

Ball & Roller Bearings

JTEKT CORPORATION

				Коуо
1 Structures and types A 1 4 Selection of arrangement A 20 2 Outline of selection A 14 5 Selection of dimensions A 24 3 Selection of type A 16 6 Boundary dimensions A 46		10 Internal A 93 13 Materials A 122 16 Failures 11 Preload A 106 14 Shaft and A 125 A 144 12 Lubrication A 111 15 Handling A 133	Т	echnical section
$\begin{tabular}{ c c c c c } \hline $Open type $$ B 8 \\ $\left(\begin{array}{c} 68, 69, 160, 60 \\ 62, 63, 64 \end{array} \right) $ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline \\$	Locating snap ring type \cdots B 32 $\begin{pmatrix} N \\ NR \end{pmatrix}$	Extra-small & miniature B 38 Double-row B 50 (flanged type B 44)		Deep groove ball
Single-row B 60 Matched pair B 92 (79, 70, 72, 73, 74) (DB, DF) ACH9, ACH0 (DB, DF)	Double-row B 124 (32, 33, 52, 53 (522RS, 532RS)	Four-point contact ··· B 130 [62Bl, 63Bl]		Angular contact ball bearings
Open type ··· B 136 Sealed type ··· B 144 (12, 22) (13, 23) (222RS) (232RS)	Extended inner ring type B 148 [112, 113]	Adapter assemblies B 150		Self-aligning ball
Image: Null of the state	[HJ]	NN NNU Double-row B 194	ŝ	Cylindrical roller bearings
Metric series B 204 Inch series B 236 (329, 320, 330, 331, 302, 322 (332, 303, 303D, 313, 323, IS0)	TDO type B 280 (462, 463, 46T302, 46T322) (46T303, 46T303D, 46T323)	TDI type B 296 [452, 453]	ion table	Tapered roller bearings
Image: Weight of the state of the	Adapter assemblies B 330	Withdrawal sleeves B 338	specification	Spherical roller bearings
Single direction B 350 (511, 512, 513, 514 (532, 533, 534 (532U, 533U, 534U)	Double direction B 360 (522, 523, 524 (542, 543, 544 (542U, 543U, 544U)	B 368 [292, 293, 294]	earing	Thrust ball, Spherical thrust roller bearings
Needle roller and cage ass'y ··· B 388 Drawn cup type ··· B 402 Machined ri	ng type B 424 Thrust B 440	Stud type track rollers (cam followers) ··· B 450 Stud type track rollers (roller followers) ··· B 454 Stud type track rollers Stud type track r	â	Needle roller bearings
B 470 B 490 B 500 B 510	B 518 B 524	Ball bearings for units B 528		Ball bearing units
Split type ··· B 544 [SN, SSN, SD]	One-piece type B 570 [V]			Plummer blocks
(for support c self-lubricating clean ball bearings, linear ball bearings for vacuum • Kerries cupor this section ball bearings • Precision ba	machine tool spindles f axial loading)C 47 I screw support bearings unitsC 65	Full complement type cylindrical roller bearings for crane sheaves		Special purpose bearings
· Supplementary tables ······ D 1 – D 28			Su	pplementary tables

CAT. NO. B2001E-4

Koyo

Publication of Rolling Bearing Catalog

Today's technology-based society, in order to utilize the earth's limited resources effectively and protect the environment, must strive to develop new technologies and alternate energy sources, and in that connection it continues to pursue new targets in various fields. To achieve such targets, technically advanced and highly functional rolling bearings with significantly greater compactness, lighter weight, longer life and lower friction as well as higher reliability during use in special environments are sought.

This new-edition catalog is based on the results of wide-ranging technical studies and extensive R&D efforts and will enable the reader to select the optimal bearing for each application. In addition to standard bearings, this catalog provides information on a variety of bearings for specific purposes, such as ball bearing units, plummer blocks, and JTEKT EXSEV bearing series (bearings for extreme special environments).

JTEKT is confident that you will find this new catalog useful in the selection and use of rolling bearings. JTEKT is grateful for your patronage and look forward to continuing to serve you in the future.

★The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Reproduction of this catalog without written consent is strictly prohibited

Contents

8

Technical section

1	Rolling bearing structures and types
	1-1 StructureA 1
	1-2 Type A 1
2	Outline of bearing selection A 14
3	Selection of bearing type A 16
4	Selection of bearing arrangement A 20
5	Selection of bearing dimentions
	5-1 Bearing service life A 24
	5-2 Calculation of service life A 24
	0
	5-2 Calculation of service life A 24
	5-2 Calculation of service life A 245-3 Calculation of loads A 29
	 5-2 Calculation of service life A 24 5-3 Calculation of loads A 29 5-4 Dynamic equivalent load A 34 5-5 Basic static load rating

Boundary dimensions and 6 bearing numbers

- 6-1 Boundary dimensions A 46
- 6-2 Dimensions of snap ring grooves and locating snap rings...... A 47
- 6-3 Bearing number A 48

Bearing tolerances 7

- 7-1 Tolerances and tolerance classes for bearings..... A 52
- 7-2 Tolerance measuring method.. A 74

Limiting speed

8-1 Correction of limiting speed......A 78

- 8-2 Limiting speed for sealed ball bearings.....A 79
- 8-3 Considerations for high speedA 79 8-4 Frictional coefficient (refer.).....A 79

Bearing fits 9

9-1	Purpose of fitA 80
9-2	Tolerance and fit for shaft & housingA 80
9-3	Fit selectionA 81

9-4 Recommended fits A 84

10 Bearing internal clearance

10-1	Selection of
	internal clearanceA 93
10-2	Operating clearanceA 94

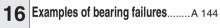
11 Preload

11-1	Purpose of preloadA	106
11-2	Method of preloadingA	106
11-3	Preload and rigidityA	107
11-4	Amount of preloadA	108

12 Bearing lubrication

12-	Purpose and method of lubricationA 111
12-	LubricantA 118

13 Bearing materials


- 13-1 Bearing rings and rolling elements materials A 122
- 13-2 Materials used for cages A 124

14 Shaft and housing design

14-1	Accuracy and roughness of shafts and housingsA 125
14-2	Mounting dimensionsA 126
14-3	Shaft designA 128
14-4	Sealing devicesA 129

15 Handling of bearings

15-1	General instructionsA 133
15-2	Storage of bearingsA 133
15-3	Bearing mountingA 133
15-4	Test runA 138
15-5	Bearing dismountingA 140
15-6	Maintenance and inspection of bearingsA 142
15-7	Methods of analyzing bearing failuresA 143

[Standard bearings]

Deep groove ball bearingsB	ł
Angular contact ball bearingsB 52	2
 Self-aligning ball bearingsB 134 	ł
Cylindrical roller bearingsB 154	ł
Tapered roller bearingsB 200)
Spherical roller bearingsB 302	2
Thrust ball bearingsB 348	3

Spherical thrust roller bearings	. B 366
Needle roller bearings	. B 374
Ball bearing units	. B 462
Plummer blocks	. B 540

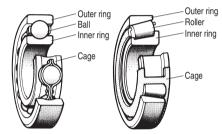
[Special purpose bearings]

Ceramic & EXSEV bearing seriesC	1
• K-series super thin section ball bearings C	27
• Bearings for machine tool spindles (for support of axial loading)C	47
• Precision ball screw support bearings and bearing units	65
• Full complement type cylindrical roller bearings for crane sheavesC	71
• Rolling mill roll neck bearings C	81
Bearings for railway rolling stock axle journalsC	139
• Linear ball bearings C	149
Locknuts, lockwashers & lock plates C	163

Supplementary tables

1	Boundary dimensions of radial bearings D	1
2	Boundary dimensions of tapered roller bearingsD	5
3	Boundary dimensions of single direction thrust bearingsD	7
4	Boundary dimensions of double direction thrust ball bearingsD	9
5	Dimension of snap ring grooves and locating snap ringsD	11
6	Shaft tolerances D	15
7	Housing bore tolerancesD	17
8	Numerical values for standard tolerance grades ITD	19
9	Greek alphabet list D	20
10	Prefixes used with SI unitsD	20
11	SI units and conversion factors D	21
12	Inch/millimeter conversionD	25
13	Steel hardness conversion D	26
14	Surface roughness comparisonD	27
15	Viscosity conversionD	28

Koyo


1. Rolling bearing structures and types

1-1 Structure

Rolling bearings (bearings hereinafter) normally comprise bearing rings, rolling elements and a cage. (see Fig. 1-1)

Rolling elements are arranged between inner and outer rings with a cage, which retains the rolling elements in correct relative position, so they do not touch one another. With this structure, a smooth rolling motion is realized during operation.

Bearings are classified as follows, by the number of rows of rolling elements : single-row, double-row, or multi-row (triple- or four-row) bearings.

Deep groove ball bearing Tapered roller bearing

Thrust ball bearing

Note) In thrust bearings inner and outer rings and also called "shaft race" and "housing race" respectively. The race indicates the washer specified in JIS.

Fig. 1-1 Bearing structure

1) Bearing rings

The path of the rolling elements is called the raceway; and, the section of the bearing rings where the elements roll is called the raceway surface. In the case of ball bearings, since grooves are provided for the balls, they are also referred to as raceway grooves.

The inner ring is normally engaged with a shaft; and, the outer ring with a housing.

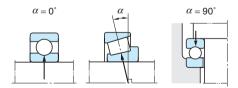
2) Rolling element

Rolling elements may be either balls or rollers. Many types of bearings with various shapes of rollers are available.

- Ball
- \square Cylindrical roller ($L_{\rm W} \leq 3 D_{\rm W}$)*
- Long cylindrical roller $(3D_w \le L_w \le 10D_w, D_w > 6 \text{ mm})^*$
- \blacksquare Needle roller (3 $D_{\rm W} \leq L_{\rm W} \leq 10D_{\rm W}, D_{\rm W} \leq 6 \text{ mm})^*$
- Tapered roller (tapered trapezoid)
- Convex roller (barrel shape)

* $(L_{\rm W}: \text{roller length} (\text{mm}))$

 $D_{\rm w}$: roller diameter (mm)


3) Cage

The cage guides the rolling elements along the bearing rings, retaining the rolling elements in correct relative position. There are various types of cages including pressed, machined, molded, and pin type cages.

Due to lower friction resistance than that found in full complement roller and ball bearings, bearings with a cage are more suitable for use under high speed rotation.

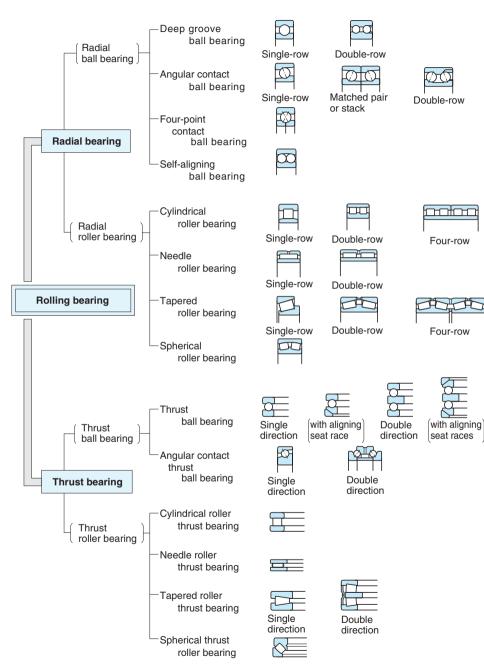
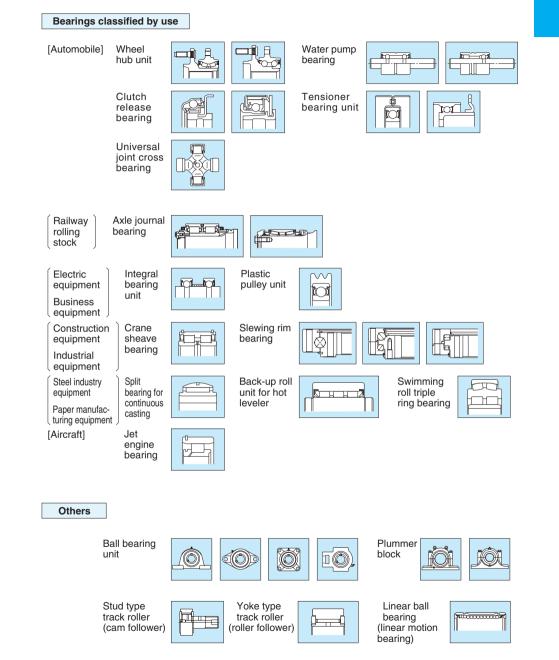
1-2 Type

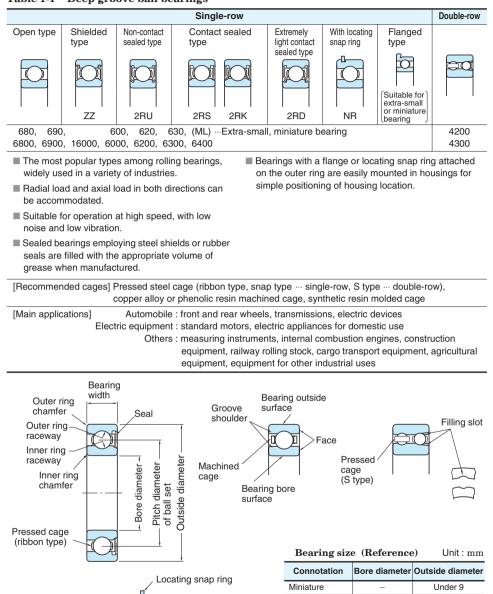
The contact angle (α) is the angle formed by the direction of the load applied to the bearing rings and rolling elements, and a plan perpendicular to the shaft center, when the bearing is loaded.

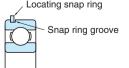
Bearings are classified into two types in accordance with the contact angle (α).

- Radial bearings ($0^{\circ} \le \alpha \le 45^{\circ}$) ... designed to accommodate mainly
- radial load. • Thrust bearings ($45^\circ < \alpha \le 90^\circ$)
 - ... designed to accommodate mainly axial load.

Rolling bearings are classified in Fig. 1-2, and characteristics of each bearing type are described in Tables 1-1 to 1-13.


Fig. 1-2(1) Rolling bearings



Koyo

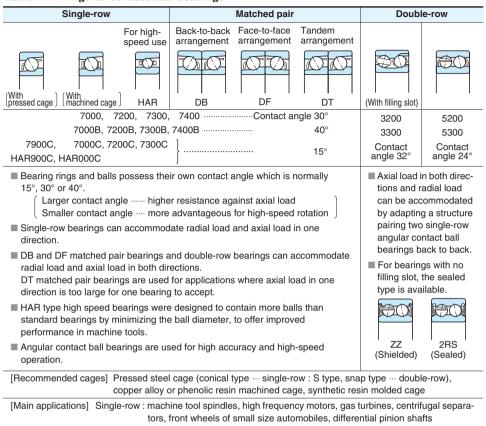
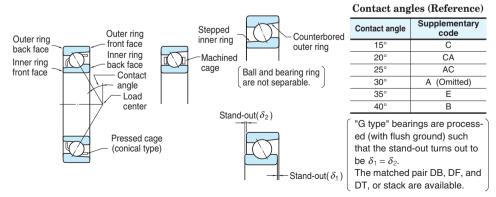

Fig. 1-2(2) Rolling bearings

Table 1-1 Deep groove ball bearings



Bearing size	e) Unit : mm	
Connotation	Bore diameter	Outside diameter
Miniature	-	Under 9
Extra-small	Under 10	9 or more
Small size	10 or more	80 or less
Medium size	-	80 - 180
Large size	-	180 - 800
Extra-large size	-	Over 800

Kovo

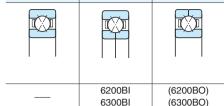

tors, front wheels of small size automobiles, differential pinion shafts Double-row : hydraulic pumps, roots blowers, air-compressors, transmissions, fuel injection pumps, printing equipment

Table 1-2 Angular contact ball bearings

Table 1-3 Four-point contact ball bearings

One-piece type Two-piece inner ring Two-piece outer ring

- Radial load and axial load in both directions can be accommodated.
- A four-point contact ball bearing can substitute for a face-to-face or back-to-back arrangement of angular contact ball bearings.
- Suitable for use under pure axial load or combined radial and axial load with heavy axial load.
- This type of bearing possesses a contact angle (α) determined in accordance with the axial load direction. This means that the bearing ring and balls contact each other at two points on the lines forming the contact angle.

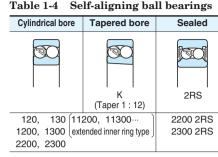
[Recommended cage] Copper alloy machined cage

[Main applications]

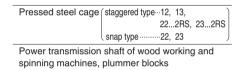
Contact

angle

(α)


Load

center


Motorcycle : Transmission, driveshaft pinion-side Automobile : Steering, transmission

Two-piece

outer ring

- Spherical outer ring raceway allows selfalignment, accommodating shaft or housing deflection and misaligned mounting conditions.
- Tapered bore design can be mounted readily using an adapter.

Bearing

width (B)

 $(d_1 = d + \frac{1}{12} B)$

Lockwasher

Locknut

Adapter sleeve

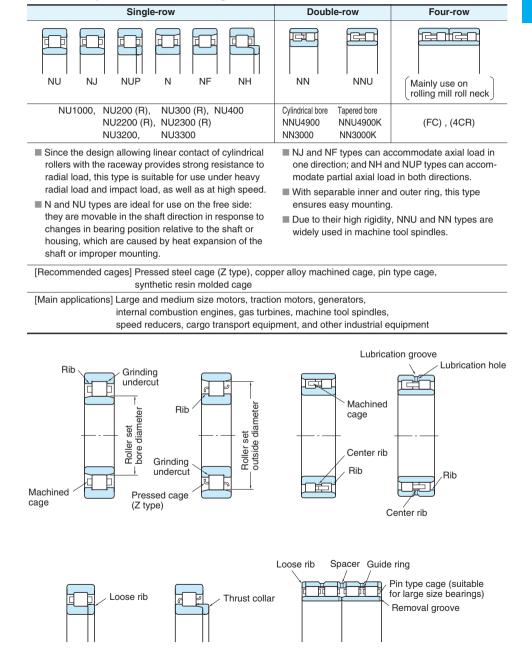
Small end of

tapered bore

Adapter assembly

diameter

 (ϕd)


Large end of

tapered bore

diameter

 (ϕd_1)

Table 1-5 Cylindrical roller bearings

Kovo

Pressed cage

(snap type)

Pressed cage

Two-piece

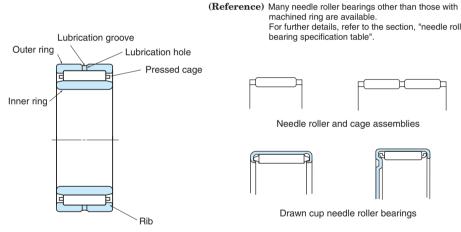
inner ring

(staggered type)

Bore

diameter

 (ϕd)

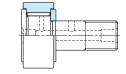

able 1-6 Mac	hined ring needle	roller bearing	s	
	Single-row		Doub	le-row
With inner ring	Without inner ring	Sealed	With inner ring	Without inner ring
NA4900 NA5900 (NQI, NQIS)	RNA4900 RNA5900 (NQ, NQS)	NA4900UU _	NA6900	RNA6900

In spite of their basic structure, which is the same as that of NU type cylindrical roller bearings, bearings with minimum ring sections offer space savings and greater resistance to radial load, by using needle rollers.

Bearings with no inner rings function using heat treated and ground shafts as their raceway surface.

[Recommended cage] Pressed steel cage

[Main applications] Automobile engines, transmissions, pumps, power shovel wheel drums, hoists, overhead traveling cranes, compressors


machined ring are available. For further details, refer to the section, "needle roller bearing specification table".

Needle roller and cage assemblies

Drawn cup needle roller bearings

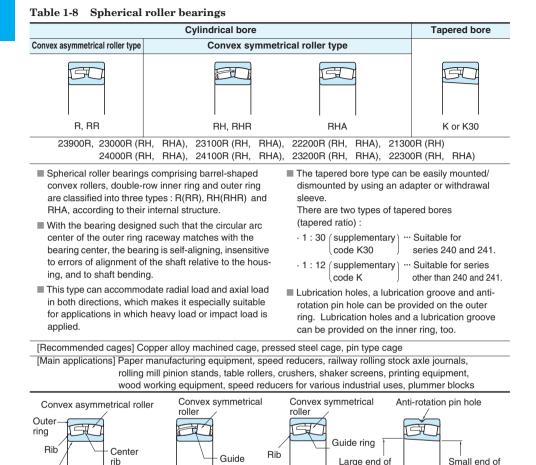
Stud type track roller (cam follower)

Table 1-7 Tapered roller bearings

Sin	gle-row	Doubl	le-row	Four-row
	Flanged type	TDO type	TDI type	(Mainly used on rolling mill roll necks)
Standard contact angle 32900JR 30200JR 32000JR 32200JR 33000JR 32200JR 33100JR 30300JR 32300JR 32300JR	30300CR 31300JR	46200 46200A 46300 46300A (46T)	45200 45300 (45T)	37200 47200 47300 (47T) (4TR)
guided by the inr The raceway sur and the rolling co designed so that a point on the be Single-row bearin and axial load in ings can accomr both directions.	issembled in the bearings her ring back face rib. faces of inner ring and ou ontact surface of rollers and the respective apexes or aring center line. ngs can accommodate ra one direction, and double modate radial load and ax ing is suitable for use und ad.	an ter ring an re Th prverge at be Sir dial load sel 3-row bear- ial load in intr Iter	d steep types, in act gle (α). e larger the contact aring resistance to a nce outer ring and in parated from each c arings designated b erchangeable intern	ner ring assembly can be other, mounting is easy. y the suffix "J" and "JR" are
-		ar wheels, transmiss of spindles, construc	sions, differential pir tion equipment, larg	nion
Outer rin	Pressed cage (window type) ation Lubrication	Load center	t angle (α) Roller sm end face Inner ring front face Outer ring small inside diameter Froi face Back face Overall width	Roller large end face end face Inner ring back face rib Back face

Koyo

Inner


ring

Adapter

sleeve

With aligning

seat races

51100) _	-	-	-	-				
51200	53200	53200U	52200	54200	54200U				
51300	53300	53300U	52300	54300	54300U				
51400	53400	53400U	52400	54400	54400U				
	pe of bearing compr ceway groove and b		ssembly. load	Single direction bearings accommodate axial load in one direction, and double direction bear-					
(or inn	to be mounted on s er rings); and, races re housing races (or	to be mounted	into hous- (Bot	ings accommodate axial load in both directions. (Both of these bearings cannot accommodate radial loads.)					
	al races of double dir ed on the shafts.	ection bearings		Since bearings with a spherical back face are self- aligning, it helps to compensate for mount-					

Table 1-9 Thrust ball bearings Single direction

With spherical

back face

With flat

back faces

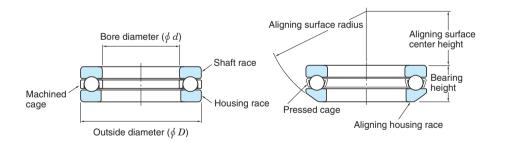
ngle direction bearings accommodate axial ad in one direction, and double direction beargs accommodate axial load in both directions. Both of these bearings cannot accommodate dial loads.) nce bearings with a spherical back face are

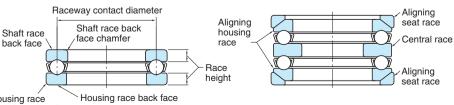
Double direction

With spherical

back faces

ing errors. [Recommended cages] Pressed steel cage, copper alloy or phenolic resin machined cage.


With flat back faces


synthetic resin molded cage

With aligning

seat race

[Main applications] Automobile king pins, machine tool spindles

Housing race back face chamfer

[Remark] The race indicates the washer specified in JIS.

Locknut

sleeve

Lock plate

Withdrawal

ring

A

RH, RHR type

Pressed

cage

Machined cage

separable

prong type

Lockwasher

Adapter

sleeve

(Shaft diameter \leq 180 mm) (Shaft diameter \geq 200 mm)

Locknut

Æ

R, RR type

tapered bore

Machined

(prong type)

cage

RHA type

diameter (ϕd_1)

Lubrication

Outer ring

machined

guided

cage

groove

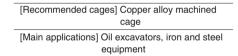
tapered bore

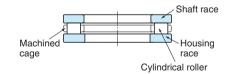
Lubrication

hole

(For shaker screen)

diameter (ϕd)

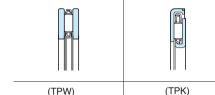


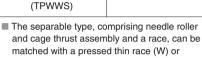

(THR.....R)

This type of bearing comprises washer-shaped rings (shaft and housing race) and cylindrical roller and cage assembly. Crowned cylindrical rollers produce uniform

pressure distribution on roller/raceway contact surface.

- Axial load can be accommodated in one direction.
- Great axial load resistance and high axial rigidity are provided.

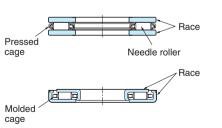


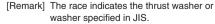

Table 1-11 Needle roller thrust bearings

Non-separable

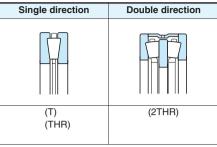
(TVK)

Separable


(TPWS)



- machined thick race (WS). The non-separable type comprises needle roller
- and cage thrust assembly and a precision pressed race.
- Axial load can be accommodated in one direction.
- Due to the very small installation space required, this type contributes greatly to size reduction of application equipment.
- In many cases, needle roller and cage thrust assembly function by using the mounting surface of the application equipment, including shafts and housings, as its raceway surface.


Pressed steel cage, synthetic resin molded cage

Transmissions for automobiles, cultivators and machine tools

Table 1-12 Tapered roller thrust bearings

- This type of bearing comprises tapered rollers (with spherical large end), which are uniformly guided by ribs of the shaft and housing races.
- Both shaft and housing races and rollers have tapered surfaces whose apexes converge at a point on the bearing axis.
- Single direction bearings can accommodate axial load in one direction; and, double direction bearings can accommodate axial load in both directions.
- Double direction bearings are to be mounted such that their central race is placed on the shaft shoulder. Since this type is treated with a clearance fit, the central race must be fixed with a sleeve, etc.

[Recommended cages] Copper alloy machined cage [Main applications] Single direction : crane hooks, oil excavator swivels

Double direction : rolling mill roll necks

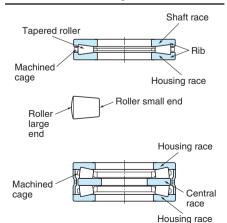
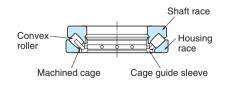


 Table 1-13
 Spherical thrust roller bearings

This type of bearing, comprising barrel-shaped convex rollers arranged at an angle with the axis, is self-aligning due to spherical housing race raceway; therefore, shaft inclination can be compensated for to a certain degree.

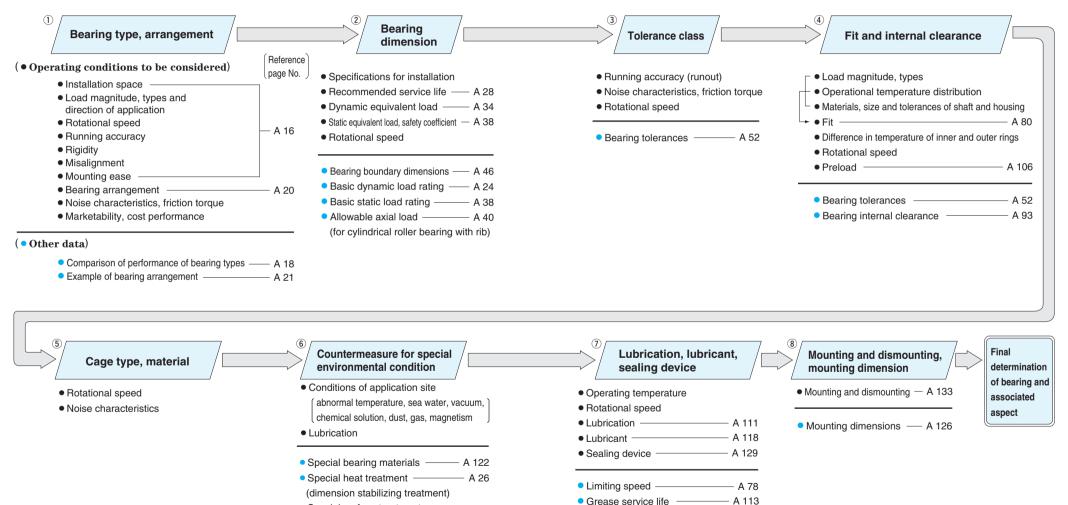

29300

29400

- Great axial load resistance is provided. This type can accommodate a small amount of radial load as well as heavy axial load.
- Normally, oil lubrication is employed.

Copper alloy machined cage

Hydroelectric generators, vertical motors, propeller shafts for ships, screw down speed reducers, jib cranes, coal mills, pushing machines, molding machines


2. Outline of bearing selection

Currently, as bearing design has become diversified, their application range is being increasingly extended. In order to select the most suitable bearings for an application, it is necessary to conduct a comprehensive study on both bearings and the equipment in which the bearings will be installed, including operating conditions, the performance required of the bearings, specifications of the other components to be installed along with the bearings, marketability, and cost performance, etc.

In selecting bearings, since the shaft diameter is usually determined beforehand, the prospective bearing type is chosen based upon installation space, intended arrangement, and according to the bore diameter required. Next, from the bearing specifications are determined the service life required when compared to that of the equipment in which it is used, along with a calculation of the actual service life from operational loads.

Internal specifications including bearing accuracy, internal clearance, cage, and lubricant are also selected, depending on the application.

For reference, general selection procedure and operating conditions are described in Fig. 2-1. There is no need to follow a specific order, since the goal is to select the right bearing to achieve optimum performance.

Special surface treatment
 Lubricant

(Reference) ceramic & **EXSEV** bearing series — C 1

— A 118

3. Selection of bearing type

In selecting bearings, the most important thing is to fully understand the operating conditions of the bearings.

The main factors to be considered are listed in Table 3-1, while bearing types are listed in Table 3-2.

Table 3-1 (1) Selection of bearing type

Iter	ns to be considered	Selection method	Reference page No.
1) Installation space	Bearing can be installed in target equipment	 When a shaft is designed, its rigidity and strength are considered essential; therefore, the shaft diameter, i.e., bore diameter, is deter- mined at start. For rolling bearings, since wide variety with dif- ferent dimensions are available, the most suit- able bearing type should be selected. (Fig. 3-1) 	A 46
2) Load	Load magnitude, type and direction which applied (Load resistance of bearing) is specified in terms of the basic load rating, and its value is specified in the bearing specification table.)	 Since various types of load are applied to bearings, load magnitude, types (radial or axial) and direction of application (both directions or single direction in the case of axial load), as well as vibration and impact must be considered in order to select the proper bearing. The following is the general order for radial resistance; (deep groove ball bearings < angular contact ball bearings < cylindrical roller bearings < tapered roller bearings < spherical roller bearings 	A 18 (Table 3-2) A 81
3) Rotational speed	Response to rotational speed of equipment in which bearings will be installed The limiting speed for bear- ing is expressed as allow- able speed, and this value is specified in the bearing specification table.	 Since the allowable speed differs greatly depend-ing not only upon bearing type but on bearing size, cage, accuracy, load and lubrication, all factors must be considered in selecting bearings. In general, the following bearings are the most widely used for high speed operation. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings) 	A 18 (Table 3-2) A 78
4) Running accuracy	Accurate rotation delivering required performance (Dimension accuracy and running accuracy of bearings are provided by JIS, etc.	 Performance required differs depending on equipment in which bearings are installed : for instance, machine tool spindles require high running accuracy, gas turbines require high speed rotation, and control equipment requires low friction. In such cases, bearings of tolerance class 5 or higher are required. The following are the most widely used bearings. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings) 	A 18 (Table 3-2) A 52
5) Rigidity	Rigidity that delivers the bear- ing performance required When load is applied to a bearing, elastic deformation occurs at the point where its rolling elements contact the raceway surface. The higher the rigidity that bearings possess, the better they control elastic deforma- tion.	 In machine tool spindles and automobile final drives, bearing rigidity as well as rigidity of equipment itself must be enhanced. Elastic deformation occurs less in roller bearings than in ball bearings. Rigidity can be enhanced by providing preload. This method is suitable for use with angular contact ball bearings and tapered roller bearings. 	A 18 (Table 3-2) A 106

Iter	Table 3-1 (2)	Selection of bearing type Selection method	Reference page No.
6) Misalign- ment (aligning capability)	Operating conditions which cause misalignment (shaft deflection caused by load, inac- curacy of shaft and housing, mounting errors) can affect bearing performance (Allowable misalignment (in angle) for each bearing type is described in the section before the bearing specifica- tion table, to facilitate deter- mination of the self-aligning capability of bearings.	 Internal load caused by excessive misalignment damages bearings. Bearings designed to absorb such misalignment should be selected. The higher the self-aligning capability that bearings possess, the larger the angular misalignment that can be absorbed. The following is the general order of bearings when comparing allowable angular misalignment : <pre> (cylindrical roller bearings < tapered roller-bearings < deep groove ball bearings, angular contact ball bearings </pre> spherical roller-bearings description is the general order of the self-aligning ball bearings 	A 18 (Table 3-2)
7) Mounting and dismounting	Methods and frequency of mounting and dismounting required for periodic inspection	 Cylindrical roller bearings, needle roller bearings and tapered roller bearings, with separable inner and outer rings, are recommended for applications in which mounting and dismounting is conducted frequently. Use of sleeve eases the mounting of self-aligning ball bearings and spherical roller bearings with tapered bore. 	A 18 (Table 3-2)

Koyo

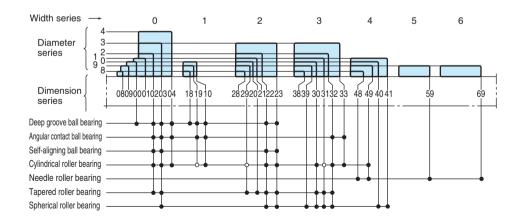


Fig. 3-1 Radial bearing dimension series

 Table 3-2
 Performance comparison of bearing type

		Deep groove ball bearing		r contact ba Matched pair or stack		Four-point contact ball bearing	Self- aligning ball bearing		Cylindrical m	Oller bearing	g NN · NNU	Needle roller bearing (machined ring type)	Tapered r Single- row	roller bearing Double-row, four-row	Spherical roller bearing	Thrust ba With flat back faces	All bearing With aligning seat race	Double direction angular con- tact thrust ball bearing	Cylindrical roller thrust bearing	Needle roller thrust bearing	Tapered roller thrust bearing	Spherical thrust roller bearing	Reference page No.
	Radial load	0	0	0	0	0	0	O	0	0	0	0	0	0	0	×	×	×	×	×	×		_
stance	Axial load	⊖	© ←	© ↔ *	 ↔ *	◎		×			×	×	© ←	⊜		○ ◆*	*	◎	© ↓	●	© ←	© ←	_
m	Combined load radial and axial	0	0	0	0	0		×			×	×	0	0		×	×	×	×	×	×		-
	Vibration or impact load							O	0	0	0	0	0	0	0				0	0	0	0	-
	h speed ptability	0	0	0	0	0		O	0	0	0	0	0	0	0			0					A16 A78
	gh curacy	0	0	0		0		O			0		0			0		0					A16, 52 A111
le	w noise vel/low rque	0						0															A16
	Rigidity			0		0		0	0	0	0	0	0	0				0	0	0	0		A16
Mis	alignment	0		×	×	×	0								0	×	0	×	×	×	×	0	A17 Description before specification table
out	er and er ring parability	×	×	×	×	*	×		-						×					*			_
ement	Fixed side		+		*			×	+		×	×	+										A20
ang	Free side																						A20
R	emarks		A pair of bearings mounted facing each other.	*DT arrange- ment is effective for one direction only.	*Filling slot type is effective for one direction only.	*Non- separable type is also available.							A pair of bearings mounted facing each other.			bearing effectiv	direction as are e for rections.			*Non-sep- arable type is also available.			_
	eference ige No.	A4 B4		A5 B52		A6 B52	A6 B134		A7 B1			 A8 B374	A B	9 200	A10 B302	A [.] B:	11 348	 C47	A12	A12 B374	A13	A13 B366	

 $\bigcirc \text{Excellent} \quad \bigcirc \text{Good} \quad \triangle \text{ Fair } \times \text{Unacceptable} \iff \text{Both directions} \iff \text{One direction only}$

Acceptable

Acceptable, but shaft shrinkage must be compensated for.

4. Selection of bearing arrangement

As bearing operational conditions vary depending on devices in which bearings are mounted, different performances are demanded of bearings. Normally, two or more bearings are used on one shaft. In many cases, in order to locate shaft positions in the axial direction, one bearing is mounted on the fixed side first, then the other bearing is mounted on the free side.

