406	147.2406	172.6406	198.0406	223.4406	248.8406	274.2406
13/1		20.6375	46.0375	71.4375	96.8375	122.2375	147.6375	173.0375	198.4375	223.8375	249.2375	274.6375
53/6 27/3		21.0344 21.4312	46.4344 46.8312	71.8344 72.2312	97.2344 97.6312	122.6344 123.0312	148.0344 148.4312	173.4344 173.8312	198.8344 199.2312	224.2344 224.6312	249.6344 250.0312	275.0344 275.4312
55/6		21.4312	47.2281	72.6281	98.0281	123.0312	148.4312	174.2281	199.2312	225.0281	250.0312	275.4312
7/8		22.2250	47.6250	73.0250	98.4250	123.8250	149.2250	174.6250	200.0250	225.4250		276.2250
57/6		22.6219	48.0219	73.4219	98.8219	124.2219	149.6219	175.0219	200.4219	225.8219	251.2219	276.6219
29/3		23.0188	48.4188	73.8188	99.2188	124.6188	150.0188	175.4188	200.8188	226.2188	251.6188	277.0188
59/6		23.4156	48.8156	74.2156	99.6156	125.0156	150.4156	175.8156	201.2156	226.6156	252.0156	277.4156
15/1		23.8125	49.2125	74.6125	100.0125	125.4125	150.8125	176.2125	201.6125	227.0125	252.4125	277.8125
61/6		24.2094	49.6094	75.0094	100.4094	125.8094	151.2094	176.6094	202.0094	227.4094	252.8094	278.2094
31/3 63/6		24.6062 25.0031	50.0062 50.4031	75.4062 75.8031	100.8062 101.2031	126.2062 126.6031	151.6062 152.0031	177.0062 177.4031	202.4062 202.8031	227.8062 228.2031	253.2062 253.6031	
03/0	4 0.3043/3	20.0001	50.7031	, 5.0031	101.2031	120.0031	102.0031	177.4031	202.0031	220.2031	200.0001	2,3.0031

Engler E (degree) 4.70 4.83 4.96 5.08 5.21 5.34 5.47 5.59 5.72 5.85 5.98 6.11 6.24 6.37 6.50 6.63 7.24 7.90 8.55 9.21 9.89 10.5 11.2 11.8 12.5 13.2 15.8 18.4 21.1 23.7 26.3 32.9 39.5

Supplementary table 3 Steel hardness conversion

Rockwell		Bri	nell	Roc	kwell	
C-scale 1 471.0 N (150 kgf)	Vicker's	Standard ball	Tungsten carbide ball	A-scale 588.4 N (60 kgf)	B-scale 980.7 N (100 kgf)	Shore
68	940			85.6		97
67	900			85.0		95
66	865		720	84.5		92
65 64	832 800		739 722	83.9 83.4		91 88
63	772		705	82.8		87
62	746		688	82.3		85
61	720		670	81.8		83
60	697		654	81.2		81
59	674		634	80.7		80
58	653		615	80.1		78
57	633		595	79.6		76
56	613		577	79.0		75
55	595	_	560	78.5		74
54	577	_	543	78.0		72
53 52	560 544	500	525 512	77.4		71 69
52 51	544 528	487	496	76.8 76.3		68
50	513	475	481	75.9		67
49	498	464	469	75.2		66
48	484	451	455	74.7		64
47	471	442	443	74.1		63
46	458	432	432	73.6		62
45	446	42		73.1		60
44	434	40		72.5		58
43	423	40		72.0		57
42	412		90	71.5		56
41 40	402 392		31 71	70.9 70.4		55 54
39	382		52	69.9	_	52
38	372		53	69.4	_	51
37	363		14	68.9	_	50
36	354		36	68.4	(109.0)	49
35	345	32	27	67.9	(108.5)	48
34	336		19	67.4	(108.0)	47
33	327		11	66.8	(107.5)	46
32	318	30		66.3	(107.0)	44
31	310		94	65.8	(106.0)	43
30 29	302 294	23	36	65.3 64.7	(105.5)	42
28	286	2		64.7	(104.5) (104.0)	41 41
27	279	26		63.8	(104.0)	40
26	272		58	63.3	(103.0)	38
25	266		53	62.8	(101.5)	38
24	260		17	62.4	(101.0)	37
23	254		13	62.0	100.0	36
22	248		37	61.5	99.0	35
21	243		31	61.0	98.5	35
20	238		26	60.5	97.8	34
(18) (16)	230 222	2:		_	96.7 95.5	33 32
(14)	213	20		_	93.9	32
(12)	204		94	_	92.3	29
(10)	196		37		90.7	28
(8)	188		79		89.5	27
(6)	180		71		87.1	26
(4)	173		55		85.5	25
(2)	166		58		83.5	24
(0)	160	1	52		81.7	24

