

DRIVE SHAFTS for INDUSTRY

JTEKT CORPORATION

CAT. NO. B2008E-1

DRIVE SHAFTS for INDUSTRY

Preface

Throughout the manufacturing industry the pursuit of greater power output at higher efficiency is a priority. Under such circumstances, highly sophisticated and economical drive shafts that fit in a limited space are in great demand for use in various equipment and machines. In response to this demand, JTEKT has renewed its conventional F Series drive shafts and has developed the new CS Series, which feature excellent cost performance, as you will discover in this catalog.

Expanded by this new series, Koyo s drive shaft lineup is certain to satisfy your requirements in various applications, including iron manufacturing machines, rolling mills, construction machines, and rolling stock. We thank you in advance for your support of Koyo

drive shafts.

1. Introduction to Drive Sh 1.1 Functions 1.2 Appearance and 1.3 Drive Shaft Ser 2. Drive Shaft Construction **3.** Features and Application 4. Product Development S 5. Specifications • HW Series • D Series • U Series • T Series • CS Series • KF Series • CS/KF Series Basic Dimensions of 6. Introduction of New Produc 6.1 Structure and W 6.2 Comparison of 7. Introduction of New Tec 7.1 Ball Burnishing 7.2 Application of Dif 7.3 Application of 7.4 Thermal Spraying C 8. Technical Data 8.1 General Charac

- 8.1 General Charac 8.2 Drive Shaft Sele 8.3 Balance Quality
- 8.4 Recommended
- 8.5 Shape and Dim
- 9. Drive Shaft Selection Sh

DRIVE SHAFTS KOYO

afts	2
d Construction of Drive Shafts ies and Applications	23
n	4
ns of Drive Shafts	6
ystems and Evaluation Equipment	8
	10
of Flange coupling with Cylindrical Bore	10 14 16 18 20 22 24
ct Hydraulic Expansion Type Torque Limiter	26
Norking Principle Conventional Product	26 26
hnologies	27
on Cross Shaft fferent Diameter Rollers for Cross & Bearing Form Rolling to Bearing Set Bolt Coat of Tungsten Carbide (WC) on Bearing Cup Key	27 27 28 28
	29
eteristics of Universal Joints ection y of Drive Shafts Tightening Torque for Flange Bolts ensions of Parallel Key and Keyway	29 31 32 33 34
neets	35

1. Introduction to Drive Shafts

1.1 Functions

A drive shaft acts as an intermediate between a driving shaft and driven shaft that are not aligned on the same axis, and transfers running torque smoothly.

A drive shaft has two universal joints, enabling a flexible connection between a driving shaft and driven shaft.

Each universal joint (cross bearing) has four rolling bearings, realizing low friction and minimizing torque losses.

Fig. 1.1 Typical Applications of Drive Shafts

1.2 Appearance and Construction of Drive Shafts

The appearance and component construction of a representative drive shaft is shown below:

Fig. 1.2 Component Construction of a Representative Drive Shaft

1) Cross bearings

The cross bearings are the most critical components of a drive shaft.

A cross bearing has a cross-shaped shaft and four rolling bearings that individually support each end of the shaft.

2) Spline sleeve

The spline sleeve has a splined bore. In combination with a spline shaft, the sleeve realizes a variable drive shaft installation length.

3) Spline shaft

The spline shaft has straight sided or involute splines, realizing a variable drive shaft installation length in combination with the spline sleeve.

4) Spline cover

The spline cover improves the dust resistance of the spline shaft. This cover is not necessary if the drive shaft is used in a good and clean environment.

5) Flange yoke

The flange yoke is commonly used to connect a drive unit (such as a motor). A variety of joints are available to suit specifically desired applications.

6) Fitting

The fitting is commonly used to connect a machine. A variety of joints are available to suit specifically desired applications.

1.3 Koyo Drive Shaft Series and Applications

Koyo drive shafts can be classified into two types in construction, depending on the shape of the cross bearings, which serve as universal joints: block type and round type. The features and typical construction of individual types are shown below.

1) Block Type Drive Shafts

With the cross bearings fixed by bolts to the yokes, block type drive shafts transfer torque reliably through the key. The rollers, crosses, and bearing fixing bolts can be greater in size than those of the round type drive shafts, realizing higher capacity.

Cylindrical bore yoke — Cross bearing

-Weld yoke

Propeller tube

Spline shaft

2) Round Type Drive Shafts

Compared with the block type, this type of drive shaft has cross bearings of simpler construction and is more economical.

is flange, enabling easy connection to a variety of machines.

These drive shafts are connected to machines via a

The individual Koyo drive shaft series are shown below, along with their features and suitable applications.

		Block Type Drive Shafts		Round Type	Drive Shafts
	Construction of universal joints	Bearing cup	Bearing cup	Bearing holder Flange yoke Cross bearing	So the
	Series	HW	D, U, T	CS	KF
Joi	int swing diameter (mm)	115 ~ 302	325 ~ 1230	180 ~ 285	105 ~ 435
tics*	Torque $T_{\rm D}$ (kN·m)	1.07 ~ 15.6	39.2 ~ 8 060	32.1 ~ 128	1.27 ~ 166
racteris	Torque $T_{\rm S}$ (kN·m)	3.23 ~ 47.4	108 ~ 18 800	59 ~ 234	3.62 ~ 558
Chai	Maximum operating angle ($^\circ$)	10 ~ 25	4 ~ 10	10	15 ~ 30
	Features	 This most common series is especially used in construction machines. Cross bearings are available in two types, making this series of joints useful in various applications. Torque is transferred reliably through the key and keyway. 	 These series are intended for use in extremely heavy duty applications. High dust resistance makes these series optimal for use under severe operating conditions such as in rolling mills. The optimized design, highly strong materials and sophisticated heat treatments ensure high reliability. Torque is transferred reliably through the key and keyway. 	 This highly cost efficient series realized by the most advanced technologies is intended for heavy duty applications. The optimized design, highly rugged materials and sophisticated heat treatments ensure high reliability. Thanks to the flanges, this series is highly compatible with existing equipment. 	 This cost efficient series is intended for light to medium duty applications. Thanks to the flanges, this series is highly compatible with existing equipment. This series is compatible with wideangle operations.
es Se	Plate mills and hot / cold rolling mills		O		
achin	Bar mills, wire/rod mills and tempering mills		©	0	Δ
	Levelers		0	0	Δ
mak	Continuous casting equipment		Δ	0	0
tions	Other equipment	Δ	0	0	0
oplica _	ndustrial machines	0		0	0
ijor ap	Paper mills and calenders	0	Δ	0	0
E E	Rolling stock	0			0
(a	Construction machines and special vehicles	0			
ŀ	Automobiles	Δ			

***Characteristics** Torque $T_{\rm D}$: The reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions. $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

Legends O : Suited \bigcirc : Applicable

riangle : Used in rare cases

Torque $T_{\rm S}$: The reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions.

 $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5. Maximum operating angle: The maximum cross angle allowed by the universal joint.

Fig. 1 (High wing type)

HW Series

Telescoping Type (with propeller tube) L^{+S}_{0} L^{+S}_{0} L-2HL - 2H $\phi D_{\rm S}$ $\phi \dot{D}_{S}$

Fig. 2 (Mixed type)

Features

The HW Series is widely used in construction machines and industrial machines. Yoke dimensions are standardized worldwide. A bearing cup is directly fixed to the yoke. The cross bearings and spline construction of basic reference No. 5 thru 12 are very tightly sealed to each other and are useful in severe environments such as muddy water or dust particles.

Fixed Type (with propeller tube)

Fig. 1 (High wing type)

Basic			Torq	ue capacity(N∙m)	Max	Bound	ary dimensio	ns (mm)			Boundary dime	nsions (mm)			Be	earing fixing bolt	s
Basic reference	Fig.	Swing dia. (mm)				operating		Propeller	Counterbore			Telescopir	ng type		Fixed type			Tightoning
No.	J	Ď	$T_{ m R}$ $^{1)}$	$T_{ m D}$ $^{2)}$	$T_{ m S}$ $^{3)}$	angle (°)	Н	tube dia. D _T	depth t	V proj	Vithout peller tube L	With propeller tube L min.	Allowable telescoping stroke S	Spline dia. $D_{\rm S}$	With propeller tube L min.	Nominal thread size	Width across flats	torque (N·m)
4	1	115	466	1 260	3 310	25	15 5	65	25.4		277	327	45	38.1	176	M 8×1 25	13	$36 \sim 40$
4	2	116	400	1200	3 3 10	25	15.5	05	23.4		294	344	45	40	195	W 0/1.25	15	30. 40
5	1	122	851	1 770	4 470	10	17 49	65	28.85		288	338	42	45	178	M10×1 25	17	71∼ 77
J	2	126	001	1770	4 470	25	17.45	00	20.00		314	364	55	40	213	WITO X 1.25	17	71 - 77
6	1	149	1 090	2 240	6 400	25	17 49	76.2	29.4		319	369	47	55	216	M10×1 25	17	71~ 77
0	2	152	1 000	2 240	0 +00	25	17.40	/0.2	20.4		325	375	52		213	MITO/(1.20		
7	1	158	1 650	3 760	9 190	20	20.66	90	34.1		385	435	65	60	241	M12×1 25	19	132~155
	2	165	1 000	0700	0 100	25	20.00		04.1		389	439	65	00	230	MILE/(1.20	10	102 100
8	1	216	2 200	5 380	12 200	21	20.66	110	34.1		415	475	76	65	267	M12×1.25	19	132~155
8.5	1	175	2 570	7 520	13 500	25	27	110	41.3		436	494	70	65	282	M12×1.25	19	132~155
9	1	220	3 450	9 980	18 900	25	27	120	41.3		483	543	63	78	296	M12×1.25	19	132~155
10	1	226	5 580	13 600	33 900	25	32.575	135	50.8		508	578	72	90	353	M14×1.5	22	206~220
12	1	302	8 060	19 300	47 400	25	32.575	139.8	50.8		605	675	83	105	379	M14×1.5	22	206~220

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 1 in this calculation.