Table 4-1Bearings on fixed and free sides

\leq	Features	Recommended bearing type	Example No.
Fixed side bearing	 This bearing determines shaft axial position. This bearing can accommodate both radial and axial loads. Since axial load in both directions is imposed on this bearing, strength must be considered in selecting the bearing for this side. 	Deep groove ball bearing Matched pair or stack angular contact ball bearing Double-row angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing with rib (NUP and NH types) Double-row tapered roller bearing Spherical roller bearing	
Free side bearing	 This bearing is employed to compensate for expansion or shrinkage caused by operating temperature change and to allow ajustment of bearing position. Bearings which accommodate radial load only and whose inner and outer rings are separable are recommended as free side bearings. In general, if non-separable bearings are used on free side, clearance fit is provided between outer ring and housing to compensate for shaft movement through bearings. In some cases, clearance fit between shaft and inner ring is utilized. 	 Separable types Cylindrical roller bearing (NU and N types) Needle roller bearing (NA type, etc.) Non-separable types Deep groove ball bearing Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row angular contact ball bearing Self-aligning ball bearing Double-row tapered roller bearing (TDO type) Spherical roller bearing 	Examples 1–11
When fixed and free sides are not distin- guished	 When bearing intervals are short and shaft shrink- age does not greatly affect bearing operation, a pair of angular contact ball bearings or tapered roller bearings is used in paired mounting to accommodate axial load. After mounting, the axial clearance is adjusted using nuts or shims. 	Deep groove ball bearing Angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing (NJ and NF types) Tapered roller bearing Spherical roller bearing	Examples 12–16
Bearings for verti- cal shafts	 Bearings which can accommodate both radial and axial loads should be used on fixed side. Heavy axial load can be accommodated using thrust bearings together with radial bearings. Bearings which can accommodate radial load only are used on free side, compensating for shaft movement. 	 Fixed side Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row tapered roller bearing (TDO type) Thrust bearing + radial bearing 	Examples 17 and 18

Table 4-2 (1) Example bearing arrangements

Koyo

	Bearing arrangement Application						
Example	Fixed side	Free side	Recommended application	Application example			
Ex. 1			 Suitable for high-speed operation; used for various types of applications. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Medium size motors, air blowers			
Ex. 2			 More suitable than Ex. 1 for operation under heavy load or impact load. Suitable also for high-speed operation. Due to separability, suitable for applications requiring interference of both inner and outer rings. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Traction motors for rai way rolling stock			
Ex. 3			 Recommended for applications under heavier or greater impact load than those in Ex. 2. This arrangement requires high rigidity from fixed side bearings mounted back to back, with preload provided. Shaft and housing of accurate dimensions should be selected and mounted properly. 	Steel manufac- turing table rollers, lathe spindles			
Ex. 4			 This is recommended for operation at high speed or axial load lighter than in Ex. 3. This is recommended for applications requiring interference of both inner and outer rings. Some applications use double-row angular con- tact ball bearings on fixed side instead of matched pair angular contact ball bearings. 	Motors			
Ex. 5			 This is recommended for operations under relatively small axial load. This is recommended for applications requiring interference of both inner and outer rings. 	Paper manufacturing calender turing calender rollers, diesel locomotive axle journals			
Ex. 6			 This is recommended for operations at high speed and heavy radial load, as well as normal axial load. When deep groove ball bearings are used, clear- ance must be provided between outside diameter and housing, to prevent application of radial load. 	Diesel locomotive transmissions			
Ex. 7			 This arrangement is most widely employed. This arrangement can accommodate partial axial load as well as radial load. 	Pumps, automobile transmissions			

Bearing arrangement Application Example **Recommended application** Fixed side Free side example • This is recommended for operations with relatively Worm gear speed reducers heavy axial load in both directions. Some applications use matched pair angular con-Ex. 8 tact ball bearings on fixed side instead of doublerow angular contact ball bearings. • This is the optimum arrangement for applications Steel manufacturing table with possible mounting errors or shaft deflection. H roller speed Bearings in this arrangement can accommodate Ex. 9 reducers. partial axial load, as well as heavy radial load. overhead crane wheels • This is optimum arrangement for applications with General industrial possible mounting errors or shaft deflection. equipment Ease of mounting and dismounting, ensured by counter shafts 20/= use of adaptor, makes this arrangement suitable Ex. 10 for long shafts which are neither stepped nor threaded. > This arrangement is not recommended for applications requiring axial load capability. • This is the optimum arrangement for applications Steel manufacturwith possible mounting errors or shaft deflection. ing table roll-• This is recommended for operations under impact ers Ex. 11 load or radial load heavier than that in Ex. 10. This arrangement can accommodate partial axial load as well as radial load. Arrangement in which fixed and Application Recommended application free sides are not distinguished example • This arrangement is most popular when applied to Small motors. small equipment operating under light load. small speed reducers, When used with light preloading, thickness-Ex. 12 small pumps adjusted shim or spring is mounted on one side of outer ring. • This is suitable for applications in which rigidity is Machine tool spindles enhanced by preloading. This is frequently employed in applications requiring high speed operation under relatively large axial load. Back-to-back Back-to-back arrangement is suitable for Ex. 13 applications in which moment load affects operation. When preloading is required, care should be taken in preload adjustment. Face-to-face

Table 4-2 (2) Example bearing arrangements

Table 4-2 (3) Example bearing arrangements

Example	Arrangement in which fixed and free sides are not distinguished	Recommended application	Application example
Ex. 14	Back-to-back Face-to-face	 This is recommended for operation under impact load or axial load heavier than in Ex. 13. This is suitable for applications in which rigidity is enhanced by preloading. Back-to-back arrangement is suitable for applications in which moment load affects operation. When interference is required between inner ring and shaft, face-to-face arrangement simplifies mounting. This arrangement is effective for appli- cations in which mounting error is possible. When preloading is required, care should be taken in preload adjustment. 	Speed reducers, automobile wheels
Ex. 15		 This is recommended for applications requiring high speed and high accuracy of rotation under light load. This is suitable for applications in which rigidity is enhanced by preloading. Tandem arrangement and face-to-face arrangement are possible, as is back-to-back arrangement. 	Machine tool spindles
Ex. 16		 This arrangement provides resistance against heavy radial and impact loads. This is applicable when both inner and outer rings require interference. Care should be taken not to reduce axial internal clearance a critical amount during operation. 	Construction equipment final drive
А	pplication to vertical shafts	Recommended application	Application example
Ex. 17	Fixed side Free side	 This arrangement, using matched pair angular contact ball bearings on the fixed side and cylin- drical roller bearings on the free side, is suitable for high speed operation. 	Vertical motors, vertical pumps
Ex. 18	Free side	 This is recommended for operation at low speed and heavy load, in which axial load is heavier than radial load. Due to self-aligning capability, this is suitable for applications in which shaft runout or deflection occurs. 	Crane center shafts, vertical pumps

5. Selection of bearing dimensions

5-1 Bearing service life

When bearings rotate under load, material flakes from the surfaces of inner and outer rings or rolling elements by fatigue arising from repeated contact stress (ref. A 144).

This phenomenon is called flaking. The total number of bearing rotations until flaking occurs is regarded as the bearing "(fatigue) service life".

"(Fatigue) service life" differs greatly depending upon bearing structures, dimensions, materials, and processing methods. Since this phenomenon results from fatigue distribution in bearing materials themselves, differences in bearing service life should be statistically considered.

When a group of identical bearings are rotated under the same conditions, the total number of revolutions until 90 % of the bearings are left without flaking (i.e. a service life of 90 % reliability) is defined as the basic rating life. In operation at a constant speed, the basic rating life can be expressed in terms of time.

In actual operation, a bearing fails not only because of fatigue, but other factors as well, such as wear, seizure, creeping, fretting, brinelling, cracking etc (ref. A 144, 16. Examples of bearing failures).

These bearing failures can be minimized by selecting the proper mounting method and lubricant, as well as the bearing most suitable for the application.

5-2 Calculation of service life

5-2-1 Basic dynamic load rating

The basic dynamic load rating is either pure radial (for radial bearings) or central axial load (for thrust bearings) of constant magnitude in a constant direction, under which the basic rating life of 1 million revolutions can be obtained, when the inner ring rotates while the outer ring is stationary, or vice versa. The basic dynamic load rating, which represents the capacity of a bearing under rolling fatigue, is specified as the basic dynamic radial load rating (C_r) for radial bearings, and basic dynamic axial load rating (C_a) for thrust bearings. These load ratings are listed in the specification table.

These values are prescribed by ISO 281/ 1990, and are subject to change by conformance to the latest ISO standards.

5-2-2 Basic rating life

The basic rating life in relation to the basic dynamic load rating and dynamic equivalent load can be expressed using equation (5-1).

It is convenient to express the basic rating life in terms of time, using equation (5-2), when a bearing is used for operation at a constant speed; and, in terms of traveling distance (km), using equation (5-3), when a bearing is used in railway rolling stock or automobiles.

(Total revolutions	$L_{10} = \left(\frac{C}{P}\right)^{p} \dots $
(Time)	$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$ (5-2)
(Running) distance	$L_{10s} = \pi D L_{10}$ (5-3)

where :

L_{10} :	basic rating life	10 ⁶ revolutions	
L_{10h} :	basic rating life	h	
	basic rating life	km	
P :	dynamic equivalent lo	ad N	
	(r	efer to p. A 34.)	
C :	basic dynamic load ra	ting N	
n :	rotational speed	\min^{-1}	
	for ball bearings		
	for roller bearings	p = 10/3	
D :	wheel or tire diameter	mm	

Accordingly, where the dynamic equivalent load is P, and rotational speed is n, equation (5-4) can be used to calculate the basic dynamic load rating C; the bearing size most suitable for a specified purpose can then be selected, referring to the bearing specification table.

The recommended bearing service life differs depending on the machines with which the bearing is used, as shown in Table 5-4, p. A 28.

$$C = P \left(L_{10h} \times \frac{60n}{10^6} \right)^{1/p}$$
(5-4)

[Reference]

The equations using a service life coefficient (f_h) and rotational speed coefficient (f_n) respectively, based on equation (5-2), are as follows :

 $L_{10h} = 500 f_h^p$ (5-5)

Coefficient of service life :

$$f_{\rm h} = f_n \frac{C}{P} \qquad (5-6)$$

Coefficient of rotational speed :

For reference, the values of f_n , f_h , and L_{10h} can be easily obtained by employing the nomograph attached to this catalog, as an abbreviated method.

[Ball bearing]

Rotational speed	f_n 1.5 h 1.5 n 10	1.0 0.9 0.8 20 30 40 50 70	0.7 0.6 0.5	0.4 0.35 0.3 	0.25 02 0.190.18 0.17 0.16 0.15
Basic rat- ing life	$f_{\rm h}$ 0.6 $\frac{1}{1}$ $L_{10\rm h}$ 100	0.7 0.8 0.9 1.0	1.5 ++++++++++++++++++++++++++++++++++++	2.0 2.5 3.0 ++++++++++++++++++++++++++++++++++++	3.5 4.0 5.0 6.0

[Roller bearing]

Rotational speed	f_n	1.4	1.3	1.2 1.	1 1.0	1 1	0.8	0.7 14 14 14 	0.6	0.55 0.5	0.45	0.4 0.35	5 0.3 	0.25	փոհորհող	0.2 0.19 0.18
-1	п	10		20	4	10 50	70	100	200	300	500	1 000	2 000	3 000	5 000	10 000
Basic rat- ing life	$f_{\rm h}$ L_{10}	0.62 	0.7	0.8 	, In the second s	1.0 1.0	տրոկո	1.2 1.3	2 000	1.6 1.7 1. 	8 1.9 2.0	2.5 	3.0 	3.5 		4.5 4.9

[Reference] Rotational speed (*n*) and its coefficients (f_n) , and service life coefficient (f_h) and basic rating life (L_{10h})

5-2-3 Correction of basic dynamic load rating for high temperature use and dimension stabilizing treatment

In high temperature operation, bearing material hardness deteriorates, as material compositions are altered. As a result, the basic dynamic load rating is diminished. Once altered, material composition is not recovered, even if operating temperatures return to normal.

Therefore, for bearings used in high temperature operation, the basic dynamic load rating should be corrected by multiplying the basic dynamic load rating values specified in the bearing specification table by the temperature coefficient values in Table 5-1.

Table 5-1 Temperature coefficient values

Bearing temperature,	°C	125	150	175	200	250
Temperature coefficient		1	1	0.95	0.90	0.75

Since normal heat treatment is not effective in maintaining the original bearing size in extended operation at 120 °C or higher, dimension stabilizing treatment is necessary. Dimension stabilizing treatment codes and their effective temperature ranges are described in Table 5-2.

Since dimension stabilizing treatment diminishes material hardness, the basic dynamic load rating may be reduced for some types of bearings.

Table 5-2 Dimension stabilizing treatment

Dimension stabilizing treatment code	Effective temperature range
SO	Over 100°C, up to 150°C
S1	150°C 200°C
S2	200°C 250°C

5-2-4 Corrected rating life

The basic rating life (L_{10}) , expressed using equation (5-1), is (fatigue) life, whose estimate of reliability is 90 %. A certain application requires a service life whose reliability is more than 90 %.

Special materials help extend bearing life, and lubrication and other operating conditions may also affect bearing service life. The corrected rating life can be obtained from the basic rating life using equation (5-8).

 $L_{na} = a_1 a_2 a_3 L_{10}$ (5-8)

where :

- L_{na} : corrected rating life 10⁶ revolutions (estimated reliability (100–*n*) %: the probability of failure occurrence is expressed by *n*, taking bearing characteristics and operating conditions into consideration.
- L_{10} : basic rating life 10⁶ revolutions (estimated reliability 90 %)
- a_1 : reliability coefficient
- a_2 : bearing characteristic coefficient a_3 : operating condition coefficient a_3 : operating condition (2)

[Remark]

When bearing dimensions are to be selected given L_{na} greater than 90 % in reliability, the strength of shaft and housing must be considered.

(1) Reliability coefficient a_1

Table 5-3 describes reliability coefficient, a_1 , which is necessary to obtain the corrected rating life of reliability greater than 90 %.

Table 5-3 Reliability coefficient a_1

Reliability, %	L_{na}	a_1
90	L_{10a}	1
95	$L_{5\mathrm{a}}$	0.62
96	$L_{ m 4a}$	0.53
97	L_{3a}	0.44
98	L_{2a}	0.33
99	L_{1a}	0.21

(2) Bearing characteristic coefficient a_2

The bearing characteristic in relation to bearing life may differ according to bearing materials (steel types and their quality), and may be altered by production process, design, etc. In such cases, the bearing life calculation can be corrected using the bearing characteristic coefficient a_2 .

JTEKT has employed vacuum-degassed bearing steel as JTEKT standard bearing material. It has a significant effect on bearing life extension which was verified through studies at JTEKT laboratory.

The basic dynamic load rating of bearings made of vacuum-degassed bearing steel is specified in the bearing specification table, taking the bearing characteristic coefficient as $a_2 = 1$.

For bearings made of special materials to extend fatigue life, the bearing characteristic coefficient is treated as $a_2 > 1$.

(3) Operating condition coefficient a_3

When bearings are used under operating conditions which directly affect their service life, including improper lubrication, the service life calculation can be corrected by using a_3 .

Under normal lubrication, the calculation can be performed with $a_3 = 1$; and, under favorable lubrication, with $a_3 > 1$.

In the following cases, the operating condition coefficient is treated as $a_3 < 1$:

• Operation using lubricant of low kinematic viscosity

Ball bearing $\dots 13 \text{ mm}^2/\text{s}$ or less Roller bearing $\dots 20 \text{ mm}^2/\text{s}$ or less

- Operation at very slow rotational speed (Product of rolling element pitch diameter and rotational speed is 10 000 or less.)
- Contamination of lubricant is expected
- Greater misalignment of inner and outer rings is present
- [Note] When bearing hardness is diminished by heat, the basic dynamic load rating calculation must be corrected (ref. Table 5-1).

[Remark]

When $a_2 > 1$ in employing a special material, if lubrication is not proper, $a_2 \times a_3$ is not always > 1. In such cases, if $a_3 < 1$, bearing characteristic coefficient is normally treated as $a_2 \le 1$.

5-2-5 Service life of bearing system comprising two or more bearings

Even for systems which comprise two or more bearings, if one bearing is damaged, the entire system malfunctions.

Kovo

Where all bearings used in an application are regarded as one system, the service life of the bearing system can be calculated using the following equation,

where :

L : rating life of system

 L_1, L_2, L_3 : rating life of each bearing *e* : constant

- $e = 10/9 \dots ball bearing$
- e = 9/8.....roller bearing
- The mean value is for a system

using both ball and roller bearings.

[Example]

When a shaft is supported by two roller bearings whose service lives are 50 000 hours and 30 000 hours respectively, the rating life of the bearing system supporting this shaft is calculated as follows, using equation (5-9) :

$$\frac{1}{L^{9/8}} = \frac{1}{50\ 000^{9/8}} + \frac{1}{30\ 000^{9/8}}$$
$$L \doteq 20\ 000\ h$$

The equation suggests that the rating life of these bearings as a system becomes shorter than that of the bearing with the shorter life. This fact is very important in estimating bearing service life for applications using two or more bearings.

As the above explanation shows, since a_2 and a_3 are inter-dependent, some calculations treat them as one coefficient, a_{23} .

5-2-6 Applications and recommended bearing service life

Since longer service life does not always contribute to economical operation, the most suitable service life for each application and operating conditions should be determined. For reference, Table 5-4 describes recommended service life in accordance with the

application, as empirically determined.

Table 5-4 Recommended bearing service life (reference)

Operating condition	Application	Recommended (h)
Short or intermittent operation	Household electric appliance, electric tools, agricultural equipment, heavy cargo hoisting equipment	4 000 - 8 000
Not extended duration, but stable operation required	Household air conditioner motors, construction equipment, conveyers, elevators	8 000 - 12 000
Intermittent but extended	Rolling mill roll necks, small motors, cranes	8 000 - 12 000
operation	Motors used in factories, general gears	12 000 - 20 000
	Machine tools, shaker screens, crushers	20 000 - 30 000
	Compressors, pumps, gears for essential use	40 000 - 60 000
Daily operation more than	Escalators	12 000 - 20 000
8 hr. or continuous extended operation	Centrifugal separators, air conditioners, air blowers, woodworking equipment, passenger coach axle journals	20 000 - 30 000
	Large motors, mine hoists, locomotive axle journals, railway rolling stock traction motors	40 000 - 60 000
	Paper manufacturing equipment	100 000 - 200 000
24 hr. operation (no failure allowed)	Water supply facilities, power stations, mine water discharge facilities	100 000 - 200 000

5-3 Calculation of loads

Loads affecting bearings includes force exerted by the weight of the object the bearings support, transmission force of devices such as gears and belts, loads generated in equipment during operation etc.

Seldom can these kinds of load be determined by simple calculation, because the load is not always constant.

In many cases, the load fluctuates, and it is difficult to determine the frequency and magnitude of the fluctuation.

Therefore, loads are normally obtained by multiplying theoretical values with various coefficients obtained empirically.

5-3-1 Load coefficient

Even if radial and axial loads are obtained through general dynamic calculation, the actual load becomes greater than the calculated value due to vibration and impact during operation.

In many cases, the load is obtained by multiplving theoretical values by the load coefficient.

Table 5-5 Values of load coefficient f_w

Operating condition	Application example	$f_{\rm W}$
Operation with little vibration or impact	Motors Machine tools Measuring instrument	1.0 – 1.2
Normal operation (slight impact)	Railway rolling stock Automobiles Paper manufacturing equipment Air blowers Compressors Agricultural equipment	1.2 – 2.0
Operation with severe vibration or impact	Rolling mills Crushers Construction equipment Shaker screens	2.0 - 3.0

$F = f_{\rm w} \cdot F_{\rm c} \dots (5-10)$
--

F : measured load

where :

F : measured load	Ν
$F_{\rm c}$: calculated load	Ν
$f_{\rm w}$: load coefficient (ref. Table 5-5)	

Kovo

5-3-2 Load generated through belt or chain transmission

In the case of belt transmission, the theoretical value of the load affecting the pullev shafts can be determined by obtaining the effective transmission force of the belt.

For actual operation, the load is obtained by multiplying this effective transmission force by the load coefficient (f_w) considering vibration and impact generated during operation, and the belt coefficient ($f_{\rm b}$) considering belt tension.

In the case of chain transmission, the load is determined using a coefficient equivalent to the belt coefficient.

This equation (5-11) is as follows ;

where :

- $F_{\rm b}$: estimated load affecting pulley shaft or sprocket shaft Ν M: torque affecting pulley or sprocket
 - $mN \cdot m$
- W: transmission force kW
- $D_{\rm p}$: pitch circle diameter of pulley or sprocket mm \min^{-1}
- n : rotational speed
- $f_{\rm w}$: load coefficient (ref. Table 5-5)
- $f_{\rm b}$: belt coefficient (ref. Table 5-6)

Table 5-6 Values of belt coefficient $f_{\rm b}$

Belt type	f b
Timing belt (with teeth)	1.3 – 2.0
V-belt	2.0 – 2.5
Flat belt (with tension pulley)	2.5 - 3.0
Flat belt	4.0 - 5.0
Chain	1.2 – 1.5

A 28

5-3-3 Load generated under gear transmission

(1) Loads affecting gear and gear coefficient In the case of gear transmission, loads transmitted by gearing are theoretically classified into three types: tangential load (K_t) , radial load (K_r) and axial load (K_a) .

Those loads can be calculated dynamically (using equations (a), (b) and (c), described in section (2)).

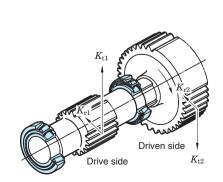
To determine the actual gear loads, these theoretical loads must be multiplied by coefficients considering vibration and impact during operation (f_w) (ref. Table 5-5) and the gear coefficient (f_g) (ref. Table 5-7) considering the finish treatment of gears.

Table 5-7Values of gear coefficient f_{σ}

Gear type	$f_{ m g}$
Precision gears (both pitch error and tooth shape error less than 0.02 mm)	1.0 – 1.1
Normal gears (both pitch error and tooth shape error less than 0.1 mm)	1.1 – 1.3

(2)	Calcu	lation	of load	on	gears
-----	-------	--------	---------	----	-------

ⓐ Tangential load (tangential	force) $K_{\rm t}$
$ \begin{cases} \text{Spur gears, helical gears, double-he} \\ \text{straight bevel gears, spiral bevel ge} \\ K_{\text{t}} = \frac{2 M}{D_{\text{p}}} = \frac{19.1 \times 10^6 \text{ W}}{D_{\text{p}} n} \cdots \cdots \cdots$	-
ⓐ∼ⓒ where :	
$K_{\rm t}$: gear tangential load	N
$K_{ m r}$: gear radial load	N
K _a : gear axial load N	
M: torque affecting gears mN·	
$D_{\rm p}$: gear pitch circle diameter mm	
W : transmitting force	kW
n : rotational speed	\min^{-1}
α : gear pressure angle deg	
eta : gear helix (spiral) angle	deg
δ : bevel gear pitch angle	deg
`~	'


		\textcircled{b} Radial load (separating force) K_{r}	\odot Axial load (axial force) $K_{ m a}$
Spur gears	3	$K_{\rm r} = K_{\rm t} \tan \alpha$ (5-13)	0
Helical gea	ars	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \cdots (5-14)$	$K_{\rm a} = K_{\rm t} \tan \beta$
Double-he gears	lical	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \dots $	0
Straight ¹⁾	Drive side	$K_{\rm r1} = K_{\rm t} \tan \alpha \cos \delta_1 \cdots (5-16)$	$K_{\rm a1} = K_{\rm t} \tan \alpha \sin \delta_1$
dears	Driven side	$K_{\rm r2} = K_{\rm t} \tan \alpha \cos \delta_2 \cdots (5-17)$	$K_{\mathrm{a2}} = K_{\mathrm{t}} \tan \alpha \sin \delta_2$ (5-22)
Spiral ^{1), 2)}	Drive	$K_{\rm r1} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_1 \pm \sin\beta \sin\delta_1 \right)$	$K_{a1} = \frac{K_{t}}{\cos\beta} \left(\tan\alpha \sin\delta_{1} \mp \sin\beta\cos\delta_{1} \right)$
	side	(5-18)	(5-23
bevel gears	Driven	$K_{\rm r2} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_2 \mp \sin\beta\sin\delta_2 \right)$	$K_{ m a2} = rac{K_{ m t}}{\coseta} \left(\tanlpha \ \sin\delta_2 \pm \sineta \cos\delta_2 ight)$
	side	, (5-19)	,

driven side gears.

2) Symbols (+) and (-) denote the following ;

(Symbols in upper row : clockwise rotation accompanied by right-handed spiral) or counterclockwise rotation with left-handed spiral Symbols in lower row : counterclockwise rotation with right-handed spiral or clockwise rotation with left-handed spiral

[Remark] Rotating directions are described as viewed at the back of the apex of the pitch angle.

Driven side (left-handed helix) K_{t2} Drive side (left-handed helix)

Fig. 5-1 Load on spur gears

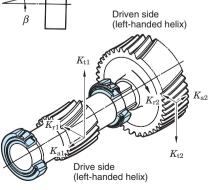


Fig. 5-2 Load on helical gears

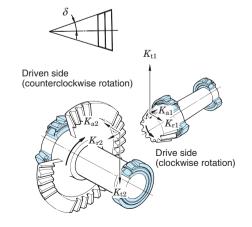


Fig. 5-3 Load on straight bevel gears

K_{t1} Driven side counterclockwise rotation with right-handed spiral Drive side [clockwise rotation] with left-handed spiral

Clockwise rotation

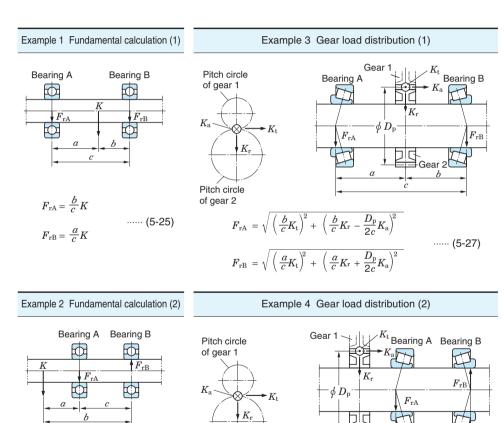
Counterclockwise rotation

Koyo

Fig. 5-4 Load on spiral bevel gears

5-3-4 Load distribution on bearings

The load distribution affecting bearings can be calculated as follows: first, radial force components are calculated, then, the sum of vectors of the components is obtained in accordance with the load direction.

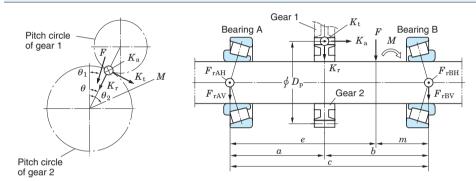

Calculation examples of radial load distribution are described in the following section.

> $F_{\rm rA} = \frac{b}{c}K$ $F_{\rm rB} = \frac{a}{c}K$

[Remark]

Bearings shown in Exs. 3 to 5 are affected by components of axial force when these bearings accommodate radial load, and axial load (K_a) which is transferred externally, i.e. from gears. For calculation of the axial load in this case, refer

to page A 34.



Description of signs in Examples 1 to 5

F_{rA} : radial load on bearing A	 N	$D_{\rm p}$: gear pitch circle diameter mm
$F_{ m rB}$: radial load on bearing B	Ν	 ⊙ : denotes load direction (upward
K : shaft load	Ν	perpendicular to paper surface)
$K_{ m t}, K_{ m r}, K_{ m a}$: gear load	Ν	\otimes : denotes load direction (downward
(ref. A 30)		perpendicular to paper surface)
`		

Kovo

Example 5 Simultaneous application of gear load and other load

Gears 1 and 2 are engaged with each other at angle θ . External load *F*, moment *M*, are applied to these gears at angles θ_1 and θ_2 .

• Perpendicular radial component force (upward and downward along diagram)

$$F_{\rm rAV} = \frac{b}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) - \frac{D_{\rm p}}{2c} K_{\rm a} \cos \theta + \frac{m}{c} F \cos \theta_1 - \frac{M}{c} \cos \theta_2$$
$$F_{\rm rBV} = \frac{a}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) + \frac{D_{\rm p}}{2c} K_{\rm a} \cos \theta + \frac{e}{c} F \cos \theta_1 + \frac{M}{c} \cos \theta_2$$

• Horizontal radial component force (upward and downward perpendicular to diagram)

$$F_{\rm rAH} = \frac{b}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) - \frac{D_{\rm P}}{2c} K_{\rm a} \sin \theta + \frac{m}{c} F \sin \theta_1 - \frac{M}{c} \sin \theta_2$$
$$F_{\rm rBH} = \frac{a}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) + \frac{D_{\rm P}}{2c} K_{\rm a} \sin \theta + \frac{e}{c} F \sin \theta_1 + \frac{M}{c} \sin \theta_2$$

Combined radial force

$$F_{\rm rA} = \sqrt{F_{\rm rAV}^2 + F_{\rm rAH}^2}$$

$$F_{\rm rB} = \sqrt{F_{\rm rBV}^2 + F_{\rm rBH}^2}$$
(5-29) (When θ , F , and M are zero, the same result as in Ex. 3 is obtained

Pitch circle

of gear 2

..... (5-26)

Gear 2

 $F_{\rm rA} = \sqrt{\left(\frac{b}{c}K_{\rm t}\right)^2 + \left(\frac{b}{c}K_{\rm r} - \frac{D_{\rm p}}{2c}K_{\rm a}\right)^2}$

 $F_{\rm rB} = \sqrt{\left(\frac{a}{c}K_{\rm t}\right)^2 + \left(\frac{a}{c}K_{\rm r} - \frac{D_{\rm p}}{2c}K_{\rm a}\right)^2}$

Ь

..... (5-28)

5-4 Dynamic equivalent load

Bearings are used under various operating conditions; however, in most cases, bearings receive radial and axial load combined, while the load magnitude fluctuates during operation.

Therefore, it is impossible to directly compare the actual load and basic dynamic load rating.

The two are compared by replacing the loads applied to the shaft center with one of a constant magnitude and in a specific direction, that yields the same bearing service life as under actual load and rotational speed.

This theoretical load is referred to as the dynamic equivalent load (P).

5-4-1 Calculation of dynamic equivalent load

Dynamic equivalent loads for radial bearings and thrust bearings ($\alpha \neq 90^{\circ}$) which receive a combined load of a constant magnitude in a specific direction can be calculated using the following equation,

 $P = XF_r + YF_2 \qquad (5-30)$ where : P: dynamic equivalent load Ν for radial bearings, $P_{\rm r}$: dynamic equivalent radial load for thrust bearings. $P_{\rm a}$: dynamic equivalent axial load F_r : radial load Ν F_a : axial load Ν X : radial load factor Y: axial load factor (values of X and Y are listed in the bearing specification table.)

When $F_a/F_r \le e$ for single-row radial bearings, it is taken that X = 1, and Y = 0. Hence, the dynamic equivalent load rating is $P_r = F_r$.

 $\left(\begin{array}{l} \mbox{Values of e, which designates the limit of F_a/F_r, are listed in the bearing specification table.} \right)$

■ For single-row angular contact ball bearings and tapered roller bearings, axial component forces (*F*_{ac}) are generated as shown in Fig. 5-5, therefore a pair of bearings is arranged face-to-face or back-to-back. The axial component force can be calculated using the following equation.

Table 5-8 describes the calculation of the dynamic equivalent load when radial loads and external axial loads (K_a) are applied to bearings.

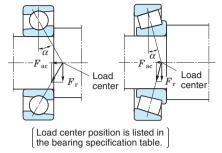


Fig. 5-5 Axial component force

For thrust ball bearings with contact angle $\alpha = 90^{\circ}$, to which an axial load is applied, $P_{\rm a} = F_{\rm a}$.

Kovo

The dynamic equivalent load of spherical thrust roller bearing can be calculated using the following equation.

$$P_{\rm a} = F_{\rm a} + 1.2 F_{\rm r}$$
 (5-32)
where : $F_{\rm r}/F_{\rm a} \le 0.55$

Table 5-8	Dynamic equivalent load calculation : when a pair of single-row angular contact
	ball bearings or tapered roller bearings is arranged face-to-face or back-to-back.

Paired mounting		Loading condition	Bearing	Axial load	Dynamic equivalent load
Back-to-back arrangement Face-to-face arrangement	t	Loading condition	веатіпд	Axiai load	Dynamic equivalent load
			Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} + K_{a} \right)$ $P_{A} = F_{rA}, \text{ where } P_{A} \leq F_{rA}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$rac{F_{ m rB}}{2Y_{ m B}} + K_{ m a} \geq rac{F_{ m rA}}{2Y_{ m A}}$	Bearing B	-	$P_{\rm B} = F_{\rm rB}$
			Bearing A	-	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a} \right)$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} < F_{\rm rB}$
		$\frac{F_{\rm rB}}{2Y_{\rm B}} \le \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	-	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bearing B		$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}\right)$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} \le F_{\rm rB}$
		$rac{F_{ m rB}}{2Y_{ m n}} > rac{F_{ m rA}}{2Y_{ m a}} + K_{ m a}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} - K_{a} \right)$ $P_{A} = F_{rA}, \text{ where } P_{A} \leq F_{rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$2Y_{\rm B}$ $2Y_{\rm A}$		_	$P_{\rm B} = F_{\rm rB}$

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

2. Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. in Table 5-8.

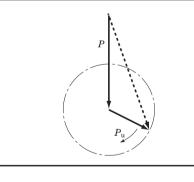
5-4-2 Mean dynamic equivalent load

When load magnitude or direction varies, it is necessary to calculate the mean dynamic equivalent load, which provides the same length of bearing service life as that under the actual load fluctuation.

The mean dynamic equivalent load $(P_{\rm m})$ under different load fluctuations is described using Graphs (1) to (4).

As shown in Graph (5), the mean dynamic equivalent load under stationary and rotating load applied simultaneously, can be obtained using equation (5-37).

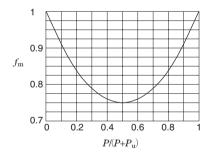
(1) Staged fluctuation	(2) Stageless fluctuation	(3) Fluctuation forming sine curve	(4) Fluctuation forming sine curve (upper half of sine curve)
P_{1} P_{2} P_{m} P_{n} P_{n} P_{n}	P P_{max} P_{max} P_{min} D $\Sigma n_i t_i$	$\begin{array}{c} P \\ P_{max} \\ P_{m} \\ P_{m} \\ 0 \\ \Sigma n_i t_i \\ \end{array}$	$P \qquad P_{max}$ $P_{m} \qquad P_{max}$ $0 \qquad \sum n_i t_i$
$P_{\rm m} = \sqrt[p]{\frac{P_{\rm 1}^{\ p} n_{\rm 1} t_{\rm 1} + P_{\rm 2}^{\ p} n_{\rm 2} t_{\rm 2} + \dots + P_{\rm n}^{\ p} n_{\rm n} t_{\rm n}}{n_{\rm 1} t_{\rm 1} + n_{\rm 2} t_{\rm 2} + \dots + n_{\rm n} t_{\rm n}}}$ (5-33)	$P_{\rm m} = \frac{P_{\rm min} + 2 P_{\rm max}}{3} \dots \dots (5-34)$	$P_{\rm m} = 0.68 P_{\rm max}$ (5-35)	$P_{\rm m} = 0.75 P_{\rm max}$ (5-36)


Symbols for Graphs (1) to (4)

$P_{\rm m}$: mean dynamic equivalent load	Ν
P_1	: dynamic equivalent load applied for t_1 hours at rotational speed n_1	Ν
P_2	: dynamic equivalent load applied for t_2 hours at rotational speed n_2	Ν
i E	: : :	
$P_{\rm n}$: dynamic equivalent load applied for $t_{ m n}$ hours at rotational speed $n_{ m n}$	Ν
$P_{\rm min}$	1 : minimum dynamic equivalent load	Ν
$P_{\rm ma}$	$_{\rm x}$: maximum dynamic equivalent load	Ν
Σn_i	t_i : total rotation in (t_1 to t_i) hours	
l p	: for ball bearings, $p = 3$	
1	for roller bearings, $p = 10/3$	

[Reference] Mean rotational speed $n_{\rm m}$ can be calculated using the following equation :

 $n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm m} t_{\rm m}}{t_1 + t_2 + \dots + t_{\rm m}}$


(5) Stationary load and rotating load acting simultaneously

 $P_{\rm m} = f_{\rm m} (P + P_{\rm u})$ (5-37)

where :

$P_{ m m}$: mean dynamic equivalent load	Ν
$f_{\rm m}$: coefficient (refer. Fig. 5-6)	
P : stationary load	Ν
$P_{\rm u}$: rotating load	Ν

Koyo

Fig. 5-6 Coefficient f_m

5-5 Basic static load rating and static equivalent load

5-5-1 Basic static load rating

Excessive static load or impact load even at very low rotation causes partial permanent deformation of the rolling element and raceway contacting surfaces. This permanent deformation increases with the load; if it exceeds a certain limit, smooth rotation will be hindered.

The basic static load rating is the static load which responds to the calculated contact stress shown below, at the contact center between the raceway and rolling elements which receive the maximum load.

- Self-aligning ball bearings --- 4 600 MPa
- Other ball bearings ------ 4 200 MPa
- Roller bearings ------ 4 000 MPa

The total extent of contact stress-caused permanent deformation on surfaces of rolling elements and raceway will be approximately 0.000 1 times greater than the rolling element diameter.

The basic static load rating for radial bearings is specified as the basic static radial load rating, and for thrust bearings, as the basic static axial load rating. These load ratings are listed in the bearing specification table, using C_{0r} and C_{0a} respectively.

These values are prescribed by ISO 78/1987 and are subject to change by conformance to the latest ISO standards.

5-5-2 Static equivalent load

The static equivalent load is a theoretical load calculated such that, during rotation at very low speed or when bearings are stationary, the same contact stress as that imposed under actual loading condition is generated at the contact center between raceway and rolling element to which the maximum load is applied.

For radial bearings, radial load passing through the bearing center is used for the calculation; for thrust bearings, axial load in a direction along the bearing axis is used.

The static equivalent load can be calculated using the following equations.

[Radial bearings]
The greater value obtained by the
following two equations is used.