Supplementary table 4 Viscosity conversion

			Биррі	CIIICIICA	V ISCUSI	ej com	CISIOII			
Kinematic viscosity		bolt second)		wood cond)	Engler	Kinematic viscosity		bolt second)		wood cond)
mm ² /s	100 °F	210 °F	50 ℃	100 ℃	E (degree)	mm ² /s	100 °F	210 °F	50 ℃	100 ℃
2	32.6	32.8	30.8	31.2	1.14	35	163	164	144	147
3	36.0	36.3	33.3	33.7	1.22	36	168	170	148	151
4	39.1	39.4	35.9	36.5	1.31	37	172	173	153	155
5	42.3	42.6	38.5	39.1	1.40	38	177	178	156	159
6	45.5	45.8	41.1	41.7	1.48	39	181	183	160	164
7	48.7	49.0	43.7	44.3	1.56	40	186	187	164	168
8	52.0	52.4	46.3	47.0	1.65	41	190	192	168	172
9	55.4	55.8	49.1	50.0	1.75	42	195	196	172	176
10	58.8	59.2	52.1	52.9	1.84	43	199	201	176	180
11	62.3	62.7	55.1	56.0	1.93	44	204	205	180	185
12	65.9	66.4	58.2	59.1	2.02	45	208	210	184	189
13	69.6	70.1	61.4	62.3	2.12	46	213	215	188	193
14	73.4	73.9	64.7	65.6	2.22	47	218	219	193	197
15	77.2	77.7	68.0	69.1	2.32	48	222	224	197	202
16	81.1	81.7	71.5	72.6	2.43	49	227	228	201	206
17	85.1	85.7	75.0	76.1	2.54	50	231	233	205	210
18	89.2	89.8	78.6	79.7	2.64	55	254	256	225	231
19	93.3	94.0	82.1	83.6	2.76	60	277	279	245	252
20	97.5	98.2	85.8	87.4	2.87	65	300	302	266	273
21	102	102	89.5	91.3	2.98	70	323	326	286	294
22	106	107	93.3	95.1	3.10	75	346	349	306	315
23	110	111	97.1	98.9	3.22	80	371	373	326	336
24	115	115	101	103	3.34	85	394	397	347	357
25	119	120	105	107	3.46	90	417	420	367	378
26	123	124	109	111	3.58	95	440	443	387	399
27	128	129	112	115	3.70	100	464	467	408	420
28	132	133	116	119	3.82	120	556	560	490	504
29	137	138	120	123	3.95	140	649	653	571	588
30	141	142	124	127	4.07	160	742	747	653	672
31	145	146	128	131	4.20	180	834	840	734	757
32	150	150	132	135	4.32	200	927	933	816	841
33	154	155	136	139	4.45	250	1 159	1 167	1 020	1 051
34	159	160	140	143	4.57	300	1 391	1 400	1 224	1 241
[Remark] 1	1 mm ² / s =	1 cSt (cer	nti stokes)							

[Remark] $1 \text{ mm}^2 / \text{s} = 1 \text{ cSt}$ (centi stokes)

Supplementary table 5 Shaft tolerances (deviation from nominal dimensions)

Unit: µm (Refer.)