2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions.

 $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

3) $T_{\rm S}$ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions. $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5.

Fig. 2 (Mixed type)

HW Series

Recommended Dimensions of Coupling Yokes

Basic				Bound	lary dimensions	; (mm)				Bolt holes
No.	D _c	С	J	F	G	K	A	В	t	d
4	114.3	107.93 ^{+0.05} 0	70	3.2	9.5 ^{+0.05} 0	3.5 ^{+0.5} 0	43.63	18.24	11.8	M 8×1.25
5	121.4	115.06 ^{+0.05} 0	70	4	14.26 ^{+0.05}	4.9 ^{+0.5} ₀	44.45	21.43	12.6	M10×1.25
6	148.4	140.46 ^{+0.05}	90	4	14.26 ^{+0.05} 0	4.9 ^{+0.5} 0	57.15	21.43	12.6	M10×1.25
7	158	148.38 ^{+0.05} 0	92	4.8	15.85 ^{+0.05} 0	5.7 ^{+0.5} 0	58.73	24.61	15.8	M12×1.25
8	215.9	206.32 ^{+0.05}	150	4.8	15.85 ^{+0.05} 0	5.7 ^{+0.5} 0	87.3	24.61	17.4	M12×1.25
8.5	174.6	165.07 ^{+0.05} 0	96	4.8	15.85 ^{+0.05} 0	5.7 ^{+0.5} 0	61.91	35.72	19	M12×1.25
9	219.1	209.52 ^{+0.05} 0	135	4.8	15.85 ^{+0.05} 0	5.7 ^{+0.5} 0	84.14	35.72	19	M12×1.25
10	225.4	212.699 ^{+0.051} 0	141	6.4	25.35 ^{+0.07} 0	9.3 ^{+0.5} 0	82.55	46.05	30	M14×1.5
12	225.4 212.699 ^{+0.05} 301.6 288.90 ^{+0.1} 0		205	6.4	25.35 ^{+0.07} 0	9.3 ^{+0.5} 0	120.65	46.05	30	M14×1.5

Designs available to order

When installation space is limited, this series can be designed specifically to fit in the available space. The assembling components are shown below. For more details on these designs, consult JTEKT.

D Series

Telescoping Type (with propeller tube)

Dimensions marked with an asterisk (*) need to be determined to suit existing equipment. Please provide the specifications of your equipment when placing an inquiry.

Basic	Swing dia.	Torc	jue cap a (kN∙m)	acity	Max. operating	В	oundary	dimens	sions (m	ım)		Beari	ng fixing bolts	;
No.	(mm) D	$T_{ m R}^{(1)}$	$T_{ m D}^{2)}$	$T_{ m S}^{3)}$	angle (°)	$L^{4)}$ min.	Н	Propeller tube dia. D_{T}	Spline dia. $_{5)}$ $D_{ m S}$	Allowable telescoping stroke S	Nominal thread size	Width across flats	Tightening torque (N · m)	Number of bolts per bearing
D22032	160	2.83	14.7	43.1	10	585	30	139.8	101.6	80	M16×1.5	17	185± 20	8
D26038	190	5.33	24.5	71.6	10	677	38	159	114.3 (95)	95	M18×1.5	19	285± 20	8
D30044	220	8.54	39.2	108	10	760	45	177.8	127 (120)	110	M20×2	22	370± 20	8
D34052	260	15.1	68.6	186	10	873	52	216.3	152.4 (140)	125	M24×2	27	8	
D38060	300	22.8	98.1	284	10	965	60	244.5	177.8 (160)	135	M30×2	32	1 180± 50	8
D44070	350	38.2	167	451	10	1 080	70	298.5	203.2 (180)	155	M33×2	36	1 720± 70	8
D48080	400	54.9	255	667	8	1 220	80	339.7	225 (200)	175	M39×3	50	3 040±200	8
D50085	425	66.9	314	804	8	1 284	86	355.6	250	185	M42×3	50	4 020±200	8
D54090	450	80.4	373	951	8	1 348	92	381	250	195	M42×3	50	4 020±200	8
D56100	500	107	520	1 270	8	1 503	107	410	275	205	M48×3	60	5 980±300	8
D58110	550	146	706	1 770	6	1 604	116	450	300	220	M52×3	65	7 650±300	8
D60120	600	195	932	2 260	6	1 730	125	490 325 235 M58×3 70 10 300±3		10 300±300	8			
D62130	650	249	1180	2 840	6	1 849	136	530	350	250	M62×3	75	12 700±300	8
D64140	700	293	1470	3 530	6	1 949	146	580	375	265	M68×3	85	17 100±500	8

Features

This series is suitable for use under severe conditions, such as in driving rolling mill rolls. Based on standardized cross bearings, this series can be designed to suit a wide range of dimensions and a wide variety of fitting configurations.

Designs available to order

The fixed type can be designed to order, assembling components shown on the right. For more details on these designs, consult JTEKT.

With

Basic	Swing dia.	Torc	jue cap (kN∙m)	acity	Max. operating	В	oundary	y dimens	sions (n	ım)		Beari	ng fixing bolts	5
No.	(mm) D	${T_{ m R}}^{1)}$	${T_{ m D}}^{2)}$	$T_{\rm S}^{3)}$	angle (°)	$L^{(4)}$ min.	Н	Propeller tube dia. D_{T}	Spline dia. $_{5)}$ $D_{ m S}$	Allowable telescoping stroke S	Nominal thread size	Width across flats	Tightening torque (N·m)	Number of bolts per bearing
D66150	750	371	1 860	4 410	6	2 090	155	620	400	290	M72×4	90	20 400±500	8
D68160	800	449	2 260	5 300	6	2 225	170	670	450	300	M76×4	95	24 500±500	8
D71170	850	497	3 350	6 200	7	2 337	178	710	500	320	M48×2	50	5 590±200	24
D72180	900	591	3 650	6 600	7	2 445	190	750	500	335	M48×2	50	5 590±200	24
D7E184	920	621	3 920	8 050	7	2 495	190	780	550	340	M52×2	50	7 350±300	24
D74190	950	654	3 500	9 250	7	2 564	196	810	550	350	M56×3	60	9 120±300	24
D75194	970	697	4 140	10 300	7	2 594	196	830	550	370	M56×3	60	9 120±300	24
D76204	1 020	924	4 090	8 050	7	2 654	211	850	550	385	M52×3	55	7 650±300	24
D7J214	1 070	1 040	6 090	13 500	6	2 900	230	890	600*	400*	M64×3	65	14 200±300	24
D81220	1 100	1 100	7 160	13 200	6	2 970	250	920	600*	415*	M64×3	×3 65 14 200±300		24
D8B226	1 130	1 200	6 800	15 200	6	3 070	260	950	650*	430*	[€] M68×3 70 17 100±500		24	
D8E246	1 230	1 530	8 060	18 800	6	3 165	260	1 030	650*	450*	M72×4	75	20 400±500	24

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 3 in this calculation. 2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions. $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

3) $T_{\rm S}$ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions. $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5.

4) L refers to the minimum dimension when the shaft has neither propeller tube nor welded connection.

5) The parenthesized values refer to the involute spline diameter.

[Remark] The values marked with an asterisk (*) are provided for reference purposes.

With

U Series

Telescoping Type (with propeller tube)

Dimensions marked with an asterisk (*) need to be determined to suit existing equipment. Please provide the specifications of your equipment when placing an inquiry.

Basic reference No.	Swing dia.	Torc	que capa (kN∙m)	acity	Max. operating	В	oundary	/ dimens	sions (n	ım)		Beari	ng fixing bolts	3
reterence No.	(mm) D	${T_{ m R}}^{1)}$	${T_{ m D}}^{2)}$	${T_{ m S}}^{3)}$	angle (°)	$L^{(4)}$ min.	Н	Propeller tube dia. D_{T}	Spline dia. D _S	Allowable telescoping stroke S	Nominal thread size	Width across flats	Tightening torque (N · m)	Number of bolts per bearing
U45073	365	45.5	255	510	4	1 185	75	339.7	225	170	M39×2	41	2 840±150	8
U4H078	390	53.3	324	618	4	1 240	80	355.6	250	180	M42×2	46	3820±200	8
U49084	420	62.7	392	775	4	1 309	86	381	250	190	M45×2	50	4 900±200	8
U53088	440	77.1	471	892	4	1 388	92	406.4	279.4	205	M45×2	55	5 050±200	8
U5E095	475	94.1	649	1 170	4	1 465	100	420	279.4	210	M48×2	55	5 880±200	8
U55098	490	108	657	1 270	4	1 503	107	440	279.4	215	M52×2	60	7 350±300	8
U5G105	525	127	814	1 470	4	1 630	110	470	325	220	M52×3	65	7 650±300	8
U57108	540	140	1 160	1 780	4	1 674	116	485	350	230	M56×2	60	9 120±300	8
U59118	590	180	1 350	2 270	4	1 775	125	530	375	250	M36×2	36	2 350±100	24
U63128	640	229	1 910	2 920	4	1 899	136	580	400	265	M39×2	36	2 940±150	24
U6S132	660	255	2 010	3 030	4	1 963	142	600	400	275	275 M39×2 36 2		2 940±150	24
U6D138	690	285	2 390	3 710	4	2 049	146	620	450	285	M42×2	41	4 270±200	24

Features

The U Series is mainly intended for non reversing mills, such as the finishing stand of a hot strip mill.