$P_{0r} = X_0 F_r$	$+ Y_0 F_a$	 (5-38)
$P_{0r} = F_r$		 (5-39)

[Thrust bearings]

5-40)
.]
5-41)
Ν
Ν
Ν
Ν
n

5-5-3 Safety coefficient

The allowable static equivalent load for a bearing is determined by the basic static load rating of the bearing; however, bearing service life, which is affected by permanent deformation, differs in accordance with the performance required of the bearing and operating conditions.

Therefore, a safety coefficient is designated, based on empirical data, so as to ensure safety in relation to basic static load rating.

where :

$f_{\rm s}$: safety coefficient (ref. Table 5-9)	
C_0 : basic static load rating	Ν
P_0 : static equivalent load	Ν

Table 5-9 Values of safety coefficient f_s

Operat	ing condition	Ball bearing	Roller bearing					
	When high accuracy is required	2	3					
With bearing rotation	Normal operation	1	1.5					
	When impact load is applied	1.5	3					
Without bear- ing rotation	Normal operation	0.5	1					
(occasional oscillation)	When impact load or uneven distribution load is applied	1	2					

[Remark] For spherical thrust roller bearings, $f_s \ge 4$.

5-6 Allowable axial load for cylindrical roller bearings

Bearings whose inner and outer rings comprise either a rib or loose rib can accommodate a certain magnitude of axial load, as well as radial load. In such cases, axial load capacity is controlled by the condition of rollers, load capacity of rib or loose rib, lubrication, rotational speed etc.

For certain special uses, a design is available to accommodate very heavy axial loads. In general, axial loads allowable for cylindrical roller bearings can be calculated using the following equation, which are based on empirical data.

$$F_{\rm ap} = 9.8 f_{\rm a} \cdot f_{\rm b} \cdot f_{\rm p} \cdot d_{\rm m}^{2}$$
(5-43)

where :

- $F_{\rm ap}$: maximum allowable axial load Ν f_a : coefficient determined from
- loading condition (Table 5-10) $f_{\rm b}$: coefficient determined from
- bearing diameter series (Table 5-11) : coefficient for rib surface pressure $f_{\rm D}$
- (Fig. 5-7)
- $d_{\rm m}$: mean value of bore diameter d and outside diameter Dmm

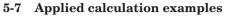

$$\left(\frac{d+D}{2}\right)$$

Table 5-10 Values of coefficient determined from loading condition f_a

$f_{\rm a}$	
1	
2	
3	
	1 2

Table 5-11 Values of coefficient determined from bearing diameter series $f_{\rm b}$

Diameter series	fь
9	0.6
0	0.7
2	0.8
3	1.0
4	1.2

[Example 1] Bearing service life (time)	[Example 2] Bearing service life (time)
with 90 % reliability	with 96 % reliability
(Conditions)	(Conditions)
Deep groove ball bearing : 6308	Deep groove ball bearing : 6308
Radial load $F_r = 3500$ N	Radial load $F_r = 3500$ N
Axial load not applied $(F_a = 0)$	Axial load $F_a = 1000$ N
Rotational speed $n = 800 \text{ min}^{-1}$	Rotational speed $n = 800 \text{ min}^{-1}$
1 Basic dynamic load rating (C_r) is obtained from	The form the bearing specification table ;
() Basic dynamic load rating (C _r) is obtained from the bearing specification table. $C_r = 40.7 \text{ kN}$ (2) Dynamic equivalent radial load (P _r) is calculated using equation (5-30). $P_r = F_r = 3500 \text{ N}$ (3) Bearing sevice life (L _{10h}) is calculated using equation (5-2). $L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$ $= \frac{10^6}{60 \times 800} \times \left(\frac{40.7 \times 10^3}{3500}\right)^3 = 32800 \text{ h}$	() From the bearing specification table ; • Basic load rating $(C_r, C_{0r}) f_0$ factor is obtained. $C_r = 40.7 \text{ kN}$ $C_{0r} = 24.0 \text{ kN}$ $f_0 = 13.2$ • Values <i>X</i> and <i>Y</i> are obtained by comparing value <i>e</i> , calculated from value $f_0 F_a / C_{0r}$ via proportional interpolation, with value $f_0 F_a / F_r$. $\frac{f_0 F_a}{C_{0r}} = \frac{13.2 \times 1000}{24.0 \times 10^3} = 0.550$ $e = 0.22 + (0.26 - 0.22) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 0.24 $\frac{F_a}{F_r} = \frac{1000}{3500} = 0.29 > e$ The result is, X = 0.56 $Y = 1.99 - (1.99 - 1.71) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 1.82 (2) Dynamic equivalent load (P_r) is obtained using equation (5-30). $P_r = XF_r + YF_a$ $= (0.56 \times 3500) + (1.82 \times 1000) = 3780 \text{ N}$ (3) Service life with 90 % reliability (L_{10h}) is obtained using equation (5-2). $L_{10h} = \frac{10^6}{60\pi} (\frac{C}{P})^p$ $= \frac{10^6}{60 \times 800} \times (\frac{40.7 \times 10^3}{3780})^3 \doteq 26000 \text{ h}$ (4) Service life with 96 % reliability (L_{4ah}) is obtained using equation (5-8). According to Table 5-3, $a_1 = 0.53$, $a_2 = 1$, $a_3 = 1$. $L_{4ah} = a_1 a_2 a_3 L_{10h} = 0.53 \times 1 \times 1 \times 26000$

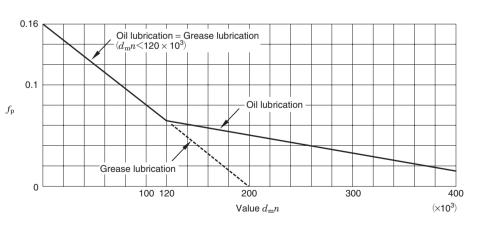


Fig. 5-7 Relationship between coefficient for rib surface pressure f_p and value $d_m n$ $(n: rotational speed, min^{-1})$

[Example 3] Bearing service life (total revolution)	[Example 4] Bearing size selection
(Conditions)Bearing ABearing BTapered roller bearing Bearing A : 30207 JR Bearing B : 30209 JRBearing ABearing BRadial load $F_{rA} = 5 200 N$ $F_{rB} = 6 800 N$ Fraductorial formula fo	(Conditions) Deep groove ball bearing : 62 series Required service life : more than 10 000 h Radial load $F_r = 2 000 \text{ N}$ Axial load $F_a = 300 \text{ N}$ Rotational speed $n = 1 600 \text{ min}^{-1}$

1) From the bearing specification table, the following specifications are obtained.

	Basic dynamic load rating (C_r)	е	$X^{1)}$	$Y^{(1)}$		
Bearing A	55.1 kN	0.37	0.4	1.60		
Bearing B	67.2 kN	0.40	0.4	1.48		

[Note] 1) Those values are used, where $F_a/F_r > e$. Where $F_a/F_r \leq e, X = 1, Y = 0$.

2 Axial load applied to shafts must be calculated, considering the fact that component force in the axial direction is generated when radial load is applied to tapered roller bearings. (ref. equation 5-31, Table 5-8)

$$\frac{F_{\rm rA}}{2 Y_{\rm A}} + K_{\rm a} = \frac{5200}{2 \times 1.60} + 1\,600 = 3\,225\,\,{\rm N}$$
$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{6\,800}{2 \times 1.48} = 2\,297\,\,{\rm N}$$

Consequently, axial load $\frac{F_{rA}}{2V_{t}} + K_{a}$ is applied to bearing B.

(3) Dynamic equivalent load (P_r) is obtained from Table 5-8.

$$P_{\rm rA} = F_{\rm rA} = 5\,200\,\,{\rm N}$$
$$P_{\rm rB} = XF_{\rm rB} + Y_{\rm B}\,\left(\frac{F_{\rm rA}}{2\,\,Y_{\rm A}} + \,K_{\rm a}\right)$$
$$= 0.4 \times 6\,800 + \,1.48 \times 3\,225 = 7493\,{\rm N}$$

(4) Each bearing service life (L_{10}) is calculated using equation (5-1).

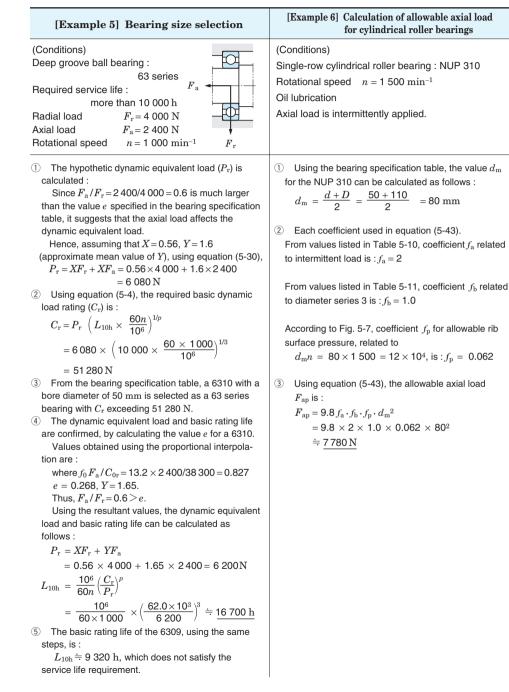
$$\begin{split} L_{10\text{A}} &= \left(\frac{C_{\text{rA}}}{P_{\text{rA}}}\right)^{10/3} = \left(\frac{55.1 \times 10^3}{5\,200}\right)^{10/3} \\ & \doteq \underline{2\,610 \times 10^6 \,\text{revolutions}} \\ L_{10\text{B}} &= \left(\frac{C_{\text{rB}}}{P_{\text{rB}}}\right)^{10/3} = \left(\frac{67.2 \times 10^3}{7\,493}\right)^{10/3} \\ & \doteq 1\,500 \times 10^6 \,\text{revolutions} \end{split}$$

(1) The dynamic equivalent load (P_r) is hypothetically calculated.

The resultant value, $F_a/F_r = 300/2\ 000 = 0.15$, is smaller than any other values of e in the bearing specification table.

Hence, JTEKT can consider that $P_r = F_r = 2000$ N. 2 The required basic dynamic load rating (C_r) is calculated according to equation (5-4)

$$C_{\rm r} = P_{\rm r} \left(L_{10\rm h} \times \frac{60n}{10^6} \right)^{1/p}$$


 $= 2000 \times (10000 \times \frac{60 \times 1600}{106})^{1/3}$ = 19730 N

③ Among those covered by the bearing specification table, the bearing of the 62 series with C_r exceeding 19730 N is 6206 R, with bore diameter for 30 mm. (4) The dynamic equivalent load obtained at step (1) is confirmed by obtaining value e for 6206 R. Where C_{0r} of 6206 R is 12.8 kN, and f_0 is 13.0 $f_0 F_a / C_{0r} = 13.0 \times 300/12\ 800 = 0.305$ Then, value *e* can be calculated using proportional interpolation. $e = 0.19 + (0.22 - 0.19) \times \frac{(0.305 - 0.172)}{(0.345 - 0.172)}$

= 0.21

As a result, it can be confirmed that

 $F_{\rm s}/F_{\rm r} = 0.15 \le e$. Hence, $P_r = F_r$.

[Example 7] Calculation of service life of spur gear shaft bearings

(Conditions)

lly machined)
$\alpha_1 = \alpha_2 = 20^{\circ}$
$D_{\mathrm{p1}}=$ 360 mm
D_{p2} = 180 mm
W = 150 kW
$n = 1 \ 000 \ \mathrm{min}^{-1}$

 Using equations (5-12) and (5-13), theoretical loads applied to gears (tangential load, *K*_t; radial load, *K*_r) are calculated.

[Gear 1]

$$K_{t1} = \frac{19.1 \times 10^6 W}{D_p n} = \frac{19.1 \times 10^6 \times 150}{360 \times 1000}$$

= 7 958 N

 $K_{
m r1}$ = $K_{
m t1}$ tan $lpha_1$ = 2 896 N

[Gear 2]

$$K_{t2} = \frac{19.1 \times 10^6 \times 150}{180 \times 1000} = 15\ 917\ N$$
$$K_{r2} = K_{t2} \tan \alpha_2 = 5\ 793\ N$$

(2) The radial load applied to the bearing is calculated, where the load coefficient is determined as $f_w = 1.5$ from Table 5-5, and the gear coefficient as $f_g = 1.2$ from Table 5-7.

[Bearing A]

• Load consisting of K_{t1} and K_{t2} is :

$$K_{tA} = f_w f_g \left(\frac{a_2}{c} K_{t1} + \frac{b_2}{c} K_{t2}\right)$$

= 1.5 × 1.2 × $\left(\frac{265}{360} \times 7\,958 + \frac{115}{360} \times 15\,917\right)$ = 19 697 N

• Load consisting of K_{r1} and K_{r2} is :

$$\begin{aligned} K_{\rm rA} &= f_{\rm w} f_{\rm g} \left(\frac{a_2}{c} K_{\rm r1} - \frac{b_2}{c} K_{\rm r2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{265}{360} \times 2\,896 - \frac{115}{360} \times 5\,793 \right) \\ &= 506 \,\,\mathrm{N} \end{aligned}$$

Operating condition: accompanied by impact Installation locations $a_1 = 95 \text{ mm}, a_2 = 265 \text{ mm},$ $b_1 = 245 \text{ mm}, b_2 = 115 \text{ mm},$

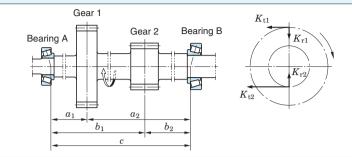
- $c = 360 \,\mathrm{mm}$
- Combining the loads of $K_{\rm tA}$ and $K_{\rm rA}$, the radial load ($F_{\rm rA}$) applied to bearing A can be calculated as follows :

$$F_{\rm rA} = \sqrt{K_{\rm tA}^2 + K_{\rm rA}^2}$$

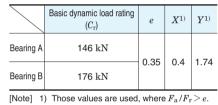
= $\sqrt{19.697^2 + 506^2}$ = 19703 N

[Bearing B]

• Load consisting of K_{t1} and K_{t2} is :


$$\begin{aligned} K_{\rm tB} &= f_{\rm w} f_{\rm g} \left(\frac{a_1}{c} K_{\rm t1} + \frac{b_1}{c} K_{\rm t2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{95}{360} \times 7\,958 + \frac{245}{360} \times 15\,917 \right) = 23\,278 \; \mathrm{N} \end{aligned}$$

• Load consisting of K_{r1} and K_{r2} is :


$$K_{\rm rB} = f_{\rm w} f_{\rm g} \left(\frac{a_1}{c} K_{\rm r1} - \frac{b_1}{c} K_{\rm r2} \right)$$
$$= 1.5 \times 1.2 \times \left(\frac{95}{360} \times 2\,896 - \frac{245}{360} \times 5\,793 \right) = -5\,721\,\rm N$$

• The radial load (*F*_{rB}) applied to bearing B can be calculated using the same steps as with bearing A.

$$F_{\rm rB} = \sqrt{K_{\rm tB}^2 + K_{\rm rB}^2}$$
$$= \sqrt{23\,278^2 + (-5\,721)^2} = 23\,971\,\rm N$$

③ The following specifications can be obtained from the bearing specification table.

Where $F_a/F_r \le e$, X = 1, Y = 0.

When an axial load is not applied externally, if the radial load is applied to the tapered roller bearing, an axial component force is generated. Considering this fact, the axial load applied from the shaft and peripheral parts is to be calculated :

(Equation 5-31, Table 5-8)

$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{23\,971}{2 \times 1.74} > \frac{F_{\rm rA}}{2 Y_{\rm A}} = \frac{19\,703}{2 \times 1.74}$$

According to the result, it is clear that the axial component force $(F_{\rm rB}/2Y_{\rm B})$ applied to bearing B is also applied to bearing A as an axial load applied from the shaft and peripheral parts.

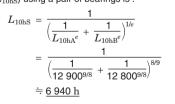
(5) Using the values listed in Table 5-8, the dynamic equivalent load is calculated, where K_a = 0 :

$$P_{rA} = XF_{rA} + Y_A \frac{F_{rB}}{2 Y_B}$$

= 0.4 × 19703 × 1.74 × $\frac{23971}{2 × 1.74}$
= 19867 N
 $P_{rB} = F_{rB} = 23971$ N

(6) Using equation (5-2), the basic rating life of each bearing is calculated :

[Bearing A]


$$L_{10hA} = \frac{10^{6}}{60n} \left(\frac{C_{rA}}{P_{A}}\right)^{p}$$

= $\frac{10^{6}}{60 \times 1000} \times \left(\frac{146 \times 10^{3}}{19\ 867}\right)^{10/3}$
\Rightarrow 12\ 900\ h

[Bearing B]

$$\begin{split} L_{10\text{hB}} &= \frac{10^6}{60n} \left(\frac{C_{\text{rB}}}{P_{\text{B}}}\right)^p \\ &= \frac{10^6}{60 \times 1\,000} \, \times \, \left(\frac{176 \times 10^3}{23\,971}\right)^{10/3} \\ &\rightleftharpoons \underline{12\,800\,\text{h}} \end{split}$$

Using equation (5-9), the system service life (L_{10hS}) using a pair of bearings is :

Reference -

6. Boundary dimensions and bearing numbers

6-1 Boundary dimensions

Bearing boundary dimensions are dimensions required for bearing installation with shaft or housing, and as described in Fig. 6-1, include the bore diameter, outside diameter, width, height, and chamfer dimension.

These dimensions are standardized by the International Organization for Standardization (ISO 15). JIS B 1512 "rolling bearing boundary dimensions" is based on ISO.

These boundary dimensions are provided, classified into radial bearings (tapered roller bearings are provided in other tables) and thrust bearings.

Boundary dimensions of each bearing are listed in Appendixes at the back of this catalog. In these boundary dimension tables, the outside diameter, width, height, and chamfer dimensions related to bearing bore diameter numbers and bore diameters are listed in diameter series and dimension series.

Reference

- 1) Diameter series is a series of nominal bearing outside diameters provided for respective ranges of bearing bore diameter; and, a dimension series includes width and height as well as diameters.
- 2) Tapered roller bearing boundary dimensions listed in the Appendixes are adapted to conventional dimension series (widths and diameters). Tapered roller bearing boundary dimensions provided in JIS B 1512-2000 are new dimension series based on ISO 355 (ref. descriptions before the bearing specification table); for reference, the bearing specification table covers numeric codes used in these dimension series.

 $r_1 + r_1$

 T_1

Cross-section dimensions of radial bearings and thrust bearings expressed in dimension series can be compared using Figs. 6-2 and 6-3.

In this way, many dimension series are provided; however, not all dimensions are practically adapted.

Some of them were merely prescribed, given expected future use.

6-2 Dimensions of snap ring grooves and locating snap rings

JIS B 1509 "rolling bearing -radial bearing with locating snap ring-dimensions and tolerances" conforms to the dimensions of snap ring groove for fitting locating snap ring on the outside surface of bearing and the dimensions and tolerances of locating snap ring.

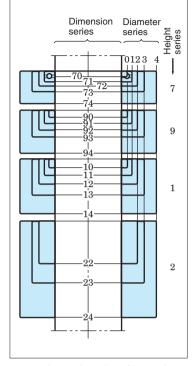


Fig. 6-3 Thrust bearing dimension series diagram (diameter series 5 omitted)

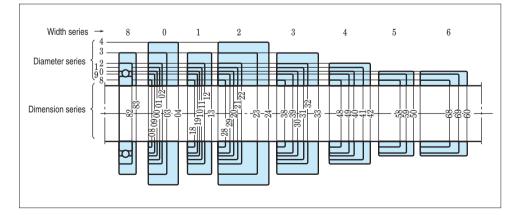


Fig. 6-2 Radial bearing dimension series diagram (diameter series 7 omitted)

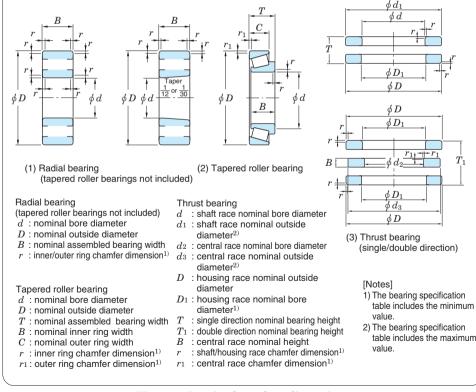


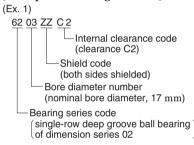
Fig. 6-1 Bearing boundary dimensions

(Ex. 4)

320⁰⁵ J R P 6 X

ŤŤT –Ť

6-3 Bearing number


A bearing number is composed of a basic number and a supplementary code, denoting bearing specifications including bearing type, boundary dimensions, running accuracy, and internal clearance.

Bearing numbers of standard bearings corresponding to JIS B 1512 "rolling bearing boundary dimensions" are prescribed in JIS B 1513.

As well as these bearing numbers, JTEKT uses supplementary codes other than those provided by JIS.

Among basic numbers, bearing series codes are listed in Table 6-1, and the composition of bearing numbers is described in Table 6-2, showing the order of arrangement of the parts.

[Examples of bearing numbers]

(Ex. 2)

72 10 C DT P 5 -Tolerance class code (class 5) - Matched pair or stack code (tandem arrangement) Contact angle code (nominal contact angle, 15°) - Bore diameter number

(nominal bore diameter, 50 mm)

-Bearing series code single-row angular contact ball bearing of dimension series 02

(Ex. 3)

NU3 18 C3 P6

 Tolerance class code (class 6)

Internal clearance code (clearance C3)

Bore diameter number (nominal bore diameter, 90 mm)

Bearing series code (single-row cylindrical roller bearing) of dimension series 03

Tolerance class code (class 6X)
Internal design code
(high load capacity) Code denoting that boundary
dimensions and sub unit dimensions are based on ISO standards.
Bore diameter number (nominal bore diameter, 25 mm)
 Bearing series code (single-row tapered roller bearing of dimension series 20
(Ex. 5) 232/500 RH K C4
Internal clearance code (clearance C4)
Bearing ring shape code
(inner ring tapered bore (taper 1 : 12)
Internal design code
rollers, pressed cage
└──Bore diameter number (nominal bore diameter, 500 mm)
Bearing series code (spherical roller bearing of dimension series 32)
(Ex. 6)
512 15
Bore diameter number (nominal bore diameter, 75 mm)
└── Bearing series code (single direction thrust ball bearing)
of dimension series 12

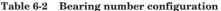
	Bearing	Туре	Dimension	Dimension series code			
Bearing type	series code	code	$\begin{array}{c} \text{Width} \\ \text{series}^{1)} \end{array}$	Diameter series			
	68	6	(1)	8			
	69	6	(1)	9			
Single-row	160 ²⁾	6	(0)	0			
deep groove	60	6	(1)	0			
ball bearing	62	6	(0)	2			
	63	6	(0)	3			
	64	6	(0)	4			
Double-row	42	4	(2)	2			
deep groove ball bearing	43	4	(2)	3			
(with filling slot)	79	7	(1)	9			
Single row	79			-			
Single-row angular	-	7	(1)	0			
contact	72	7	(0)	2			
ball bearing	73	7	(0)	3			
	74	7	(0)	4			
Double-row angular		(0)					
contact	32	(0)	3	2			
ball bearing (with filling slot)	33	(0)	3	3			
Double-row angular	52	5	(3)	2			
contact	53	5	(3)	3			
ball bearing			(0)				
	12	1	(0)	2			
	22	2	(2)	2			
Self-aligning	13	1	(0)	3			
ball bearing	23	2	(2)	3			
	112 ²⁾	1	(0) ³⁾	2			
	113 ²⁾	1	(0) ³⁾	3			
	NU 10	NU 4)	1	0			
	NU 2	NU 4)	(0)	2			
Single-row	NU 22	NU ⁴⁾	2	2			
cylindrical	NU 32	NU 4)	3	2			
roller bearing	NU 3	NU 4)	(0)	3			
	NU 23	NU ⁴⁾	2	3			
	NU 4	NU ⁴⁾	(0)	4			
Double-row			. ,				
cylindrical	NNU 49	NNU	4	9			
roller bearing	NN 30	NN	3	0			
Single-row	NA 48	NA	4	8			
needle	NA 49	NA	4	9			
roller bearing	NA 59	NA	5	9			
Double-row needle roller bearing	NA 69	NA	6	9			

Table 6-1Bearing series code

_ Dimension series code

Bearing

B	Bearing	Туре	Dimension series code		
Bearing type	series code	code	Width series	Diamete series	
	329	3	2	9	
	320	3	2	0	
	330	3	3	0	
	331	3	3	1	
Tapered	302	3	0	2	
roller bearing	322	3	2	2	
	332	3	3	2	
	303	3	0	3	
	313	3	1	3	
	323	3	2	3	
	239	2	3	9	
	230	2	3	0	
	240	2	4	0	
	231	2	3	1	
Spherical roller bearing	241	2	4	1	
rollor boulling	222	2	2	2	
	232	2	3	2	
	213 ²⁾	2	0	3	
	223	2	2	3	
0	511	5	1	1	
Single direction	512	5	1	2	
thrust	513	5	1	3	
ball bearing	514	5	1	4	
Single direction	532	5	3	2	
thrust ball bearing with spherical back	533	5	3	3	
face	534	5	3	4	
Double	522	5	2	2	
direction thrust	523	5	2	3	
ball bearing	524	5	2	4	
Double direction thrust	542	5	4	2	
ball bearing	543	5	4	3	
with spherical back faces	544	5	4	4	
Spherical	292	2	9	2	
thrust	293	2	9	3	
roller bearing	294	2	9	4	


Kovo

1) Width series codes in parentheses are omitted in bearing series codes.

2) These are bearing series codes customarily used.

3) Nominal outer ring width series (inner rings only are wide).

4) Besides NU type, NJ, NUP, N, NF, and NH are provided.

		Table 6-2	2 Bearing	number configu	ration										
		Basic numbe	r		Supplementa			code)		1		-		
Order of arrengement	Bearing serie code	s Bore diameter No.	Contact angle code	Internal design code, cage guide code	Shield/seal code	Ring shape co lubrication hole/groove c			rial code, ial treatment code	Matched pair or stack code	Internal clearance code, preload code		Cage material/ shape code	Tolerance code	Grease code
Bearing set 68 69 60 (For standa More diame /0.6 1 /1.5 9 00 01	Deep groove			GST Angul above provic J Taper width, inside R With of rollers RH With of and p RHA With of	ring of angul ineral, C2 clea ar contact ba with standar ded red roller beau , contact angle diameter cor convex asymm s and machine convex symm ressed cage	ed cage letric rollers letric rollers	l bearing d) cribed arance uter ring ng small	NY SG W W33 W33 Mate Cor not give F H	on cylindrical rol outside surface Lubrication hole on spherical roll outside surface erial code, specia de High carbon chr	n synthetic re le surface pro inner ring bo and lubricatio provided and lubricatio er bearing ou provided al treatment of ome bearing	ovided ore surface on groove uter ring on groove ter ring code	CT NA S L M H Spacer o +	Radial internal cle ance for electric motor bearing Non-interchangea bearing radial inte (C1NA to C5NA) Slight preload Light preload Medium preload Heavy preload Code Spacer wice the end of Inner and outer ris spacers provided Nuter ris provided	bearin (Cylind bearin ble cylindric rnal clearan (Preload fo contact ba (Preload fo contact ba lth (mm) is a each code. ng (De ba	rical roller ng al roller ce r angular Il bearing
02 03 04 /22 05 : 96 /500 /2500	22 be 25 ca : m 480 di 500 2500	ore diameters (earing in the bo ameter range (an be obtained ultiplying their ameter numbe	bre 04 to 96 by bore r by five.	(with a construction of the construction of th	no cage) pde th sides ZZ Fixed ZX Remo ZU RU Non-o RS	pe ball or rolle I shield ovable shield contact seal act seal	er bearing	SH S0 S1 S2 Mate DB DF	Up to 150 °C Up to 200 °C Up to 250 °C	Dimensio treatmen k code, cage rangement angement		/S +DP +IDP +ODP Cage ma // YS FT FY FW	Outer ring spacer Inner ring spacer Inner and outer rin spacers provided Inner ring spacer Outer ring spacer aterial/type code Steel sheet Stainless steel sh Phenol resin High-tensile brass (separable type)	provided [] provided [] provided s provided s provided r] eet	Cylindrical Cylindrical oller bearing, spherical oller bearing (Pressed (cage)
AC B C CA E B (omi C D DJ Internal des R Hig (De	gh load capac eep groove ba	∫ ball t n 17°] Tape 39'' ∫ bear	indrical roller	RD 2F Ring shape or K Inner K30 Inner N Snap surfac NR Snap	ode, lubricat ring tapered l ring groove o ce provided ring groove a	tion hole/groc bore provided bore provided on outer ring or and locating sr de surface pro	(1 : 12) (1 : 30) utside	Q3 Inter C1 C2 CN C3 C4 C5 M1 t0 M6		e cage (Roller de, preload indard clearau nce indard clearau clearance for bearing undard Ra clearance do indard an	bearing) code nce (Radial internal clearance for radial bearing	MG FG FP Omitted P6 P6X P5 P4 P2 Grease 0 A2 AC B5	Polyamide Carbon steel Ce code (JIS) Class 0 Class 6 Class 6X Class 5 Class 4 Class 2		olded cage) type cage)

Koyo

7. Bearing tolerances

7-1 Tolerances and tolerance classes for bearings

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified. These values are prescribed in JIS B 1514

"tolerances for rolling bearings." (These JIS standards are based on ISO standards.)

Bearing tolerances are standardized by classifying bearings into the following six classes (accuracy in tolerances becomes higher in the order described): 0, 6X, 6, 5, 4 and 2.

Class 0 bearings offer adequate performance for general applications; and, bearings of class 5 or higher are required for demanding applications and operating conditions including those described in Table 7-1.

These tolerances follow ISO standards, but some countries use different names for them. Tolerances for each bearing class, and organizations concerning bearings are listed in Table 7-2.

- Boundary dimension accuracy (items on shaft and housing mounting)
 - dimensions
 - Tolerances for bore diameter, outside diameter, ring width, assembled bearing width
 - Tolerances for set bore diameter and set outside diameter of rollers
 - Tolerance limits for chamfer dimensions
 - Permissible values for width variation
 - Tolerance and permissible values for tapered bore
- Running accuracy
 - (items on runout of rotating elements)
 - Permissible values for radial and axial runout of inner and outer rings
 - Permissible values for perpendicularity of inner ring face
 - Permissible values for perpendicularity of outer ring outside surface
 - Permissible values for thrust bearing raceway thickness

Accuracies for dimensions and running of each bearing type are listed in Tables 7-3 through 7-10; and, tolerances for tapered bore and limit values for chamfer dimensions of radial bearings are in Tables 7-11 and 7-12.

Table 7-1 High precision bearing applications

Required performance	Applications	Tolerance class
	Acoustic / visual equipment spindles (VTR, tape recorders)	P 5, P 4
	Radar / parabola antenna slewing shafts	P 4
High accuracy in runout is required for	Machine tool spindles	P 5, P 4, P 2, ABEC 9
rolling elements.	Computers, magnetic disc spindles	P 5, P 4, P 2, ABEC 9
3 1 1 1	Aluminum foil roll necks	P 5
	Multi-stage mill backing bearings	P 4
	Dental spindles	P 2, ABMA 5P, ABMA 7P
	Superchargers	P 5, P 4
	Jet engine spindles and accessories	P 5, P 4
High apped rotation	Centrifugal separators	P 5, P 4
High speed rotation	LNG pumps	P 5
	Turbo molecular pump spindles and touch-down	P 5, P 4
	Machine tool spindles	P 5, P 4, P 2, ABEC 9
	Tension reels	P 5, P 4
Low friction or	Control equipment (synchronous motors, servomotors, gyro gimbals)	P 4, ABMA 7P
low friction variation	Measuring instruments	P 5
is required.	Machine tool spindles	P 5, P 4, P 2, ABEC 9

Table 7-2	Bearing type	e and tolerance class
-----------	--------------	-----------------------

	F	Bearing	1 type	Applied standards				erance class			Tolerance
Di				Applied standal us	Olara C	-			Class 4	01	table
_	10		bearing		Class 0		Class 6	Class 5		Class 2	
Ang	gular co	ontact k	ball bearing	JIS B 1514-1	Class 0	-	Class 6	Class 5	Class 4	Class 2	
Sel	f-alignii	ng ball	bearing		Class 0	-	-	-	-	-	Table 7-3
Cyl	indrical	l roller	bearing		Class 0	-	Class 6	Class 5	Class 4	Class 2	
	edle rol achinec			JIS B 1536-1	Class 0	-	-	-	-	-	
			c series e-row)	JIS B 1514-1	Class 0	Class 6X	(Class 6)	Class 5	Class 4	Class 2	Table 7-5
Tap	oered er		c series lle or four-row)	BAS 1002	Class 0	-	-	-	-	-	Table 7-6
bea	ring	Inch s	series	ANSI/ABMA	Class 4	-	Class 2	Class 3	Class 0	Class 00	Table 7-7
		Metric (J-ser	c series ries)		Class PK	-	Class PN	Class PC	Class PB	-	Table 7-8
Sph	nerical	roller b	earing	JIS B 1514-1	Class 0	-	-	-	-	-	Table 7-3
Thr	ust bal	l bearir	ng		Class 0	-	Class 6	Class 5	Class 4	-	Table 7-9
Sph	nerical	thrust r	oller bearing	JIS B 1514-2	Class 0	-	-	-	-	-	Table 7-10
	cision l port be		ew		-	-	-	Class P5Z	Class P4Z	-	-
Dou con	uble dir itact thi	rection rust bal	angular II bearing	- JTEKT standards	-	-	-	Equivalent to class 5	Equivalent to class 4	-	-
			Radial bearing	ISO 492	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	-
rison	IS	0	Thrust bearing	ISO 199	Normal Class	_	Class 6	Class 5	Class 4	_	_
(Reference) Class comparison	Di Bi N	S	Radial and thrust bearings	DIN 620 BS 6107 NF E 22-335	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	_
ence) Cla			Radial bearing	ABMA std. 20	ABEC 1 RBEC 1	-	ABEC 3 RBEC 3	ABEC 5 RBEC 5	ABEC 7 -	ABEC 9 -	-
(Refere	AN AB	SI MA	Instrument ball bearing	ABMA std. 12	-	-	Class 3P	Class 5P Class 5T	Class 7P Class 7T	Class 9P	Table 7-4
		SI Instrument		ABMA std. 19	Class 4 Class K	-	Class 2 Class N	Class 3 Class C	Class 0 Class B	Class 00 Class A	Table 7-7

(Beferen	ce) Standards and organizations concerned with bearings
	of orandardo and organizatione concerned with beamige
JIS	: Japanese Industrial Standard
BAS	: The Japan Bearing Industrial Association Standard
ISO	: International Organization for Standardization
ANSI	: American National Standards Institute, Inc.
ABMA	: American Bearing Manufactures Association
DIN	: Deutsches Institut für Normung
BS	: British Standards Institution
NF	: Association Francaise de Normalisation

7. Bearing tolerances

Table 7-3 (1) Radial bearing tolerances (tapered roller bearings excluded)

= JIS B 1514-1 = (1) Inner ring (bore diameter)

							(1	l) Inn	ier r	ing (b	ore di	iame	ter)		- 010 1	5 15	1	_																U	nit : µm				
N	omina	l bore		Sin	gle p	lane m	ean b	ore dia	amete	r devia	tion		Single b	ore			Single	plan	е	bor	e diam	eter v	variatio	on V_d	sp				Mean	bore d	liamet	er var	iation	Nomin	al bore				
di	amete d	er					Δ	d_{mp}					diamete	$\int_{ds^1} ds$		Diam	neter s	eries 7	, 8, 9	Dia	neter	series	s 0, 1	Diam	eter se	eries 2	, 3, 4	${\mathop{\rm Dia.}\limits^{1)}}_{\rm series}$			V_{dmp}			diame				-	
	mı	n	cl	ass 0	cl	ass 6	cla	ass 5	cla	ass 4	clas	s 2	class 4		class 2	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2	n	ım	T			
0	ver	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper I	ower	upper lower	r upp	per lower		ma	ax.			ma	ax.			ma	ıx.		max.			max.			over	up to	Ť		-	
	-	0.6	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C) – 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	-	0.6			-	
	0.6	2.5	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C) – 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	0.6	2.5	1		_ ↑ ,	
	2.5	10	0	- 8	0	- 7	0	- 5	0	- 4		2.5	0 - 4	C	-	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	2.5	10	ϕD	· +	$+ \phi d$	ļ
	10	18	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C	. 2.0	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	10	18				
	18	30	0	- 10	0	- 8	0	- 6	0	- 5	0 -	2.5	0 - 5	5 C		13	10	6	5	10	8	5	4	8	6	5	4	2.5	8	6	3	2.5	1.5	18	30		<u> </u>	-	
	30	50	0	- 12	0	- 10	0	- 8	0	- 6	0 -	- 2.5	0 - 6	6 C) – 2.5	15	13	8	6	12	10	6	5	9	8	6	5	2.5	9	8	4	3	1.5	30	50	•			
	50	80	0	- 15	0	- 12	0	- 9	0	- 7	0 -	4	0 - 7	' C) -4	19	15	9	7	19	15	7	5	11	9	7	5	4	11	9	5	3.5	2	50	80	(Cylindrica	l bore	
	80	120	0	- 20	0	- 15	0	- 10	0	- 8	0 -	- 5	0 - 8	8 C) -5	25	19	10	8	25	19	8	6	15	11	8	6	5	15	11	5	4	2.5	80	120				
1	20	150	0	- 25	0	- 18	0	- 13	0	- 10	0 -	- 7	0 - 10) () -7	31	23	13	10	31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	120	150		В		
1	50	180	0	- 25	0	- 18	0	- 13	0	- 10	0 -	7	0 - 10) () -7	31	23	13	10	31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	150	180			-	
1	80	250	0	- 30	0	- 22	0	- 15	0	- 12	0 -	- 8	0 - 12	2 0) -8	38	28	15	12	38	28	12	9	23	17	12	9	8	23	17	8	6	4	180	250	T			
2	250	315	0	- 35	0	- 25	0	- 18	0	- 15	-	-	0 - 15	i –		44	31	18	15	44	31	14	11	26	19	14	11	-	26	19	9	8	-	250	315	Ť		1	
1	815	400	0	- 40	0	- 30	0	- 23	0	- 18	-	-	0 - 18	-		50	38	23	18	50	38	18	14	30	23	18	14	-	30	23	12	9	-	315	400			_	
4	100	500	0	- 45	0	- 35	0	-28	0	-23	-	-	0 - 23	-		56	44	28	23	56	44	21	17	34	26	21	17	-	34	26	14	12	-	400	500		Taper 1	<u>i</u> †	_
Ę	500	630	0	- 50	0	- 40	0	- 35	-	-	-	-		-		63	50	35	-	63	50	26	-	38	30	26	-	-	38	30	18	-	-	500	630	ϕD	or 1/30		l
6	630	800	0	- 75	0	- 50	0	- 45	-	-	-	-		-		94	63	45	-	94	63	34	-	56	38	34	-	-	56	38	23	-	-	630	800		01 30	•	
8	300	1 000	0	- 100	0	- 60	0	- 60	-	-	-	-		-		125	75	60	-	125	75	45	-	75	45	45	-	-	75	45	30	-	-	800	1 000			4	
1 (000	1 250	0	- 125	0	- 75	0	- 75	-	-	-	-		-		156	94	75	-	 156	94	56	-	94	56	56	-	-	94	56	38	-	-	1 000	1 250	+			
12	250	1 600	0	- 160	-	-	-	-	-	-	-	-		-		200	-	-	-	200	-	-	-	120	-	-	-	-	120	-	-	-	-	1 250	1 600	_	Tapered	bore	
1 6	600	2 000	0	- 200	-	-	-	-	-	-	-	-		-		250	-	-	-	250	-	-	-	150	-	-	-	-	150	-	-	-	-	1 600	2 000				