	Supplementary table 3 Shart tolerances (deviation from normal dimensions) Deviation classes of shaft dia.																iii: μm	(neiei.)														
Nominal shaft dia (mm)								Devia	tion cla																					Nom shaft (m	m)	$\Delta_{dmp}^{1)}$ of bearing
over up	0	d 6	e 6	f 6	g 5	g 6	h 5	h 6	h 7	h 8	h 9	h 10	js 5	js 6	js 7	j 5	j 6		k 5	k 6	k 7	m 5	m 6	m 7	n 5	n 6	р6	r 6	r 7	over	up to	(class 0)
30 5	50 _	80 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 -11	0 -16	0 - 25	0 - 39	0 - 62	0 -100	± 5.5	± 8	±12.5	+ 6 - 5	+11 - 5		+13 + 2	+18 + 2	+ 27 + 2	+ 20 + 9	+ 25 + 9	+ 34 + 9	+ 28 + 17	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50	0 - 12
50 8		100	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 -19	0 - 30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5	±15	+ 6	+12		+15 + 2	+21 + 2	+ 32 + 2	+ 24 + 11	+ 30 + 11	+ 41 + 11	+ 33 + 20	+ 39 + 20	+ 51 + 32	+ 60 + 41	+ 71 + 41	50	65	0 - 15
		119	- 79	- 49	-23	- 29	-13	-19	- 30	- 40	- /4	-120				- /	- /		+ 2	+ 2	+ 2	+ 11	+ 11	+ 11	+ 20	+ 20	+ 32	+ 62 + 43 + 73	+ 73 + 43 + 86	65	80	- 15
80 12	20 -	120 142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 -22	0 - 35	0 - 54	0 - 87	0 -140	± 7.5	±11	±17.5	+ 6 - 9	+13		+18 + 3	+25 + 3	+ 38 + 3	+ 28 + 13	+ 35 + 13	+ 48 + 13	+ 38 + 23	+ 45 + 23	+ 59 + 37	+ 51	+ 51 + 89	80	100	0 - 20
																		_									-	+ 76 + 54 + 88	+ 54 +103	100	120	
120 18	80 -	145	- 85 -110	- 43	-14	- 14	0	0	0	0	0	0	+ 9	±12.5	+20	+ 7	+14		+21	+28 + 3	+ 43	+ 33	+ 40	+ 55	+ 45 + 27	+ 52 + 27	+ 68 + 43	+ 63 + 90 + 65	+ 63 +105	140	160	0 - 25
	-	170	-110	- 68	-32	- 39	-18	-25	- 40	- 63	-100	-160	_ ,	_12.0		-11	-11		+ 3	+ 3	+ 3	+ 15	+ 15	+ 15	+ 27	+ 27	+ 43	+ 65 + 93 + 68	+ 65 +108 + 68	160	180	- 25
																												+ 06 +106 + 77	+123 + 77	180	200	
180 25		170 199	$-100 \\ -129$	- 50 - 79	-15 -35	- 15 - 44	0 –20	0 -29	0 - 46	0 - 72	0 -115	0 -185	±10	±14.5	±23	+ 7 -13	+16 -13		+24 + 4	+33 + 4	+ 50 + 4	+ 37 + 17	+ 46 + 17	+ 63 + 17	+ 51 + 31	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225	0 - 30
																												+113 + 84	+130 + 84	225	250	
250 31	L5 _	190 222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 -130	0 -210	±11.5	±16	±26	+ 7 -16	±16		+27	+36 + 4	+ 56 + 4	+ 43 + 20	+ 52 + 20	+ 72 + 20	+ 57 + 34	+ 66 + 34	+ 88 + 56	+126 + 94 +130	+146 + 94 +150	250	280	0 - 35
	-		172	- 00	40	73	25	32	32	- 01	130	210				10			1 4			1 20	1 20	1 20	1 54	1 34	1 30	+ 98 +144	+ 98	280	315	