Designs available to order

The fixed type can be designed to order, assembling components are shown on the right. For more details on these designs, consult JTEKT.

With

With

Basic	Swing dia.	Torc	que cap a (kN∙m)	acity	Max. operating	В	oundary	/ dimens	sions (n	ım)		Beari	ng fixing bolts	3
No.	(mm) D	${T_{\mathrm{R}}}^{(1)}$	${T_{ m D}}^{2)}$	$T_{ m S}^{3)}$	(°)	$L^{(4)}$ min.	Н	Propeller tube dia. D_{T}	Spline dia. D _S	Allowable telescoping stroke S	Nominal thread size	Width across flats	Tightening torque (N·m)	Number of bolts per bearing
U65148	740	360	2 690	4 770	4	2 160	155	670	450	305	M45×2	46	4 900±200	24
U67152	760	398	3 090	4 840	4	2 195	160	685	450	310	M45×2	46	4 900±200	24
U6J156	780	416	3 390	5 690	4	2 235	165	705	500	315	M48×2	50	5 590±200	24
U69168	840	491	3 920	6 650	4	2 357	178	760	500	325	M52×2	55	7 650±300	24

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 3 in this calculation. 2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions. $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

3) $T_{\rm S}$ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions. $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5.

4) L refers to the minimum dimension when the shaft has neither propeller tube nor welded connection.

[Remark] Consult JTEKT for U series products with a swing diameter of between 285 mm and 345 mm.

DRIVE SHAFTS KOYO

T Series

Features

The T Series is intended for such applications where telescoping function is required in a small space. Because one of the cross bearings needs to be hollow to enable the required stroke, this series is applicable in such cases where the swing diameter has a given allowance on either the driving side or driven side.

Dimensions marked with an asterisk (*****) need to be determined to suit existing equipment. Please provide the specifications of your equipment when placing an inquiry.

Basic reference No.	Swing dia.	Torqu	ue capacity (kN∙m)	Max. operating		Boundary dii	mensions (m	nm)		Bearing	fixing bolts	
reference No.	(mm) D (d)	$T_{ m R}^{~~1)}$	$T_{ m D}^{~~2)}$	$T_{ m S}^{-3)}$	angle (°)	L min.	H (h)	Spline dia. D _S	Allowable telescoping stroke S	Nominal thread size	Width across flats	Tightening torque (N·m)	Number of bolts per bearing
T42065 (D30044)	325 (220)	16.9	39.2	108	10	699	67 (45)	127	180	M24×2	27	645± 30	8
T48080 (D38060)	400 (300)	30.8	98.1	284	10	870	80 (60)	177.8	210	M30×2	32	1 180± 50	8
T54090 (D44070)	450 (350)	45.0	167	451	10	969	92 (70)	203.2	250	M33×2	36	1 720± 70	8
TZ56100 (D48080)	500 (400)	74.1	255	667	8	1 080	107 (80)	225	280	M39×3	50	3 030±200	8
T58110 (D54090)	550 (450)	82.5	373	951	8	1 196	116 (92)	250	305	M42×3	50	4 020±200	8
T60120 (D56100)	600 (500)	111	520	1 270	8	1 319	125 (107)	275	335	M48×3	60	5 980±300	8
T62130 (D58110)	650 (550)	142	706	1 770	6	1 414	136 (116)	300	355	M52×3	65	7 650±300	8
T66150 (D62130)	750 (650)	212	1 180	2 840	6	1 617	155 (136)	350	415	M62×3	75	12 700±300	8

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 3 in this calculation.

2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions.

 $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

3) $T_{\rm S}$ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions.

 $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5.

[Remark] The specifications shown in blue refer to those of the D series products coupled with the corresponding T series products.

CS Series

For the flange dimensions (PCD, C, F, G, K and t) that suit the individual flange outside diameter (D_F) and for the flange bolt-hole details, refer to the table of cylindrical bore dimensions on page 24.

		Torque	e capacity	/ (N∙m)			I	Boundary	dimensio	ons (mm)				Bearin	ng fixin	g bolts	
Basic	Swing				Max. operating		Propeller		Telesco	ping type		Fixed type			A <i>C</i> .111.		Flange
reference No.	(mm) D	$T_{ m R}$	$T_{ m D}$	Ts	angle (°)	Н	tube dia. D _T	Propeller tube dia. L	Without propeller tube $L \min$.	Allowable telescoping stroke S	Spline dia. $D_{ m S}$	with propeller tube $L \min$.	t	lominal thread size	across flats	torque (N·m)	dia. (mm)
CS180	180	5 710	32 100	59 000	10	130	152.4	975	1 025	105	95	580	M	114×1.5	12	145±10	200 225 250
CS200	200	8 170	44 100	81 000	10	145	165.2	1 050	1 110	110	105	640	M	116×1.5	14	215±20	225 250 285
CS225	225	11 600	62 800	115 000	10	160	185.0	1 180	1 240	115	120	710	M	118×2	14	305±20	250 285 315
CS250	250	15 700	86 100	158 000	10	180	203.0	1 325	1 385	125	140	780	M	120×2	17	435±20	285 315 350
CS285	285	23 100	128 000	234 000	10	205	229.0	1 480	1 550	140	160	890	M	122×2	17	585±30	315 350 390

Features

The CS Series is optimized to demonstrate the utmost performance in non reversing equipment such as bar/wire rod rolling mills and continuous casting equipment. A conventional product can be replaced by a smaller CS Series product, which features utmost service life and strength enhanced to the highest possible degree.

Designs available to order

When installation space is limited or when a stroke needs to be long, this series can be designed to order. Assembling components are shown below. For more details on these designs, consult JTEKT.

Telescoping type without propeller tube	-
Long telescoping type	-

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 3 in this calculation.

2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions.

 $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

3) $T_{\rm S}$ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions. $T_{\rm S}$ divided by the breaking torque should preferably be greater than 1.5.

KF Series

			Torque	capacit	y (N∙m)			В	oundary	dimensior	is (mm)			Beari	ng fixin	g bolts		Fi
Basic		Swing dia				Max. operating		Propeller		Telescopi	ing type		Fixed type	Nominal	\\/;dth	Tichtonian	Flange	
reference No.	Fig.	(mm) D	$T_{ m R}^{(1)}$	$T_{ m D}^{2)}$	$T_{ m S}^{3)}$	angle (°)	$H^{(4)}$	tube dia. D _T	Propeller tube dia. L	Without propeller tube $L \min$.	Allowable telescoping stroke S	Spline dia. D _S	with propeller tube $L { m min}.$	thread size	across flats	torque (N·m)	dia. (mm)	
KFZ100	1	105	735	1 270	3 620	30	70	73	510	550	60	45	320	-	-	_	120	
KF120	1	120	882	2 940	11 700	20	60 62	89.1	495 499	535 539	70	58	310 314	_	_		120 150	$\varphi D_{\mathbf{F}} PCD$
KF150	1	150	1 860	5 880	22 500	20	72 74	114.3	577 581	617 621	70	70	354 358	_	_	_	150 180	For the
KF180	1	180	3 280	11 700	39 200	18	82 90	127	664 680	714 730	90	82	404 420	-	_	_	180 225	and for
EZ26045	2	225	6 370	20 500	78 400	15	123 128	165.2	845 855	895 905	90	105	536 546	M16×1.5	14	185±10	225 250	■ Fe The Ki ●Swing
EZ28050	2	250	8 820	29 400	107 000	15	128 130	203	920 924	980 984	110	120	586 590	M18×2	14	240±20	250 285	The p betwo comp
EZ32057	2	285	13 700	44 100	156 000	15	143 148	216.3	1 015 1 025	1 075 1 085	110	140	666 676	M18×2	14	240±20	285 315	Swing ■Swing The p
EZ34063	2	315	18 900	58 800	205 000	15	163 166	244.5	1 131 1 137	1 201 1 207	135	160	726 732	M20×2	17	360±20	315 350	Their
KFZ350	2	350	25 500	88 200	294 000	15	175 180	244.5	1 195 1 205	1 265 1 275	135	180	780 790	M22×1.5	17	745±40	350 390	Wher desig For m
KFZ390	2	390	35 300	127 000	402 000	15	195	273.1	1 335	1 425	140	200	880	M27×1.5	19	1 460±80	390	
KFZ435	2	435	51 000	166 000	558 000	15	220	318.5	1 470	1 570	140	200	1 010	M27×1.5	19	1 460±80	435	Tele with

[Notes] 1) $T_{\rm R}$ refers to the rated torque used for service life calculation (refer to page 31). The material factor $K_{\rm m}$ is supposed to be 1 for the drive shafts whose swing diameter is 180 mm or less, and to be 3 for those whose swing diameter is between 225 mm and 435 mm in this calculation.