(2) Inner ring (running accuracy and width)

Nomi diam		bore r			out of a ner ring $K_{\rm ia}$		bled		$S_{ m d}$			$S_{ia^{2)}}$				Single inr	ner ri ⊿ _{Bs}	ng width		devi	ation				Sing	gle in		g wid	th devia	ation		Inn	er ring	width V _{Bs}	variat		diame	al bore ter d
	mm	ı	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	cla	ss 0	class 6	C	lass 5		cl	ass 4	cl	lass 2	cla	ISS (0 4)	cla	ss 6 4)	-	SS 5 4)	class	ses 4, 2	class 0	class 6	class 5	class 4	class 2		1m
over	r l i	up to			max.				max.			max.		<u> </u>	lower	upper lower	uppe	rlower	-	upper	lower	upper	lower	upper		upper		upper	lower	upper	lower			max.			over	up to
_		0.6	10	10 5 4 2.5 1.5 7 3 1.5 7									1.5	0 -	10		0 0	- 40		0	- 40	0	- 40	-	_	-	_	0	- 250	0	- 250	12	12	5	2.5	1.5	_	0.6
0.	.6	2.5	10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	40	0 - 4	0 0	- 40		0	- 40	0	- 40	_	_	_	_	0	- 250	0	- 250	12	12	5	2.5	1.5	0.6	2.5
2.		10	10	6	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	120	0 - 12		- 40		0	- 40	0	- 40	0	- 250	0	- 250	0	- 250	0	- 250	15	15	5	2.5	1.5	2.5	
10		18	10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	100	0 - 12	_	- 80		0	- 80	0	- 80	0	- 250		- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	10	18
18		30	13	8	4	3	2.5	8	4	1.5	8	4	2.5	0 -	400	0 - 12		- 120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	18	30
30		50	15	10	5	4	2.5	8	4	1.5	8	4	2.5	0 -	120	0 - 12	0 0	- 120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	3	1.5	30	50
50		80	20	10	5	4	2.5	8	5	1.5	8	5	2.5	0 -	150	0 - 15	0 0	- 150		0	- 150	0	- 150	0	- 380	0	- 380	0	- 250	0	- 250	25	25	6	4	1.5	50	80
80		120	25	13	6	5	2.5	9	5	2.5	9	5	2.5	0 -	200	0 - 20	0 0	- 200		0	- 200	0	- 200	0	- 380	0	- 380	0	- 380	0	- 380	25	25	7	4	2.5	80	120
120		150	30	18	8	6	2.5	10	6	2.5	10	7	2.5	0 -	250	0 - 25	0 0	- 250		0	- 250	0	- 250	0	- 500	0	- 500	0	- 380	0	- 380	30	30	8	5	2.5	120	150
150		180	30	18	8	6	5	10	6	4	10	7	5	0 -	250	0 - 25	0 0	- 250		0	- 250	0	- 250	0	- 500	0	- 500	0	- 380	0	- 380	30	30	8	5	4	150	180
180		250	40	20	10	8	5	11	7	5	13	8	5	0 -	- 300	0 - 30	0 0	- 300		0	- 300	0	- 300	0	- 500	0	- 500	0	- 500	0	- 500	30	30	10	6	5	180	250
250		315	50	25	13	10	-	13	8	-	15	9	-	0 -	350	0 - 35	0 0	- 350		0	- 350	-	-	0	- 500	0	- 500	0	- 500	-	-	35	35	13	8	_	250	315
315		400	60	30	15	13	-	15	9	-	20	12	-	0 -	400	0 - 40	0 0	- 400		0	- 400	-	-	0	- 630	0	- 630	0	- 630	-	-	40	40	15	9	-	315	400
400		500	65	35	20	15	-	18	11	-	25	15	-	0 -	450	0 - 45	0 0	- 450		0	-450	-	-	_	-	_	_	-	_	-	_	50	45	18	11	_	400	500
500		630	70	40	25	_	-	25	-	-	30	-	-	0 -	- 500	0 - 50	0 0	- 500		-	-	-	-	_	-	-	_	-	_	-	_	60	50	20	-	_	500	630
630		800	80	50	30	-	-	30	-	-	35	-	-	0 -	- 750	0 - 75	0 0	- 750		-	-	-	-	-	-	-	-	-	-	-	-	70	60	23	-	-	630	800
800	1	000	90	60	40	_	-	40	-	-	45	-	-	0 -	1 000	0 -100	0 0	-1000		-	-	-	-	_	-	-	_	-	_	-	_	80	60	35	-	_	800	1 000
1 000	1	250	100	70	50	-	-	50	-	-	60	-	-	0 -	1 250	0 -125	0 0	- 1 250		-	-	-	-	_	-	-	_	-	_	-	_	100	60	45	-	_	1 000	1 250
1 250	1	600	120	-	-	-	-	-	-	-	-	-	-	0 -	1 600		-	-		-	-	-	-	-	-	-	-	-	-	-	-	120	-	-	-	-	1 250	1 600
1 600	2	2 000	140	-	-	-	-	-	-	-	-	-	-	0 -	2 000		-	-		-	-	-	-	-	-	-	-	-	-	-	-	140	-	-	-	-	1 600	2 000

 $S_{
m d}$: perpendicularity of inner ring face with respect to the bore $S_{
m ia}$: axial runout of assembled bearing inner ring

[Notes] 1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) These shall be applied to deep groove ball bearings and angular contact ball bearings.

3) These shall be appplied to individual bearing rings manufactured for matched pair or stack bearings.

A 55

4) Also applicable to the inner ring with tapered bore of $d \ge 50 \text{ mm}$.

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 7-3 (2) Radial bearing tolerances (tapered roller bearings excluded)

(3) Outer ring (outside diameter)

Nom	inal			Singl	e pl	ane me	ean c	outsid	de di	amet	er dev	viatio	on	s	ingle	outs	side		Si	ngle	plan	e		ou	tside d	iam	eter va	riat	ion V	Dsp				Shielded	sealed type	- 1	Mean	outsic	le		Nom	inal
outs		ia.		-				Δ_{Dm}	np					d		d_{Ds}	eviation	D	iamet	ter se	ries 7	7, 8, 9		Dia	meter	seri	es 0, 1	D	iamet	er se	eries 2	2, 3, 4	Dia. ¹⁾ series	Diamet	er series 0, 1, 2, 3, 4		diame	ter va V _{Dmp}		л		ide dia.
1	nm		cl	ass 0	0	lass 6		class	s 5	cla	iss 4	c	lass 2	cla	ass 4	5)	class 2	clas	is 0 ²⁾ cla	ass 6 ²⁾	class 5 ⁵⁾	class 4 ⁵	i i	class 0	class 6 ²	class	5 ⁵⁾ class 4	l ⁵⁾ cla	iss 0 ²⁾ cla	ISS 6 ²⁾	class 5 ⁵⁾	class 4 ⁵⁾					class 6 ²	class 5	class	4 class 2	2 1	mm
over	up	to	upper	lower	uppe	er lowe	r upp	per lo	ower	upper	lower	uppe	er lower	uppe	r lowe	ər u	oper lowe	r		ma	х.				m	ax.				ma	х.		max.	m	ax.			max.			over	up to
-		2.5	0	- 8	0		7 0) –	- 5	0	- 4	0	- 2.5	0	_	4	0 – 2.	5 1	10	9	5	4		8	7	4	4 3		6	5	4	3	2.5	10	9	6	5	3	2	1.5	-	2.5
2.	5	6	0	- 8	0	- '	7 0) –	- 5	0	- 4	0	- 2.5	0	-	4	0 - 2.	5 1	10	9	5	4		8	7	4	1 3		6	5	4	3	2.5	10	9	6	5	3	2	1.5	2.	i 6
6	1	18	0	- 8	0	- '	7 0) –	- 5	0	- 4	0	- 2.5	0	-	4	0 - 2.	5 1	10	9	5	4		8	7	4	1 З		6	5	4	3	2.5	10	9	6	5	3	2	1.5	6	18
18	3	30	0	- 9	0	- 6	B 0) –	- 6	0	- 5	0	- 4	0	-	5	0 - 4	1	12	10	6	5		9	8	Ę	5 4		7	6	5	4	4	12	10	7	6	3	2.5	2	18	30
30	5	50	0	- 11	0	- !	9 0) –	- 7	0	- 6	0	- 4	0	-	6	0 - 4	1	14	11	7	6		11	9	5	5 5		8	7	5	5	4	16	13	8	7	4	3	2	30	50
50	8	80	0	- 13	0	- 1	1 0) –	- 9	0	- 7	0	- 4	0	-	7	0 - 4	1	16	14	9	7		13	11	7	7 5		10	8	7	5	4	20	16	10	8	5	3.5	2	50	80
80	12	20	0	- 15	0	- 1;	3 0) –	10	0	- 8	0	- 5	0	-	8	0 - 5	1	19	16	10	8		19	16	8	3 6		11	10	8	6	5	26	20	11	10	5	4	2.5	80	120
120	15	50	0	- 18	0	- 1	5 0) –	11	0	- 9	0	- 5	0	-	9	0 - 5	2	23	19	11	9		23	19	8	3 7		14	11	8	7	5	30	25	14	11	6	5	2.5	120	150
150	18	80	0	- 25	0	- 18	8 0) –	13	0	- 10	0	- 7	0	- 1	0	0 - 7	3	31	23	13	10		31	23	10) 8		19	14	10	8	7	38	30	19	14	7	5	3.5	150	180
180	25	50	0	- 30	0	- 2	0 0) –	15	0	- 11	0	- 8	0	- 1	1	0 - 8	3	38	25	15	11		38	25	1.	I 8		23	15	11	8	8	-	-	23	15	8	6	4	180	250
250	31	15	0	- 35	0	- 2	5 0) –	18	0	- 13	0	- 8	0	- 1	3	0 - 8	4	44	31	18	13		44	31	14	10		26	19	14	10	8	-	-	26	19	9	7	4	250	315
315	40	00	0	- 40	0	- 2	в 0) –	20	0	- 15	0	- 10	0	- 1	5	0 - 10	5	50	35	20	15		50	35	15	5 11		30	21	15	11	10	-	-	30	21	10	8	5	315	400
400	50	00	0	- 45	0	- 3	3 0) –	- 23	0	- 17	-	-	0	- 1	7		5	56	41	23	17		56	41	17	7 13		34	25	17	13	-	-	-	34	25	12	9	-	400	500
500	63	30	0	- 50	0	- 3	вО) –	28	0	-20	-	-	0	-2	0		6	63	48	28	20		63	48	2	15		38	29	21	15	-	-	-	38	29	14	10	-	500	630
630	80	00	0	- 75	0	- 4	5 0) –	35	-	-	-	-	-	-			9	94	56	35	-		94	56	26	3 –		55	34	26	-	-	-	-	55	34	18	-	-	630	800
800	1 00	00	0	- 100	0	- 6	0 0) –	- 50	-	-	-	-	-	-			12	25	75	50	-		125	75	38	3 –		75	45	38	-	-	-	-	75	45	25	-	-	800	1 000
1 000	1 25	50	0	- 125	0	- 73	5 0) _	63	_	-	-	-	-	-			18	56	94	63	-		156	94	47	7 _		94	56	47	-	-	-	-	94	56	31	-	-	1 000	1 250
1 250	1 60	00	0	- 160	0	- 9	0 0) _	80	_	-	-	-	-	-			20	1 00	13	80	-		200	113	60) _	1	20	68	60	-	-	-	-	120	68	40	-	-	1 250	1 600
1 600	2 00	00	0	- 200	0	- 12	0 -	-	-	-	-	-	-	-	-			28	50 1	150	-	-		250	150	-	-	1	50	90	-	-	-	-	-	150	90	-	-	-	1 600	2 000
2 000	2 50	00	0	- 250	-	-	-	-	-	-	-	-	-	-	-			31	13	-	-	-		313	-	-	-	1	188	-	-	-	-	-	-	188	-	-	-	-	2 000	2 500

(4) Outer ring (running accuracy and width)

Unit : µm

Nomi	nal de dia.		al run ing ou			bled								Ring	width	variat	tion
	De dia.			K _{ea}	9			$S_{\mathrm{D}}{}^{4)}$			$S_{ea}^{(3)(4)}$		$\Delta cs^{3)}$		V_{Cs}	3) 5	
-	im	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	classes 0, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2
over	up to			max.				max.			max.		upper lower		ma	х.	
-	2.5	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
2.5	2.5 6 6 18		8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
6			8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
18	30	15	9	6	4	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
30	50	20	10	7	5	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
50	80	25	13	8	5	4	8	4	1.5	10	5	4	Shall	Shall	6	3	1.5
80	120	35	18	10	6	5	9	5	2.5	11	6	5	conform to the tol-	con- form to	8	4	2.5
120	150	40	20	11	7	5	10	5	2.5	13	7	5	erance	the tol-	8	5	2.5
150	180	45	23	13	8	5	10	5	2.5	14	8	5	$\varDelta_{B\mathrm{s}}$ on d	erance	8	5	2.5
180	250	50	25	15	10	7	11	7	4	15	10	7	of the	$V_{B\mathrm{s}}$ on	10	7	4
250	315	60	30	18	11	7	13	8	5	18	10	7	same	d of the	11	7	5
315	400	70	35	20	13	8	13	10	7	20	13	8	bearing	same	13	8	7
400	500	80	40	23	15	-	15	12	-	23	15	-		bear-	15	9	-
500	630	100	50	25	18	-	18	13	-	25	18	-		ing	18	11	-
630	800	120	60	30	-	-	20	-	-	30	-	-			20	-	-
800	1 000	140	75	40	-	-	23	-	-	40	-	-			23	-	-
1 000	1 250	160	85	45	-	-	30	-	-	45	-	-			30	-	-
1 250	1 600	190	95	60	-	-	45	-	-	60	-	-			45	-	-
1 600	2 000	220	110	-	-	-	-	-	-	-	-	-			-	-	-
2 000	2 500	250	-	-	-	-	-	-	-	-	-	-			-	-	

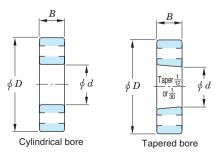
 $S_{\rm D}$ $\,$: perpendicularity of outer ring outside surface with respect to the face

 $S_{\rm D}$: proposition statisty of outer ring outside durates $S_{\rm ea}$: axial runout of assembled bearing outer ring $\varDelta_{\rm Cs}$: deviation of a single outer ring width

[Notes]

1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) Shall be applied when locating snap ring is not fitted.


3) These shall be applied to deep groove ball bearings and angular contact ball bearings.

4) These shall not be applied to flanged bearings.

5) These shall not be applied to shielded bearings and sealed bearings.

[Remark]

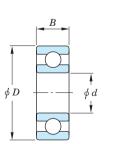
Values in Italics are prescribed in JTEKT standards.

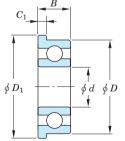
- d : nominal bore diameter
- D: nominal outside diameter B: nominal assembled bearing width

Kovo

Unit : µm

7. Bearing tolerances


(Refer.) Table 7-4 Tolerances for measuring instrument ball bearings (inch series) = ANSI/ABMA standards = (reference)


(1) Inner ring and outer ring width

bore	ninal e dia. d	Single mean diame	bore	e deviati			jle bo neter ⊿	devi	ation	diameter		Mean bor diameter V _d			l runout o nbled bea ring <i>K</i> _{ia}		asse	Il runout d embled be r ring S _{ia}			licularity e with res $S_{\rm d}$		Single in outer rin deviatio \varDelta_{Bs}	ng width	width	or outer variation V_{Bs} , V_{Cs}	Ĩ
n	ım	⊿ dmp			s	clas 5P,			lass 9P	classes 5P, 7P	class 9P	classes 5P, 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	clas 5P, 7		class 5P	class 7P	class 9P
over	up to	upper lo	wer u	upper lo	wer l	upper	lower	uppe	r lower	ma	ax.	ma	ax.		max.			max.			max.		upper	lower		max.	
-	10	0 –	5.1	0 -	2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
10	18	0 –	5.1	0 –	2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
18	30	0 –	5.1	0 -	2.5	0	-5.1 0 -2.5 2.5		1.3	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3	0	- 25.4	5.1	2.5	1.3		

(2) Outer ring

Nominal	- 1	Single pla outside di deviation Δ_I	iameter			e outside eter deviat $ extsf{ }_{Ds}$				le plane ou eter variat V _{Dsp}			n outside neter varia V _{Dmp}		asse	al runou mbled b r ring K _{ea}			runout o mbled be ring $S_{\rm ea}$		ring out		ace with	Single ou flange ou diameter ⊿	tside		
outside o D mm		classes clas 5P, 7P 9F			class 5P, 7		9	ass 9P	5F	sses P, 7P	class 9P	5P	sses , 7P	class 9P	class	class	class	class	class	class	class	class	class	clas			ses
				Oper type	t	sealed type	ty	pen /pe	Open type	Shielded/ sealed type	Open type	Open type	Shielded/ sealed type	Open type	5P	7P	9P	5P	7P	9P	5P	7P	9P	5P,	7P	5P,	7P
over up	to u	pper lower	upper lowe	er upper lo	weru	pper lower	upper	r lower		max.			max.			max.			max.			max.		upper	lower	upper	lower
- 1	8	0 – 5.1	0 - 2.	5 0 -	5.1	+1 -6.1	0	- 2.5	2.5	5.1	1.3	2.5	5.1	1.3	5.1	3.8	1.3	7.6	5.1	1.3	7.6	3.8	1.3	0	- 25.4	0	- 50.8
18 3	0	0 – 5.1	0 - 3.	в 0 –	5.1	+1 -6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	3.8	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8
30 5	0	0 – 5.1	0 - 3.	в 0 –	5.1	+ 1 - 6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	5.1	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8

d : nominal bore diameter
 D : nominal outside diameter
 B : nominal assembled bearing width
 D₁: nominal outer ring flange outside diameter
 C₁: nominal outer ring flange width

Koyo

Unit : µm

Table 7-5 (1) Tolerances for metric series tapered roller bearings

= JIS B 1514-1 =

(1) Inner ring

										-																															
Nomi bore			Single plan liameter de	eviatio		e			le bo neter (re deviatio		•	•	e bore riatio		c	/lean liame variat	eter	Ð		a	sse	al run mbleo ng in	d									Single in	4		devi	ation			bor	
diam d	eter			dmp					Δ	ds			V_{dsp}				V_d						Kia				$S_{\rm d}$		S_{ii}	a					s					dia	meter d
mn	ı	classes 0, 6X	classes 6, 5	cla	ss 4	clas	ss 2	clas	s 4	class 2	class 0, 63	^{es} class	6 class 5	class 4 cl	ass 2 0	sses , 6X cla	ss 6 clas	is 5 clas	s 4 class	2	classi 0, 6)	clas	s 6 class	5 class	4 class	2 class 5	5 class 4	class 2	class 4 c	lass 2	class	0	class 6X	class	6 6	class	ses 5, 4	cl	ass 2	1	nm
over	up to	upper lower	upper lower	upper	lower	upper I	lower	upper le	ower	upper lowe	er		max.				ma	ax.					max	ς.			max		ma	x. u	oper lov	ver up	per lower	upper Iov	wer	upper	lower	upper	lower	over	up to
-	10	0 - 12	0 - 71)	0	- 5	0	- 4	0 -	- 5	0 - 4	12	2 –	5	4 2	2.5	9	-	5 4	1.5		15	5 -	5	3	2	7	3	1.5	3	2	0 –	120	0 - 50		-	0 -	200	0	- 200	-	10
10	18	0 - 12	0 - 7	0	- 5	0	- 4	0 -	- 5	0 - 4	12	2 7	5	4 2	2.5	9	5	5 4	1.5		1	5	7 5	3	2	7	3	1.5	3	2	0 –	120	0 - 50	0 –	120	0 -	200	0	- 200	10	18
18	30	0 - 12	0 - 8	0	- 6	0	- 4	0 -	- 6	0 - 4	12	2 8	6	5 2	2.5	9	6	5 4	1.5		18	3	3 5	3	2.5	8	4	1.5	4	2.5	0 –	120	0 - 50	0 –	120	0 -	200	0	- 200	18	30
30	50	0 - 12	0 - 10	0	- 8	0	- 5	0 -	- 8	0 - 5	1	2 10	8	6 3	3	9	8	5 5	2		20	0 1) 6	4	2.5	6 8	4	2	4	2.5	0 –	120	0 - 50	0 -	120	0 -	240	0	- 240	30	50
50	80	0 - 15	0 - 12	0	- 9	0	- 5	0 -	- 9	0 - 5	1	5 12	9	74	1 ·	11	9	6 5	2		2	5 1	7 0	4	3	8	5	2	4	3	0 –	150	0 - 50	0 –	150	0 -	300	0	- 300	50	80
80	120	0 - 20	0 - 15	0	- 10	0	- 6	0 -	- 10	0 - 6	2	0 15	11	8 5	5 .	15 1	1	8 5	2.5		30) 1:	3 8	5	3	9	5	2.5	5	3	0 –	200	0 - 50	0 –	200	0 -	400	0	- 400	80	120
120	180	0 - 25	0 - 18	0	- 13	0	- 7	0 -	- 13	0 - 7	2	5 18	14	10 7	7 .	19 1	4	9 7	3.5		3	5 1	3 11	6	4	10	6	3.5	7	4	0 –	250	0 - 50	0 -	250	0 -	500	0	- 500	120	180
180	250	0 - 30	0 - 22	0	- 15	0	- 8	0 -	- 15	0 - 8	3	0 22	17	11 7	7 2	23 1	6 1	1 8	4		50	2) 13	8	5	11	7	5	8	5	0 –	300	0 - 50	0 –	300	0 -	600	0	- 600	180	250
250	315	0 - 35	0 - 251)	0	- 18	0	- 8	0 -	- 18	0 - 8	3	5 25	19	12 8	3 2	26 1	9 1	3 9	5		60	3	13	9	6	13	8	5.5	9	6	0 –	350	0 - 50	0 –	350	0 -	700	0	- 700	250	315
315	400	0 - 40	0 - 301)	-	-	-	-	-	-		4	0 30	23	-	- (30 2	23 1	5 -			70) 3.	5 15	-	-	15	-	-	-	-	0 –	400	0 - 50	0 -	400	0 -	800 ²⁾	-	-	315	400
400	500	0 - 45	0 - 351)	-	-	-	-	_	-		4	5 35	28	-	- :	34 2	6 1	7 -	. _		8) 4	20	-	-	17	-	-	-	-	0 –	450	0 - 50	0 -	450	0 -	900 ²⁾	-	_	400	500
500	630	0 - 60	0 - 40 ¹⁾	-	-	_	-	_	-		6	0 40	35	_	_ 4	40 3	2 0	0 -	. _		90	5	25	-	-	20	-	-	-	-	0 –	500 -		0 –	500	0 -	1 100 ²⁾	-	_	500	630
630	800	0 - 75	0 - 501)	-	-	-	-	-	-		7	5 50	45	-	_ 4	45 3	8 2	5 -	. _		100	0 6	30	-	-	25	-	- 1	-	-	0 –	750 -		0 -	750	0 -	1 600 ²⁾	-	-	630	800
800	1 000	0 - 100	0 - 601)	_	_	_	-	_	-		10	0 60	60	_	- !	55 4	15 3	0 - 0	. _		115	5 7	5 37	-	-	30	_	-	_	_	0 - 1	000 -		0 -1	000	0 -	2 000 ²⁾	_	_	800	1 000
			- 50	_																							-	-								-					

 $S_{\rm d}$: perpendicularity of inner ring face with respect to the bore

 S_{ia} : axial runout of assembled bearing inner ring

(2-1) Outer ring

Radial runout of Single plane mean outside Single outside Single plane Mean outside Single outer ring Nominal Nominal Nominal diameter deviation diameter deviation outside diameter assembled width deviation diameter variation outside outside bore Cbearing outer ring variation diameter diameter diameter Kea V_{Dmp} $S_{
m D}{}^{3)}$ $S_{\mathrm{ea}}{}^{3)}$ V_{Dsp} $\Delta c_{\rm s}$ $\Delta D_{\rm mp}$ ΔDs D Ddclasses 0.6X class 6 class 5 class 4 class 2 classes class 6 class 5 class 4 class 2 classes 0, 6X class 6 class 5 class 4 class 2 class 5 class 4 class 2 class 4 class 2 mm mm mm classes classes 0, 6X classes 6, 5 class 4 class 2 class 4 class 2 class 6X 0, 6, 5, 4, 2 upper lower over up to upper lower upper lower upper lower upper lower unner lowe over | up to over up to upper lower upper lower max max max max max В 4 1.5 10 0 - 100 18 0 12 0 -81 0 - 6 0 - 5 0 0 - 5 12 6 5 4 2.5 18 6 4 2.5 8 5 2.5 18 - 6 5 4 9 ϕD ϕd 18 30 0 12 4 2.5 18 6 4 2.5 8 4 1.5 5 2.5 18 30 10 18 0 12 0 -8 0 6 0 5 - 6 0 - 5 8 6 5 4 9 6 5 9 0 - 100 30 50 0 0 5 2.5 20 10 7 5 2.5 4 2 5 2.5 30 50 18 0 -9 0 - 5 0 - 5 14 7 4 11 7 8 30 0 - 100 14 0 _ 7 - 7 9 5 5 50 25 4 2.5 30 50 80 0 16 0 - 11 0 - 9 0 - 6 0 - 9 0 - 6 16 11 8 7 4 12 8 6 5 2.5 13 8 5 4 8 5 4 50 80 0 - 100 Shall 80 120 0 18 0 - 13 - 10 0 6 0 - 10 0 18 13 10 5 14 10 5 3 35 18 10 6 5 9 5 3 6 5 80 120 50 80 0 - 100 0 - 6 8 7 comform 120 150 0 0 - 11 20 11 5 15 40 20 11 7 5 10 5 3.5 7 5 120 150 80 120 - 100 20 0 - 15 0 - 11 0 - 7 0 - 7 15 8 11 8 6 3.5 0 to the 150 180 - 13 45 23 13 10 5 4 150 180 120 180 0 25 0 -18 0 0 - 13 0 - 7 25 18 14 10 19 14 9 7 4 8 5 8 5 0 - 100 0 d: nominal bore tolerance diameter 180 250 0 30 0 - 20 - 15 - 8 0 - 15 0 - 8 30 20 15 8 23 15 8 5 50 25 15 10 7 11 7 5 10 7 180 250 180 250 0 - 100 $\Delta B_{\rm Bs}$ on 0 11 10 0 d of the D : nominal outside 250 315 0 35 0 -25 0 - 18 0 - 9 0 - 18 0 _ 9 35 25 19 14 8 26 19 13 9 5 60 30 18 11 7 13 8 6 10 7 250 315 250 315 0 - 100 same diameter 315 400 0 0 - 28 - 20 0 - 10 0 - 20 - 10 40 28 22 15 10 30 21 10 6 70 35 20 13 8 13 10 7 13 8 315 400 315 400 0 - 100 40 0 14 Ω bearing B: nominal inner ring 3326 34 2517 400 500 0 45 $0 - 33^{1}$ 45 17 80 40 24 400 500 400 500 0 - 100 _ _ width _ C : nominal outer ring 500 630 0 _ 50 0 - 381 _ 60 38 30 38 2920 100 50 30 _ _ 20 _ 500 630 500 630 _ _ width 630 800 0 - 75 0 45¹ 80 4538 55 3425 120 60 36 25 630 800 630 800 _ T: nominal assembled 0 50 75 140 75 43 800 1 000 - 100 0 -60¹ _ 100 60 4530 _ _ 30 800 1 000 800 1 000 _ bearing width 1 000 1 250 0 - 125 $0 - 80^{1}$ 130 75 65 90 5638 160 85 52 38 1 000 1 250 _ _ _ 1 250 1 600 0 - 160 0 - 1001) 170 90 90 100 68 50 180 95 62 50 1 250 1 600 _

[Notes] 1) Class 6 values are prescribed in JTEKT standards.

2) These shall be applied to bearings of tolerance class 5.

These shall not be applied to flanged bearings.

[Remark] Values in Italics are prescribed in JTEKT standards.

A 60

 $S_{\rm D}$: perpendicularity of outer ring outside surface with respect to the face

 S_{ea} : axial runout of assembled bearing outer ring

(2-2) Outer ring

Unit : µm

Unit : µm

Koyo

Unit : um

Table 7-5 (2) Tolerances for metric series tapered roller bearings

(3) Assembled bearing width and effective width

Unit : µm

	nal bore			Act	ual be	aring	width	deviat	tion				-			tive in			
diame	d d		$ ightarrow T_{ m s}$							sub-unit width deviation \Box_{T1s}									
m	nm	class 0 class 6X		s 6X	class 6		classe	classes 5, 4		class 2		ss O	class 6X		classes 5, 4		class 2		
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
-	10	+ 200	0	+ 100	0	-	-	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
10	18	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
18	30	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
30	50	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
50	80	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
80	120	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200 ·	- 200	+ 200	- 200	+ 100	- 100	+ 50	0	+ 100	- 100	+ 100	- 100
120	180	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 ·	- 250	+ 200	- 250	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 100
180	250	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 ·	- 250	+ 200	- 300	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 150
250	315	+ 350	- 250	+ 200	0	+ 350	-250	+ 350 ·	- 250	+ 200	- 300	+ 150	- 150	+ 100	0	+ 150	- 150	+ 100	- 150
315	400	+ 400	- 400	+ 200	0	+400	-400	+ 400 ·	$-400^{1)}$	-	-	+ 200	- 200	+ 100	0	+ 200	$-200^{1)}$	-	-
400	500	+ 450	- 450	+ 200	0	+400	-400	+ 450 ·	$-450^{1)}$	-	-	+ 225	- 225	+ 100	0	+ 225	$-225^{1)}$	-	-
500	630	+ 500	- 500	-	-	+ 500	-500	+ 500 ·	$-500^{1)}$	-	-	-	-	-	-	-	-	-	-
630	800	+ 600	- 600	-	-	+ 600	- 600	+ 600 ·	$-600^{1)}$	-	-	-	-	-	-	-	-	-	-
800	1 000	+ 750	- 750	-	-	+ 750	- 750	+ 750 ·	- 750 ¹⁾	-	-	-	-	-	-	-	-	-	-

Т

Nomin diamet	al bore ter	Actual effective outer ring width deviation									
C	d	Δ_{T2s}									
m	m	clas	ss O	clas	s 6X	classes 5, 4	class 2				
over	up to	upper	lower	upper	lower	upper lower	upper	lower			
_	10	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
10	18	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
18	30	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
30	50	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
50	80	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
80	120	+ 100	- 100	+ 50	0	+ 100 - 100	+ 100	- 100			
120	180	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
180	250	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
250	315	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
315	400	+ 200	- 200	+ 100	0	$+200 - 200^{1)}$	-	-			
400	500	+ 225	- 225	+ 100	0	$+ 225 - 225^{1)}$	-	-			
500	630	-	-	-	-		-	-			
630	800	-	-	-	-		-	-			
800	1 000	-	-	-	-		-	-			

[Note] 1) These shall be applied to bearings of tolerance class 5. [Remark] Values in Italics are prescribed in JTEKT standards.

	outer ring	
$-\phi d$		-
	Master inner sub-unit ¢ d	

 T_1

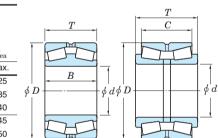
Master

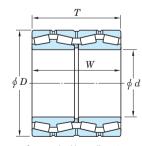
Table 7-6Tolerances for metric series double-row and four-row
tapered roller bearings (class 0)= BAS 1002 =

(1) Inner ring, outer ring width and overall width

Unit : μm

Koyo


Nominal bore		Single pl	ane mean	neter diameter diameter			Single ou	iter ring			l inner rings/ idth deviation		
diame	ter d	bore diameter deviation				or inner ring deviation			Doubl	le-row	Four-row		
mm		\varDelta_{dmp}		V_{dsp}	V_{dmp}	$K_{\rm ia}$	\varDelta_{Bs} , \varDelta_{Cs}		Δ	$T_{\rm S}$	$\Delta_{T_{\rm S}}$, $\Delta_{W_{\rm S}}$		
over	up to	upper	lower	max.	max.	max.	upper	lower	upper	lower	upper	lower	
30	50	0	- 12	12	9	20	0	- 120	+ 240	- 240	-	-	
50	80	0	- 15	15	11	25	0	- 150	+ 300	- 300	-	-	
80	120	0	- 20	20	15	30	0	- 200	+ 400	- 400	+ 500	- 500	
120	180	0	- 25	25	19	35	0	- 250	+ 500	- 500	+ 600	- 600	
180	250	0	- 30	30	23	50	0	- 300	+ 600	- 600	+ 750	- 750	
250	315	0	- 35	35	26	60	0	- 350	+ 700	- 700	+ 900	- 900	
315	400	0	- 40	40	30	70	0	- 400	+ 800	- 800	+ 1 000	- 1 000	
400	500	0	- 45	45	34	80	0	- 450	+ 900	- 900	+ 1 200	- 1 200	
500	630	0	- 60	60	40	90	0	- 500	+ 1 000	$- 1 \ 000$	+ 1 200	- 1 200	
630	800	0	- 75	75	45	100	0	- 750	+ 1 500	- 1 500	-	-	
800	1 000	0	- 100	100	55	115	0	- 1 000	+ 1 500	- 1 500	-	-	


 $\overline{K_{\mathrm{ia}}}$: radial runout of assembled bearing inner ring

(2) Outer ring Unit : μm

				8		
diamet	Nominal outside diameter D mm		ane mean liameter	Single plane outside diameter variation V_{Dsp}	Mean out- side diameter variation V_{Dmp}	K _{ea}
over	over up to		lower	max.	max.	max.
50	80	upper 0	- 16	16	12	25
		-	-			
80	120	0	- 18	18	14	35
120	150	0	- 20	20	15	40
150	180	0	- 25	25	19	45
180	250	0	- 30	30	23	50
250	315	0	- 35	35	26	60
315	400	0	- 40	40	30	70
400	500	0	- 45	45	34	80
500	630	0	- 50	60	38	100
630	800	0	- 75	80	55	120
800	1 000	0	- 100	100	75	140
1 000	1 250	0	- 125	130	90	160
1 250	1 600	0	- 160	170	100	180

Kea : radial runout of assembled bearing outer ring

- d : nominal bore diameter
- D : nominal outside diameter
- *B* : nominal double inner ring width
 - C : nominal double outer ring width
- *T*, *W* : nominal overall width of outer rings (inner rings)

d	: nominal bore diamet	er
---	-----------------------	----

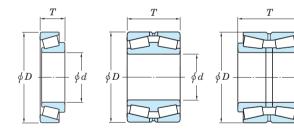
- T : nominal assembled bearing width
- T_1 : nominal effective width of inner sub-unit
- T_2 : nominal effective width of outer ring

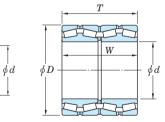
Table 7-7 Tolerances and permissible values for inch series tapered roller bearings = ANSI/ABMA 19 =

(1) Inner ring Ut												it : µm	
Applied	Nominal bore diameter			Deviation of a single bore diameter $arsigma_{ m ds}$									
bearing	<i>d</i> , mm (1/25.4)		class 4		clas	class 2		ss 3	class 0		class 00		
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
	-	76.2 (3.0)	+ 13	0	+ 13	0	+13	0	+ 13	0	+ 8	0	
	76.2 (3.0)	266.7 (10.5)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
All types	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-	
typeo	609.6 (24.0)	914.4 (36.0)	+ 76	0	-	-	+ 38	0	-	-	-	-	
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-	
	1 219.2 (48.0)	-	+ 127	0	-	-	+76	0	-	-	-	-	