315 40	$\begin{vmatrix} -2 \\ -2 \end{vmatrix}$	210 246	$-125 \\ -161$	- 62 - 98	-18 -43	- 18 - 54	0 –25	0 -36	0 - 57	0 - 89	0 -140	0 -230	±12.5	±18	±28.5	+ 7 -18	±18		+29 + 4	+40 + 4	+ 61 + 4	+ 46 + 21	+ 57 + 21	+ 78 + 21	+ 62 + 37	+ 73 + 37	+ 98 + 62	+108 +150	+165 +108 +171	315	355 400	0 - 40
	١,	220	125		20	20	_		0	0	0	0				. 7			. 20	. 45	. 60	. 50	. 62	. 00	. 67	. 00	. 100	+114 +166 +126	+114 +189 +126	400	450	0
400 50	00 -2	230 270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 –27	0 -40	- 63	0 - 97	0 -155	0 –250	±13.5	±20	±31.5	+ 7 -20	±20		+32 + 5	+45 + 5	+ 68 + 5	+ 50 + 23	+ 63 + 23	+ 86 + 23	+ 67 + 40	+ 80 + 40	+108 + 68	+126 +172 +132	+126 +195 +132	450	500	- 45
500 63	20 -2	260	-145	- 76	-22 -54	- 22	0	0	0	0	0	0	±16	±22	±35				+32	+44	+ 70	+ 58	+ 70	+ 96	+ 76	+ 88	+122	+194 +150	+220 +150	500	560	0
500 03	-3	304	-189	-120	-54	- 66	-32	-44	- 70	-110	-175	-280	±10	±22	±33		_		0	0	0	+ 26	+ 26	+ 26	+ 44	+ 44	+ 78	+199 +155	+225 +155	560	630	- 50
630 80	00 -2	290 340	-160 -210	- 80 -130	-24 -60	- 24 - 74	0 -36	0 -50	0 - 80	0 -125	0 -200	0 -320	±18	±25	±40	_	_		+36	+50 0	+ 80	+ 66 + 30	+ 80 + 30	+110 + 30	+ 86 + 50	+100 + 50	+138 + 88	+225 +175 +235	+255 +175	630	710	0 - 75
		540	-210	-130	-00	- /4	-30	-30	- 00	-125	-200	-320							0	0	0	+ 30	+ 30	+ 30	+ 30	+ 30	+ 00	+235 +185 +266	+265 +185 +300	710	800	
800 100	00 =	320 376	$-170 \\ -226$	- 86 -142	-26 -66	- 26 - 82	0 -40	0 -56	0 - 90	0 -140	0 -230	0 -360	±20	±28	±45	-	-		+40	+56 0	+ 90	+ 74 + 34	+ 90 + 34	+124 + 34	+ 96 + 56	+112 + 56	+156 +100	+210 +276	+210 +310	900	900	0 -100
																												+220 +316 +250	+220 +355 +250	1 000		
1 000 1 25	i0 = 3	350 416	-195 -261	- 98 -164	-28 -75	- 28 - 94	0 –47	-66	0 -105	0 -165	0 –260	0 -420	±23.5	±33	±52.5	-	-		+47	+66 0	+105 0	+ 87 + 40	+106 + 40	+145 + 40	+113 + 66	+132 + 66	+186 +120	+250 +326 +260	+365 +260	1 120		0 -125
1 250 1 66	, -:	390	-220	-110	-30	- 30	0	0	0	0	0	0	.07.5	. 20	160 5				+55	+78	+125	+103	+126	+173	+133	+156	+218	+378 +300	+425 +300	1 250	1 400	0
1 250 1 60		390 468	-220 -298	-110 -188	-30 -85	- 30 -108	0 -55	0 -78	0 -125	-195	-310	-500	±27.5	±39	±62.5	_	-		0	0	0	+ 48	+ 48	+ 48	+133 + 78	+ 78	+140	+408 +330	+455 +330	1 400	1 600	-160
1 600 2 00	00 -4	430 522	-240 -332	-120 -212	-32 -97	- 32 -124	0 –65	0 -92	0 -150	0 -230	0 -370	0 -600	±32.5	±46	±75	_	_		+65	+92 0	+150 0	+123 + 58	+150 + 58	+208 + 58	+157 + 92	+184 + 92	+262 +170	+462 +370	+520 +370	1 600	1 800	0
[N. 1. 2. 4)		JZZ	-332	-212	-9/	-124	-00	-92	-130	-230	-3/0	-000							U	U	U	+ 38	+ 00	+ 38	+ 92	+ 92	+1/0	+492 +400	+550 +400	1 800	2 000	-200