2) $T_{\rm D}$ refers to the reference torque used as the criterion for evaluation of resistance to the maximum torque under normal operating conditions.

 $T_{\rm D}$ divided by the maximum torque should preferably be greater than 1.5.

22

3) T₅ refers to the reference torque used as the criterion for evaluation of resistance to the breaking torque under emergency conditions. T₅ divided by the breaking torque should preferably be greater than 1.5.
4) The flanges of the products other than KFZ 100, KFZ 390 and KFZ 435 can be selected from between two types.

The upper value in the cell of dimension H in the table corresponds to the upper value in the cell of the flange outside diameter ($D_{\rm F}$), while the lower value of the cell of dimension H corresponds to the lower value in the cell of diameter $D_{\rm F}$.

Η

Features

60

ing diameter: 180 mm or less kes being integrated.

ing diameter: 225 to 435 mm

Designs available to order

Telescoping type without propeller tube	

Long telescoping type

the flange dimensions (PCD, C, F, G, K and t) that suit the individual flange outside diameter ($D_{\rm F}$) for the flange bolt hole details, refer to the table of cylindrical bore dimensions on page 25.

KF Series products have the following features depending on the swing diameter.

e products are suitable for applications where the maximum operating angle is tween 18; to 30;. They are suited to light load applications. These products are mpatible with a wide variety of equipment. In addition they are economical, with the

ne products are suitable for applications where the maximum operating angle is no bre than 15. They are suited to medium load applications.

eir yokes can be disassembled, so that their cross bearings can be replaced easily.

en installation space is limited or when a stroke needs to be long, this series can be signed to order. Assembling components are shown below. more details on these designs, consult JTEKT.

CS/KF Series Basic Dimensions of Flange Coupling with Cylindrical Bore

, 2)

(Arrangement of bolt holes on the flange)

16 holes

Elongo			Boun	dary dim	ensions		Flar	nge bolt h	oles	Flange fixing bolts			
outside dia.	D_1 max.	$d_1^{(4)}$ max.	() /1	С	$C \qquad F \qquad G(e9) \qquad K \qquad t$		PCD	Dia.	Number	Nominal	Tightening		
(mm)				<i>C</i> ₁	F_1	$G_1(JS9)$	K_1	<i>t</i> 1	±0.1	(mm)		size	(N·m)
200	150	94	25	100 H7 f 8	5 4.5	32	10	20	172	15(drilled)	12	M14×1.5	175± 10
225	172	107	27	110 $\stackrel{ m H7}{_{ m f8}}$	5 4.5	36	11	22	196	17(drilled)	12	M16×1.5	265± 20
250	191	119	30	125 ^{H7} _{f 8}	6 5	40	12.5	25	218	19(drilled)	12	M18×2.0	360± 20
285	215	134	33	140 $^{ m H7}_{ m f8}$	7 6	45	15	28	245	21 (drilled)	12	M20×2.0	500± 30
315	246	154	37	155 ^{H7} _{f 8}	<u>8</u> 7	50	16	32	278	23(drilled)	12	M22×2.0	675± 40
350	278	173	41	$175 \begin{array}{c} H7 \\ f 8 \end{array}$	8	56	18	36	310	23(drilled)	16	M22×2.0	675± 40
390	309	193	45	200 H7 f 8	8	70	20	40	345	25(drilled)	16	M24×2.0	900± 50

[Notes] 1) The keyway dimensions (S, T and R) shall be determined in conformity with JIS B 1301.

2) The dimensions / and m are determined according to customer specifications. (When not specified, / is recommended to be d_1 multiplied by between 1.2 and 1.5 and m to be d_1 multiplied by about 0.02.)

3) The upper line value in each cell is a dimension for the drive shaft end and the lower line value is a dimension for the cylindrical bore flange coupling end.

4) The d_1 max. dimensions are approximately D_1 divided by 1.6.

Elango			Boundary	dimensio	ns ³⁾ (mm)		Flange bolt holes			Flange fixing bolts		
outside dia.	D_1	$d_1^{(4)}$	С	F	G(e9)	K	t	PCD	Dia.	Number	Nominal	Tightening
(mm)	max.	max.	<i>C</i> ₁	F_1	$G_1(JS9)$	K_1	<i>t</i> 1	±0.1	(mm)	Number	size	(N·m)
120	84	52	75 H7 h7	2.5	_	_	8	101.5	10 (C12)	8	M10×1.25	64± 5
150	110.5	69	90 H7 h7	2.5	_		10	130	12(C12)	8	M12×1.25	110± 5
180	133	83	110 H7 h7	2.5	_		12	155.5	14 (C12)	8	M14×1.5	175± 10
200	150	94	140 H7 f 8	<u>5</u> 4.5	32	9	18	172	15(drilled)	8	M14×1.5	175± 10
225	172	107	140 H7 f 8	<u>5</u> 4.5	32	9	20	196	17(drilled)	8	M16×1.5	265± 20
250	191	119	140 H7 f 8	<u>6</u> 5	40	12.5	25	218	19(drilled)	8	M18×2.0	360± 20
285	215	134	175 H7 f 8	7 6	40	15	27	245	21(drilled)	8	M20×2.0	500± 30
315	248	155	175 ^{H7} _{f 8}		40	15	32	280	23(drilled)	10	M22×2.0	675± 40
350	278	173	220 H7 f 8		50	16	35	310	23(drilled)	10	M22×2.0	675± 40
390	309	193	220 H7 f 8		70	18	40	345	25(drilled)	10	M24×2.0	900± 50
435	344	215	250 H7 f 8		80	20	42	385	28(drilled)	16	M27×2.0	1 320± 70
480	379	235	250 H7 f 8	<u>12</u> - 11	90	22.5	47	425	31 (drilled)	16	M30×2.0	1 810±100
550	446	278	295 H7 f 8	<u>12</u> 11	100	22.5	50	492	31(drilled)	16	M30×2.0	1 810±100

[Notes] 1) The keyway dimensions (*S*, *T* and *R*) shall be determined in conformity with JIS B 1301.

2) The dimensions / and m are determined according to customer specifications. (When not specified, / is recommended to be d_1 multiplied by between 1.2 and 1.5 and *m* to be d_1 multiplied by about 0.02.) 3) The upper line value in each cell is a dimension for the drive shaft end and the lower line value is a dimension for the cylindrical bore flange

coupling end.

4) The d_1 max. dimensions are approximately D_1 divided by 1.6.

DRIVE SHAFTS KOYO

(Arrangement of bolt holes on the flange)

6.1 Structure and Working Principle

The hydraulic expansion type torgue limiter transmits torgue by the friction between the shaft components and the welded coupling assemble, which is generated by the bore shrinkage of the welded coupling assemble when oil is filled and pressurized in the hydraulic expansion chamber.

The torque can be set in proportion to hydraulic pressure, which is simultaneously released by the decompression of oil, thanks to the breakage of the shear valve coming concurrently with slipping of torque transmission surface, if the excessive torque beyond set value is generated.

The following illustration shows an example of the hydraulic expansion type torque limiter applied to a rolling mill.

Fig. 6.2 View A (Example of Abnormal Rolling)

6.2 Comparison of Conventional Product

The shear pin type torque limiter has been used as the implement to release torque, however, the maintenance of surrounding parts of the shear pin is required in case the shear pin is broken, which leads to a lot of time consuming for replacement. Furthermore, the pin needs to be periodically replaced in the overhaul in order to prevent the accumulated metal fatigue of the pin. Compared with the share pin type torque limiter, the hydraulic expansion type torque limiter requires only share valve replacement for repair. Since it is not required to replace the shear valves during periodical inspection, it will improve the overhaul time.

Fig. 6.3 Working Principle of Shear Pin & Hydraulic Expansion Type Torgue Limiter

Table 6.1 Merits of Hydraulic Expansion Ty	/pe
Torque Limiter	

		Shear pin (Conventional product)	Hydraulic expansion type torque limiter (Developed product)								
At	periodic check	Periodic replacement required due to fatigue accumulation.	Not required periodic replacement of shear valve.								
At re	Replacement parts	 4 shear pins 4 nuts 8 bushes 	♦ 4 shear valves								
pair	Required man-hours for parts replacement	1	1/4								

7.1 Ball Burnishing on Cross Shaft

The flaking life can be improved by the ball burnishing on cross raceway. This process is a type of plastic working process, which is applied by rolling contact of super-hard ball backed up hydraulically on the cross raceway surface.

Features

- 1) The hardness of the surface becomes higher than that of the carburized original material.
- The subsurface residual compressive stress is higher than that of the carburized material and deeper than that by the shot peening.
- Raceway roughness of the machined surface is improved. And no further finishing process is required after ball burnishing process.
- 4) As the ball burnishing fixture can be used by attaching to lathe or other machine, there is actually no limitation in size of workpieces.