	(2) Outer ring Unit : µm												
Applied bearing type	Nominal outside diameter D , mm (1/25.4)		Deviation of a single outside diameter ⊿ Ds class 4 class 2 class 3 class 0 class 00										
	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
	-	266.7 (10.5)	+ 25	0	+ 25	0	+13	0	+13	0	+ 8	0	
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
All	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-	
types	609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	+ 38	0	-	-	-	-	
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-	
	1 219.2 (48.0)	_	+ 127	0	-	-	+76	0	-	-	-	-	

(3)	Radial runout	of assembled	bearing inner	ring/outer ring
(0)	maulai i unout	or assembled	building miller	i mg/outor i mg


Unit : µm


Applied	Nominal outs	ide diameter	Radial runout of inner ring/outer ring K_{ia} , K_{ea}								
bearing type	D, mm	(1/25.4)	class 4	class 2	class 3	class 0	class 00				
	over	up to	max.	max.	max.	max.	max.				
	-	266.7 (10.5)	51	38	8	4	2				
	266.7 (10.5)	304.8 (12.0)	51	38	8	4	2				
All	304.8 (12.0)	609.6 (24.0)	51	38	18	-	-				
types	609.6 (24.0)	914.4 (36.0)	76	51	51	-	-				
	914.4 (36.0)	1 219.2 (48.0)	76	-	76	-	-				
	1 219.2 (48.0)	-	76	-	76	-	-				

(4) Assembled bearing width and overall width	
---	--

Applied	Nominal bo	re diameter	Nominal outs	side diameter	Deviation of the actual bearing width and overall width of inner rings/outer rings \varDelta $_{T m s}$, \varDelta $_{ m Ws}$								
bearing	d, mm	(1/25.4)	D, mm	(1/25.4)	class 4		class 2		class 3		classes 0,00		
type	over	up to	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	
	-	101.6 (4.0)	-	-	+ 203	0	+ 203	0	+ 203	- 203	+ 203	- 203	
	101.6 (4.0)	266.7 (10.5)			+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	- 203	
Cingle row	266.7 (10.5)	304.8 (12.0)	-	-	+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	$- 203^{(1)}$	
Single-row	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 381	- 381	+ 203	- 203	-	-	
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 381	- 381	+ 381	- 381	-	-	
	609.6 (24.0)		-	-	+ 381	- 381	-	-	+ 381	- 381	-	-	
	-	101.6 (4.0)	-	-	+ 406	0	+ 406	0	+ 406	- 406	+ 406	- 406	
	101.6 (4.0)	266.7 (10.5)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	- 406	
Double-row	266.7 (10.5)	304.8 (12.0)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	$- 406^{1)}$	
Double-IOW	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 762	- 762	+ 406	- 406	-	-	
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 762	- 762	+ 762	- 762	-	-	
	609.6 (24.0)		-	-	+ 762	- 762	-	-	+ 762	- 762	-	-	
Double-row	-	127.0 (5.0)	-	-	-	-	+ 254	0	+ 254	0	-	-	
(TNA type)	127.0 (5.0)		-	-	-	-	+ 762	0	+ 762	0	-	-	
Four-row	Total dimen	sional range	-	-	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524	

[Note] 1) These shall be applied to bearings of class 0.

d : nominal bore diameter

D : nominal outside diameter

T, *W* : nominal assembled bearing width and nominal overall width of outer rings (inner rings)

Unit : µm

7. Bearing tolerances

Table 7-8 Tolerances for metric J series tapered roller bearings $^{1)}$

(1) Bore diameter and width of inner ring and assembled bearing width

Nomin diamet	al bore ter		Devi	ation	of a sin ⊿	gle bo ds	re dian	neter			Devia	ition o	fasing ⊿	•	er ring	width			Dev	iation o	f the ac		aring v	vidth		Nominal diameter	
m	d m	class	s PK	clas	s PN	class	s PC	clas	s PB	class	s PK	clas	s PN	clas	s PC	clas	s PB	class	PK	class	s PN	class	B PC	class	B PB	n	d 1m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	over	up to
10	18	0	- 12	0	- 12	0	- 7	0	- 5	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	10	18
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	18	30
30	50	0	- 12	0	- 12	0	- 10	0	- 8	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	30	50
50	80	0	- 15	0	- 15	0	- 12	0	- 9	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	50	80
80	120	0	- 20	0	- 20	0	- 15	0	- 10	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200	- 200	80	120
120	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 50	0	- 300	0	- 300	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 250	120	180
180	250	0	- 30	0	- 30	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 300	180	250
250	315	0	- 35	0	- 35	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 200	0	+ 350	- 300	+ 200	- 300	250	315

(2) Outside diameter and width of outer ring and radial runout of assembled bearing inner ring/ outer ring

A 66

Nomina diamete			Devia	tion o	fasing ⊿	le outs	ide dia	meter			Devia	ition o	fasino ⊿	g le out _{Cs}	er ring	width		Radia		ner ring/oute	r ring	diameter	
l m) m	clas	s PK	clas	s PN	clas	s PC	class	s PB	class	s PK	clas	s PN	clas	s PC	clas	s PB	class PK	class PN	class PC	class PB	-	D 1m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	max.	max.	max.	max.	over	up to
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 150	0	- 100	0	- 150	0	- 150	18	18	5	3	18	30
30	50	0	- 14	0	- 14	0	- 9	0	- 7	0	- 150	0	- 100	0	- 150	0	- 150	20	20	6	3	30	50
50	80	0	- 16	0	- 16	0	- 11	0	- 9	0	- 150	0	- 100	0	- 150	0	- 150	25	25	6	4	50	80
80	120	0	- 18	0	- 18	0	- 13	0	- 10	0	- 200	0	- 100	0	- 200	0	- 200	35	35	6	4	80	120
120	150	0	- 20	0	- 20	0	- 15	0	- 11	0	- 200	0	- 100	0	- 200	0	- 200	40	40	7	4	120	150
150	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 100	0	- 250	0	- 250	45	45	8	4	150	180
180	250	0	- 30	0	- 30	0	- 20	0	- 15	0	- 250	0	- 100	0	- 250	0	- 250	50	50	10	5	180	250
250	315	0	- 35	0	- 35	0	- 25	0	- 18	0	- 250	0	- 100	0	- 300	0	- 300	60	60	11	5	250	315
315	400	0	- 40	0	- 40	0	- 28	-	-	0	- 250	0	- 100	0	- 300	-	-	70	70	13	-	315	400

[Note] 1) Bearings with supplementary code "J" attached at the front of bearing number

Ex. JHM720249/JHM720210, and the like

 ϕD

 $d\,$: nominal bore diameter

 \boldsymbol{D} : nominal outside diameter

B: nominal inner ring width

C: nominal outer ring width

T: nominal assembled bearing width

Koyo

Unit : µm

Unit : μm

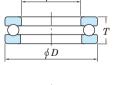
7. Bearing tolerances

Table 7-9Tolerances for thrust ball bearings= JIS B 1514-2 =(1)Shaft race and central race

				(1) 5114	it face a	ina centi	arrace				01
Nominal diamete or centra	r of shaft	Single pla	ne mean bo $arDelta_{dmp}$ o	ore diameter r $arDelta_{d2mp}$	r deviation	diameter	ane bore variation or V_{d2sp}	Ra fac	ce thickne	ay to back ss variation	on
	d_2 , mm	classe	s 0, 6, 5	cla	ss 4	classes 0, 6, 5	class 4	class 0	class 6	class 5	class 4
over	up to	upper	lower	upper	lower	ma	ax.		ma	ax.	
-	18	0	- 8	0	- 7	6	5	10	5	3	2
18	30	0	- 10	0	- 8	8	6	10	5	3	2
30	50	0	- 12	0	- 10	9	8	10	6	3	2
50	80	0	- 15	0	- 12	11	9	10	7	4	3
80	120	0	- 20	0	- 15	15	11	15	8	4	3
120	180	0	- 25	0	- 18	19	14	15	9	5	4
180	250	0	- 30	0	- 22	23	17	20	10	5	4
250	315	0	- 35	0	- 25	26	19	25	13	7	5
315	400	0	- 40	0	- 30	30	23	30	15	7	5
400	500	0	- 45	0	- 35	34	26	30	18	9	6
500	630	0	- 50	0	- 40	38	30	35	21	11	7
630	800	0	- 75	0	- 50	55	40	40	25	13	8
800	1 000	0	- 100	-	-	75	-	45	30	15	-
1 000	1 250	0	- 125	-	-	95	-	50	35	18	-

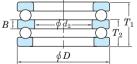
[Notes] 1) Double direction thrust ball bearings shall be included in *d* of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

2) Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.


(2) Housing race

Unit : μm

					-			
diameter	r D		le plane leter dev ⊿ ₁		itside	variation	diameter	Race raceway to back face thickness variation $S_{\rm e}^{112)}$
m	m	classes	s 0, 6, 5	cla	ss 4	classes 0, 6, 5	class 4	classes 0, 6, 5, 4
over	up to	upper	lower	upper	lower	m	ax.	max.
10	18	0	- 11	0	- 7	8	5	
18	30	0	- 13	0	- 8	10	6	
30	50	0	- 16	0	- 9	12	7	
50	80	0	- 19	0	- 11	14	8	
80	120	0	- 22	0	- 13	17	10	
120	180	0	- 25	0	- 15	19	11	
180	250	0	- 30	0	- 20	23	15	Shall conform to
250	315	0	- 35	0	- 25	26	19	the tolerance S_i on d or d_2 of the
315	400	0	- 40	0	- 28	30	21	same bearing
400	500	0	- 45	0	- 33	34	25]
500	630	0	- 50	0	- 38	38	29	
630	800	0	- 75	0	- 45	55	34	
800	1 000	0	- 100	0	- 60	75	45	1
1 000	1 250	0	- 125	-	-	95	-	
1 250	1 600	0	- 160	-	-	120	-	


[Notes] 1) These shall be applied to race with flat back face only.

 Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.

φd

Unit : um

- d : shaft race nominal bore diameter
- d_2 : central race nominal bore diameter
- D : housing race nominal outside diameter
- B : central race nominal height
- *T* : nominal bearing height (single direction)
- T_1 , T_2 : nominal bearing height (double direction)

(3) Bearing height and central race height	Unit : μm
--	----------------

		Single c	lirection			Double	direction		
diamet	d	bearing hei	f the actual ght Ts	bearing hei	of the actual $ght_{1s}^{(1)}$	bearing hei	f the actual ght 12s		of a single the height $B_{\rm Bs}^{(1)}$
		clas	ss O	clas	ss O	clas	ss O	clas	ss O
over	up to	upper lower $0 - 75$		upper	lower	upper	lower	upper	lower
-	30	0	- 75	+ 50	- 150	0	- 75	0	- 50
30	50	0	- 100	+ 75	-200	0	- 100	0	- 75
50	80	0	- 125	+ 100	-250	0	- 125	0	- 100
80	120	0	- 150	+ 125	- 300	0	- 150	0	- 125
120	180	0	- 175	+ 150	- 350	0	- 175	0	- 150
180	250	0	-200	+ 175	- 400	0	-200	0	- 175
250	315	0	-225	+ 200	- 450	0	- 225	0	- 200
315	400	0	- 300	+ 250	- 600	0	- 300	0	-250

[Note] 1) Double direction thrust ball bearings shall be included in *d* of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

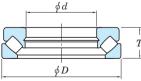
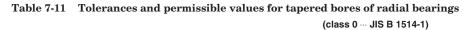
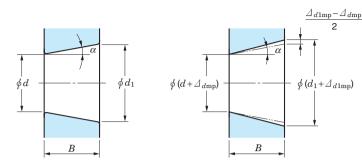

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 7-10 Tolerances for spherical thrust roller bearings (class 0) = JIS B 1514-2 =

			(1)) Shaft race		Unit : µn			
Nominal bo	ore diameter		ne mean bore	Single plane bore		Refer.			
(d	diameter d	eviation	diameter variation		Actual bearing	height deviation		
m	im	Δ	dmp	V_{dsp}	$S_{ m d}$	4	1 _{Ts}		
over	up to	upper	lower	max.	max.	upper	lower		
50	80	0 - 15		11	25	+ 150	- 150		
80	120	0	- 20	15	25	+ 200	-200		
120	180	0	- 25	19	30	+250	-250		
180	250	0	- 30	23	30	+ 300	- 300		
250	315	0	- 35	26	35	+ 350	-350		
315	400	0	- 40	30	40	+ 400	-400		
400	500	0	- 45	34	45	+450	-450		

 $S_{\rm d}$: perpendicularity of inner ring face with respect to the bore [Remark] Values in Italics are prescribed in JTEKT standards.


(2) Housing race Single plane mean outside diameter deviation Nominal outside diameter D, mm \mathcal{I}_{Dmp} over up to upper lower 120 180 0 - 25 180 250 0 - 30 0 250 315 - 35 315 400 0 - 40 0 400 500 - 45 500 630 0 - 50 630 800 0 - 75 800 1 000 0 - 100



Kovo

d : shaft race nominal bore diameter
 D : housing race nominal outside diameter
 T : nominal bearing height

Theoretical tapered bore

(1) Basically tapered bore (taper 1:12) Unit : µm

Nomin diame		Δ	lmp	Δ_{d1mp}	-⊿ _{dmp}	${V_{d}}_{ m sp}{}^{1)}$
over	up to	upper	lower	upper	lower	max.
-	10	+ 22	0	+ 15	0	9
10	18	+ 27	0	+ 18	0	11
18	30	+ 33	0	+ 21	0	13
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+ 110	0	+ 70	0	70
630	800	+ 125	0	+ 80	0	-
800	1 000	+ 140	0	+ 90	0	-
1 000	1 250	+ 165	0	+ 105	0	-
1 250	1 600	+ 195	0	+ 125	0	-

(2) Basically tapered bore (taper 1:30) Unit : µm

Tapered bore with single plane

mean bore diameter deviation

Nomin diamet d, 1		Δ.	lmp	⊿ _{d1mp}	-⊿ _{dmp}	$V_{dsp}{}^{(1)}$
over	up to	upper	lower	upper	lower	max.
-	50	+ 15	0	+ 30	0	19
50	80	+ 15	0	+ 30	0	19
80	120	+ 20	0	+ 35	0	22
120	180	+ 25	0	+ 40	0	40
180	250	+ 30	0	+ 46	0	46
250	315	+ 35	0	+ 52	0	52
315	400	+ 40	0	+ 57	0	57
400	500	+ 45	0	+ 63	0	63
500	630	+ 50	0	+ 70	0	70

[Note] 1) These shall be applied to all radial planes with tapered bore, not be applied to bearings of diameter series 7, 8. [Remark] 1) Symbols of quantity d_1 : reference diameter at theoretical large end of tapered bore

$$d_1 = d + \frac{1}{12}B$$
 or $d_1 = d + \frac{1}{30}B$

 \varDelta_{dmp} : single plane mean bore diameter deviation at theoretical small end of tapered bore

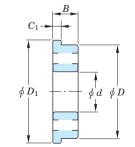
- $\varDelta_{d1\mathrm{mp}}$: single plane mean bore diameter deviation at theoretical large end of tapered bore
- V_{dsp} : single plane bore diameter variation (a tolerance for the diameter variation given by a maximum value applying in any radial plane of the bore)
- B : nominal inner ring width

 $\alpha:\frac{1}{2}$ of nominal tapered angle of tapered bore

(tapered ratio 1/12)	(tapered ratio 1/30)
α=2°23′9.4″	$\alpha = 0^{\circ}57'17.4''$
= 2.385 94°	= 0.954 84°
= 0.041 643 rad	= 0.016 665 rad

 Table 7-12
 Tolerances and permissible values for flanged radial ball bearings
 (1) Tolerances on flange outside diameters

Unit : µm


Koyo

Nominal outer ring fla	inge outside diameter	Deviation of single outer ring flange outside diameter, $\mathcal{\varDelta}_{D1s}$								
(m	÷	Locatin	g flange	Non-locat	ing flange					
over	up to	upper	lower	upper	lower					
-	6	0	- 36	+ 220	- 36					
6	10	0	- 36	+ 220	- 36					
10	18	0	- 43	+ 270	- 43					
18	30	0	- 52	+ 330	- 52					
30	50	0	- 62	+ 390	- 62					
50	80	0	- 74	+ 460	- 74					

(2) Tolerances and permissible values on flange widths and permissible values of running accuracies relating to flanges Unit : µm

Nom outs diam <i>L</i> (m	ide neter	Deviatio single o flange w $ extsf{d}_C$	uter ring ridth	Variatior flange w	ng	with r	ndicular espect to groove I gs and a t ball be	the flar Siball	nge back			outer	ring fla	nge bao S_{ea1} ball	Tapered roller bearings			
(111)	classes 0	, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 4	class 2
over	up to	upper lower		max.					max.			max.		max.			max.	
-	2.5	Shall con-		Shall con-	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
2.5	6	form to	the	form to the	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
6	18	tolerar		tolerance V_{Bs} on d of	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
18	30		Δ_{Bs} on d of the same	the same	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	4	7	4
30	50	class and	class and	5	2.5	1.5	8	4	1.5	8	4	2	11	7	4	7	4	
50	80		the bearing	6	3	1.5	8	4	1.5	8	4	2.5	14	7	6	7	6	

[Note] 1) These shall be applied to groove ball bearings, i.e. deep groove ball bearing and angular contact ball bearing etc.

d : nominal bore diameter

- D : nominal outside diameter
- B : nominal assembled bearing width
- D1 : nominal outer ring flange outside diameter
- C_1 : nominal outer ring flange width

Table 7-13 Permissible values for chamfer dimensions = JIS B 1514-3 =

Unit : mm

(1) Radial bearing

(tapered roller bearings excluded)

	Nominal bo	re diameter		
r _{min} or	0	l m	r _{max} o	$r_{1 \max}$
$r_{1 \min}$	over	up to	Radial direction	Axial direction
0.05	-	-	0.1	0.2
0.08	-	-	0.16	0.3
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.3	-	40	0.6	1
0.0	40	-	0.8	1
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
I	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
1.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	-	3.8	6
0.1	-	280	4	6.5
2.1	280	-	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
	280	-	5	7
	-	280	5	8
3	280	-	5.5	8
4	-	-	6.5	9
5	-	-	8	10
6	-	-	10	13
7.5	-	-	12.5	17
9.5	-	-	15	19
12	-	-	18	24
15	-	-	21	30
19	-	_	25	38

[Remarks]

- 1. Value of r max or r1 max in the axial direction of bearings with nominal width lower than 2 mm shall be the same as the value in radial direction.
- 2. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

thrust	groove side) and cylindrical roller bearings (separe thrust collar and loose rib side) Unit : m				
$r_{1 \min}$	Nominal b nominal or d of		r1 max		
	over	up to	Radial direction	Axial direction	
0.2	-	-	0.5	0.5	
0.3	-	40	0.6	0.8	
0.0	40	-	0.8	0.8	
0.5	-	40	1	1.5	
	40	-	1.3	1.5	
0.6	-	40	1	1.5	
	40	-	1.3	1.5	
1	-	50	1.5	2.2	
	50	-	1.9	2.2	
1.1	-	120	2	2.7	
	120	-	2.5	2.7	
1.5	-	120	2.3	3.5	
	120	-	3	3.5	
•	-	80	3	4	
2	80	220	3.5	4	
	220	-	3.8	4	
2.1	-	280	4	4.5	
	280	-	4.5	4.5	
0.5	-	100	3.8	5	
2.5	100	280	4.5	5	
	280	-	5	5	
3	-	280	5	5.5	
	280	-	5.5	5.5	
4	-	-	6.5	6.5	
5	-	-	8	8	
6	-	-	10	10	

(2) Radial bearings with locating snap ring (snap ring

shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(3) Cylindrical roller bearings (non-rib side) and angular contact ball bearings

(front face side) Unit : mm

$r_{1 \min}$	Nominal bore dia. or nominal outside dia. d or D		$r_{1 \max}$	
	over	up to	Radial direction	Axial direction
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.3	-	40	0.6	1
0.3	40	-	0.8	1
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
1.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	-	3.8	6

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(4) Metric series tapered roller bearing

(5) Thrust bearing

 r_{\min} or $r_{1\min}$

0.05

0.08

	-			Unit : mm	
r _{min} or	Nominal bore dia. or nominal outside dia. ¹⁾ d or D , mm		r_{\max} or $r_{1\max}$		
$r_{1 \min}$	over	up to	Radial direction	Axial direction	
0.3	-	40	0.7	1.4	
0.5	40	-	0.9	1.6	
0.6	-	40	1.1	1.7	
0.0	40	-	1.3	2	
1	-	50	1.6	2.5	
1	50	-	1.9	3	
	-	120	2.3	3	
1.5	120	250	2.8	3.5	
	250	-	3.5	4	
	-	120	2.8	4	
2	120	250	3.5	4.5	
	250	-	4	5	
	-	120	3.5	5	
2.5	120	250	4	5.5	
	250	-	4.5	6	
	-	120	4	5.5	
3	120	250	4.5	6.5	
3	250	400	5	7	
	400	-	5.5	7.5	
	-	120	5	7	
4	120	250	5.5	7.5	
4	250	400	6	8	
	400	-	6.5	8.5	
5	-	180	6.5	8	
5	180	-	7.5	9	
6	-	180	7.5	10	
U	180	-	9	11	
7.5	-	-	12.5	17	
9.5	-	-	15	19	

[Note] 1) Inner ring shall be included in division d, and outer ring, in division D.

[Remarks]

1. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts the inner ring back face and bore, or the outer ring back face and outside surface.

2. Values in Italics are provided in JTEKT standards.

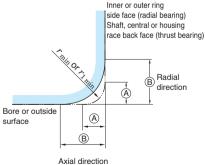
Or <i>r</i> 1	

$(\underline{A}): r_{\min} \text{ or } r_{1\min}$	
$(\mathbb{B}: r_{\max} \text{ or } r_{1 \max})$	/

0.1	0.2
0.15	0.3
0.2	0.5
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8
6	10
7.5	12.5
9.5	15
12	18
15	21
19	25
[Remark] There shall be no	specification for the accur

Kovo

Unit : mm

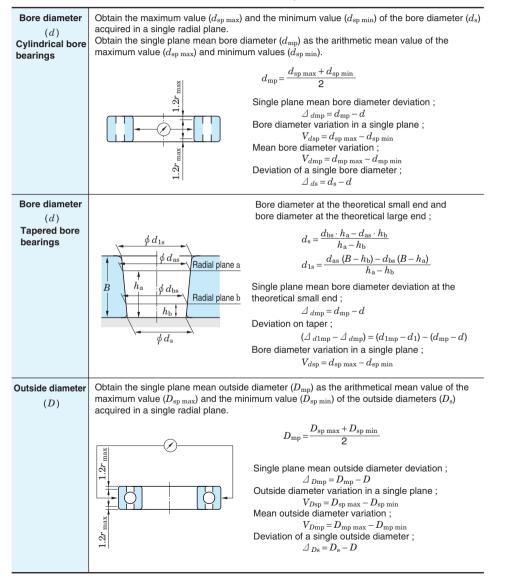

 r_{\max} or $r_{1\max}$

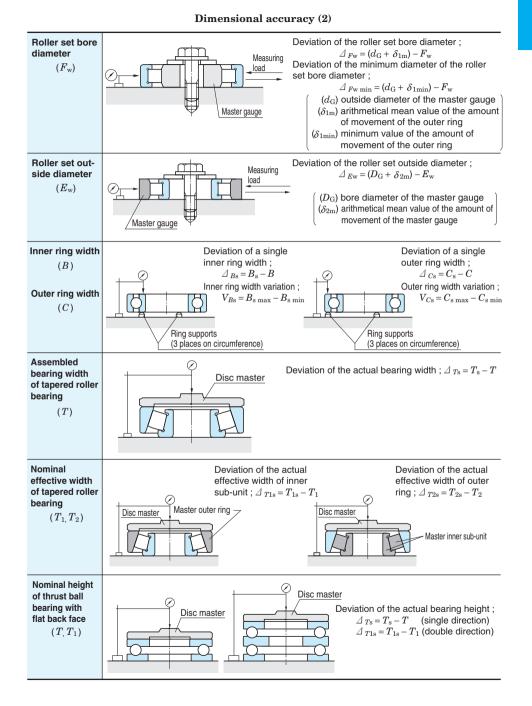
Radial and axial direction

0.1

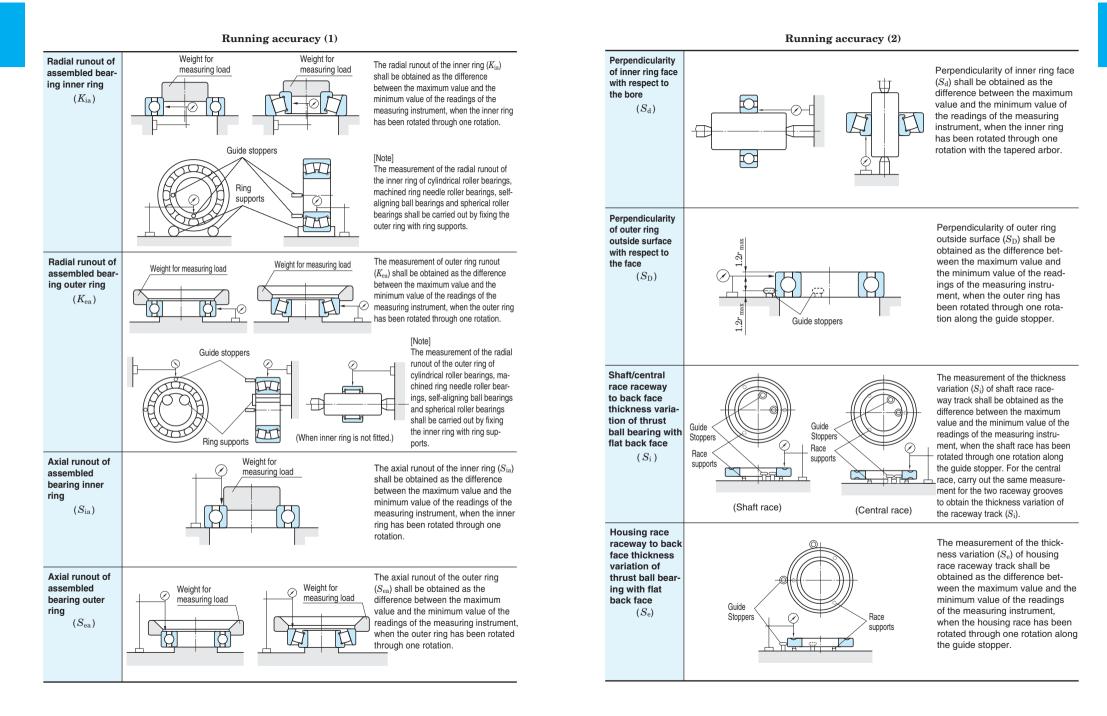
0.16

curacy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts with the shaft or central race back face and bore, or the housing race back face and outside surface.





7-2 Tolerance measuring method (reference)


The details on measuring methods for bearings are prescribed in JIS B 1515. This section outlines measuring methods for dimensional and running accuracy.

Dimensional accuracy (1)

Kovo

A 76

8. Limiting speed

The rotational speed of a bearing is normally affected by friction heat generated in the bearing. If the heat exceeds a certain amount, seizure or other failures occur. thus causing rotation to be discontinued.

The limiting speed is the highest speed at which a bearing can continuously operate without generating such critical heat.

The limiting speed differs depending on various factors including bearing type, dimensions and their accuracy, lubrication, lubricant type and amount, shapes of cages and materials and load conditions, etc.

The limiting speed determined under grease lubrication and oil lubrication (oil bath) for each bearing type are listed in the bearing specification table.

These speeds are applied when bearings of standard design are rotated under normal load conditions (approximately, $C/P \ge 13$, $F_{\rm o}/F_{\rm r} \leq 0.25$).

0.9 0.8

0.6

 f_1 0.7

Each lubricant has superior performance in use, according to type.

Some are not suitable for high speed ; when bearing rotational speed exceeds 80 % of catalog specification, consult with JTEKT.

8-1 Correction of limiting speed

When the load condition is C/P < 13, i.e. the dynamic equivalent load P exceeds approximately 8 % of basic dynamic load rating C, or when a combined load in which the axial load is greater than 25 % of radial load is applied, the limiting speed should be corrected by using equation (8-1):

 $n_{\rm a} = f_1 \cdot f_2 \cdot n \quad (8-1)$

where :

- $n_{\rm a}$: corrected limiting speed min⁻¹ f_1 : correction coefficient determined
- from the load magnitude (Fig. 8-1) f_2 : correction coefficient determined
- from combined load (Fig. 8-2) n: limiting speed under normal load
 - condition min^{-1} (values in the bearing specification table)

Ν

- C: basic dynamic load rating
- P: dynamic equivalent load Ν
- F_r : radial load Ν Ν
- F_{a} : axial load

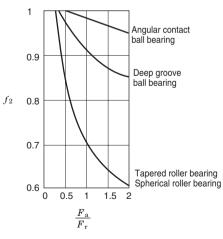


Fig. 8-1 Values of correction coefficient f_1 of load magnitude

0.54 5 6 7 8 9 10 11 12 13 14 15

 $\frac{C}{P}$

Fig. 8-2 Values of correction coefficient f_2 of combined load

8-2 Limiting speed for sealed ball bearings

The limiting speed of ball bearings with a contact seal (RS. RK type) are determined by the rubbing speed at which the seal contacts the inner ring. These allowable rubbing speeds differ depending on seal rubber materials: and. for ball bearings with the Kovo standard contact type seal (NBR), a rubbing speed of 15 m/s is utilized.

8-3 **Considerations for high speed**

When bearings are used for high speed, especially when the rotation speed approaches the limiting speed or exceeds it, the following should be considered :

(for further information on high speed, consult with JTEKT)

- (1) Use of high precision bearings
- (2) Study of proper internal clearance Reduction in internal clearance caused by temperature increase should be considered.
- (3) Selection of proper cage type and materials

For high speed, copper alloy or phenolic resin machined cages are suitable. Synthetic resin molded cages for high speed are also available.

(4) Selection of proper lubrication Suitable lubrication for high speed should be selected jet lubrication, oil mist lubrication and oil air lubrication. etc.

8-4 Frictional coefficient (reference)

The frictional moment of rolling bearings can be easily compared with that of plain bearings. The frictional moment of rolling bearings can be obtained from their bore diameter, using the following equation :

$M = \mu P \frac{d}{2}$	

$N \cdot m$
Ν
mm

The friction coefficient is greatly dependent on bearing type, bearing load, rotation speed and lubrication, etc.

Reference values for the friction coefficient during stable operation under normal operating conditions are listed in Table 8-1.

For plain bearings, the value is normally 0.01 to 0.02 : but, for certain cases, it is 0.1 to 0.2.

Table 8-1 Friction coefficient μ

Bearing type	Friction coefficient μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Self-aligning ball bearing	0.000 8 - 0.001 2
Cylindrical roller bearing	0.000 8 - 0.001 2
Full complement type needle roller bearing	0.002 5 - 0.003 5
Needle roller and cage assembly	0.002 0 - 0.003 0
Tapered roller bearing	0.001 7 – 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5
Thrust ball bearing	0.001 0 - 0.001 5
Spherical thrust roller bearing	0.002 0 - 0.002 5

9. Bearing fits

The purpose of fit is to securely fix the inner or outer ring to the shaft or housing, to preclude detrimental circumferential sliding on the fitting surface.

Such detrimental sliding (referred to as "creep") will cause abnormal heat generation. wear of the fitting surface, infiltration of abrasion metal particles into the bearing, vibration, and many other harmful effects, which cause a deterioration of bearing functions.

Therefore, it is necessary to fix the bearing ring which is rotating under load to the shaft or housing with interference.

9-2 Tolerance and fit for shaft & housing

For metric series bearings, tolerances for the shaft diameter and housing bore diameter are standardized in JIS B 0401-1 and 0401-2 "ISO system of limits and fits - Part 1 and Part 2" (based on ISO 286; shown in Appendixes at the back of this catalogue). Bearing fits on the shaft and housing are determined based on the tolerances specified in the above standard.

Fig. 9-1 shows the relationship between tolerances for shaft and housing bore diameters and fits for bearings of class 0 tolerance.

9-3 Fit selection

In selecting the proper fit, careful consideration should be given to bearing operating conditions. Major specific considerations are :

- Load characteristics and magnitude Temperature distribution in operating
- Bearing internal clearance
- Surface finish, material and thickness of
- shaft and housing
- Mounting and dismounting methods
- Necessity to compensate for shaft thermal expansion at the fitting surface
- Bearing type and size

In view of these considerations, the following paragraphs explain the details of the important factors in fit selection.

Kovo

1) Load characteristics

Load characteristics are classified into three types : rotating inner ring load; rotating outer ring load and indeterminate direction load. Table 9-1 tabulates the relationship between these characteristics and fit.

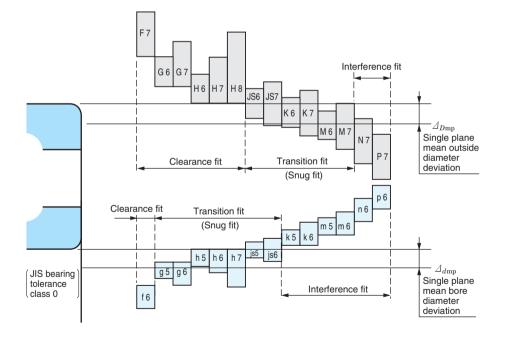


Fig. 9-1 Relationship between tolerances for shaft/housing bore diameters and fits (bearings of class 0 tolerance)

Table 9-1 Load characteristics and fit	Table 9-1	Load	characteristics	and	fits
--	-----------	------	-----------------	-----	------

Rotation pattern	Direction of load	ection of load Loading conditions		Fit	
notation pattern	Direction of load	Loading conditions	Inner ring & shaft	Outer ring & housing	Typical application
Inner ring : rotating Outer ring : stationary	Stationary	Rotating inner ring load	Interference fit necessary	Clearance fit acceptable	Spur gear boxes, motors
Inner ring : stationary Outer ring : rotating	Rotating with outer ring	Stationary outer ring load	(k, m, n, p, r)	(F, G, H, JS)	Greatly unbal- anced wheels
Inner ring : stationary Outer ring : rotating	Stationary	Stationary inner ring load	Clearance fit acceptable	Interference fit necessary	Running wheels & pulleys with stationary shaft
Inner ring : rotating Outer ring : stationary	Rotating (with inner ring)	Rotating outer ring load	(f, g, h, js)	(K, M, N, P)	Shaker screens (unbalanced vibration)
Indeterminate	Rotating or stationary	Indeterminate direction load	Interference fit	Interference fit	Cranks

2) Effect of load magnitude

When a radial load is applied, the inner ring will expand slightly. Since this expansion enlarges the circumference of the bore minutely, the initial interference is reduced. The reduction can be calculated by the

following equations :

[In the case of
$$F_r \le 0.25 C_0$$
]
 $\varDelta_{dF} = 0.08 \sqrt{\frac{d}{B} \cdot F_r} \times 10^{-3} \dots (9-1)$
[In the case of $F_r > 0.25 C_0$]
 $\varDelta_{dF} = 0.02 \frac{F_r}{B} \times 10^{-3} \dots (9-2)$

where:

- Δ_{dF} : reduction of inner ring interference mm
- d: nominal bore diameter of bearing mm $\mathbf{m}\mathbf{m}$
- B : nominal inner ring width
- F_r : radial load
- C_0 : basic static load rating

Consequently, when the radial load, exceeds the C_0 value by more than 25 %, greater interference is needed.

Much greater interference is needed, when impact loads are expected.

3) Effect of fitting surface roughness

The effective interference obtained after fitting differs from calculated interference due to plastic deformation of the ring fitting surface. When the inner ring is fitted, the effective interference, subject to the effect of the fitting surface finish, can be approximated by the following equations :

[In the case of a ground shaft]

$\varDelta_{deff} \doteq \frac{d}{d+2}$	- <i>A</i> _d (9-3)
---	---------------------------	------

[In the case of a turned shaft]

 $\Delta_{\text{deff}} \doteq \frac{d}{d+3} \, \Delta_d \, \dots \, (9-4)$

where:

\varDelta_{deff} : effective interference	$\mathbf{m}\mathbf{m}$
Δ_d : calculated interference	$\mathbf{m}\mathbf{m}$
d : nominal bore diameter of bearing	$\rm mm$

4) Effect of temperature

A bearing generally has an operating temperature, higher than the ambient temperature. When the inner ring operates under load, its temperature generally becomes higher than that of the shaft and the effective interference decreases due to the greater thermal expansion of the inner ring.

If the assumed temperature difference between the bearing inside and surrounding housing is Δ_t , the temperature difference at the fitting surfaces of the inner ring and shaft will be approximately (0.10 to 0.15) $\times \Delta_{t}$.

The reduction of interference (Δ_{dt}) due to temperature difference is then expressed as follows :

$\varDelta_{dt} = (0.10 \text{ to } 0.15) \varDelta_t \cdot \alpha \cdot d$

 $= 0.0015 \, \varDelta_{\rm t} \cdot d \times 10^{-3} \, \dots \, (9-5)$

where:

Ν

Ν

\varDelta_{dt} : reduction of interference due to)
temperature difference	mm
$arDelta_{ m t}$: temperature difference between	n
the inside of the bearing and th	е
surrounding housing	$^{\circ}\!\!C$
α : linear expansion coefficient of	
bearing steel ($= 12.5 \times 10^{-6}$)	1/°C
d : nominal bore diameter of bearing	mm
•	

Consequently, when a bearing is higher in temperature than the shaft, greater interference is required.