[Note] 1) Δ_{dmp} : single plane mean bore diameter deviation

Supplementary table 6 Housing bore tolerances (deviation from nominal dimensions)

Unit : µm (Refer.)

	Deviation classes of housing bore														1		nal	$\Delta_{Dmp}^{(1)}$ of												
Nominal Bore dia. (mm)						Devi	ation (classes	of hou	using I	bore																	Nomi Bore o (mm	dia.	△ _{Dmp} · or bearing
over up to	E 6	F6	F 7	G 6	G 7	H 6	H 7	H 8	H 9	H 10	JS 5	JS 6	JS 7	J 6	J 7	K 5	K 6	K 7	M 5	M 6	M 7	N 5	N 6	N 7	P 6	P 7	R 7	over	up to	(class 0)
50 80	+ 79	+ 49	+ 60	+ 29	+ 40	+ 19	+ 30	+ 46	+ 74	+120	± 6.5	. 0.5	±15	+13	+18	+ 3	+ 4	+ 9	- 6	- 5	0	- 15	- 14	- 9	- 26	- 21	- 30 - 60	50	65	0
30 60	+ 60	+ 30	+ 30	+ 10	+ 10	0	0	0	0	0	± 0.5	± 9.5	±13	- 6	-12	-10	- 15	- 21	- 19	- 24	- 30	- 28	- 33	- 39	- 45	- 51	- 32 - 62	65	80	- 13
																											- 38	80	100	
80 120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35	+ 54	+ 87	+140	± 7.5	±11	±17.5	+16 - 6	+22 -13	+ 2 -13	+ 4 - 18	+ 10 - 25	- 8 - 23	- 6 - 28	0 - 35	- 18 - 33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	- 73 - 41			0 - 15
																											- 76	100	120	
																											- 48 - 88	120	140	(up to 150) 0
120 180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63	+100	+160	± 9	±12.5	±20	+18 - 7	+26 -14	+ 3 -15	+ 4 - 21	+ 12 - 28	- 9 - 27	- 8 - 33	0 - 40	- 21 - 39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	- 50 - 90	140	160	- 18 (over to 150)
																											- 53	160	180	0 - 25
																											- 93 - 60	180	200	
	+129	+ 79	+ 96	+ 44	+ 61	+ 29	+ 46	+ 72	+115	+185				+22	+30	+ 2	+ 5	+ 13	- 11	- 8	0	- 25	- 22	- 14	- 41	_ 33	-106 - 63			0
180 250	+100	+ 50	+ 50	+ 44 + 15	+ 15	0	0	0	0	0	±10	±14.5	±23	- 7	-16	-18	- 24	- 33	- 31	- 37	- 46	- 45	- 51	- 60	- 70	- 33 - 79	-109	200	225	- 30
																											- 67 -113	225	250	
	+142	+ 88	+108	+ 49	+ 69	⊥ 32	+ 52	+ 81	+130	+210				+25	+36	+ 3	+ 5	+ 16	- 13	- 9	0	- 27	- 25	- 14	- 47	- 36	- 74 -126	250	280	0
250 315	+110	+ 56	+ 56	+ 17	+ 17	+ 32	0	0	0	0	±11.5	±16	±26	- 7	-16	-20	- 27	- 36	- 36	- 41	- 52	- 50	- 57	- 66	- 79	- 88	- 78	280	315	- 35
																											-130 - 87	315	355	
315 400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36 0	+ 57	+ 89	+140	+230	±12.5	±18	±28.5	+29 - 7	+39 -18	+ 3 -22	+ 7 - 29	+ 17 - 40	- 14 - 39	- 10 - 46	0 - 57	- 30 - 55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	-144 - 93			0 - 40
	1123	1 02	1 02	1 10	1 10	Ů	Ů	Ů	Ů	Ů				,	10	22	23	40	- 55	70	37	33	02	73	- 07	30	-150	355	400	
400 500	+175	+108	+131	+ 60	+ 83	+ 40	+ 63	+ 97	+155	+250	.125	. 00	. 21 5	+33	+43	+ 2	+ 8	+ 18	- 16	- 10	0	- 33	- 27	- 17	- 55	- 45	-103 -166	400	450	0
400 500	+135	+ 68	+ 68	+ 20	+ 20	0	0	0	0	0	±13.5	±20	±31.5	- 7	-20	-25	- 32	- 45	- 43	- 50	- 63	- 60	- 67	- 80	- 95	-108	-109 -172	450	500	- 45
																											-150	500	560	
500 630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70	+110	+175	+280	±16	±22	±35	-	-	0 -32	0 - 44	0 - 70	- 26 - 58	- 26 - 70	- 26 - 96	- 44 - 76	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	-220 -155			0 - 50
																											-225 -175	560	630	
630 800	+210	+130	+160	+ 74		+ 50	+ 80	+125	+200	+320	±18	±25	±40	_	_	0	0	0	- 30	- 30	- 30	- 50	- 50	- 50	- 88	- 88 -168	-255	630	710	0_
333 333	+160	+ 80	+ 80	+ 24	+ 24	0	0	0	0	0						-36	- 50	- 80	- 66	- 80	-110	- 86	-100	-130	-138	-168	-185 -265	710	800	- 75
	. 226	. 1.42	. 176	. 01	. 116	. 56	. 00	.140	. 220	. 260						0	0	0	24	2/	24	5.6	5.6	5.6	100	100	-210 -300	800	900	0
800 1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90	+140	+230	+360	±20	±28	±45	-	-	-4 0	- 56	- 90	- 34 - 74	- 34 - 90	- 34 -124	- 56 - 96	- 56 -112	- 56 -146	−100 −156	$-100 \\ -190$	-220	900	1 000	-100
																											-310 -250			
1 000 1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66 0	+105	+165 0	+260	+420 0	±23.5	±33	±52.5	_	_	0 -47	0 - 66	0 -105	- 40 - 87	- 40 -106	- 40 -145	- 66 -113	- 66 -132	- 66 -171	−120 −186	-120 -225	-355	1 000	1 120	0
	+190	+ 90	+ 90	+ 20	+ 20	U	U	U	U	U						-4/	- 00	-105	- 0/	-100	-143	-113	-132	-1/1	-100	-223	-260 -365	1 120	1 250	-125
	+298	⊥188	⊥235	⊥108	⊥155	_{+ 78}	⊥125	⊥195	±310	±500						0	0	0	- 48	_ 48	_ 48	- 78	_ 78	- 78	-140	_140	-300 -425	1 250	1 400	0
1 250 1 600	+220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125	+195 0	+310	+500 0	±27.5	±39	±62.5	-	-	_55	- 78	-125	-103	- 48 -126	- 48 -173	-133	- 78 -156	-203	-218	$-140 \\ -265$	-330 -455	1 400	1 600	-160
																											-370			
1 600 2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92	+150	+230	+370	+600	±32.5	±46	±75	-	-	0 -65	- 92	0 -150	- 58 -123	$^{-58}_{-150}$	- 58 -208	- 92 -157	- 92 -184	- 92 -242	-170 -262	$-170 \\ -320$	-520	1 600		0 -200
	1270	1120	1120	. 52	1 52	Ŭ		Ŭ		Ü						00	<i>J</i> _	100	-125	100	200	-10/	101	L-1L	202	525	-400 -550	1 800	2 000	
0.000 0.500	+370	+240	+305	+144	+209	+110	+175	+280	+440	+700	. 22		.07.5			0	0	0	- 68	- 68	- 68	-110	-110	-110	-195	-195	-440 -615	2 000	2 240	0
2 000 2 500	+260	+240 +130	+305 +130	+144 + 34	+209 + 34	0	0	+280	0	0	±39	±55	±87.5	_	-	-78	-110	-175	-146	-178	-243	-188	-110 -220	-285	-305	-370	-460 -635	2 240	2 500	-250
		1	1		1							1															-033			