Fig. 7.1 Ball Burnishing Processing Method

Fig. 7.2 Measurement Result of Residual Compressive Stress

Fig. 7.3 Measurement Result of Hardness

7.2 Application of Different Diameter Rollers for Cross & Bearing

Because the cross is an elastic cantilever beam and the bearing has some radial clearance, the load on the cross generally becomes heavier toward to the end of the cross.

In order to improve this phenomenon, load on the roller is made uniform by designing the roller to have a minutely smaller diameter at the very close end, which would improve flaking life. (Refer to Fig 7.4)

It is required that the detailed investigation takes into account multitude of JTEKT records and the technology of theoretical analysis by FEM, when this would be applied.

Fig. 7.4 Effect of Rollers Different in Diameter

7. Introduction of New Technologies

7.3 Application of Form Rolling to Bearing Set Bolt

The thread of the bearing set bolt has conventionally been machined after heat treatment. However, by switching this process to form rolling, allowable fatigue stress at the bottom radii of the thread increases significantly. It was confirmed by JTEKT original evaluation test that the allowable stress was improved 1.9 times.

Features

- 1) Fiber flow is formed along the shape of the thread. (Refer to Fig. 7.5)
- 2) Residual compressive stress at subsurface beneath the bottom radius of the thread increases. (Refer to Fig. 7.6)

Fig. 7.5 Fiber Flow of Rolled Thread

7.4 Thermal Spraying Coat of Tungsten Carbide (WC) on Bearing Cup Key

To avoid corrosion on the side face of bearing cup key applying carburizing heat treatment, one possible method is to apply thermal spraying coat of tungsten carbide (WC) on these surfaces.

Effects

The following effects are expected in case the generation of clearance due to corrosion at the key area is restrained.

- 1) The bending stress of bolt can be alleviated, which leads to the restraint of strength reduction.
- 2) The heavier load on raceways at the end of the cross can be restrained, which expects longer fatigue life for cross & bearing.

Fig. 7.7 Structure of Key and Details of WC Thermal Sprayed Part

Fig. 7.8 Effect of Thermal Spraying Coat of Tungsten Carbide (WC)

Fig. 7.6 Residual Compressive Stress Distribution of Rolled Thread

8.1 General Characteristics of Universal Joints

1) Single Universal Joints

The driving shaft and driven shaft intermediated by a universal joint has the following relationship between their rotation angles:

 $\tan \phi_2 = \cos \theta \cdot \tan \phi_1$

- where ϕ_1 : Rotation angle of driving shaft ϕ_2 : Rotation angle of driven shaft
 - θ : Shaft operating angle

Fig. 8.1 Single Universal Joint

This means that, even if the rotational speed and torque of the driving shaft are constant, the driven shaft is subject to fluctuation in rotational speed and torque.

The speed ratio between the driving shaft and driven shaft can be obtained by differentiating equation (1) with respect to time (t), where ϕ_1 is by $\omega_1 \cdot t$ and ϕ_2 by $\phi_2 \cdot t$:

$$\frac{\omega_2}{\omega_1} = \frac{\cos\theta}{1 - \sin^2\phi_1 \cdot \sin^2\theta}$$

where ω_1 : Rotational angular velocity of driving shaft (rad/s) ω_2 : Rotational angular velocity of driven shaft (rad/s) ω_2/ω_1 : Angular velocity ratio

Equation (2) can be expressed in diagram form as shown in Fig. 8.2. The maximum value and minimum value of the angular velocity ratio can be expressed as follows:

The maximum fluctuation rate of angular velocity in a universal joint can be expressed by the following equation:

$$\frac{(\omega_2 \max. -\omega_2 \min.)}{\omega_1} = \frac{1}{\cos \theta} - \cos \theta$$

The torque ratio between input and output can be expressed by the diagram shown in Fig. 8.3. The maximum value and minimum value can be obtained as shown below, respectively:

 (T_2/T_1) max. = $1/\cos\theta \cdot \cdot \cdot \cdot \phi_1 = 0^\circ$ (T_2/T_1) min. = $\cos\theta \cdot \cdot \cdot \cdot \phi_1 = 90^\circ$

where T_1 : Input torque

Fig. 8.3 Torque Fluctuation

2) Double Universal Joints

Universal joints are usually installed in pairs. When assembled as shown in Fig. 8.4 (that is with equal operating angles in both joints and yokes connected to the same shaft in line and all three shafts in the same plane), the complete drive consisting of the two joints and the connecting shaft will transmit uniform angular velocity.

When two universal joints are installed without any of the above conditions being satisfied, the second joint will not compensate for the angular fluctuation by the first joint.

Fig. 8.4 Installation of Double Universal Joints

3) Secondary Couples

It is often necessary to consider the secondary couples imposed by universal joints operating at an angle; especially under high angle or large torque. These couples must be taken into account in designing the shafts and supporting bearings.

The secondary couples in the universal joints are in the planes of the yoke. These couples are about the intersection of the shaft axis. They impose a load on the bearings and a bending stress in the shaft connecting the joints, and they fluctuate from maximum to zero every 90; of shaft revolution. The broken lines in Fig. 8.5 indicate the effect of these secondary couples on the shafts and bearings.

The formula for maximum secondary couple is as follows:

$$M_1 \max = T \tan \theta$$
 (for driving shaft)
 $M_2 \max = T \sin \theta$ (for driven shaft)

- where M_1 : Secondary couple on driving shaft $(N \cdot m)$
 - M_2 : Secondary couple on driven shaft $(N \cdot m)$
 - T : Driving torque (N · m)
 - θ : Shaft operating angle

The ratio of the secondary couple to the driving torque is shown in Fig. 8.5. The secondary couple M_1 and M_2 can be obtained by multiplying M_1/T or M_2/T by the driving torque T.

Fig. 8.5 Effect of Secondary Couple

Fig. 8.6 Fluctuation of Secondary Couple to Driving Torque

8.2 Drive Shaft Selection

A drive shaft should be selected so as to satisfy the required strength, service life, operating angle and dimensions necessitated by its purpose.

Practically, the strength and service life of the universal joints should be examined first as shown in the following steps. Once these requirements be satisfied, the universal joint will satisfy its purpose in most of the cases.

1) Load Torque of Drive Shaft

The function of the drive shaft is to transmit a given torque at a certain operating angle and a certain rotational speed. Load torque should be first determined to select the size of a desired drive shaft.

A maximum torque including an impact torque and a mean torque should be known, and it is essential for selecting an appropriate drive shaft to understand the correct maximum torque and mean torque.

Maximum torque:

Value to determine if the strength of each part is sufficient. Mean torque:

Value necessary to calculate the service life

2) Mean Torque

It is apparent that all kinds of machines are not operating thoroughly by their maximum torque. Therefore, if a drive shaft is selected according to a service life calculated from the maximum torque, it results in being uneconomically larger than necessary.

So, it is reasonable to set up a longer expected service life, if the application condition are severe; and shorter, if the conditions are easy.

If, for instance, a job is expressed as in the table below,

Drive stage	1	2	3 · · · · Z
Torque $(N \cdot m)$	T_1	T_2	$T_3 \cdot \cdot \cdot \cdot T_Z$
Rotation speed (\min^{-1})	n_1	n_2	$n_3 \cdots n_Z$
Time ratio (%)	t ₁	t_2	$t_3 \cdot \cdot \cdot t_Z$

the cube root of mean torque (T_m) and the arithmetical mean of rotation speed (n_m) are yielded from the following equations.

$$T_{\rm m} = \sqrt[3]{\frac{(T_1^3 \ n_1 \cdot t_1 + \dots T_Z^3 \cdot n_Z \cdot t_Z)}{(n_1 \cdot t_1 + \dots + n_Z \cdot t_Z)}}$$
$$n_{\rm m} = \frac{(n_1 \cdot t_1 + \dots + n_Z \cdot t_Z)}{(t_1 + \dots + t_Z)}$$

3) Selection Based on Strength

A drive shaft should be selected so that the normal maximum torque shall not exceed the " $T_{\rm D}$ torque." However, it is difficult to determine the true maximum torque, and the engine capacity or motor capacity is used as the maximum torque in many cases. In consideration of the torque amplification factor (TAF) of the drive shaft and various imponderables, the safety factor ($f_{\rm S}$) of no less than 1.5 should be considered as the most desirable.

 $f_{\rm S} = T_{\rm D}$ /maximum torque under normal operating conditions > 1.5

The maximum torque that may occur in an emergency should be determined using "Ts torque." The safety factor (fs) of no less than 1.5 should be considered as desirable in this case as well.

 $f_{\rm S} = T_{\rm S}$ /breaking torque under emergency conditions > 1.5

To select a drive shaft based on a safety factor of 1.5 or less, consult JTEKT as close examination is required in consideration of previous performance records.

4) Selection Based on Service Life

There is no worldwide standard for service life calculation of universal joint bearings (cross bearings) and the service life is calculated according to the unique method developed by each manufacturer.