However, a difference in temperature or in the coefficient of expansion may sometimes increase the interference between outer ring and housing. Therefore, when clearance is provided to accommodate shaft thermal expansion, care should be taken.

5) Maximum stress due to fit

When a bearing is fitted with interference, the bearing ring will expand or contract, generating internal stress.

Should this stress be excessive, the bearing ring may fracture.

The maximum bearing fitting-generated stress is determined by the equation in Table 9-2.

In general, to avoid fracture, it is best to adjust the maximum interference to less than 1/1 000 of the shaft diameter, or the maximum stress (σ), determined by the equation in Table 9-2. should be less than 120 MPa.

6) Other considerations

When a high degree of accuracy is required, the tolerance of the shaft and housing must be improved. Since the housing is generally less easy to machine precisely than the shaft, it is advisable to use a clearance fit on the outer rina.

Kovo

With hollow shafts or thin section housings. greater than normal interference is needed.

With split housings, on the other hand, smaller interference with outer ring is needed. When the housing is made of aluminum or other light metal alloy, relatively greater than normal interference is needed. In such a case, consult with JTEKT.

Table 9-2 Maximum fitting-generated stress in bearings

Shaft & inner ring	Housing bore & outer ring
(In the case of hollow shaft)	(In the case of $D_{\rm h} \neq \infty$)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{deff}}{d} \cdot \frac{\left(1 - \frac{d_0^2}{d^2}\right) \left(1 + \frac{d^2}{D_i^2}\right)}{\left(1 - \frac{d_0^2}{D_i^2}\right)}$	$\sigma = E \cdot \frac{\Delta_{Deff}}{D} \cdot \frac{\left(1 - \frac{D^2}{D_h^2}\right)}{\left(1 - \frac{D_e^2}{D_h^2}\right)}$
(In the case of solid shaft)	(In the case of $D_{\rm h}$ = ∞)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{\text{deff}}}{d} \cdot \left(1 + \frac{d^2}{D_i^2}\right)$	$\sigma = E \cdot rac{\Delta_{Deff}}{D}$
where : σ: maximum stress	MPa $D_{\rm e}$: raceway contact diameter of outer ring mm

d: nominal bore diameter (shaft diameter) D_{i} : raceway contact diameter of inner ring ball bearing $\dots D_i \doteq 0.2 \quad (D+4d)$ roller bearing $\cdots D_i \doteq 0.25 (D + 3 d)$

 Δ_{deff} : effective interference of inner ring

 d_0 : bore diameter of hollow shaft

ball bearing $\dots D_e = 0.2 \quad (4D+d)$ coller bearing $\cdots D_e \doteq 0.25 (3D + d)$ $\mathbf{m}\mathbf{m}$ D: nominal outside diameter $\mathbf{m}\mathbf{m}$ (bore diameter of housing) mm ΔD_{eff} : effective interference of outer ring mm $D_{\rm h}$: outside diameter of housing mm $\mathbf{m}\mathbf{m}$ $2.08 \times 10^5 \text{ MPa}$ E: young's modulus $\mathbf{m}\mathbf{m}$

[Remark] The above equations are applicable when the shaft and housing are steel. When other materials are used. JTEKT should be consulted.

9-4 Recommended fits

As described in Section 9-3, the characteristics / magnitude of the bearing load, temperature, mounting / dismounting methods and other conditions must be considered to choose proper fits. Past experience is also valuable. Table 9-3 shows standard fits for the metric series bearings; Tables 9-4 to 9-8 tabulate the most typical and recommended fits for different bearings types.

Table 9-3 Standard fits for metric series bearings 1)

(1) Fits for bore diameter ²⁾ of radial bearings

Class of bearing	Rotati	Rotating inner ring load or indeterminate direction load Stationary inner									
Class of Dealing				Clas	s of sha	ift tolera	nce rang	je			
Classes 0, 6X, 6	r 6	p 6	n 6	m 6 m 5	k 6 k 5	js 6 js 5	h 5	h 6 h 5	g 6 g 5	f 6	
Class 5	-	-	-	m 5	k 4	js 4	h 4	h 5	-	-	
Fit		Inte	erference	ə fit		Transition fit				Clearance fit	

(2) Fits for outside diameter ²⁾ of radial bearings

Class of bearing	Stat	tionary o	uter ring	load	Indeterminate direction load or rotating outer ring load				
Class of bearing			Cla	ss of hou	ising bore	e tolerand	e range		
Classes 0, 6X, 6	G 7	H 7 H 6	JS 7 JS 6	-	JS 7 JS 6	K 7 K 6	M 7 M 6	N 7 N 6	P 7
Class 5	-	H 5	JS 5	K 5	-	K 5	M 5	-	-
Fit	Cleara	ance fit			Transition fit				Interference fit

(3) Fits for bore diameter ²⁾ of thrust bearings

	Control	wiel lead	Combined load (in the case of spherical thrust roller bearing)					
Class of bearing	Central axial load (generally for thrust bearings)		Rotatin indeter	Stationary shaft race load				
		(Class of shaft t					
Classes 0, 6	js 6	h 6	n 6	m 6	k 6	js 6		
Fit	Trans	ition fit		Transition fit				

(4) Fits for outside diameter ²⁾ of thrust bearings

		Control	avial load	Combined load (in the case of spherical thrust roller bearing)							
Class o	f bearing	Central axial load (generally for thrust bearings)			housing rad	Rotating housing race load					
		Class of housing bore tolerance range									
Class	es 0, 6	-	H 8	G 7	Η 7	JS 7	K 7	M 7			
F	Fit	Clearance fit Transition fit									

[Notes] 1) Bearings specified in JIS B 1512

2) Follow JIS B 1514-1 and 1514-2 for tolerance.

 Table 9-4 (1)
 Recommended shaft fits for radial bearings (classes 0, 6X, 6)

Co	pnditions $^{1)}$			Tapere roller t t dian	bearing ed bearing neter (bearing	, 	Class of shaft tolerance range	Remarks	Applications (for refer- ence)
								ses 0, 6X, 6)	
	Light load or fluctuating load $\left(\frac{P_{\rm r}}{C_{\rm r}} \le 0.06\right)$	- 18 100 -	18 100 200 –	- - 40 140	- 40 140 200			h 5 js 6 k 6 m 6	For applications requir- ing high accuracy, js 5,k 5 and m 5 should be used in place of js 6, k 6 and m 6.	Electric appliances, machine tools, pumps, blowers, carriers etc.
Rotating inner ring load or indeterminate direction load	Normal load $\left(0.06 < \frac{P_r}{C_r} \le 0.12\right)$	- 18 100 140 200 - -	18 100 140 200 280 - -	- 40 100 140 200 -	- 40 100 140 200 400 -	- 40 65 100 140 280	- 40 65 100 140 280 500	js 5 k 5 m 5 n 6 p 6 r 6	For single-row tapered roller bearings and angu- lar contact ball bearings, k 5 and m 5 may be replaced by k 6 and m 6, because internal clear- ance reduction due to fit need not be considered.	Electric motors, turbines, internal combustion engines, wood- working machines etc.
	Heavy load or impact load $\left(\frac{P_r}{C_r} > 0.12\right)$		- - -	50 140 200	140 200 –	50 100 140	100 140 200	n 6 p 6 r 6	Bearings with larger internal clearance than standard are required.	Railway rolling stock axle journals, traction motors
Stationary inner ring load	Inner ring needs to move smoothly on shaft.		All	shaft	diamet	ers		g 6	For applications requir- ing high accuracy, g 5 should be used. For large size bearing, f 6 may be used for easier movement.	Stationary shaft wheels
Static inner	Inner ring does not need to move smoothly on shaft.		All shaft diameters		h 6	For applications requir- ing high accuracy, h 5 should be used.	Tension pulleys, rope sheaves etc.			
Centra	al axial load only				diamet			js 6	-	
	Tapered	bore b	earing	(class	0) (wit	h adapi	ter or w	vithdrawal slee	eve)	_
	All loads		All	shaft	diamet	ers		h 9/IT 5 ²⁾	For transmission shafts, h 10/IT 7 $^{2)}$ may be applied.	

[Notes] 1) Light, normal, and heavy loads refer to those with dynamic equivalent radial loads (P_r) of 6 % or lower, over 6 % up to 12 % inclusive, and over 12 % respectively in relation to the basic dynamic radial load rating (C_r) of the bearing concerned.

2) IT 5 and IT 7 mean that shaft roundness tolerance, cylindricity tolerance, and other errors in terms of shape should be within the tolerance range of IT 5 and IT 7, respectively. For numerical values for standard tolerance grades IT 5 and IT 7, refer to supplementary table at end of this catalog.

[Remark] This table is applicable to solid steel shafts.

Table 9-4 (2) Recommended housing fits for radial bearings (classes 0, 6X, 6)

	Co	onditions					
Housing	Load	d type etc. $^{1)}$	Outer ring axial displacement ²⁾	Class of hous- ing bore toler- ance range	Remarks	Applications (for reference)	
		All load types		Η 7	G 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Ordinary bearing devices, railway rolling stock axle boxes, power transmission equip- ment etc.	
One-piece or split type		Light or normal load	Easily displaceable	H 8	-		
spirt type	Stationary outer ring load	High temperature at shaft and inner ring	at shaft and inner		G 7	F 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Drying cylinders etc.
		Light or normal load, requiring	Not displaceable in principle	K 6	Mainly applied to roller bearings.		
		high running accuracy	Displaceable	JS 6	Mainly applied to ball bearings.		
		Requiring low-noise rotation	Easily displaceable	H 6	-		
		Light or normal load	Normally displaceable	JS 7	For applications requiring high	Electric motors, pumps,	
One-piece	Indeterminate direction load	Normal or heavy load	Not displaceable in principle	K 7	accuracy, JS 6 and K 6 should be used in place of JS 7 and K 7.	crankshaft main bearings etc.	
type		High impact load	Not displaceable	M 7	-	Traction motors etc.	
		Light or fluctuating load		M 7	_	Conveyor rollers, ropeways, tension pulleys etc.	
	Rotating	Normal or heavy load	Not	N 7	Mainly applied to ball bearings.	Wheel hubs with ball bearings etc.	
	outer ring load	Thin section housing, heavy or high impact load	displaceable	Ρ7	Mainly applied to roller bearings.	Wheel hubs with roller bearings, bearings for large end of connecting rods etc.	

[Notes] 1) Loads are classified as stated in Note 1) to Table 9-4 (1).

 Indicating distinction between applications of non-separable bearings permitting and not permitting axial displacement of the outer rings.

[Remarks] 1. This table is applicable to cast iron or steel housings.

If only central axial load is applied to the bearing, select such tolerance range class as to provide clearance in the radial direction for outer ring.

Table 9-5 (1)Recommended shaft fits for precision extra-small/miniature
ball bearings (d < 10 mm)

Unit : µm

Loa	d type	Bearing mea tolerance dian		Single plane mean bore diameter deviation Δ_{dmp}		iameter ional ce	$\mathbf{Fit}^{1)}$	Applications		
			upper	lower	upper	lower				
	Middle/high	ABMA 5P	0	- 5.1	+ 2.5	- 2.5	7.6T – 2.5L	Gyro rotors,		
	speed	JIS class 5	0	- 5	+ 2.5	- 2.5	7.5T – 2.5L	air cleaners,		
	Light or		ABMA 7P	0	- 5.1	+ 2.5 - 2.5	5 – 2.5	7.6T – 2.5L	electric tools,	
Rotating inner	normal load	JIS class 4	0	- 4	+ 2.5	- 2.5	6.5T – 2.5L	encoders		
ring load		ABMA 5P	0	- 5.1	-2.5 -7.5	25 75	2.6T – 7.5L	Gyro gimbals,		
5	Low speed	JIS class 5	0	- 5	-2.5 -7.5		2.5T – 7.5L	synchronizers,		
	Light load	ABMA 7P	0	- 5.1	- 2.5	0.5 7.5	25 75	- 2.5 - 7.5	2.6T – 7.5L	servomotors,
		JIS class 4	0	- 4	-2.5	1.5	1.5T – 7.5L	floppy disc spindles		
:		ABMA 5P	0	- 5.1	- 2.5	- 7.5	2.6T – 7.5L			
Rotating outer	high speed	JIS class 5	0	- 5	-2.5	- 7.5	2.5T – 7.5L	Pinch rolls, tape guide rollers,		
ring load		ABMA 7P	0	- 5.1	-25	-75	2.6T – 7.5L	linear actuators		
0	Ű,	JIS class 4	0	- 4	- 2.5 - 7.5		1.5T – 7.5L			

[Note] 1) Symbols T and L means interference and clearance respectively.

Table 9-5 (2)Recommended housing fits for precision extra-small/miniature
ball bearings ($D \leq 30 \text{ mm}$)

Unit : µm

Loa	d type	Bearing tolerance class	Single p mean ou diamete deviatio	ıtside r	diamet dimens	Housing bore diameter dimensional tolerance		Applications
			upper	lower	upper	lower		
	Middle/high	ABMA 5P ABMA 7P	0	- 5.1	+ 5	0	0 – 10.1L	Gyro rotors,
	speed Light or	JIS class 52)	0 0	- 5 - 6	+ 5	0	0-10 L 0-11 L	air cleaners, electric tools,
Rotating inner	normal load	JIS class 42)	0 0	- 4 - 5	+ 5	0	0-9L 0-10L	encoders
ring load		ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L	Gyro gimbals,
	Low speed	JIS class 52)	0 0	- 5 - 6	+ 2.5	- 2.5	2.5T – 7.5L 2.5T – 8.5L	synchronizers, servomotors,
	3	JIS class 42)	0 0	- 4 -5	+ 2.5	- 2.5	2.5T – 6.5L 2.5T – 7.5L	floppy disc spindles
	Low to	ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L	
Rotating outer ring load	high speed	JIS class 52)	0 0	- 5 - 6	+ 2.5	- 2.5	2.5T – 7.5L 2.5T – 8.5L	Pinch rolls, tape guide rollers
3	Light load	JIS class 42)	0 0	- 4 - 5	+ 2.5	- 2.5	2.5T – 6.5L 2.5T – 7.5L	

[Notes] 1) Symbols T and L means interference and clearance respectively.

2) In the columns "single plane mean outside diameter deviation" and "fit" upper row values are applied in the case of $D \leq 18$ mm, lower row values in the case of $18 < D \leq 30$ mm.

Table 9-6 (1)Recommended shaft fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

L	Nominal bore diameter d mm		Class of shaft tolerance range	Remarks		
		over	up to			
	Normal load	10	120	m 6		
Rotating	Normai load	120	500	n 6		
inner ring	Heavy load Impact load High speed rotation	10	120	n 6		
load		120	180	р6	Generally, bearing internal clearance	
1040		180	250	r 6	should be larger than standard.	
		250	500	r 7		
Rotating	Normal load without impact	80	315	h 6 or g 6		
outer ring	Heavy load	10	120	n 6		
load	,	120	180	p 6	Generally, bearing internal clearance	
IUau	Impact load High speed rotation	180	250	r 6	should be larger than standard.	
	Fight speed folation	250	500	r 7		

Bearing tolerance : class PC, class PB

Load type		Nominal bore diameter d mm		Class of toleranc (bearing tole		Remarks
		over	up to	PC	PB	
	Spindles of precision machine tools	10 315	315 500	k 5 k 5	k 5 –	
Rotating inner ring load	Heavy load Impact load High speed rotation	10 18 50 80 120 180 250 315	18 50 80 120 180 250 315 500	m 6 m 5 n 5 p 4 r 4 r 5 r 5	m 5 m 5 n 4 p 4 r 4 r 4 r 4	Generally, bearing internal clearance should be larger than standard.
Rotating outer ring load	Spindles of precision machine tools	10 315	315 500	k 5 k 5	k 5 _	

Table 9-6 (2)Recommended housing fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

L	Load type		outside r m up to	Class of housing bore diameter tolerance range	Remarks
	Used for free or fixed side	18 315	315 400	G 7 F 6	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction)	18	400	J 7	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction)	18	400	Ρ7	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction)	18 120 180	120 180 400	R 7	Outer ring is fixed in axial direction.

Bearing tolerance : class PC, class PB

Load type		Nominal outside diameter D mm			sing bore erance range erance class)	Remarks		
			up to	PC	PB			
	Used for free side	18	315	G 5	G 5	Outer ring is easily displace-		
	Used for free side	315	500	G 5	-	able in axial direction.		
	l la sel fa a five el siels	18	315	H 5	H 4	Outer ring is displaceable in		
	Used for fixed side	315	500	H 5	-	axial direction.		
		18	120	K 5	K 5			
Rotating	Position of outer ring is adjustable (in axial direction)	120	180	JS 6	JS 6			
inner ring		180	250	JS 6	JS 5			
load		250	315	K 5	JS 5	Outer ring is fixed in		
		315	500	K 5	-			
	Position of					axial direction.		
	outer ring is	18	315	N 5	M 5			
	not adjustable	315	500	N 5	-			
	(in axial direction)							
Rotating	Position of	18	250	N 6	N 5			
outer ring	outer ring is	250	315	N 5	N 5	Outer ring is fixed in		
load	not adjustable	315	500	N 5	_	axial direction.		
loau	(in axial direction)	515	500		_			

Table 9-7 (1)Recommended shaft fits for inch series tapered roller bearingsBearing tolerance : class 4, class 2

Loa	Load type		Nominal bore diameter d mm (1/25.4)			Dimensional tolerance of shaft diameter µm		Remarks
			up to	upper	lower	upper	lower	
		-	76.2 (3.0)	+ 13	0	+ 38	+ 25	
	Normal load	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 64	+ 38	
	Normai load	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 127	+ 76	
Rotating inner ring		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 190	+ 114	
load	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	e such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0		age inter-	internal clearance
	High speed rotation	304.8 (12.0)	609.6 (24.0)	+ 51	0			should be larger
		609.6 (24.0)	914.4 (36.0)	+ 76	0			than standard.
		-	76.2 (3.0)	+ 13	0	+ 13	0	
	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 25	0	
	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	
		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	
		-	76.2 (3.0)	+ 13	0	0	- 13	
Rotating outer ring	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	0	- 25	Inner ring is displaceable in
load	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	0	- 51	axial direction.
		609.6 (24.0)	914.4 (36.0)	+ 76	0	0	- 76	
	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	e such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0	that average inter- internal cleara		internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 51	0			should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+ 76	0			than standard.

Bearing tolerance : class 3, class 0¹⁾

Load type		Nominal bore diameter d mm (1/25.4)		Deviation of a single bore diameter Δd_s , μm		shaft diameter μm		Remarks
		over	up to	upper	lower	upper	lower	
	Spindles of	-	76.2 (3.0)	+ 13	0	+ 30	+ 18	
	precision	76.2 (3.0)	304.8 (12.0)	+ 13	0	+ 30	+ 18	
	machine tools	304.8 (12.0)	609.6 (24.0)	+ 25	0	+ 64	+ 38	
Rotating inner ring		609.6 (24.0)	914.4 (36.0)	+ 38	0	+ 102	+ 64	
load	Heavy load	-	76.2 (3.0)	+ 13	0	Should be such that average inter- ference stands at		Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 13	0			internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 25	0			should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+ 38	0	0.000 5 ×	d (mm)	than standard.
	Spindles of	-	76.2 (3.0)	+ 13	0	+ 30	+ 18	
Rotating outer ring	precision	76.2 (3.0)	304.8 (12.0)	+ 13	0	+ 30	+ 18	
load	machine	304.8 (12.0)	609.6 (24.0)	+ 25	0	+ 64	+ 38	
	tools	609.6 (24.0)	914.4 (36.0)	+ 38	0	+ 102	+ 64	

[Note] 1) Class 0 bearing : $d \leq$ 304.8 mm

Table 9-7 (2)	Recommended housing fits for inch series tapered roller bearings
Bearing tolerance	class 4, class 2

Koyo

Loa	Load type		Nominal outside diameter D mm (1/25.4)			Dimensional tolerance of housing bore diameter µm		Remarks
		over	up to	upper lower		upper	lower	
	Used for free or fixed side.	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 51 + 51 + 51 +102 +152	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjust- able (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 + 25 + 51	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.

Bearing tolerance : class 3, class 0¹⁾

Load type		Nomina diamete 1 mm (1	Deviation of a single outside diameter \varDelta_{Ds} , μm		Dimensional tolerance of housing bore diameter µm		Remarks	
		over up to		upper lower		upper lower		
	Used for free side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 38 + 38 + 64 + 89	+ 25 + 25 + 38 + 51	Outer ring is easily displaceable in axial direction.
_	Used for fixed side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 25 + 25 + 51 + 76	+ 13 + 13 + 25 + 38	Outer ring is displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 13 + 25 + 25 + 38	0 0 0 0	Outor ring is fixed in
	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	0 0 0 0	- 13 - 25 - 25 - 38	 Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	- 13 - 13 - 13 - 13 - 13	- 25 - 38 - 38 - 51	Outer ring is fixed in axial direction.

[Note] 1) Class 0 bearing : $D \leq 304.8 \text{ mm}$

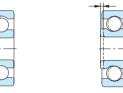
Table 9-8 (1) Recommended shaft fits for thrust bearings (classes 0, 6)

1.00	Load type		neter, mm	Class of shaft tolerance	Remarks
LUa			up to	range	nemarks
Central axial load (generally for thrust bearings)		All shaft diameters		js 6	h 6 may also be used.
Combined load	Stationary shaft race load	All shaft o	diameters	js 6	-
(spherical thrust roller bearing	Rotating shaft race load or indeterminate direction load	_ 200 400	200 400 -	k 6 m 6 n 6	js 6, k 6 and m 6 may be used in place of k 6, m 6 and n 6, respectively.

Table 9-8 (2) Recommended housing fits for thrust bearings (classes 0, 6)

Loa	ad type	Class of housing bore diameter tolerance range	Remarks		
Central axial load (generally for thrust bearings)		_	Select such tolerance range class as provides clearance in the radial direction for housing race.		
(generally for th	ilust bearings)	H 8	In case of thrust ball bearings requiring high accuracy.		
Combined load	Stationary housing race load	H 7	-		
(spherical thrust	Indeterminate direction load or	K 7	In case of application under normal operating conditions.		
roller bearing	rotating housing race load	M 7	In case of comparably large radial load.		

[Remark] This table is applicable to cast iron or steel housings.


10. Bearing internal clearance

Bearing internal clearance is defined as the total distance either inner or outer ring can be moved when the other ring is fixed.

If movement is in the radial direction, it is called radial internal clearance; if in the axial direction, axial internal clearance. (Fig. 10-1)

Bearing performance depends greatly upon internal clearance during operation (also referred to as operating clearance); inappropriate clearance results in short rolling fatigue life and generation of heat, noise or vibration.

Radial internal clearance Axial internal clearance

Fig. 10-1 Bearing internal clearance

In measuring internal clearance, a specified load is generally applied in order to obtain stable measurement values.

Consequently, measured clearance values will be larger than the original clearance by the amount of elastic deformation due to the load applied for measurement.

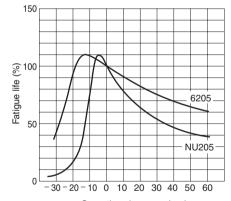
As far as roller bearings are concerned, however, the amount of elastic deformation is negligible.

Clearance prior to mounting is generally defined as the original clearance.

10-1 Selection of internal clearance

Kovo

The term "residual clearance" is defined as the original clearance decreased owing to expansion or contraction of a raceway due to fitting, when the bearing is mounted in the shaft and housing.


The term "effective clearance" is defined as the residual clearance decreased owing to dimensional change arising from temperature differentials within the bearing.

The term "operating clearance" is defined as the internal clearance present while a bearing mounted in a machine is rotating under a certain load, or, the effective clearance increased due to elastic deformation arising from bearing loads.

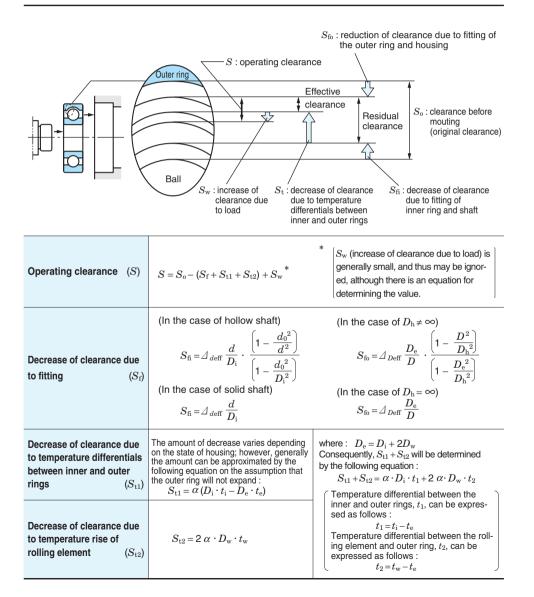
As illustrated in Fig. 10-2, bearing fatigue life is longest when the operating clearance is slightly negative.

However, as the operating clearance becomes more negative, the fatigue life shortens remarkably.

Thus it is recommended that bearing internal clearance be selected such that the operating clearance is slightly positive.

Operating clearance (µm)

Fig. 10-2 Relationship between operating clearance and fatigue life


It is important to take specific operating conditions into consideration and select a clearance suitable for the conditions.

For example, when high rigidity is required, or when the noise must be minimized, the operating clearance must be reduced. On the other hand, when high operating temperature is expected, the operating clearance must be increased.

10-2 Operating clearance

Table 10-1 shows how to determine the operating clearance when the shaft and housing are made of steel. Tables 10-2 to 10-10 show standard values for bearing internal clearance before mounting. Table 10-11 shows examples of clearance selection excluding CN clearance.

Table 10-1 How to determine operating clearance

In Table 10-1,

	_			
S	:	operating clearance	mm	\varDelta_{Deff} : effective interference of outer ring m
${old S}_{ m o}$:	clearance before mounting	mm	$D_{ m h}$: outside diameter of housing $ m m$
$S_{ m f}$:	decrease of clearance due to fitting	mm	$D_{ m e}$: outer ring raceway contact diameter $$ m
$S_{ m fi}$:	expansion of inner ring raceway contact diameter	mm	$ (ball bearing \cdots D_e \doteq 0.2(4 D + d) \\ roller bearing \cdots D_e \doteq 0.25(3 D + d) $
${S}_{ m fo}$:	contraction of outer ring raceway contact diameter	mm	D : nominal outside diameter n
$S_{ m t1}$:	decrease of clearance due to temperature differentials between inner and outer rings	mm	$lpha$: linear expansion coefficient of bearing steel (12.5 $ imes$ 10 $^{-6}$) 1
${m S}_{ m t2}$:	decrease of clearance due to temper- ature rise of the rolling elements	mm	$D_{\rm w}$: average diameter of rolling elements m (ball bearing $D_{\rm w} \doteq 0.3(D-d)$)
$S_{ m w}$:	increase of clearance due to load	mm	roller bearing $\cdots D_{w} \doteq 0.25(D-d)$
Δ_{deff}	:	effective interference of inner ring	mm	t_{i} : temperature rise of the inner ring
d	:	nominal bore diameter (shaft diameter)	mm	$t_{\rm e}$: temperature rise of the outer ring $t_{\rm w}$: temperature rise of rolling elements
d_0	:	bore diameter of hollow shaft	mm	$\iota_{\rm w}$. temperature use of folling elements
$D_{ m i}$:	inner ring raceway contact diameter ball bearing $\cdots D_i = 0.2(D + 4 d)$ roller bearing $\cdots D_i = 0.25(D + 3 d)$)	

Bearings are sometimes used with a non-steel shaft or housing.

In the automotive industry, a statistical method is often incorporated for selection of clearance. In these cases, or when other special operating conditions are involved, JTEKT should be consulted.

Kovo

mm

mm

mm

mm

1/°C

mm

°C

°C

°C

Г. K.		
- K	V A	١٢,
	<u> </u>	· · · /
		-

Unit : µm

 Table 10-2
 Radial internal clearance of deep groove ball bearings (cylindrical bore)

nit	um

Nominal bo	re diameter					Clea	rance				
<i>d</i> , r	nm	С	2	С	Ν	С	3	С	4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5	6	0	7	2	13	8	23	14	29	20	37
6	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460

[Remarks] 1. For measured clearance, the increase of radial internal clearance caused by the measurement load should be added to the values in the above table for correction. Amounts for correction are as shown below. Of the amounts for clearance correction in the C 2 column, the smaller is applied to the minimum clearance, the larger to the maximum clearance.

2. Values in Italics are prescribed in JTEKT standards.

Nominal	bore	Measurement load	Amou	Amounts of clearance correction, μm									
diameter	<i>d</i> , mm		C 2	CN	C 3	C 4	C 5						
over	up to	Ν	02	CN	03	04	0.0						
2.5	18	24.5	3 – 4	4	4	4	4						
18	50	49	4 – 5	5	6	6	6						
50 280		147	6 - 8	8	9	9	9						

Table 10-3 Radial internal clearance of extra-small/miniature ball bearings Unit : µm

Clearance code	М	1	M 2		M 3		M 4		М	5	M 6	
Clearance code	min.	max.										
Clearance	0	5	3	8	5	10	8	13	13	20	20	28

[Remark] For measured clearance, the following amounts should be added for correction.

Measu	rement load, N	Amounts of clearance correction, μr								
Extra-small ball bearing	Miniature ball bearing	M1	M2	M3	M4	M5	M6			
	2.3	1	1	1	1	1	1			

Extra-small ball bearing : 9 mm or larger in outside diameter and under 10 mm in bore diameter Miniature ball bearing : under 9 mm in outside diameter

Table 10-4	Axial internal clearance of matched pair angular contact
	hall bearings (measurement clearance) $^{1)}$

	al bore	C	ontact a	ngle : 1	5°			С	ontact a	ngle : 3	0 °		
diame d, 1	ter mm	С	2	С	N	С	2	С	N	С	3	C 4	
over	up to	min.	max.	min.	max.	min.	max.	min.	min. max.		max.	min.	max.
_	10	13	33	33	53	3	14	10	30	30	50	50	70
10	18	15	35	35	55	3	16	10	30	30	50	50	70
18	24	20	40	45	65	3	20	20	40	40	60	60	80
24	30	20	40	45	65	3	20	20	40	40	60	60	80
30	40	20	40	45	65	3	20	25	45	45	65	70	90
40	50	20	40	50	70	3	20	30	50	50	70	75	95
50	65	30	55	65	90	9	27	35	60	60	85	90	115
65	80	30	55	70	95	10	28	40	65	70	95	110	135
80	100	35	60	85	110	10	30	50	75	80	105	130	155
100	120	40	65	100	125	12	37	65	90	100	125	150	175
120	140	45	75	110	140	15	40	75	105	120	150	180	210
140	160	45	75	125	155	15	40	80	110	130	160	210	240
160	180	50	80	140	170	15	45	95	125	140	170	235	265
180	200	50	80	160	190	20	50	110	140	170	200	275	305

	al bore			С	ontact a	ngle : 4	0 °			
diame <i>d</i> , 1	nm	с	2	с	N	с	3	С	4	
over	up to	min.	min. max.		max.	min.	min. max.		max.	
-	10	2	10	6	18	16	30	26	40	
10	18	2	12	7	21	18	32	28	44	
18	24	2	12	12	26	20	40	30	50	
24	30	2	14	12	26	20	40	40	60	
30	40	2	14	12	26	25	45	45	65	
40	50	2	14	12	30	30	50	50	70	
50	65	5	17	17	35	35	60	60	85	
65	80	6	18	18	40	40	65	70	95	
80	100	6	20	20	45	55	80	85	110	
100	120	6	25	25	50	60	85	100	125	
120	140	7	30	30	60	75	105	125	155	
140	160	7	30	35	65	85	115	140	170	
160	180	7	31	45	75	100	130	155	185	
180	200	7	37	60	90	110	140	170	200	

[Note] 1) Including increase of clearance caused by measurement load.

Table 10-5 Radial internal clearance of double-row angular contact ball bearings

Unit : µm

Nominal bo	re diameter			Clea	rance		
<i>d</i> , 1	nm	C	D2	CI	DN	С	D3
over	up to	min.	max.	min.	max.	min.	max.
2.5	10	0	7	2	10	8	18
10	18	0	7	2	11	9	19
18	24	0	8	2	11	10	21
24	30	0	8	2	13	10	23
30	40	0	9	3	14	11	24
40	50	0	10	4	16	13	27
50	65	0	11	6	20	15	30
65	80	0	12	7	22	18	33
80	100	0	12	8	24	22	38
100	120	0	13	9	25	24	42
120	140	0	15	10	26	25	44
140	160	0	16	11	28	26	46
160	180	0	17	12	30	27	47
180	200	0	18	14	32	28	48

Remark] Regarding deep groove ball earings and matched pair and ouble-row angular contact ball earings, equations of the relaonship between radial internal earance and axial internal earance are shown on page 105.

Table 10-6	Radial interna	l clearance of	f self-aligning	ball bearings
-------------------	----------------	----------------	-----------------	---------------

Unit : µm

Koyo

																				. · μ		
	nina mete	al bore		0	Cylind	rical I	bore l	bearin	ig clea	aranc	е				Таре	red bo	ore be	earing	l cleai	rance		
		nm	С	2	С	Ν	С	3	С	4	С	5	С	2	С	Ν	С	3	С	4	С	5
0\	er	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
	2.5	6	1	8	5	15	10	20	15	25	21	33	-	-	-	-	-	-	-	-	-	-
	6	10	2	9	6	17	12	25	19	33	27	42	-	-	-	-	-	-	-	-	-	-
	10	14	2	10	6	19	13	26	21	35	30	48	-	-	-	-	-	-	-	-	-	-
	14	18	3	12	8	21	15	28	23	37	32	50	-	-	-	-	-	-	-	-	-	-
	18	24	4	14	10	23	17	30	25	39	34	52	7	17	13	26	20	33	28	42	37	55
:	24	30	5	16	11	24	19	35	29	46	40	58	9	20	15	28	23	39	33	50	44	62
;	30	40	6	18	13	29	23	40	34	53	46	66	12	24	19	35	29	46	40	59	52	72
4	10	50	6	19	14	31	25	44	37	57	50	71	14	27	22	39	33	52	45	65	58	79
ļ	50	65	7	21	16	36	30	50	45	69	62	88	18	32	27	47	41	61	56	80	73	99
(65	80	8	24	18	40	35	60	54	83	76	108	23	39	35	57	50	75	69	98	91	123
1	30	100	9	27	22	48	42	70	64	96	89	124	29	47	42	68	62	90	84	116	109	144
1	00	120	10	31	25	56	50	83	75	114	105	145	35	56	50	81	75	108	100	139	130	170
12	20	140	10	38	30	68	60	100	90	135	125	175	40	68	60	98	90	130	120	165	155	205
14	10	160	15	44	35	80	70	120	110	161	150	210	45	74	65	110	100	150	140	191	180	240

Table 10-7 Radial internal clearance of electric motor bearings

1) Deep groove ball bearing Unit : μm

2) Cylindrical roller bearing Unit : µm

,	,	0									
		Clear	Clearance			Clearance					
Nominal bore diameter d, mm					Nominal bore diameter		ngeability	Non-interchangeability			
		СМ		<i>d</i> , 1	d, mm		СТ		CM		
over	up to	min.	max.	over	up to	min.	max.	min.	max.		
10 ¹⁾	18	4	11	24	40	15	35	15	30		
18	30	5	12	40	50	20	40	20	35		
30	50	9	17	50	65	25	45	25	40		
50	80	12	22	65	80	30	50	30	45		
80	120	18	30	80	100	35	60	35	55		
120	160	24	38	100	120	35	65	35	60		
[Note] 1) 10 mm is included.			120	140	40	70	40	65			
[Remark] To adjust for change of clearance due			140	160	50	85	50	80			
t	to measuring	load, use c	orrection	160	180	60	95	60	90		

[Re to measuring load, use correction values shown in Table 10-2.

> [Note] "Interchangeability" means interchangeable only among products (sub-units) of the same manufacturer ; not with others.

105

65

100

65

A 98

180

200

Table 10-8 Radial internal clearance of cylindrical roller bearings and machined ring needle roller bearings

			(2) Tapered bore bearing Unit : µm												
	al bore					N	on-inter	rchang	eable c	learan	се				
diame		C 9	NA ¹⁾	C 1	NA	C 2	C 2 NA C N NA		C 3	NA	C 4	NA	C 5	NA	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
12	14	5	10	-	-	-	-	-	-	-	_	-	-	-	_
14	24	5	10	10	20	20	30	35	45	45	55	55	65	75	85
24	30	5	10	10	25	25	35	40	50	50	60	60	70	80	95
		_													
30	40	5	12	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	15	35	35	50	55	75	75	90	90	110	130	150
65	80	10	20	20	40	40	60	70	90	90	110	110	130	150	170
80	100	10	25	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	25	50	50	80	95	120	120	145	145	170	205	230
		10	20	20	00		00		120	120	110	110	170	200	200
120	140	15	30	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	55	110	110	165	185	240	240	295	295	350	420	475
280	315	30	60	60	120	120	180	205	265	265	325	325	385	470	530
315	355	30	65	65	135	135	200	225	295	295	360	360	430	520	585
055	400	05	75	75	150	150	005	055	000	220	405	405	400	5.05	660
355	400	35	75 95	75	150	150	225	255	330 270	330	405	405	480 540	585	660 725
400 450	450 500	45 50	85 95	85 05	170	170 190	255 285	285 315	370 410	370 410	455 505	455 505	540 600	650 720	735
450	500	50	95	95	190	190	285	315	410	410	505	505	600	/20	815
										1		1		1	

Koyo

[Note] 1) Clearance C 9 NA is applied to tapered bore cylindrical roller bearings of JIS tolerance classes 5 and 4.