[Note] 1) Δ_{Dmp} : single plane mean outside diameter deviation

GLOBAL NETWORK **BEARING BUSINESS OPERATIONS**

JTEKT CORPORATION NAGOYA HEAD OFFICE

No.7-1, Meieki 4-chome, Nakamura-ku, Nagoya, Aichi 450-8515,

FAX: 81-52-527-1911

JTEKT CORPORATION OSAKA HEAD OFFICE

No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN

TEL: 81-6-6271-8451 FAX: 81-6-6245-3712

Sales & Marketing Headquarters

No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502. JAPAN

TEL: 81-6-6245-6087 FAX: 81-6-6244-9007

OFFICES

KOYO CANADA INC.

5324 South Service Road, Burlington, Ontario L7L 5H5, CANADA

TEL: 1-905-681-1121 FAX · 1-905-681-1392

KOYO CORPORATION OF U.S.A.

-Cleveland Office-

29570 Clemens Road, P.O.Box 45028, Westlake, OH 44145, U.S.A.

TEL: 1-440-835-1000 FAX: 1-440-835-9347

-Detroit Office-

47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL: 1-734-454-1500 FAX: 1-734-454-4076

KOYO MEXICANA, S.A. DE C.V.

Av. Insurgentes Sur 2376-505, Col. Chimalistac, Del. Álvaro

Obregón, C.P. 01070, México, D.F.

TEL: 52-55-5207-3860 FAX: 52-55-5207-3873

KOYO LATIN AMERICA, S.A.

Edificio Banco del Pacifico Planta Baja, Calle Aquilino de la

Guardia y Calle 52, Panama, REPUBLICA DE PANAMA

TEL: 507-208-5900

FAX: 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA.

Av. Reboucas 2472 Jardim America, Sao Paulo, BRASIL TEL: 55-11-3372-7500

FAX: 55-11-3887-3039

KOYO BEARINGS INDIA PVT. LTD. C/o Stylus Commercial Services PVT LTD, Ground Floor, The Beech, E-1, Manyata Embassy Business Park, Outer Ring Road,

Bengaluru-560045, INDIA

TEL: 91-80-4276-4567 (Reception Desk of Service Office) FAX: 91-80-4276-4568

JTEKT (THAILAND) CO., LTD.

172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND

TEL: 66-38-830-571/578 FAX: 66-38-830-579

PT. JTEKT INDONESIA

d/a. MM2100 Industrial Town Block DD-3, Cikarang Barat, Bekasi

17520, INDONESIA TFI : 62-21-8998-3273 FAX: 62-21-8998-3274

KOYO SINGAPORE BEARING (PTE.) LTD.

27, Penjuru Lane, #09-01 C&P Logistics Hub 2, SINGAPORE

TEL: 65-6274-2200 FAX: 65-6862-1623

KOYO MIDDLE EAST FZCO

6EA 601, Dubai Airport Free Zone, P.O. Box 54816, Dubai, U.A.E.

TEL: 97-1-4299-3600 FAX: 97-1-4299-3700 PHILIPPINE KOYO BEARING CORPORATION

6th Floor, One World Square Building, #10 Upper McKinley Road, McKinley Town Center Fort Bonifacio, 1634 Taguig City,

TEL: 63-2-856-5046/5047 FAX: 63-2-856-5045

JTEKT KOREA CO., LTD.
Inwoo Building 6F, 539-11, Shinsa-dong, Gangnam-Gu, Seoul,

TEL: 82-2-549-7922 FAX: 82-2-549-7923

JTEKT (CHINA) CO., LTD.
Room.25A2, V-CAPITAL Building, 333 Xianxia Road, Changning

District, Shanghai 200336, CHINA TEL: 86-21-5178-1000 FAX: 86-21-5178-1008

KOYO AUSTRALIA PTY. LTD.