JTEKT employs the following empirical equation based on extensive experimentation (conforming to SAE). The service life L_h is defined as the expected number of operating hours before an indentation of 0.25 mm develops on the rolling contact surface of the bearing. The use of the bearings over the service life L_h may be practical on a low speed machine such as a rolling mill.

$$L_{\rm h} = 3000 \ K_{\rm m} \left(\frac{T_{\rm R} \cdot K_{\rm n} \cdot K_{\theta}}{T_{\rm m}} \right)^{2.907}$$

where L_h : Average calculated bearing life (h)

- Km: Material factor=1 to 3
- T_R : Rated torque (N · m)
- T_m : Mean torque $(N \cdot m)$
- $K_{\rm n}$: Speed factor = 10.2/ $n^{0.336}$
- $K_{ heta}$: Angle factor = 1.46/heta ^{0.344}
- *n* : Rotation speed (\min^{-1})
- heta : Shaft operating angle (\degree)
- Note: A drive shaft should be selected by considering the type of the machine, peripheral equipment, particular operating conditions, and other factors. The method outlined in this catalog is a common rough guide. It is recommended to consult JTEKT for details.

8.3 Balance Quality of Drive Shafts

If a rotating drive shaft is unbalanced, it may adversely influence the equipment and ambient conditions, thus posing a problem.

JTEKT designs and manufactures drive shafts to satisfy the balance quality requirements specified in JIS B 0905.

1) Expression of balance quality

The balance quality is expressed by the following equation: Balance quality = $e \omega$

or

Balance quality = en/9.55

where e: Amount of specific unbalance (mm)

This amount is the quotient of the static unbalance of a rigid rotor by the rotor mass. The amount is equal to the deviation of the center of the rotor mass from the center line of the shaft.

- ω : Maximum service angular velocity of the rotor (rad/s)
- *n* : Rotational speed (min⁻¹)

2) Balance quality grades

The JIS specifies the balance quality grades from G0.4 to G4000. Generally, the three grades described in Table 8.1 below are commonly used.

We apply grade G16 to high speed drive shafts unless otherwise specified.

3) Correction of the unbalance of drive shafts

JTEKT corrects the unbalance of drive shafts to the optimal value by the two plane balancing method, using the latest balance system.

To correct the balance of a drive shaft, it is critical to correct the balance between two planes each near the two individual universal joints, instead of by the one plane balancing as used to balance car wheels.

Especially in the case of a long drive shaft, this two plane balancing method is the only way to acquire good results.

Balance quality grade	Upper limit value of balance quality $(e\omega)$	Recommended applicable machines
G40	40	Car wheels, wheel rims, wheel sets and drive shafts Crankshaft systems of elastically mounted high speed four stroke engines (gasoline or diesel) with six or more cylinders Crankshaft systems of the engines of automobiles, trucks and rolling stock
G16	16	Drive shafts with special requirements (propeller shafts and diesel shafts) Components of crushing machines Components of agricultural machines Components of the engines of automobiles, trucks and rolling stock (gasoline or diesel) Crankshaft systems with six or more cylinders with special requirements
G 6.3	6.3	Devices of processing plants Ship engine turbine gears (for merchant ships) Centrifugal drums Papermaking rolls and printing rolls Fans Assembled aerial gas turbine rollers Flywheels Pump impellers Components of machine tools and general industrial machines Medium or large electric armatures (of electric motors having at least 80 mm in the shaft center height) without special requirements Small electric armatures used in vibration insensitive applications and/or provided with vibration insulation (mainly mass produced models) Components of engines with special requirements

Table 8.1 Recommended Balance Quality Grades (Excerpt from JIS B 0905)

	Designation	Pitch (mm)	Width across flats (mm)	Tightening torque (N · m)	Tightening force (N)	
Coarse screw thread	M 6 M 8 M10 M12 M14 M16 M18	1 1.25 1.5 1.75 2 2 2.5 2.5	10 13 17 19 22 24 27	$ \begin{array}{r} 12 \pm 1 \\ 29 \pm 2 \\ 59 \pm 5 \\ 98 \pm 5 \\ \end{array} $ $ \begin{array}{r} 155 \pm 10 \\ 245 \pm 20 \\ 345 \pm 20 \\ 150 \pm 20 \\ \end{array} $	11 500 21 100 33 500 47 400 65 400 91 800 114 000	
	M20 2.5 M22 2.5		30 32	480 ± 30 645 ± 40	144 000 179 000	
	M24 3 3 M27 3 4 M30 3.5 4 M33 3.5 5 M36 4 5		36 41 46 50 55	825 ± 50 1 230 \pm 70 1 670 \pm 100 2 260 \pm 150 2 840 \pm 150	207 000 276 000 334 000 417 000 479 000	
	M39 M42 M45 M48 M52	M39 4 60 M42 4.5 65 M45 4.5 70 M48 5 75 M52 5 80		3730 ± 200 4610 ± 300 5790 ± 300 6960 ± 400 9020 ± 500	582 000 665 000 783 000 876 000 1 060 000	
	M56 M60 M64 M68	5.5 5.5 6 6	85 90 95 100	$\begin{array}{c} 11300\pm600\\ 13700\pm700\\ 16700\pm900\\ 20100\pm1000 \end{array}$	1 240 000 1 410 000 1 610 000 1 840 000	

8.4 Recommended Tightening Torque for Flange Bolts

	Designation	Pitch (mm)	Width across flats (mm)	Tightening torque (N ⋅ m)	Tightening force (N)		
	M 6	0.75	10	14 土 1	12900		
	M 8	1	13	31 土2	23 000		
	M10	1.25	17	64 ± 5	37 200		
	M12	1.25	19	105 ± 5	54 400		
	M12	1.5	19	105±5	52800		
	M14	1.5	22	175±10	75 400		
	M16	1.5	24	265 ± 20	102000		
	M18	2	27	360 ± 20	123 000		
	M20	M20 2		500 ± 30	153 000		
	M22 2		32	675 ± 40	191 000		
Fino	M24	2	36	900 ± 50	233 000		
Fille	M27	2	41	1320 ± 70	305 000		
sciew	M30	2	46	1810 ± 100	378 000		
thread	M33	2	50	2450 ± 150	468 000		
	M36	3	55	3040 ± 150	523 000		
	M39	3	60	3920 ± 200	624000		
	M42	3	65	5000 ± 300	740 000		
	M45	3	70	6180 ± 300	855 000		
	M48	3	75	7550 ± 400	979 000		
	M52	3	80	9610±500	1 160 000		
	M56	3	85	12300 ± 700	1 380 000		
	M60	3	90	14700 ± 800	1 560 000		
	M64	3	95	18100 ± 1000	1810000		
	M68	3	100	21600 ± 1000	2040000		

[Remarks] 1) The recommended values are applicable to the following bolts.

Hexagon head bolts of JIS strength class 10.9 (bolt holes is JIS class 1) Non treated (including blackening), grease lubrication (μ = 0.125 to 0.14)

2) The values are also applicable to class 2 bolt holes and reamer bolt holes as well as hexagon socket head cap screws as far as the designation and pitch are identical.

8.5 Shape and Dimensions of Parallel Key and Keyway (JIS B 1301)

Unit: mm

		Dimension of key							Dimension of keyway							Informative note
Nominal		b		h				_	Close grade	Norma	l grade		Ę	_		
size of key b imes h	iic ension	erance h9)	iic ension	Tolerar	nce	с	l ¹⁾	c dimension b_1 and b_2	$egin{array}{c} b_1 \ {f and} \ b_2 \end{array}$	b_1	b_2	r_1 and r_2	c dimensio of t_1	c dimensio of t_2	lerance t_1 and t_2	Applicable shaft dia.
	Bas dim		Bas dim					Basi of	Tolerance (P9)	Tolerance (N9)	$\begin{matrix} \text{Tolerance} \\ (JS9) \end{matrix}$	-2	Basi	Basi	of 1	
2× 2	2	0	2	0		0.16	6~ 20	2	-0.006	-0.004	+0.0125	0.08	1.2	1.0		6~ 8
3× 3	3	-0.025	3	-0.025		~ 0.25	6~ 36	3	-0.031	-0.029	-0.0125	~ 0.00	1.8	1.4	+0 1	8~ 10
4× 4	4	0	4	0	hQ	0.20	8~ 45	4	-0.012	0		0.10	2.5	1.8	0.1	10~ 12
5× 5	5	-0.030	5	-0.030	113		10~ 56	5	-0.012	-0.030	±0.0150		3.0	2.3		12~ 17
6× 6	6	0.030	6	0.030		0.25	14~ 70	6	-0.042	0.000		0.16	3.5	2.8		17~ 22
(7× 7)	7	0	7	-0.036		~0.40	16~ 80	7	-0.015	0		~0.25	4.0	3.0		20~ 25
8× 7	8	-0.036	7				18~ 90	8	-0.051	-0.036	±0.0180		4.0	3.3		22~ 30
10× 8	10	0.000	8				22~110	10	0.031	0.030			5.0	3.3		30~ 38
12× 8	12		8	0			28~140	12					5.0	3.3		38~ 44
14× 9	14	0	9	-0.090		0.40	36~160	14	-0.018	0		0.25	5.5	3.8		44~ 50
(15×10)	15	_0 0/2	10			~0.60	40~180	15	-0.061	_0 0/2	±0.0215	~0.40	5.0	5.0		$50 \sim 55$
16×10	16	0.043	10				45~180	16	0.001	0.043			6.0	4.3	+0.2	$50\sim$ 58
18×11	18		11				50~200	18	1				7.0	4.4	0	58~ 65
20×12	20		12				56~220	20					7.5	4.9		65~ 75
22×14	22	•	14	•			63~250	22	0.000	•			9.0	5.4		75~ 85
(24×16)	24		16	0 110		0.60	70~280	24	-0.022	0 050	±0.0260	0.40	8.0	8.0		80~ 90
25×14	25	-0.052	14	-0.110		~0.80	70~280	25	-0.074	-0.052		~0.60	9.0	5.4		85~ 95
28×16	28		16				80~320	28					10.0	6.4		95~110
32×18	32		18		h11		99~360	32				1	11.0	7.4		110~130
(35×22)	35		22				100~400	35					11.0	11.0		125~140
36×20	36		20	1			_	36	1				12.0	8.4		130~150
(38×24)	38	0	24			1.00	_	38	-0.026	0	+0.0310	0.70	12.0	12.0		140~160
40×22	40	-0.062	22	0		1.00	_	40	-0.088	-0.062	-0.0010	0.70	13.0	9.4		150~170
(42×26)	42		26	-0.130		~1.20	_	42				~1.00	13.0	13.0		160~180
45×25	45		25				_	45					15.0	10.4		170~200
50×28	50		28				_	50	1				17.0	11.4	+0.3	200~230
56×32	56		32			1 00	_	56				1.00	20.0	12.4	U	230~260
63×32	63	0	32			1.60	_	63	-0.032	0		1.20	20.0	12.4		260~290
70×36	70	-0.074	36	0		~2.00	_	70	-0.106	-0.074	±0.0370	~1.60	22.0	14.4		290~330
80×40	80		40	-0.160			_	80					25.0	15.4	-	330~380
90×45	90	0	45			2.50	_	90	-0.037	0	1 0 0 107	2.00	28.0	17.4		380~440
100×50	100	—Ŏ.087	50			~3.00	_	100	-0.124	-0.087	±0.0435	~2.50	31.0	19.5		440~500