Table 10-9 Radial internal clearance of spherical roller bearings

				(1) C	lindrica	l bore b	earing				Unit : µm
Nomin diamet	al bore					Clea	rance				
	mm	С	C 2		N	C	3	C	; 4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	10	20	20	35	35	45	45	60	60	75
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1 100
630	710	190	350	350	530	530	700	700	920	920	1 190
710	800	210	390	390	580	580	770	770	1 010	1 010	1 300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570

			(2) Tapered bore bearing Unit : µm									
	al bore					Clea	rance					
diameter d, mm		C 2		С	N	C	3	С	4	С	5	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	
			-				-					
18	24	15	25	25	35	35	45	45	60	60	75	
24	30	20	30	30	40	40	55	55	75	75	95	
30	40	25	35	35	50	50	65	65	85	85	105	
40	50	30	45	45	60	60	80	80	100	100	130	
50	65	40	55	55	75	75	95	95	120	120	160	
65	80	50	70	70	95	95	120	120	150	150	200	
80	100	55	80	80	110	110	140	140	180	180	230	
100	120	65	100	100	135	135	170	170	220	220	280	
120	140	80	120	120	160	160	200	200	260	260	330	
140	160	90	130	130	180	180	230	230	300	300	380	
160	180	100	140	140	200	200	260	260	340	340	430	
180	200	110	160	160	220	220	290	290	370	370	470	
200	225	120	180	180	250	250	320	320	410	410	520	
225	250	140	200	200	270	270	350	350	450	450	570	
250	280	150	220	220	300	300	390	390	490	490	620	
280	315	170	240	240	330	330	430	430	540	540	680	
315	355	190	270	270	360	360	470	470	590	590	740	
355	400	210	300	300	400	400	520	520	650	650	820	
400	450	230	330	330	440	440	570	570	720	720	910	
450	500	260	370	370	490	490	630	630	790	790	1 000	
500	560	290	410	410	540	540	680	680	870	870	1 100	
560	630	320	460	460	600	600	760	760	980	980	1 230	
630	710	350	510	510	670	670	850	850	1 090	1 090	1 360	
710	800	390	570	570	750	750	960	960	1 220	1 220	1 500	
800	900	440	640	640	840	840	1 070	1 070	1 370	1 370	1 690	
900	1 000	490	710	710	930	930	1 190	1 190	1 520	1 520	1 860	

. Koyo

 Table 10-10
 Radial internal clearance of double/four-row and matched pair tapered roller bearings (cylindrical bore)

Unit : µm

Nominal bore diameter						Clear	rance				
diamet d, r		С	1	С	2	С	Ν	С	3	C	4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	0	10	10	20	20	30	30	40	40	50
18	24	0	10	10	20	20	30	30	40	40	55
24	30	0	10	10	20	20	30	30	45	45	60
30	40	0	12	12	25	25	40	40	55	55	75
40	50	0	15	15	30	30	45	45	60	60	80
50	65	0	15	15	30	30	50	50	70	70	90
65	80	0	20	20	40	40	60	60	80	80	110
80	100	0	20	20	45	45	70	70	100	100	130
100	120	0	25	25	50	50	80	80	110	110	150
120	140	0	30	30	60	60	90	90	120	120	170
140	160	0	30	30	65	65	100	100	140	140	190
160	180	0	35	35	70	70	110	110	150	150	210
180	200	0	40	40	80	80	120	120	170	170	230
200	225	0	40	40	90	90	140	140	190	190	260
225	250	0	50	50	100	100	150	150	210	210	290
250	280	0	50	50	110	110	170	170	230	230	320
280	315	0	60	60	120	120	180	180	250	250	350
315	355	0	70	70	140	140	210	210	280	280	390
355	400	0	70	70	150	150	230	230	310	310	440
400	450	0	80	80	170	170	260	260	350	350	490
450	500	0	90	90	190	190	290	290	390	390	540
500	560	0	100	100	210	210	320	320	430	430	590
560	630	0	110	110	230	230	350	350	480	480	660
630	710	0	130	130	260	260	400	400	540	540	740
710	800	0	140	140	290	290	450	450	610	610	830
800	900	0	160	160	330	330	500	500	670	670	920

Table 10-11 Examples of non-standard clearance selection

Service conditions	Applications	Examples of clearance selection
In the case of heavy/impact load,	Railway rolling stock axle jour-	C 3
large interference	nals	03
In the case of vibration/impact load,	Shaker screens,	C 3, C 4
interference fit both for inner/outer rings	railway rolling stock traction motors,	C 4
Interference in both for inner/outer rings	tractor final reduction gears	C 4
When shaft deflection is large	Automobile rear wheels	C 5
When shaft and inner ring are bested	Dryers of paper making machines,	C 3, C 4
When shaft and inner ring are heated	table rollers of rolling mills	C 3
When clearance fit both for inner/outer rings	Roll necks of rolling mills	C 2
When noise/vibration during rotation is	Micro-motors	C 1, C 2, CM
to be lowered		
When clearance after mounting is to be adjusted in order to reduce shaft runout	Lathe spindles	C 9 NA, C 1 NA

[Reference] Relationship between radial internal clearance and axial internal clearance

[Deep groove ball bearing]	$\Delta_{\rm a} = \sqrt{\Delta_{\rm r} (4m_{\rm o} - \Delta_{\rm r})}$ (10-1)
[Double-row angular contact ball bearing]	$\Delta_{\rm a} = 2\sqrt{m_{\rm o}^2 - (m_{\rm o} \cos \alpha - \frac{\Delta_{\rm r}}{2})^2} - 2m_{\rm o} \sin \alpha $ (10-2)
[Matched pair angular contact ball bearing]	$\Delta_{\rm a} = 2m_{\rm o} \sin \alpha - 2\sqrt{m_{\rm o}^2 - (m_{\rm o} \cos \alpha + \frac{\Delta_{\rm r}}{2})^2} \dots $
[Double/four-row and matched pair tapered roller bearing]	$\Delta_{\rm a} = \Delta_{\rm r} \cot \alpha = \frac{1.5}{e} \Delta_{\rm r} \cdots $

A 105

where :

Δ_{a} : axial internal clearance mm							
\varDelta_{r} : radial internal clearance mm							
$m_{\rm o} = r_{\rm e} + r_{\rm i} - D_{\rm w}$							
$(r_{ m e})$: outer ring raceway groove radius mr							
$r_{ m e}$: outer ring raceway groove radius mm $r_{ m i}$: inner ring raceway groove radius mm							
$D_{ m w}$: ball diameter	mm						

 α : nominal contact angle

e: limit value of F_a/F_r

(shown in the bearing specification table.)

Koyo

11. Preload

Generally, bearings are operated with a certain amount of proper clearance allowed. For some applications, however, bearings are mounted with axial load of such magnitude that the clearance will be negative.

The axial load, referred to as "preload," is often applied to angular contact ball bearings and tapered roller bearings.

11-1 Purpose of preload

- To improve running accuracy by reducing runout of shaft, as well as to heighten position accuracy in radial and axial directions.
 (Bearings for machine tool spindles and measuring instruments)
- To improve gear engagement accuracy by increasing bearing rigidity.
- (Bearings for automobile final reduction gears)
 To reduce smearing by eliminating sliding in irregular rotation, self-rotation, and aroundthe-raceway revolution of rolling elements.
 (For high rotation-speed angular contact ball bearings)
- To minimize abnormal noise due to vibration or resonance.
- (For small electric motor bearings)
 To keep rolling elements in the right position relative to the raceway.
- (For thrust ball bearings and spherical thrust roller bearings used on horizontal shafts)

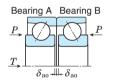
11-2 Method of preloading

The preload can be done either by the position preloading or the constant pressure preloading; typical examples are given in Table 11-1.

Comparison between position and constant pressure preloadings

- With the same amount of preloading, the position preloading produces smaller displacement in the axial direction, and thus is liable to bring about higher rigidity.
- The constant pressure preloading produces stable preloading, or little fluctuation in the amount of preload, since the spring can absorb the load fluctuation and shaft expansion/contraction caused by temperature difference between the shaft and housing during operation.
- The position preloading can apply a larger preload.

Consequently, the position preloading is more suitable for applications requiring high rigidity, while the constant pressure preloading is more suitable for high rotational speed, vibration prevention in the axial direction, and thrust bearings used on horizontal shafts.


11-3 Preload and rigidity

For angular contact ball bearings and tapered roller bearings, the "back-to-back" arrangement is generally used to apply preload for higher rigidity.

This is because shaft rigidity is improved by the longer distance between load centers in the back-to-back arrangement.

Fig. 11-1 shows the relationship between preload given via position preloading and rigidity expressed by displacement in the axial direction of the back-to-back bearing.

- P : amount of preload (load)
- T : axial load from outside
- $T_{\rm A}$: axial load applied to Bearing A
- $T_{\rm B}$: axial load applied to Bearing B
- $\delta_{\mathrm{a}}\,$: displacement of matched pair bearing
- $\delta_{\mathrm{aA}}\,$: displacement of Bearing A
- δ_{aB} : displacement of Bearing B
- 2 $\delta_{\rm ao}$: clearance between inner rings before preloading

Displacement curve

 $\delta_{\rm a}$

Axial load

Displacement curve

of bearing B

in position preloading

of bearing A

ν

(T)

Fig. 11-1 Preloading diagram

Displacement in axial direction

Ρ

 δ_{aB}

 δ_{aA}

 δ_{a0}

 $T_{\rm A}$

T

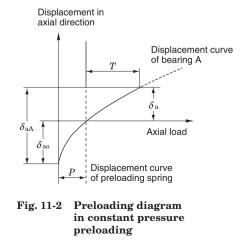
In Fig. 11-1, when preload *P* is applied (inner ring is tightened toward the axial direction), bearings A and B are displaced by δ_{ao} respectively, and the clearance between inner rings diminishes from $2\delta_{ao}$ to zero.

Kovo

The displacement when axial load T is applied to these matched pair bearings from the outside can be determined as $\delta_{\rm a}$.

[For reference]

How to determine δ_a in Fig. 11-1


①Determine the displacement curve of bearing A.

- ②Determine the displacement curve of bearing B. ...Symmetrical curve in relation to horizontal axis intersecting vertical line of preload P at point x.
- (3)With the load from outside defined as T, determine line segment x - y on the horizontal line passing through point x. Displace segment x - y in parallel along the displacement curve of bearing B. Determine point y' at which to intersect displacement curve of bearing A.

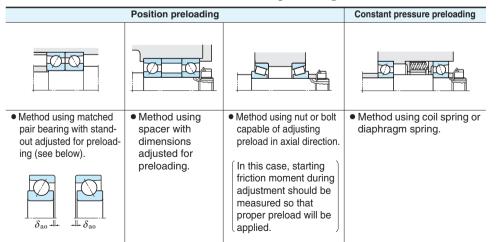

(4) δ_a can be determined as the distance between line segments x' - y' and x - y.

Fig. 11-2 shows the relationship between preload and rigidity in the constant pressure preloading using the same matched pair bearings as in Fig. 11-1.

In this case, since the spring rigidity can be ignored, the matched pair bearing shows almost the same rigidity as a separate bearing with preload P applied in advance.

Table 11-1 Method of preloading

11. Preload

The amount of preload should be determined. to avoid an adverse effect on bearing life, temperature rise, friction torque, or other performance characteristic. in view of the bearing application.

Decrease of preload due to wear-in, accuracy of the shaft and housing, mounting conditions. and lubrication should also be fully considered in determining preload.

11-4-1 Preload amount of matched pair angular contact ball bearings

Table 11-2 shows recommended preload for matched pair angular contact ball bearings of JIS class 5 or higher used for machine tool spindles or other higher precision applications.

JTEKT offers four types of standard preload: slight preload (S), light preload (L), medium preload (M), and heavy preload (H), so that preload can be selected properly and easily for various applications.

Generally, light or medium preload is recommended for grinder spindles, and medium or heavy preload for spindles of lathes and milling machines.

Table 11-3 shows recommended fits of highprecision matched pair angular contact ball bearings used with light or medium preload applied.

Table 11-3 Recommended fits for high-precision matched pair angular contact ball bearings with preload applied

(1) Dimensional tolerance of shaft Unit : um (2) Dimensional tolerance of housing bore Unit : µm

Kovo

Shaft diameter mm		Inner ring	Outer ring rotation		
		Tolerance of shaft diameter	Interference between shaft and inner ring (matching	Tolerance of shaft diameter	
over	up to		adjustment		
6	10	- 2 - 6	0 – 2	- 0 - 4	
10	18	- 2 - 7	0 – 2	- 0 - 5	
18	30	- 2 - 8	0 – 2.5	- 6	
30	50	- 2 - 9	0 – 2.5	- 7	
50	80	- 2 - 10	0 – 3	- 8	
80	120	- 2 - 12	0 - 4	0 - 10	
120	180	- 2 -14	0 – 5	0 - 12	

	Housing bore diameter		Inn	er ring rotat	ion	Outer ring rotation	
			Tolerance of housing bo	-	Clearance ¹⁾ between	Tolerance of housing	
		m	Fixed-side	Free-side	housing and outer	bore diameter	
	over	up to	bearing	bearing	ring		
	18	30	± 4.5	+ 9 0	2-6	- 6 - 12	
	30	50	± 5.5	+ 11 0	2-6	- 6 -13	
	50	80	± 6.5	+ 13 0	3 - 8	- 8 - 16	
	80	120	± 7.5	+ 15 0	3-9	- 9 -19	
	120	180	± 9	+ 18 0	4 – 12	- 11 - 23	
	180	250	± 10	+ 20 0	5 – 15	- 13 - 27	
	250	315	± 11.5	+ 23 0	6 – 18	- 16 - 32	

[Note] 1) Matching adjustment means to measure of bore diameter the bearing and match it to the measured shaft diameter

[Note] 1) Lower value is desirable for fixed side: higher value for free side

Table 11-2 Standard preload of high-precision matched pair angular contact ball bearings

[S : slight preload, L : light preload, M : medium preload, H : heavy preload] Unit : N Bore 7900 C 7000 C 7200 C ACT 000 ACT 000 B Bore diameter diameter S М L М н s Т М н L М н s М н Μ L М No. L No. _ _ _ _ 1 270 1 570 1 080 1 770 1 080 1 180 540 1 180 2 0 6 0 1 180 1 0 3 0 1 370 635 1 370 2 450 735 1 470 685 1 270 1 570 785 1 470 2 940 1 670 1 420 1 770 1 520 1 0 9 0 835 1 670 3 3 3 0 1 860 490 1 080 2 060 1 0 30 2 0 10 1 270 1 860 3 720 2 060 1 1 3 0 1 180 2 1 5 0 1 370 2 1 5 0 3 920 1 180 2 350 1 1 3 0 1080 2110 635 1 370 2 3 5 0 1 470 1 080 2 450 4 310 685 1 370 2 750 1 370 1 270 2 500 735 1 570 2 550 1 770 1 270 2 940 4 900 785 1 570 2 940 1 420 1 320 2 600 785 1 670 2 840 1 960 1 470 3 2 3 0 5 390 785 1770 3 4 3 0 1 860 1 770 3 380 880 1770 3 1 4 0 1 080 2 060 1 670 3 4 3 0 5 880 1 960 3 920 1 960 1 860 3 530 540 1 180 2 150 1 910 3 680 880 1 960 3 530 1 860 3 920 6 370 2 150 4 4 1 0 1 030 2 010 7 060 2 150 3 920 1 270 2 350 2 060 4 310 1 080 2 350 4 900 1 180 2 250 2 150 3 770 1 080 2 380 4 4 1 0 1 470 2 550 4 900 7 840 1 180 2 4 5 0 5 290 1 320 2 600 2 450 4 760 2 250 1 180 2 650 4 900 685 1 670 2 840 2 450 5 390 8 820 1 270 2 840 5 490 1 420 2 800 2 550 5 100 1 180 1 370 3 140 5 390 1 770 3 1 4 0 2 750 5 880 9 3 1 0 1 470 3 140 5 880 1 770 3 380 3 2 3 0 6 2 3 0 1 270 1 470 3 430 5 880 785 1 960 3 920 2 940 6 370 9 800 1 570 3 430 6 370 2 010 3 920 3 720 7 210 735 1 470 1 770 3 920 6 860 835 2150 4410 3 330 6 860 10 300 1 770 3 720 6 860 2 500 4 850 4 660 8 920 1 570 2 150 4 410 7 840 880 2 350 4 900 3 630 7 350 10 800 1 960 4 120 7 840 2 500 4 850 4 660 8 920 880 1 810 2 450 4 900 8 820 980 2 450 5 390 3 920 7 840 11 800 645 2 150 4 410 8 330 3 090 6 030 5 730 11 100

A 108

11-4-2 Amount of preload for thrust ball bearings

When a thrust ball bearing is rotated at high speed, balls slide on raceway due to centrifugal force and the gvro moment, which often causes the raceway to suffer from smearing or other defects.

11. Preload

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load determined by the following equation.

When an axial load from the outside is lower than 0.001 3 C_{0a} , there is no adverse effect on the bearing, as long as lubrication is satisfactory.

Generally, deep groove and angular contact ball bearings are recommended for applications when a portion of rotation under axial load is present at high speed.

11-4-3 Amount of preload for spherical thrust roller bearings

Spherical thrust roller bearings sometimes suffer from scuffing, smearing, or other defects due to sliding which occurs between the roller and raceway surface in operation.

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load.

Of the two values determined by the two equations below, the higher should be defined as the minimum necessary axial load.

• Spherical thrust roller bearing (the higher value determined by the two equations should be taken.)

 $F_{a\min} = \frac{C_{0a}}{2\ 000}$ (11-2)

where :

$F_{ m a\ min}$: minimum necessary axial load	Ν
n : rotational speed	\min^{-1}
$C_{0\mathrm{a}}$: static axial load rating	Ν
$F_{ m r}$: radial load	Ν

12. Bearing lubrication

12-1 Purpose and method of lubrication

Lubrication is one of the most important factors determining bearing performance. The suitability of the lubricant and lubrication method have a dominant influence on bearing life.

Functions of lubrication :

- To lubricate each part of the bearing, and to reduce friction and wear
- To carry away heat generated inside bearing due to friction and other causes
- To cover rolling contact surface with the proper oil film in order to prolong bearing fatique life
- To prevent corrosion and contamination by dirt

Bearing lubrication is classified broadly into two categories: grease lubrication and oil lubrication. Table 12-1 makes a general comparison between the two.

Table 12-1 Comparison between grease and oil lubrication

ltem	Grease	Oil
· Sealing device	Easy	Slightly complicated and special care required for mainte- nance
 Lubricating ability 	Good	Excellent
 Rotation speed 	Low/medium speed	Applicable at high speed as well
 Replacement of lubricant 	Slightly troublesome	Easy
 Life of lubricant 	Relatively short	Long
· Cooling effect	No cooling effect	Good (circulation is necessary)
 Filtration of dirt 	Difficult	Easy

12-1-1 Grease lubrication

Grease lubrication is widely applied since there is no need for replenishment over a long period once grease is filled, and a relatively simple structure can suffice for the lubricant sealing device.

There are two methods of grease lubrication. One is the closed lubrication method, in which grease is filled in advance into shielded/sealed bearing; the other is the feeding method, in which the bearing and housing are filled with grease in proper quantities at first, and refilled at a regular interval via replenishment or replacement.

Devices with numerous grease inlets sometimes employ the centralized lubricating method, in which the inlets are connected via piping and supplied with grease collectively.

Kovo

1) Amount of grease

In general, grease should fill approximately one-third to one-half the inside space, though this varies according to structure and inside space of housing.

It must be borne in mind that excessive grease will generate heat when churned, and will consequently alter, deteriorate, or soften.

When the bearing is operated at low speed. however, the inside space is sometimes filled with grease to two-thirds to full, in order to preclude infiltration of contaminants.

2) Replenishment/replacement of grease

The method of replenishing/replacing grease depends largely on the lubrication method. Whichever method may be utilized, care should be taken to use clean grease and to keep dirt or other foreign matter out of the housing.

In addition, it is desirable to refill with grease of the same brand as that filled at the start.

When grease is refilled, new grease must be injected inside bearing.

Fig. 12-1 gives one example of a feeding method.

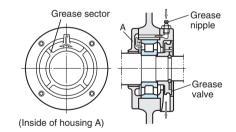


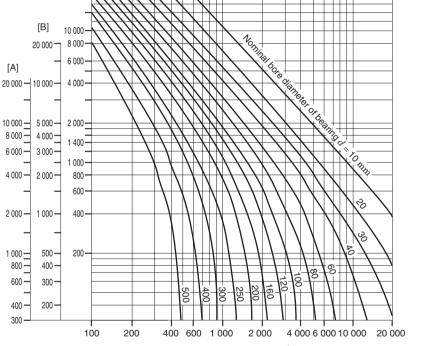
Fig. 12-1 Example of grease feeding method (using grease sector)

In the example, the inside of the housing is divided by grease sectors. Grease fills one sector, then flows into the bearing.

On the other hand, grease flowing back from the inside is forced out of the bearing by the centrifugal force of the grease valve.

When the grease valve is not used, it is necessary to enlarge the housing space on the discharge side to store old grease. The housing is uncovered and the stored old

[A]


Interval $t_{
m f}$, m h

2 000 -

600 -

300 -

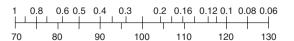
out accordingly. grease is removed at regular intervals. [C] 20 000 10 000 8 000 6 000

[Notes] 1) [A] : radial ball bearing

- [B] : cylindrical roller bearing, needle roller bearing
- [C] : tapered roller bearing, spherical roller bearing, thrust ball bearing

Rotational speed, min⁻¹ 2) Temperature correction

When the bearing operating temperature exceeds 70° C, $t_{\rm f}$ ', obtained by multiplying $t_{\rm f}$ by correction coefficient a , found on the scale below, should be applied as the feeding interval. $t_{\rm f}' = t_{\rm f} \times a$


3) Grease feeding interval

In normal operation, grease life should be

regarded roughly as shown in Fig. 12-2, and

replenishment/replacement should be carried

Temperature correction coefficient a

Bearing operating temperature $T \circ C$ Fig. 12-2 Grease feeding interval

4) Grease life in shielded/sealed ball bearing

Grease life can be estimated by the following equation when a single-row deep groove ball bearing is filled with grease and sealed with shields or seals.

$\log L = 6.10 - 4.40 imes 10^{-6} d_{ m m} n - 2.50 \left(rac{P_{ m r}}{C_{ m r}} - 0.05 ight)$ -	- (0.021 – 1.80 × 10 ⁻⁸ $d_{ m m}n$) T … (12-1)
where :	
L : grease life	h
$d_{\rm m} = \frac{D+d}{2}$ (D : outside diameter, d : bore diameter)	mm
<i>n</i> : rotational speed	\min^{-1}
$P_{ m r}$: dynamic equivalent radial load	Ν
$C_{ m r}$: basic dynamic radial load rating	Ν
T : operating temperature of bearing	°C

The conditions for applying equation (12-1) are as follows :

When $d_{\rm m}n > 500 \times 10^3$, please contact with JTEKT.

a) Operating temperature of bearing : $T \circ C$ Applicable when $T \leq 120$ when $T \leq 50$, T = 50When T > 120, please contact with JTEKT.

b) Value of $d_m n$

Applicable when $d_{\rm m}n \leq 500 \times 10^3$

when $d_{\mathrm{m}}n < 125 \times 10^3$,

 $d_{\rm m}n = 125 \times 10^3$

Applicable when $\frac{P_{\rm r}}{C_{\rm r}} \leq 0.2$ $\left(\begin{array}{c} {\rm when} \; \frac{{P_{\rm r}}}{{C_{\rm r}}} \! < \! 0.05 \, , \\ \\ \frac{{P_{\rm r}}}{{C_{\rm r}}} \! = \! 0.05 \end{array} \right)$

c) Load condition : $\frac{P_r}{C_r}$

When $\frac{P_{\rm r}}{C}$ > 0.2 , please contact with JTEKT.

Kovo

A 113

12. Bearing lubrication

12-1-2 Oil lubrication

Oil lubrication is usable even at high speed rotation and somewhat high temperature, and is effective in reducing bearing vibration and noise.

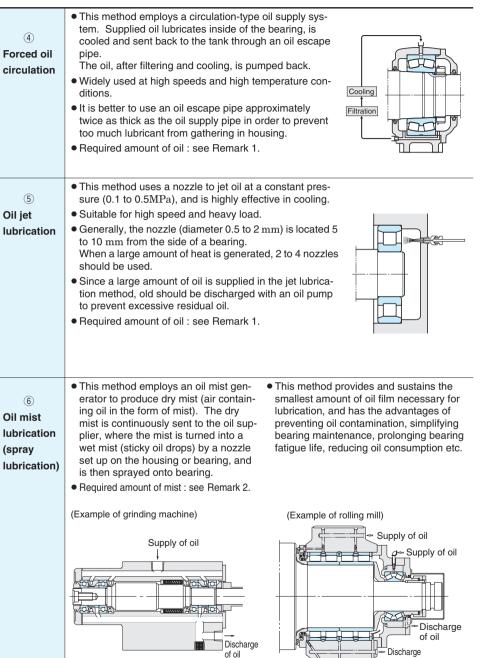
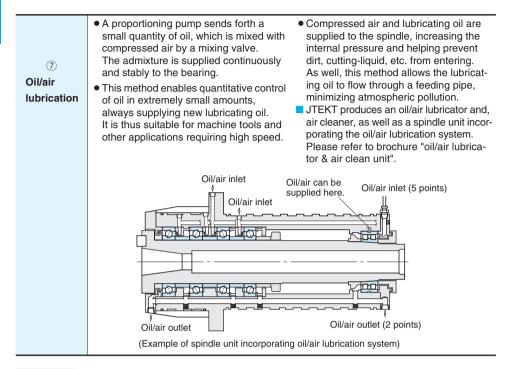

Thus oil lubrication is used in many cases where grease lubrication does not work.

Table 12-2 shows major types and methods of oil lubrication.

				twice as thick as the oil supply pip too much lubricant from gathering Required amount of oil : see Rem
① Oil bath	 Table 12-2 Type and method of oil lubrication Simplest method of bearing immersion in oil for operation. Suitable for low/medium speed. Oil level gauge should be furnished to adjust the amount of oil. (In the case of horizontal shaft) About 50 % of the lowest rolling element should be immersed. (In the case of vertical shaft) About 70 to 80 % of the bearing should be immersed. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. 	on	َق Oil jet Iubrication	 This method uses a nozzle to jet of sure (0.1 to 0.5MPa), and is highl Suitable for high speed and heavy Generally, the nozzle (diameter 0. to 10 mm from the side of a beari When a large amount of heat is ge should be used. Since a large amount of oil is supption method, old should be dischar to prevent excessive residual oil. Required amount of oil : see Rem
② Oil drip	 Oil is dripped with an oiling device, and the inside of the housing is filled with oil mist by the action of rotating parts. This method has a cooling effect. Applicable at relatively high speed and up to medium load. In general, 5 to 6 drops of oil are utilized per minute. (It is difficult to adjust the dripping in 1mL/h or smaller amounts.) It is necessary to prevent too much oil from being accumulated at the bottom of housing. 		6 Oil mist Iubrication (spray Iubrication)	 This method employs an oil mist gerator to produce dry mist (air coring oil in the form of mist). The drimist is continuously sent to the oil plier, where the mist is turned into wet mist (sticky oil drops) by a no. set up on the housing or bearing, is then sprayed onto bearing. Required amount of mist : see Rema
3 Oil splash	 This type of lubrication method makes use of a gear or simple flinger attached to shaft in order to splash oil. This method can supply oil for bearings located away from the oil tank. Usable up to relatively high speed. It is necessary to keep oil level within a certain range. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. It is also advisable to set up a shield or baffle board to prevent contaminants from entering the bearing. 			(Example of grinding machine)


(4)

Forced oil

Kovo

of oil

Remark 1 Required oil supply in forced oil circulation ; oil jet lubrication methods

 $G = \frac{1.88 \times 10^{-4} \mu \cdot d \cdot n \cdot P}{60 \ c \cdot r \cdot \Delta T}$

where :

G: required oil supplyL/min μ : friction coefficient (see table at right)d: nominal bore diametern: rotational speed min^{-1} P: dynamic equivalent load of bearingKr: specific heat of oil1.88-2.09kJ/kg·Kr: density of oil \mathcal{I}_T : temperature rise of oilK

The values obtained by the above equation show quantities of oil required to carry away all the generated heat, with heat release not taken into consideration.

In reality, the oil supplied is generally half to two-thirds of the calculated value.

Heat release varies widely according to the application and operating conditions.

Values of friction coefficient μ

Bearing type	μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Cylindrical roller bearing	0.000 8 - 0.001 2
Tapered roller bearing	0.001 7 - 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5

To determine the optimum oil supply, it is advised to start operating with two-thirds of the calculated value, and then reduce the oil gradually while measuring the operating temperature of bearing, as well as the supplied and discharged oil.

Remark 2 Notes on oil mist lubrication

1)	Required amount of mist	
	(mist pressure : 5 kPa)	

(In the case of a bearing)	Q = 0.11 dR
$\left(\begin{matrix} \text{In the case of two oil} \\ \text{seals combined} \end{matrix} \right)$	$Q = 0.028d_1$

where :

- Q : required amount of mist L/min
- d : nominal bore diameter $\,$ mm
- R : number of rolling element rows

 $\mathbf{m}\mathbf{m}$

 d_1 : inside diameter of oil seal

In the case of high speed ($d_m n \ge 400 \times 10^3$), it is necessary to increase the amount of oil and heighten the mist pressure.

2) Piping diameter and design of lubrication hole/groove

When the flow rate of mist in piping exceeds 5 m/s, oil mist suddenly condenses into an oil liquid.

Consequently, the piping diameter and dimensions of the lubrication hole/groove in the housing should be designed to keep the flow rate of mist, obtained by the following equation, from exceeding 5 m/s.

$$V = \frac{0.167Q}{A} \le 5$$

where :

V : flow rate of mist	m/s
Q: amount of mist	L/min
A: sectional area of piping or	
lubrication groove	cm^2

3) Mist oil

Oil used in oil mist lubrication should meet the following requirements.

- ability to turn into mist
- has high extreme pressure resistance
- good heat/oxidation stability
- rust-resistant
- unlikely to generate sludge
- superior demulsifier

Oil mist lubrication has a number of advantages for high speed rotation bearings. Its performance, however, is largely affected by surrounding structures and bearing operating conditions.

If contemplating the use of this method, please contact with JTEKT for advice based on JTEKT long experience with oil mist lubrication.

12-2 Lubricant

12-2-1 Grease

Grease is made by mixing and dispersing a solid of high oil-affinity (called a thickener) with lubricant oil (as a base), and transforming it into a semi-solid state.

As well, a variety of additives can be added to improve specific performance.

(1) Base oil

Mineral oil is usually used as the base oil for grease. When low temperature fluidity, high temperature stability, or other special performance is required, diester oil, silicon oil, polyglycolic oil, fluorinated oil, or other synthetic oil is often used.

Generally, grease with a low viscosity base oil is suitable for applications at low temperature or high rotation speed; grease with high viscosity base oils are suitable for applications at high temperature or under heavy load.

(2) Thickener

Most greases use a metallic soap base such as lithium, sodium, or calcium as thickeners. For some applications, however, non-soap base thickeners (inorganic substances such as bentone, silica gel, and organic substances such as urea compounds, fluorine compounds) are also used.

In general, the mechanical stability, bearing operating temperature range, water resistance, and other characteristics of grease are determined by the thickener.

- (Lithium soap base grease)
- Superior in heat resistance, water resistance and mechanical stability.
- (Calcium soap base grease) Superior in water resistance; inferior in heat
- resistance. (Sodium soap base grease)
- Superior in heat resistance; inferior in water
- resistance.
- (Non-soap base grease)
- Superior in heat resistance.

(3) Additives

Various additives are selectively used to serve the respective purposes of grease applications.

Extreme pressure agents

When bearings must tolerate heavy or impact loads.

Oxidation inhibitors
 When grease is not refilled for a long period.
 Structure stabilizers, rust preventives, and corrosion inhibitors are also used.

(4) Consistency

Consistency, which indicates grease hardness, is expressed as a figure obtained, in accordance with ASTM (JIS), by multiplication by 10 the depth (in mm) to which the coneshaped metallic plunger penetrates into the grease at 25°C by deadweight in 5 seconds. The softer the grease, the higher the figure.

Table 12-4 shows the relationships between the NLGI scales and ASTM (JIS) penetration indexes, service conditions of grease. (NLGI : National Lubricating Grease Institute)

Table 12-4 Grease consistency

Kovo

NLGI scale	ASTM (JIS) penetration index (25°C, 60 mixing operations)	Service conditions/ applications
0	355 – 385	For centralized lubricating
1	310 – 340	For centralized lubricating, at low temperature
2	265 – 295	For general use
3	220 – 250	For general use, at high temperature
4	175 – 205	For special applications

(5) Mixing of different greases

Since mixing of different greases changes their properties, greases of different brands should not be mixed.

If mixing cannot be avoided, greases containing the same thickener should be used. Even if the mixed greases contain the same thickener, however, mixing may still produce adverse effects, due to difference in additives or other factors.

Thus it is necessary to check the effects of a mixture in advance, through testing or other methods.

		Lithium grease		Calcium grease (cup grease)	Sodium grease (fiber grease)	Complex base grease Non-soap base grease		se			
Thickener		Lithium soap		Calcium soap	Sodium soap	Lithium complex soap	Calcium complex soap	Bentone	Urea compounds	Fluorine compounds	Thickener
Base oil	Mineral oil	Synthetic oil (diester oil)	Synthetic oil (silicon oil)	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral/ synthetic oil	Synthetic oil	Base oil
Dropping point (°C)	170 to 190	170 to 230	220 to 260	80 to 100	160 to 180	250 or higher	200 to 280	-	240 or higher	250 or higher	Dropping point (°C)
Operating tempera- ture range (°C)	- 30 to + 120	- 50 to + 130	- 50 to + 180	- 10 to + 70	0 to + 110	- 30 to + 150	- 10 to + 130	- 10 to + 150	- 30 to + 150	-40 to + 250	Operating tempera- ture range (°C)
Rotation speed range	Medium to high	High	Low to medium	Low to medium	Low to high	Low to high	Low to medium	Medium to high	Low to high	Low to medium	Rotation speed range
Mechanical stability	Excellent	Good to excellent	Good	Fair to good	Good to excellent	Good to excellent	Good	Good	Good to excellent	Good	Mechanical stability
Water resistance	Good	Good	Good	Good	Bad	Good to excellent	Good	Good	Good to excellent	Good	Water resistance
Pressure resistance	Good	Fair	Bad to fair	Fair	Good to excellent	Good	Good	Good to excellent	Good to excellent	Good	Pressure resistance
Remarks	Most widely usable for various rolling bearings.	Superior low tem- perature and fric- tion characteristics. Suitable for bear- ings for measuring instruments and extra-small ball bearings for small electric motors.	Superior high and low temperature characteristics.	Suitable for appli- cations at low rotation speed and under light load. Not applicable at high temperature.	Liable to emulsify in the presence of water. Used at relatively high temperature.	Superior mechanical stability and heat resistance. Used at relatively high temperature.	Superior pressure resistance when extreme pressure agent is added. Used in bearings for rolling mills.	Suitable for applications at high temperature and under relatively heavy load.	Superior water resistance, oxidation stability, and heat stability. Suitable for applications at high temperature and high speed.	Superior chemical resistance and solvent resistance. Usable at up to 250 °C.	Remarks

Table 12-3 Characteristics of respective greases

12-2-2 Lubricating oil

For lubrication, bearings usually employ highly refined mineral oils, which have superior oxidation stability, rust-preventive effect, and high film strength.

With bearing diversification, however, various synthetic oils have been put into use.

Table 12-5Characteristics of lubricating oils

Type of	Highly	Major synthetic oils					
lubricating oil	refined mineral oil	Diester oil	Silicon oil	Polyglycolic oil	Polyphenyl ether oil	Fluorinated oil	
Operating temperature range (°C)	- 40 to + 220	- 55 to + 150	- 70 to + 350	- 30 to + 150	0 to + 330	- 20 to + 300	
Lubricity	Excellent	Excellent	Fair	Good	Good	Excellent	
Oxidation stability	Good	Good	Fair	Fair	Excellent	Excellent	
Radioactivity resistance	Bad	Bad	Bad to fair	Bad	Excellent	_	

[Selection of lubricating oil]

The most important criterion in selecting a lubricating oil is whether the oil provides proper viscosity at the bearing operating temperature. Standard values of proper kinematic viscosity can be obtained through selection by bearing type according to Table 12-6 first, then through selection by bearing operating conditions according to Table 12-7.

When lubricating oil viscosity is too low, the oil film will be insufficient. On the other hand, when the viscosity is too high, heat will be generated due to viscous resistance.

In general, the heavier the load and the higher the operating temperature, the higher the lubricating oil viscosity should be ; whereas, the higher the rotation speed, the lower the viscosity should be.

Fig. 12-3 illustrates the relationship between lubricating oil viscosity and temperature.

Table 12-6 Proper kinematic viscosity by bearing type

These synthetic oils contain various additives

(oxidation inhibitors, rust preventives, antifoam-

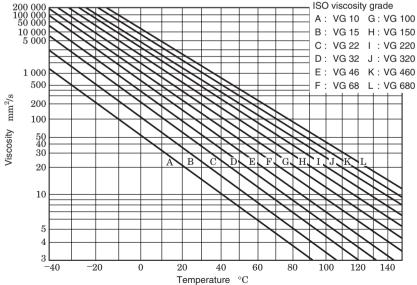
ing agents, etc.) to improve specific properties.

Table 12-5 shows the characteristics of

applications in JIS and MIL.

Mineral lubricating oils are classified by

lubricating oils.