Unit 2, 8 Hill Road, Homebush Bay, NSW 2127, AUSTRALIA

TEL: 61-2-8719-5300

FAX: 61-2-8719-5333

JTEKT EUROPE BEARINGS B.V.

Markerkant 13-01, 1314 AL Almere, THE NETHERLANDS

TEL: 31-36-5383333 FAX: 31-36-5347212

-KOYO BENELUX BRANCH OFFICE-

Energieweg 10a, 2964LE, Groot-Ammers, P.O. Box 1, 2965ZG Nieuwpoort, THE NETHERLANDS

TEL: 31-184606800 FAX: 31-184606857

-KOYO ROMANIA REPRESENTATIVE OFFICE-

Str. Dr. Lister nr. 24, ap. 1, sector 5, cod 050543, Bucharest,

ROMANIA

TEL: 40-21-410-4170/4182/0984

FAX: 40-21-410-1178

KOYO KULLAGER SCANDINAVIA A.B.

Johanneslundsvägen 4, 194 61 Upplands Väsby, SWEDEN

FAX: 46-8-594-212-29

KOYO (U.K.) LIMITED

Whitehall Avenue, Kingston, Milton Keynes MK10 0AX, UNITED KINGDOM

TEL: 44-1908-289300 FAX: 44-1908-289333

KOYO DEUTSCHLAND GMBH Bargkoppelweg 4, D-22145 Hamburg, GERMANY TEL: 49-40-67-9090-0

FAX: 49-40-67-9203-0

KOYO FRANCE S.A.

6 avenue du Marais, BP20189, 95105 Argenteuil, FRANCE TEL: 33-1-3998-4202

FAX: 33-1-3998-4244/4249

KOYO IBERICA, S.L.

Avda.de la Industria. 52-2 izda 28820 Coslada Madrid. SPAIN TEL: 34-91-329-0818

FAX: 34-91-747-1194

KOYO ITALIA S.R.L.

Via Stephenson 43/a 20157 Milano, ITALY TEL: 39-02-2951-0844

FAX: 39-02-2951-0954

BEARING PLANTS

KOYO BEARINGS CANADA INC.

4 Victoria Street, Bedford, Quebec J0J-1A0, CANADA

TEL: 1-450-248-3316 FAX: 1-450-248-4196

KOYO CORPORATION OF U.S.A. (MANUFACTURING DIVISION)

-Orangeburg Plant-2850 Magnolia Street, Orangeburg, SC 29115, U.S.A.

TEL: 1-803-536-6200 FAX: 1-803-534-0599 -Richland Plant-

1006 Northpoint Blvd., Blvthewood, SC 29016, U.S.A.

TEL: 1-803-691-4624/4633 FAX: 1-803-691-4655

-Washington Plant-146 Cutting Edge Court Telford, TN 37690, U.S.A. TEL: 1-423-913-1006

FAX: 1-423-913-1008

KOYO BEARINGS USA LLC

-Dahlonega Plant-

615 Torrington Drive Dahlonega, GA 30533, U.S.A. TEL: 1-706-864-7691

FAX: 1-706-864-8258

-Cairo Plant-

2525 Torrington Drive, PO BOX 2449, Cairo, GA 39828, U.S.A. TEL: 1-229-377-6650 FAX: 1-229-377-9760

-Sylvania Plant-400 Friendship Road, Sylvania, GA 30467, U.S.A.

TEL: 1-912-564-7151 FAX: 1-912-564-2101

-Walhalla Plant-

430 Torrington Road, Po Box 100, Walhalla, SC 29691, U.S.A. TEL: 1-864-638-3683 FAX: 1-864-638-2434

JTEKT (THAILAND) CO., LTD. 172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND TEL: 66-38-830-57/1578

FAX: 66-38-830-579

KOYO MANUFACTURING (PHILIPPINES) CORP. Lima Technology Center, Municipality of Malvar, Batangas Province 4233, PHILIPPINES

TEL: 63-43-981-0088 FAX: 63-43-981-0001

KOYO JICO KOREA CO., LTD. 28-12, Yulpo-Ri, Koduc-Myun, Pyung Teak-City, Kyungki-Do, KOREA

TEL: 82-31-668-6381 FAX: 82-31-668-6384

KOYO BEARING DALIAN CO., LTD.

No.II A-2 Dalian Export Processing Zone, Dalian City, Liaoning,

CHINA TEL: 86-411-8731-0972/0974

FAX: 86-411-8731-0973

WUXI KOYO BEARING CO., LTD.