[Notes] 1) Dimension *l* shall be selected among the following within the range given in Table.

The dimensional tolerance on l shall be generally h12 in JIS B0401.

6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280, 320, 360, 400

 $2) \ \ {\rm The \ applicable \ shaft \ diameter \ is \ appropriate \ to \ the \ torque \ corresponding \ to \ the \ strength \ of \ the \ key.}$

[Remark] The nominal sizes given in parentheses should be avoided from use, as possible.

[Reference] Where the key of the smaller tolerance than that specified in this standard is needed, the tolerance on width b of the key shall be h7. In this case, the tolerance on height h shall be h7 for the key 7×7 or less in nominal size and h11 for the key of 8×7 or more.

9. Drive Shaft Selection Sheets

DRIVE SHAFTS KOYO.

(1) Drive Shafts for Ironmaking Machines and Rolling Mills

Ite	m	Necessity		Description		Remarks
Na	me of the machine					
	Location of installation					
1	Rated motor output (kW)	0				
2	Motor speed (min ⁻¹)	0	Min.	Max.		
3	Reduction ratio	0				
Driv	ve shaft					
4	Number of drive shafts per motor	0				
(5)	Torque transmission (kN·m)	0	Normal	Normal max.	Emergency max.	
6	Rotational speed (min ⁻¹)	0	Min.	Max.		Unnecessary if ② and ③ are filled in.
\bigcirc	Direction(s) of rotation (Circle one of the two listed on the right.)	0	Non reversing	Reversing		
8	Limit swing dia. (mm)					
9	Required stroke (mm)	0				
10	Pinion PCD (mm)					Enter when the shaft is
1	Roll minimum dia. (mm)					used for reduction rolls as an example.
(12)	Paint color	\bigtriangleup				Black if not specified
(]3)	Ambient temperature (°C)					
14)	Special environmental conditions					Water, steam, etc.
(15)	Installation dimensions (Must be fille	d out.)			◯: Must b △: Should	e filled in. be filled in as appropriate.
	Distance between	shaft ends				
	Driving shaft		Driven shaft	Distance between s	haft ends (mm)	
		†	-	Horizontal	(mm)	
			-	Vertical	(mm)	
	Offset			Fit		
	ϕd_1		ϕd_2	Driving shat	ft $\frac{\phi d_1 \text{ (mm)}}{\phi d_1 \text{ (mm)}}$	
	S_1		S_2		$S_1 \text{ (mm)}$	
				Driven shaf	t $\frac{\varphi a_2 \text{ (mm)}}{S_2 \text{ (mm)}}$	
					52 (mm)	

(2) Drive Shafts for Construction Machines

Item	Necessity		Description	n	Remarks		
Name of the machine							
Location of installation							
① Engine torque (kN·m/min ⁻¹)		Max.					
 Engine speed (min⁻¹) 		Normal	Max.				
3 Reduction ratio (for multiple-ratio transmission, fill out table (5).)							
Drive shaft							
 ④ Series or function 	0						
 ⑤ Torque transmission (kN⋅m) 	0	Normal	Max.	Emergency max.			
6 Rotational speed (min ⁻¹)	0	Normal	Max.				
 ⑦ Operating angle (°) 	0	Normal	Max.				
 8 Limit swing dia. (mm) 	0						
(9) Required stroke (mm)	0						
Paint color					Black if not otherwise specified		
 Ambient temperature (°C) 							
③ Special environmental conditions							
(3) Service life requirement (h)	0						
(1) Installation dimensions (Must be fi	led out.)			◯: Must be	e filled in.		
				⇔. Onouiu			
$\frac{ \text{Installation length} = (mm)}{ \text{Installation length} = (mm)} \qquad \qquad$							
 (b) Operating conditions Speed 	2 3 4	l 5	6 R	For HW Series products dimensions do not need Fit $d_1 \text{ (mm)}$	s, the below d to be filled in.		
Reduction ratio				Bolt holes d (mm	1) 1)		
Percentage of use (%)				<u>P.C.D.</u> (mm	1)		
Ave. speed (min ⁻¹)				H (mm	1) 1)		
				<i>α</i> (mn	1)		

MEMO

GLOBAL NETWORK BEARING BUSINESS OPERATIONS

JTEKT CORPORATION NAGOYA HEAD OFFICE

No.7-1, Meieki 4-chome, Nakamura-ku, Nagoya, Aichi 450-8515, IAPAN TEL: 81-52-527-1900

FAX : 81-52-527-1911

JTEKT CORPORATION OSAKA HEAD OFFICE

No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN TEL : 81-6-6271-8451 FAX: 81-6-6245-3712

Sales & Marketing Headquarters

No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN TEL: 81-6-6245-6087 FAX : 81-6-6244-9007

OFFICES

KOYO CANADA INC. 5324 South Service Road, Burlington, Ontario L7L 5H5, CANADA TEL : 1-905-681-1121

KOYO CORPORATION OF U.S.A.

-Cleveland Office-

FAX: 1-905-681-1392

29570 Clemens Road, P.O.Box 45028 Westlake OH 44145, U.S.A. TEL : 1-440-835-1000 FAX : 1-440-835-9347 -Detroit Office-

47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL : 1-734-454-1500 FAX : 1-734-454-4076

KOYO MEXICANA, S.A. DE C.V. Rio Nazas No.171, 3er piso, Col. Cuauhtemoc, M xico, D.F. C.P.

06500. M XICO TEL: 52-55-5207-3860 FAX : 52-55-5207-3873

KOYO LATIN AMERICA, S.A.

Edificio Banco del Pacifico Planta Baja, Calle Aquilino de la Guardia y Calle 52, Panama, REPUBLICA DE PANAMA TEL: 507-208-5900 FAX: 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA.

Av. Reboucas 2472 Jardim America, Sao Paulo, BRASIL TEL : 55-11-3372-7500 FAX : 55-11-3887-3039

KOYO BEARINGS INDIA PVT. LTD.

C/o Stylus Commercial Services PVT LTD, Ground Floor, The Beech, E-1, Manyata Embassy Business Park, Outer Ring Road, Bengaluru-560045, INDIA TEL: 91-80-4276-4567 (Reception Desk of Service Office) FAX: 91-80-4276-4568

JTEKT (THAILAND) CO., LTD.

172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND TEL : 66-38-533-310-7 FAX : 66-38-532-776

PT. JTEKT INDONESIA

MM2100 Industrial Town Block DD-3, Cikarang Barat, Bekasi 17520, INDONESIA TEL : 62-21-8998-3273 FAX: 62-21-8998-3274

KOYO SINGAPORE BEARING (PTE.) LTD. 27, Penjuru Lane, #09-01 C&P Logistics Hub 2, SINGAPORE

609195 TEL: 65-6274-2200 FAX: 65-6862-1623

KOYO MIDDLE EAST FZCO

6EA 601 Dubai Airport Free Zone, P.O. Box 54816, Dubai, U.A.E. TEL: 971-4-2993600 FAX: 971-4-2993700

PHILIPPINE KOYO BEARING CORPORATION

6th Floor One World Square Building, #10 Upper McKinley Road, McKinley Town Center, Fort Bonifacio, 1634 Taguig City, PHILIPPINES TEL : 63-2-856-5046/5047 FAX: 63-2-856-5045

JTEKT KOREA CO., LTD.

Inwoo Building 6F, 539-11, Shinsa-Dong, Kangnam-Ku, Seoul, KOREA TEL: 82-2-549-7922 FAX: 82-2-549-7923

JTEKT (CHINA) CO., LTD.

Room.25A2, V-CAPITAL Building, 333 Xianxia Road, Changning District, Shanghai, CHINA TEL : 86-21-5178-1000 FAX : 86-21-5178-1008

KOYO (SHANGHAI) CO., LTD.

Room.25A2, V-CAPITAL Building, 333 Xianxia Road, Changning District, Shanghai, CHINA TEL : 86-21-5178-1000 FAX: 86-21-5178-1008

KOYO AUSTRALIA PTY. LTD. Unit 2, 8 Hill Road , Homebush Bay, NSW 2127, AUSTRALIA TEL : 61-2-8719-5300 FAX: 61-2-8719-5333

JTEKT EUROPE BEARINGS B.V.

Markerkant 13-01, 1314 AL Almere, THE NETHERLANDS TEL: 31-36-5383333 FAX: 31-36-5347212

-KOYO BENELUX BRANCH OFFICE-

Energieweg 10a, 2964LE, Groot-Ammers, P.O. Box 1, 2965ZG Nieuwpoort, THE NETHERLANDS TEL: 31-184606800 FAX : 31-184606857 -KOYO ROMANIA REPRESENTATIVE OFFICE-Str. Dr. Lister nr. 24, ap. 1, sector 5, cod 050543, Bucharest, ROMANIA

TEL: 40-21-4104182 FAX: 40-21-4101178

KOYO KULLAGER SCANDINAVIA A.B.

Johanneslundsv gen 4, 194 61 Upplands V sby, SWEDEN TEL : 46-8-594-212-10 FAX: 46-8-594-212-29

KOYO (U.K.) LTD.

Whitehall Avenue, Kingston, Milton Keynes MK10 OAX, UNITED KINGDOM TEL : 44-1908-289300 FAX : 44-1908-289333

KOYO DEUTSCHLAND GMBH.

Bargkoppelweg 4, D-22145 Hamburg, GERMANY TEL : 49-40-67-9090-0 FAX: 49-40-67-9203-0

KOYO FRANCE S.A.

6 Avenue du Marais BP20189 95100 Argenteuil Cedex, FRANCE TEL : 33-1-3998-4202 FAX : 33-1-3998-4244/4249

KOYO IBERICA, S.L.

Avda.da la Industria, 52-2 izda 28820 Coslada Madrid, SPAIN TEL: 34-91-329-0818 FAX: 34-91-747-1194

KOYO ITALIA S.R.L.

Via Stephenson 43/a 20157 Milano, ITALY TEL: 39-02-2951-0844 FAX: 39-02-2951-0954

BEARING PLANTS

KOYO BEARINGS CANADA INC. 4 Victoria Street, Bedford, QC J0J-1A0, CANADA TEL : 1-450-248-3316 FAX : 1-450-248-4196

KOYO CORPORATION OF U.S.A. (MANUFACTURING DIVISION)

-Orangeburg Plant-

2850 Magnolia Street, Orangeburg, SC 29115, U.S.A. TEL : 1-803-536-6200 FAX : 1-803-534-0599

-Richland Plant-1006 Northpoint Blvd., Blythewood, SC 29016, U.S.A. TEL : 1-803-691-4624/4633

FAX : 1-803-691-4655

-Washington Plant-146 Cutting Edge Court Telford, TN 37690, U.S.A. TEL : 1-423-913-1006 FAX: 1-423-913-1008

KOYO BEARINGS USA LLC

-Dahlonega Plant-

615 Torrington Drive Dahlonega, GA 30533, U.S.A.

TEL: 1-706-864-7691 FAX: 1-706-864-8258

-Cairo Plant-

2525 Torrington Drive, Cairo, GA 39828, U.S.A. TEL : 1-229-377-6650 FAX : 1-229-377-9760

-Sylvania Plant-

400 Friendship Road, Sylvania, GA 30467, U.S.A. TEL : 1-912-564-7151

FAX : 1-912-564-2101

-Walhalla Plant-430 Torrington Road, Po Box 100, Walhalla, SC 29691, U.S.A.

TEL : 1-864-638-3683 FAX : 1-864-638-2434

JTEKT (THAILAND) CO., LTD. 172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND TEL : 66-38-531-988/993 FAX: 66-38-531-996

KOYO MANUFACTURING (PHILIPPINES) CORP.

Lima Technology Center, Municipality of Malvar, Batangas Province, 4233 PHILIPPINES TEL: 63-43-981-0088 FAX: 63-43-981-0001

KOYO JICO KOREA CO., LTD

28-12, Yulpo-Ri, Koduc-Myun, Pyung Teak-City, Kyungki-Do, KOREA TEL: 82-31-668-6381 FAX: 82-31-668-6384

KOYO BEARING DALIAN CO., LTD.

No.II A-2 Dalian Export Processing Zone, 116600, CHINA TEL : 86-411-8731-0972/0974 FAX: 86-411-8731-0973

WUXI KOYO BEARING CO., LTD.

Wuxi Li Yuan Economic Development Zone, Wuxi, 214072, CHINA TEL : 86-510-85161901 FAX : 86-510-85161143

KOYO NEEDLE BEARINGS (WUXI) CO., LTD.

Di Cui Road, Liyuan Development Zone, Jiangyu Province, 214072, CHÍNÁ TEL : 86-51085160998 FAX : 86-51085163262

DALIAN KOYO WAZHOU AUTOMOBILE BEARING CO., LTD.

No.96, Liaohe East Road, D.D Port, Dalian, 116620, CHINÁ TEL : 86-411-8740-7272 FAX : 86-411-8740-7373

KOYO LIOHO (FOSHAN) AUTOMOTIVE PARTS CO., LTD. No.12, Wusha Section Of Shunpan Road, Daliang Town, Shunde

Of Foshan, Guandong, Province, CHINA (SHUNDE INDUSTRIAL PARK) TEL : 86-757-22829589 FAX : 86-757-22829586

KOYO AUTOMOTIVE PARTS (WUXI) CO., LTD.

B6-A New District, Wuxi, 214028, CHINA TEL : 86-510-8533-0909 FAX: 86-510-8533-0155

KOYO BEARINGS (EUROPE) LTD.

P.O.Box 101, Elmhirst Lane, Dodworth, Barnsley South Yorkshire, S75 3TA, UNITED KINGDOM TEL : 44-1226-733200 FAX : 44-1226-204029

KOYO ROMANIA S.A.

Turnu Magurele Street No.1, 140003, ALEXANDRIA Teleorman County, ROMANIA TEL: 40-247-306-400 FAX: 40-247-306-421

KOYO BEARINGS DEUTSCHLAND GMBH

Werkstrasse 5, D-33790 Halle, Halle Westfalen, 33790, Fed.Rep.of Germany TEL: 49-5201-7070 FAX: 49-5201-707416

KOYO BEARINGS VIERZON MAROMME SAS

-Maromme Plant-Zone Industrielle De La. BP 1033 7 Rue Ampere. Maromme. 76151, FRANCE TEL: 33-23282-3838 FAX: 33-23576-6624

-Vierzon Plant-

61 Route De Foecy, BP 238, Vierzon Cedex, 18102 FRANCE TEL: 33-24852-6200 FAX: 33-24852-6250

KOYO BEARINGS MOULT SAS

Zone Industrielle De Mou, Moult, 14370, FRANCE TEL : 33-23127-9600 FAX: 33-23123-4693

KOYO BEARINGS CESK REPUBLIKA S.R.O.

Pavelkova 253/5, Bystrovany, Olomouc, 77900, CZECH REP TEL : 42-585-126-501 FAX: 42-585-126-503

KOYO BEARINGS ESPA A S.A.

Doctor Diaz Emparanza, 3, Bilbao, 48002, SPAIN TEL : 34-94-4431400 FAX: 34-94-4440905

TECHNICAL CENTERS

JTEKT CORPORATION NORTH AMERICAN TECHNICAL CENTER

47771 Halyard Drive, Plymouth, MI 48170, U.S.A TEL : 1-734-454-1500 FAX : 1-734-454-4076

JTEKT RESEARCH AND DEVELOPMENT CENTER

(WUXI) CO., LTD. No.801 Hong Qiao Road, Li Yuan Economic Development Zone, Wuxi Jiangsu 214072, CHINA TEL : 86-510-8589-8613 FAX : 86-510-8589-8698

JTEKT CORPORATION EUROPEAN TECHNICAL

CENTRE Markerkant 13-02, 1314 AL Almere, THE NETHERLANDS TEL : 31-36-5383350 FAX : 31-36-5302656

KOYO BEARINGS USA LLC

GREENVILLE TECHNOLOGY CENTER 7 Research Drive, Greenville, SC 29607, U.S.A. TEL : 1-864-770-2100 FAX: 1-864-770-2399

KOYO BEARINGS DEUTSCHLAND GMBH

KUENSEBECK TECHNOLOGY CENTER Werkstrasse 5, D-33790 Halle, Halle Westfalen, 33790, Fed.Rep.of Germany TEL : 49-5201-7070 FAX : 49-5201-707416

KOYO BEARINGS CESK REPUBLIKA S.R.O.

BRNO TECHNOLOGY CENTER Technologicky Park Brno, Techinicka 15, 61600 Brno, 61600 CZECH REP TEL : 420-541-191803 FAX: 420-541-191801

Value & Technology