No.89 Dicui Road, Liyuan Economic Development Zone, Wuxi, Jiangsu, CHINA TEL: 86-510-85161901

KOYO NEEDLE BEARINGS (WUXI) CO., LTD.

No.85 Dicui Road, Liyuan Economic Development Zone, Wuxi, Jiangsu, 214072 P.R. CHINA TEL 86-51085160998

DALIAN KOYO WAZHOU AUTOMOBILE BEARING CO., LTD.

No.96, Liaohe East Road, Dalian, D.D Port, CHINA

TEL: 86-411-8740-7272 FAX: 86-411-8740-7373

FAX: 86-510-85161143

FAX: 86-51085163262

KOYO LIOHO (FOSHAN) AUTOMOTIVE PARTS CO., LTD.

No.12, Wusha Section Of Shunpan Road, Daliang Town, Shunde Of Foshan, Guandong Province, CHINA (SHUNDE INDUSTRIAL PARK)

TFI : 86-757-22829589 FAX: 86-757-22829586 KOYO AUTOMOTIVE PARTS (WUXI) CO.,LTD.

B6-A Wuxi National Hi-Tech Industrial Development Zone, Wuxi,

Jiangsu, CHINA TEL: 86-510-8533-0909 FAX: 86-510-8533-0155

KOYO BEARINGS (EUROPE) LTD.

P.O.Box 101, Elmhirst Lane, Dodworth, Barnsley, South Yorkshire S75 3TA, UNITED KINGDOM

TEL: 44-1226-733200 FAX: 44-1226-204029

KOYO ROMANIA S.A.

Turnu Magurele Street No.1, 140003, ALEXANDRIA Teleorman

County, ROMANIA TEL: 40-247-306-400 FAX: 40-247-306-421

KOYO BEARINGS DEUTSCHLAND GMBH

Werkstrasse 5, D-33790 Halle (Westfalen), GERMANY TEL: 49-5201-7070

FAX: 49-5201-707416

KOYO BEARINGS VIERZON MAROMME SAS -Maromme Plant-

Zone Industrielle de LA-BP 1033, 7 Rue Ampere, Maromme, 76151, FRANCE TEL: 33-23282-3838 FAX: 33-23576-6624

-Vierzon Plant-

61 Route de Foecy-BP 238, Vierzon Cedex, 18102 FRANCE

TEL: 33-24852-6200 FAX: 33-24852-6250

KOYO BEARINGS MOULT SAS Zone Industrielle de Moult, 14370, FRANCE

TEL: 33-23127-9600 FAX: 33-23123-4693

KOYO BEARINGS ČESKÁ REPUBLIKA S.R.O.

Pavelkova 253/5, Bystrovany, Olomouc, 77900, CZECH REP TEL: 42-585-126-501

FAX: 42-585-126-503

KOYO BEARINGS ESPAÑA S.A. Doctor Diaz Emparanza, 3, Bilbao, 48002, SPAIN

TEL: 34-94-4431400 FAX: 34-94-4440905

TECHNICAL CENTERS

JTEKT CORPORATION NORTH AMERICAN TECHNICAL

CENTER 47771 Halyard Drive, Plymouth, MI 48170, U.S.A.

TEL: 1-734-454-1500

FAX: 1-734-454-4076 JTEKT RESEARCH AND DEVELOPMENT CENTER

(WUXI) CO., LTD. No.801 Hong Qiao Road, Li Yuan Economic Development Zone, Wuxi Jiangsu 214072, CHINA TEL: 86-510-8589-8613

FAX · 86-510-8589-8698 JTEKT CORPORATION EUROPEAN TECHNICAL

CENTER Markerkant 13-02, 1314 AL Almere, THE NETHERLANDS

TEL: 31-36-5383350 FAX: 31-36-5302656 KOYO BEARINGS USA LLC

GREENVILLE TECHNOLOGY CENTER 7 Research Drive, Greenville, SC 29607, U.S.A.

FAX: 1-864-770-2399 KOYO BEARINGS DEUTSCHLAND GMBH

KUENSEBECK TECHNOLOGY CENTER Werkstrasse 5, D-33790 Halle (Westfalen), GERMANY TEL: 49-5201-7070

FAX: 49-5201-707416 KOYO BEARINGS ČESKÁ REPUBLIKA S.R.O.

BRNO TECHNOLOGY CENTER Technologicky Park Brno, Techinicka 15, 61600 Brno, 61600 CZECH REP

TEL: 420-541-191803 FAX: 420-541-191801

TEL: 1-864-770-2100

2012.7

Koyo LARGE SIZE BALL & ROLLER BEARINGS

Value & Technology