Bearing type	Proper kinematic viscosity at operating temperature
Ball bearing Cylindrical roller bearing	$13 \mathrm{mm}^2$ / s or higher
Tapered roller bearing Spherical roller bearing	$20 \mathrm{mm}^2$ / s or higher
Spherical thrust roller bearing	$32 \mathrm{mm}^2$ / s or higher

Operating	$d_{ m m} n$ value	Proper kinematic viscosity (expressed in the ISO viscosity grade or the SAE No.)					
temperature		Light/norr	nal load	Heavy/impact load			
-30 to $0^\circ\mathrm{C}$	All rotation speeds	ISO VG 15, 22, 46	(Refrigerating machine oil)				
	300 000 or lower	ISO VG 46	(Bearing oil Turbine oil	ISO VG 68 SAE 30	(Bearing oil Turbine oil		
0 to 60°C	300 000 to 600 000	ISO VG 32	(Bearing oil Turbine oil	ISO VG 68	(Bearing oil (Turbine oil)		
	600 000 or higher	ISO VG 7, 10, 22	(Bearing oil)				
	300 000 or lower	ISO VG 68	(Bearing oil)	ISO VG 68, 100 SAE 30	(Bearing oil)		
60 to $100^{\circ}\mathrm{C}$	300 000 to 600 000	ISO VG 32, 46	(Bearing oil Turbine oil	ISO VG 68	(Bearing oil Turbine oil		
	600 000 or higher	ISO VG 22, 32, 46	Bearing oil Turbine oil Machine oil				
100 to 150°C	300 000 or lower	ISO VG 68, 100 SAE 30, 40	(Bearing oil)	ISO VG 100 to 460	(Bearing oil Gear oil		
100 to 150 C	300 000 to 600 000	ISO VG 68 SAE 30	(Bearing oil Turbine oil	ISO VG 68, 100 SAE 30, 40	(Bearing oil)		

 Table 12-7
 Proper kinematic viscosities by bearing operating conditions

[Remarks] 1. $d_{\rm m}n = \frac{D+d}{2} \times n \cdots \{D : \text{nominal outside diameter (nm)}, d : \text{nominal bore diameter (nm)}, n : \text{rotational speed (nin⁻¹)}\}$

 Refer to refrigerating machine oil (JIS K 2211), turbine oil (JIS K 2213), gear oil (JIS K 2219), machine oil (JIS K 2238) and bearing oil (JIS K 2239).

3. Please contact with JTEKT if the bearing operating temperature is under $-30^{\circ}C$ or over $150^{\circ}C$.

Fig. 12-3 Relationship between lubricating oil viscosity and temperature (viscosity index :100)

13. Bearing materials

Bearing materials include steel for bearing rings and rolling elements, as well as steel sheet, steel, copper alloy and synthetic resins for cages.

These bearing materials should possess the following characteristics :

 High elasticity, durable under high partial contact stress. High strength against rolling contact fatigue due to large repetitive contact load. 	}	Bearing rings Rolling elements
 Strong hardness High abrasion resistance 	2	Bearing

5) High toughness against

impact load

6) Excellent dimensional stability J Cages

13-1 Bearing rings and rolling elements materials

1) High carbon chromium bearing steel

High carbon chromium bearing steel specified in JIS is used as a general material in bearing rings (inner rings, outer rings) and rolling elements (balls, rollers).

Their chemical composition classified by steel type is given in Table 13-1.

Among these steel types, SUJ 2 is generally used. SUJ 3, which contains additional Mn and Si, possesses high hardenability and is commonly used for thick section bearings.

SUJ 5 has increased hardenability, because it was developed by adding Mo to SUJ 3.

For small and medium size bearings, SUJ 2 and SUJ 3 are used, and for large size and extra-large size bearings with thick sections, SUJ 5 is widely used.

Generally, these materials are processed into the specified shape and then undergo hardening and annealing treatment until they attain a hardness of 57 to 64 HRC. 2) Case carburizing bearing steel (case hardened steel)

When a bearing receives heavy impact loads, the surface of the bearing should be hard and the inside soft.

Such materials should possess a proper amount of carbon, dense structure, and carburizing case depth on their surface, while having proper hardness and fine structure internally.

For this purpose, chromium steel and nickel-chromium-molybdenum steel are used as materials.

Typical steel materials are shown in Table 13-2.

These materials also undergo vacuum degassing in order to reduce non-metallic inclusions and oxygen content which leads to higher reliability.

3) Others

For special applications, the following materials are used, according to operational conditions.

- (When very high reliability is required) • high refining steel ··· developed by JTEKT • vacuum arc remelted steel • electro slag remelted steel
- (When heat resistance is required) • high speed steel for high temperature bearings ··· refer to Table 13-3
- (When high corrosion resistance is required) • stainless steel ··· refer to Table 13-4

(When high heat, corrosion, and chemical resistance are required) · ceramics

Table 13-1 Chemical composition of high carbon chromium bearing steel

Standard	Code	Chemical composition (%)									
Standard	Code	С	Si	Mn	Р	S	Cr	Мо			
	SUJ 2	0.95 – 1.10	0.15 – 0.35	Not more than 0.50	National	Natura	1.30 – 1.60	Not more than 0.08			
JIS G 4805	SUJ 3	0.95 – 1.10	0.40 - 0.70	0.90 - 1.15	Not more than 0.025	Not more than 0.025	0.90 - 1.20	Not more than 0.08			
	SUJ 5	0.95 - 1.10	0.40 - 0.70	0.90 - 1.15			0.90 - 1.20	0.10 - 0.25			
SAE J 404	52100	0.98 - 1.10	0.15 - 0.35	0.25 - 0.45	Not more than 0.025	Not more than 0.025	1.30 - 1.60	Not more than 0.06			

[Remark] As for bearings which are induction hardened, carbon steel with a high carbon content of 0.55 to 0.65 % is used in addition to those listed in this table.

Table 13-2 Chemical composition of case carburizing bearing steel

Standard	Code			Ch	emical con	position (%)		
Stanuaru	Code	С	Si	Mn	Р	S	Ni	Cr	Мо
	SCr 415	0.13 – 0.18	0.15 – 0.35	0.60 – 0.85	Not more	Not more	-	0.90 – 1.20	_
	SCr 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	than 0.030	than 0.030	-	0.90 – 1.20	-
JIS G 4053	SCM 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	Not more than 0.030	Not more than 0.030	-	0.90 – 1.20	0.15 – 0.30
010 0 4000	SNCM 220	0.17 – 0.23	0.15 – 0.35	0.60 – 0.90	Not more	Not more than 0.030	0.40 – 0.70	0.40 – 0.65	0.15 – 0.30
	SNCM 420	0.17 – 0.23	0.15 – 0.35	0.40 – 0.70	than 0.030		1.60 – 2.00	0.40 – 0.65	0.15 – 0.30
	SNCM 815	0.12 – 0.18	0.15 – 0.35	0.30 – 0.60	Not more than 0.030	Not more than 0.030	4.00 – 4.50	0.70 – 1.00	0.15 – 0.30
	5120	0.17 – 0.22	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	-	0.70 – 0.90	-
SAE J 404	8620	0.18 – 0.23	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	0.40 – 0.70	0.40 – 0.60	0.15 – 0.25
	4320	0.17 – 0.22	0.15 – 0.30	0.45 – 0.65	Not more than 0.025	Not more than 0.025	1.65 – 2.00	0.40 - 0.60	0.20 – 0.30

Table 13-3 Chemical composition of high speed steel for high temperature bearings

Standard	Code		Chemical composition (%)										
Stanuaru	Code	С	Si	Mn	Р	S	Cr	Мо	v	Ni	Cu	Co	W
AISI	M 50	0.77– 0.85	Not more than 0.25	Not more than 0.35	Not more than 0.015	Not more than 0.015	3.75– 4.25	4.00- 4.50	0.90- 1.10	Not more than 0.10	Not more than 0.10	Not more than 0.25	Not more than 0.25

Table 13-4 Chemical composition of stainless steel

Standard	Code	Chemical composition (%)								
Standard	Code	С	Si	Mn	Р	S	Cr	Мо		
JIS G 4303	SUS 440 C	0.95 – 1.20	Not more than 1.00	Not more than 1.00		Not more than 0.030	16.00 – 18.00	Not more than 0.75		

13-2 Materials used for cages

Since the characteristics of materials used for cages greatly influence the performance and reliability of rolling bearings, the choice of materials is of great importance.

It is necessary to select cage materials in accordance with required shape, ease of lubrication, strength, and abrasion resistance. Typical materials used for metallic cages are shown in Tables 13-5 and 13-6.

In addition, phenolic resin machined cages and other synthetic resin molded cages are often used.

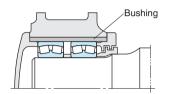
Materials typically used for molded cages are polyacetal, polyamide (Nylon 6.6, Nylon 4.6), and polymer containing fluorine, which are strengthened with glass and carbon fibers.

Table 13-5 Chemical compositions of pressed cage steel sheet (A) and machined cage carbon steel (B)

	Standard	Code			Chemica	al compositi	ion (%)		
	Stanuaru	Coue	С	Si	Mn	Р	S	Ni	Cr
	JIS G 3141	SPCC	Not more than 0.12	-	Not more than 0.50	Not more than 0.040	Not more than 0.045	-	-
(A)	JIS G 3131	SPHC	Not more than 0.15	_	Not more than 0.60	Not more than 0.050	Not more than 0.050	-	-
(~)	BAS 361	SPB 2	0.13 – 0.20	Not more than 0.04	0.25 - 0.60	Not more than 0.030	Not more than 0.030	-	-
	JIS G 4305	SUS 304	Not more than 0.08	Not more than 1.00	Not more than 2.00	Not more than 0.045	Not more than 0.030	8.00 - 10.50	18.00 - 20.00
(B)	JIS G 4051	S 25 C	0.22 – 0.28	0.15 – 0.35	0.30 - 0.60	Not more than 0.030	Not more than 0.035	-	-

Table 13-6 Chemical composition of high-tensile brass casting of machined cages (%)

Standard	Code	Cu	Zn	Mn	Fe	AI	Sn	Ni	Imp	urity
otandara	oouo	00					0		Pb	Si
JIS H 5120	CAC 301 (HBsC*)	55 – 60	33 – 42	0.1 – 1.5	0.5 – 1.5	0.5 – 1.5	Not more than 1.0	Not more than 1.0	Not more than 0.4	Not more than 0.1


A 124

* : Material with HBsC is used.

14. Shaft and housing design

In designing the shaft and housing, the following should be taken into consideration.

- Shafts should be thick and short. (in order to reduce distortion including bending)
- Housings should possess sufficient rigidity. (in order to reduce distortion caused by load)
- [Note] · For light alloy housings, rigidity may be provided by inserting a steel bushing.

Fig. 14-1 Example of light alloy housing

- The fitting surface of the shaft and housing should be finished in order to acquire the required accuracy and roughness. The shoulder end-face should be finished in order to be perpendicular to the shaft center or housing bore surface. (refer to Table 14-1)
- The fillet radius (r_a) should be smaller than chamfer dimension of the bearing. (refer to Tables 14-2, 14-3)
 - [Notes] · Generally it should be finished so as to form a simple circular arc.

(refer to Fig. 14-2) • When the shaft is given a ground

finish, a recess may be provided.

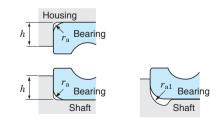
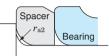



Fig. 14-2 Fillet Fig. 14-3 Grinding radius undercut

5) The shoulder height (*h*) should be smaller than the outside diameter of inner ring and larger than bore diameter of outer ring so that the bearing is easily dismounted. (refer to Fig. 14-2 and Table 14-2)

Kovo

6) If the fillet radius must be larger than the bearing chamfer, or if the shaft/housing shoulder must be low/high, insert a spacer between the inner ring and shaft shoulder as shown in Fig. 14-4, or between the outer ring and the housing shoulder.

Fig. 14-4 Example of shaft with spacer

- 7) Screw threads and lock nuts should be completely perpendicular to shaft axis. It is desirable that the tightening direction of threads and lock nuts be opposite to the shaft rotating direction.
- 8) When split housings are used, the surfaces where the housings meet should be finished smoothly and provided with a recess at the inner ends of the surfaces that meet.

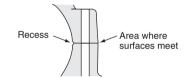


Fig. 14-5 Recesses on meeting surfaces

14-1 Accuracy and roughness of shafts and housings

The fitting surface of the shaft and housing may be finished by turning or fine boring when the bearing is used under general operating conditions. However, if the conditions require minimum vibration and noise, or if the bearing is used under severe operating conditions, a ground finish is required.

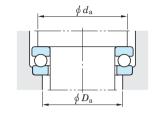
Recommended accuracy and roughness of shafts and housings under general conditions are given in Table 14-1.

Table 14-1 Recommended accuracy and roughness of shafts and housings

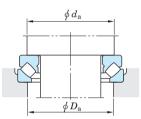
Item	Bearing class	Shaft	Housing bore
Roundness	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5
tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3
Cylindrical	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5
form tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3
Shoulder	classes 0, 6	IT 3	IT 3 – IT 4
runout tolerance	classes 5, 4	IT 3	IT 3
Roughness of fitting surfaces Ra	Small size bearings Large size bearings		1.6 a 3.2 a

[Remark] Refer to the figures listed in the attached table when the basic tolerance IT is required.

14-2 Mounting dimensions


Mounting dimensions mean the necessary dimensions to mount bearings on shafts or housings, which include the fillet radius or shoulder diameters.

Standard values are shown in Table 14-2. (The mounting related dimensions of each bearing are given in the bearing specification table.) The grinding undercut dimensions for ground shafts are given in Table 14-3.


For thrust bearings, the mounting dimensions should be carefully determined such that bearing race will be perpendicular to the support and the supporting area will be wide enough.

For thrust ball bearings, the shaft shoulder diameter d_a should be larger than pitch diameter of ball set, while the shoulder diameter of housing D_a should be smaller than the pitch diameter of ball set. (Fig. 14-6)

For thrust roller bearings, the housing/shaft diameter D_a/d_a should cover the lengths of both rollers. (Fig. 14-7)

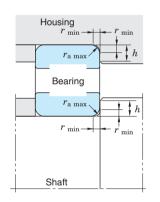
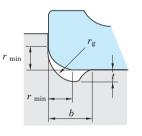


Fig. 14-6 Thrust ball bearings

Fig. 14-7 Spherical thrust roller bearings

Table 14-2 Shaft/housing fillet radius and shoulder height of radial bearings

[Notes]

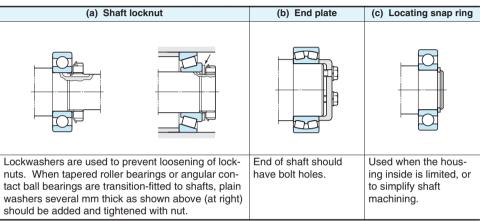

- 1) Shoulder heights greater than those specified in the Table are required to accommodate heavy axial loads.
- 2) Used when an axial load is small These values are not recommended for tapered roller bearings, angular contact ball bearings, or spherical roller bearings.

[Remark]

Fillet radius can be applied to thrust bearings.

Unit : mm Shaft and housing Chamfer dimension of Shoulder height Fillet inner ring or h_{\min} radius outer ring General 1) Special ²⁾ r_{\min} $r_{\rm a max}$ cases cases 0.05 0.05 0.3 0.3 0.08 0.08 0.3 0.3 0.4 0.1 0.1 0.4 0.15 0.15 0.6 0.6 0.2 0.8 0.8 0.2 0.3 0.3 1.25 1 0.5 0.5 1.75 1.5 0.6 0.6 2.25 2 0.8 0.8 2.75 2.5 2.75 2.5 1 1 3.5 3.25 1.1 1 1.5 1.5 4.25 4 2 2 5 4.5 2.1 2 6 5.5 2.5 2 6 5.5 3 2.5 6.5 7 9 4 3 8 5 Δ 11 10 6 5 14 12 7.5 6 18 16 9.5 8 22 20 24 12 10 27 12 32 15 29 19 15 42 38

Table 14-3 Grinding undercut dimensions for ground shafts


Unit : mm

Chamfer dimen- sion of inner ring	Grinding u	Grinding undercut dimensions					
$r_{\rm min}$	t	$r_{ m g}$	b				
1	0.2	1.3	2				
1.1	0.3	1.5	2.4				
1.5	0.4	2	3.2				
2	0.5	2.5	4				
2.1	0.5	2.5	4				
3	0.5	3	4.7				
4	0.5	4	5.9				
5	0.6	5	7.4				
6	0.6	6	8.6				
7.5	0.6	7	10				

14-3 Shaft design

When bearings are mounted on shafts, locating method should be carefully determined. Shaft design examples for cylindrical bore bearings are given in Table 14-4, and those for bearings with a tapered bore in Table 14-5.

Table 14-4 Mounting designs for cylindrical bore bearings

Table 14-5 Mounting designs for bearings with tapered bore

(d) Adapter assembly	(e) Withdrawal sleeve	(f) Shaft locknut	(g) Split ring
The simplest method for axial positioning is just to attach an adapter sleeve to the shaft and tighten the locknuts. To prevent locknut loosening, lock-washer (not more than 180 mm in shaft diameter) or lock plate (not less than 200 mm in shaft diameter) are used.	The locknut (above) or end plate (below) fixes the bearing with a withdrawal sleeve, which makes it easy to dismount the bear- ing.	The shaft is threaded in the same way as shown in Fig. (a). The bearing is located by tightening locknut.	A split ring with threaded outside diameter is inserted into groove on the tapered shaft. A key is often used to prevent the locknut and split ring from loosening.

14-4 Sealing devices

Sealing devices not only prevent foreign matter (dirt, water, metal powder) from entering, but prevent lubricant inside from leaking. If the sealing device fails to function satisfactorily, foreign matter or leakage will cause bearing damage as a result of malfunction or seizure.

Therefore, it is necessary to design or choose the most suitable sealing devices as well as to choose the proper lubricating measures according to operating conditions.

Sealing devices may be divided into non-contact and contact types according to their structure.

They should satisfy the following conditions :

Free from excessive friction

(heat generation) • Easy maintenance (especially ease of mounting and dismounting)

• As low cost as possible

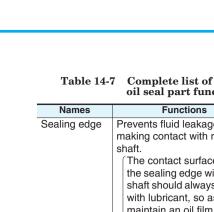

14-4-1 Non-contact type sealing devices

Kovo

A non-contact type sealing device, which includes oil groove, flinger (slinger), and labyrinth, eliminates friction because it does not have a contact point with the shaft.

These devices utilize narrow clearance and centrifugal force and are especially suitable for operation at high rotation speed and high temperature.

Table 14-6 (1)Non-contact type
sealing devices

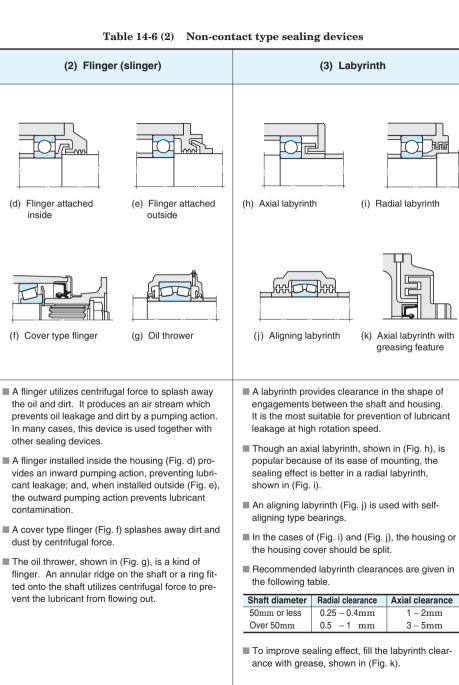


- This kind of seal having more than three grooves at the narrow clearance between the shaft and housing cover, is usually accompanied by other sealing devices except when it is used with grease lubrication at low rotation speed.
- Preventing entrance of contaminants can be improved by filling the groove with calcium grease (cup grease) having a consistency of 150 to 200.
- The clearance between the shaft and housing cover should be as narrow as possible.
 Recommended clearances are as follows.
 Shaft diameter of less than 50mm
 0.25 0.4mm

 \cdot Shaft diameter of over 50mm

······ 0.5 – 1 mm

- · Depth 4 5mm


14-4-2 Contact type sealing devices

Kovo

This type provides a sealing effect by means	1 able 14-	oil seal part functions
of the contact of its end with the shaft and are	Names	Functions
manufactured from synthetic rubber, synthetic resin, or felt. The synthetic rubber oil seal is most popular.	Sealing edge	Prevents fluid leakage by making contact with rotating shaft. The contact surface of
 Oil seals Many types and sizes of oil seals, as a fin- ished part, have been standardized. JTEKT produces various oil seals. The names and functions of each oil seal part 		the sealing edge with the shaft should always filled with lubricant, so as to maintain an oil film therein.
are shown in Fig. 14-8 and Table 14-7. Table 14-8 provides a representative example. Outside surface Case	Sealing lip and spring	Provides proper pressure on the sealing edge to maintain stable contact. Spring pro- vides proper pressure on the lip and maintains such pres- sure for a long time.
Spring Sealing lip Sealing edge Minor lip	Outside sur- face	Fixes the oil seal to the hous- ing and prevents fluid leak- age through the fitting surface. (Comes encased in metal cased type or rubber covered type.
(auxiliary lip)	Case	Strengthens seal.
	Minor lip (auxiliary lip)	Prevents entry of contami- nants.
Fig. 14-8 Names of oil seal parts		In many cases, the space between the seal- ing lip and minor lip is filled with grease.

Table 14-8 Typical oil seal types

		With case			With inner case	Without case
Without	nout spring With spring		With spring			
ſ						C
HM (JIS GM)	MH (JIS G)	HMS (JIS SM)	MHS (JIS S)	CRS	HMSH (JIS SA)	MS
F		ŗ				-
HMA	MHA	HMSA (JIS DM)	MHSA (JIS D) CRSA	HMSAH (JIS DA)	
 Special t seal and 	types of sea	als such as the for rotating hou	mud resis	tance sea	r lip (auxiliary lip). al, pressure resistance led to serve under various	 By providing a slit on the oil seals, it is possible to attach them from other points than the shaft ends.

(k) Axial labyrinth with

It is the most suitable for prevention of lubricant

S	haft diameter	Radial clearance	Axial clearance
5	50mm or less	0.25 – 0.4mm	1 – 2mm
C	Over 50mm	$0.5 - 1 \ \mathrm{mm}$	3-5mm

Oil seals without minor lips are mounted in different directions according to their operating conditions (shown in Fig. 14-9).

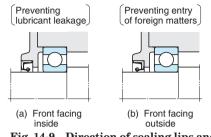
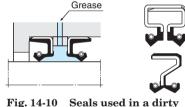



Fig. 14-9 Direction of sealing lips and their purpose

When the seal is used in a dirty operating environment, or penetration of water is expected, it is advisable to have two oil seals combined or to have the space between the two sealing lips be filled with grease.

(shown in Fig. 14-10)

operating environment

Respective seal materials possess different properties. Accordingly, as shown in Table 14-9. allowable lip speed and operating temperature differ depending on the materials. Therefore, by selecting proper materials, oil seals can be used for sealing not only lubricants but also chemicals including alcohol, acids, alkali, etc.

Table 14-9 Allowable lip speed and operating temperature range of oil seals

Seal material	Allowable lip speed (m/s)	Operating tempera- ture range (°C)
NBR	15	- 40 to + 120
Acrylic rubber	25	- 30 to + 150
Silicone rubber	32	- 50 to + 170
Fluoro rubber	32	- 20 to + 180

To ensure the maximum sealing effect of the oil seal, the shaft materials, surface roughness and hardness should be carefully chosen.

Table 14-10 shows the recommended shaft conditions.

Table 14-10 Recommended shaft conditions

Material	Machine structure steel, low alloy steel and stainless steel			
Surface hardness	For low speed : harder than 30 HRC For high speed : harder than 50 HRC			
Surface roughness (Ra)	0.2 – 0.6a A surface which is exces- sively rough may cause oil leakage or abrasion ; whereas an excessively fine surface may cause sealing lip seizure, preventing the oil film from forming. Sur- face must also be free of spiral grinding marks.			

2) Felt seals and others

Although felt seals have been used conventionally, it is recommended to replace them with rubber oil seals because the use of felt seals are limited to the following conditions.

- Light dust protection
- Allowable lip speed : not higher than 5m/s

Contact type sealing devices include mechanical seals. O-rings and packings other than those described herein.

JTEKT manufactures various oil seals ranging from those illustrated in Table14-8 to special seals for automobiles, large seals for rolling mills, mud resistance seals, pressure resistance seals, outer seals for rotating housings and O-rings. For details, refer to JTEKT separate catalog "Oil seals & O-rings" (CAT. NO. R2001E).

15. Handling of bearings

15-1 General instructions

Since rolling bearings are more precisely made than other machine parts, careful handling is absolutely necessary.

- 1) Keep bearings and the operating environment clean.
- 2) Handle carefully.

Bearings can be cracked and brinelled easily by strong impact if handled roughly.

- 3) Handle using the proper tools.
- 4) Keep bearings well protected from rust. Do not handle bearings in high humidity. Operators should wear gloves in order not to soil bearings with perspiration from their

hands. 5) Bearings should be handled by experienced

- or well trained operators.
- 6) Set bearing operation standards and follow them.
 - · Storage of bearings
 - · Cleaning of bearings and their adjoining parts.
 - · Inspection of dimensions of adjoining parts and finish conditions
 - Mounting
 - · Inspection after mounting
 - · Dismounting
 - · Maintenance and inspection (periodical inspection)
 - · Replenishment of lubricants

15-2 Storage of bearings

In shipping bearings, since they are covered with proper anti-corrosion oil and are wrapped in antitarnish paper, the quality of the bearings is guaranteed as long as the wrapping paper is not damaged.

If bearings are to be stored for a long time, it is advisable that the bearings be stored on shelves set higher than 30 cm from the floor, at a humidity less than 65 %, and at a temperature around 20°C.

Avoid storage in places exposed directly to the sun's rays or placing boxes of bearings against cold walls.

15-3 Bearing mounting

15-3-1 Recommended preparation prior to mounting

1) Preparation of bearings

Wait until just before mounting before removing the bearings from their packaging to prevent contamination and rust.

Since the anti-corrosion oil covering bearings is a highly capable lubricant, the oil should not be cleaned off if the bearings are pre-lubricated, or when the bearings are used for normal operation. However, if the bearings are used in measuring instruments or at high rotation speed, the anti-corrosion oil should be removed using a clean detergent oil. After removal of the anti-corrosion oil, bearings should not be left for a long time because they rust easily.

Kovo

2) Inspection of shafts and housings

Clean up the shaft and housing to check whether it has flaws or burrs as a result of machining.

Be very careful to completely remove lapping agents (SiC, Al₂O₃, etc.), casting sands, and chips from inside the housing.

Next, check that the dimensions, forms, and finish conditions of the shaft and the housing are accurate to those specified on the drawing.

The shaft diameter and housing bore diameter should be measured at the several points as shown in Figs. 15-1 and 15-2.

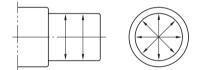


Fig. 15-1 Measuring points on shaft diameter

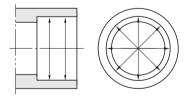


Fig. 15-2 Measuring points on housing bore diameter

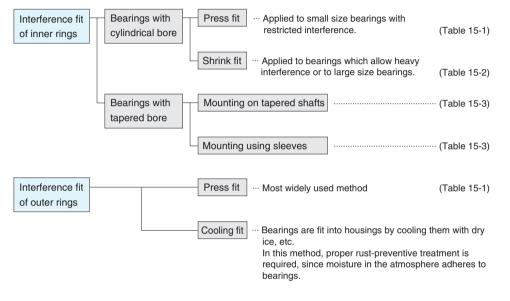
Furthermore, fillet radius of shaft and housing, and the squareness of shoulders should be checked

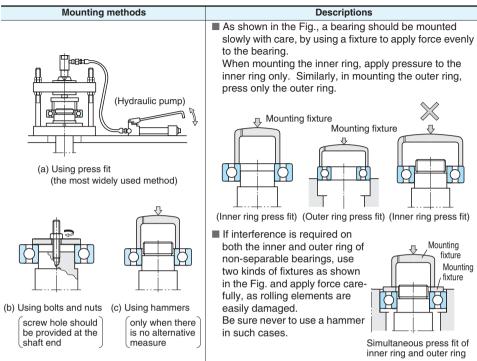
When using shaft and housing which have passed inspection, it is advisable to apply machine oil to each fitting surface just before mounting.

are described in Tables 15-1 to 15-3.

For bearings in which the outer rings rotate,

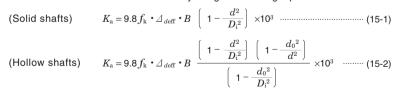
an interference fit is applied to the outer rings.


Interference fitting is roughly classified as


shown here. The detailed mounting processes

15-3-2 Bearing mounting

Mounting procedures depend on the type and fitting conditions of bearings.


For general bearings in which the shaft rotates, an interference fit is applied to inner rings, while a clearance fit is applied to outer rings.

Reference Force is necessary to press fit or remove bearings.

The force necessary to press fit or remove inner rings of bearings differs depending on the finish of shafts and how much interference the bearings allow. The standard values can be obtained by using the following equations.

In equations (15-1) and (15-2),

 $K_{\rm a}$: force necessary for press fit or removal Ν Δ_{deff} : effective interference mm

- $f_{\rm k}$: resistance coefficient
 - Coefficient taking into consideration friction between shafts and inner rings ... refer to the table on the right
- B : nominal inner ring width
- d : nominal inner ring bore diameter mm
- $D_{\rm i}$: average outside diameter of inner ring mm
- d_0 : hollow shaft bore diameter

Value of resistance coefficient f_k

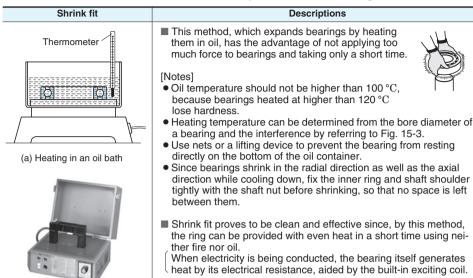
Kovo

 \mathbb{X}

Mounting fixture

Mounting

fixture


Conditions	$f_{\rm k}$
Press fitting bearings on to cylindri- cal shafts	4
 Removing bearings from cylindrical shafts 	6
 Press fitting bearings on to tapered shafts or tapered sleeves 	5.5
 Removing bearings from tapered shafts or tapered sleeves 	4.5
 Press fitting tapered sleeves between shafts and bearings 	10
Removing tapered sleeves from the space between shafts and bearings	11

 $\mathbf{m}\mathbf{m}$

 $\mathbf{m}\mathbf{m}$

Table 15-2 Shrink fit of cylindrical bore bearings

(b) Induction heater

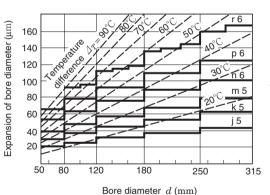
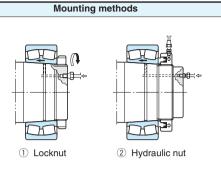
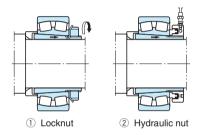
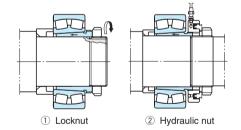
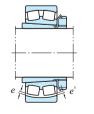
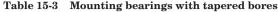
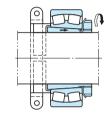




Fig. 15-3 Heating temperature and expansion of inner rings


- [Remarks]
- Thick solid lines show the maximum interference value between bearings (class 0) and shafts (r 6, p 6, n 6, m 5, k 5, j 5) at normal temperature.
- Therefore, the heating temperature should be selected to gain a larger "expansion of the bore diameter" than the maximum interference values.
 - When fitting class 0 bearings having a 90 mm bore diameter to m 5 shafts, this figure shows that heating temperature should be 40 °C higher than room temperature to produce expansion larger than the maximum interference value of 48 µm.
 - However, taking cooling during mounting into consideration, the temperature should be set 20 to 30 °C higher than the temperature initially required.


(a) Mounting on tapered shafts


(b) Mounting by use of an adapter sleeve


(c) Mounting by use of a withdrawal sleeve

(d) Measuring clearances

- Descriptions
 When mounting bearings directly on
 tapered shafts, provide oil holes and
 grooves on the shaft and inject high pressure oil into the space between the fitting
 surfaces (oil injection). Such oil injection
 can reduce tightening torque of locknut by
 lessening friction between the fitting surfaces.
- When exact positioning is required in mounting a bearing on a shaft with no shoulder, use a clamp to help determine the position of the bearing.

Locating bearing by use of a clamp

When mounting bearings on shafts, locknuts are generally used. Special spanners are used to tighten them.

Bearings can also be mounted using hydraulic nuts.

When mounting tapered bore spherical roller bearings, the reduction in the radial internal clearance which gradually occurs during operation should be taken into consideration as well as the push-in depth described in Table 15-4.

Clearance reduction can be measured by a thickness gage. First, stabilize the roller in the proper position and then insert the gage into the space between the rollers and the outer ring. Be careful that the clearance between both roller rows and the outer rings is roughly the same $(e \doteq e^{*})$. Since the clearance may differ at different measuring points, take measurements at several positions.

When mounting self-aligning ball bearings, leave enough clearance to allow easy aligning of the outer ring.

diame		radial	tion of internal	Axial displacement, mm			Minimum required residual clearance, μr			
	d im	cleara μ	nce Im	1/121	taper	1/30 taper		C N	C 3	C 4
over	up to	min.	max.	min.	max.	min.	max.	clearance	clearance	clearance
24	30	15	20	0.27	0.35	-	-	10	20	35
30	40	20	25	0.32	0.4	-	-	15	25	40
40	50	25	35	0.4	0.5	-	-	20	30	45
50	65	30	40	0.45	0.6	-	-	25	35	55
65	80	35	50	0.55	0.75	-	-	35	40	70
80	100	40	55	0.65	0.85	-	-	40	50	85
100	120	55	70	0.85	1.05	2.15	2.65	45	65	100
120	140	65	90	1.0	1.2	2.5	3.0	55	80	110
140	160	75	100	1.1	1.35	2.75	3.4	55	90	130
160	180	80	110	1.2	1.5	3.0	3.8	60	100	150
180	200	90	120	1.4	1.7	3.5	4.3	70	110	170
200	225	100	130	1.55	1.85	3.85	4.6	80	120	190
225	250	110	140	1.7	2.05	4.25	5.1	90	130	210
250	280	120	160	1.8	2.3	4.5	5.75	100	140	230
280	315	130	180	2.0	2.5	5.0	6.25	110	150	250
315	355	150	200	2.3	2.8	5.75	7.0	120	170	270
355	400	170	220	2.5	3.1	6.25	7.75	130	190	300
400	450	190	240	2.8	3.4	7.0	8.5	140	210	330
450	500	210	270	3.1	3.8	7.75	9.5	160	230	360
500	560	240	310	3.5	4.3	8.75	10.8	170	260	370
560	630	260	350	3.9	4.8	9.75	12.0	200	300	410
630	710	300	390	4.3	5.3	10.8	13.3	210	320	460
710	800	340	430	4.8	6.0	12.0	15.0	230	370	530
800	900	370	500	5.3	6.7	13.3	16.8	270	410	570
900	1000	410	550	5.9	7.4	14.8	18.5	300	450	640

 Table 15-4
 Mounting tapered bore spherical roller bearings

[Remark] The values for reduction of radial internal clearance listed above are values obtained when mounting bearings with CN clearance on solid shafts. In mounting bearings with C 3 clearance, the maximum value listed above should be taken as the standard

15-4 Test run

A trial operation is conducted to insure that the bearings are properly mounted.

In the case of compact machines, rotation may be checked by manual operation at first.

If no abnormalities, such as those described below, are observed, then further trial operation proceeds using a power source.

- Knocking … due to flaws or insertion of foreign matter on rolling contact surfaces.
- Excessive torque (heavy) ···· due to friction on sealing devices, too small clearances, and mounting errors.

• Uneven running torque ··· due to improper mounting and mounting errors.

For machines too large to allow manual operation, idle running is performed by turning off the power source immediately after turning it on. Before starting power operation, it must be confirmed that bearings rotate smoothly without any abnormal vibration and noise.

Power operation should be started under no load and at low speed, then the speed is gradually increased until the designed speed is reached.

During power operation, check the noise, increase in temperature and vibration.

If any of the abnormalities listed in Tables 15-5 and 15-6 are found, operation must be

stopped, and inspection for defects immediately conducted.

Kovo

The bearings should be dismounted if necessary.

	Noise types	Causes	Countermeasures			
Cyclic	Flaw noise (similar to noise when) Rust noise (punching a rivet) Brinelling noise (Unclear siren-like noise)	Flaw on raceway Rust on raceway Brinelling on raceway	Improve mounting procedure, cleaning method and rust preventive method. Replace bearing.			
	Flaking noise (similar to a large hammering noise)	Flaking on raceway	Replace bearing.			
	Dirt noise (an irregular sandy noise.)	Insertion of foreign matter	Improve cleaning method, sealing device. Use clean lubricant. Replace bearing.			
	Fitting noise (drumming or hammering noise)	Improper fitting or excessive bearing clearance	Review fitting and clearance condition Provide preload. Improve mounting accuracy.			
Not cyclic	Flaw noise, rust noise, flaking noise	Flaws, rust and flaking on rolling elements	Replace bearing.			
	Squeak noise often heard in cylindrical roller bearings with grease lubrication, espe- cially in winter or at low temperatures	should be selected.	nproper lubrication, a proper lubricant erious damage will not be caused by an ed continuously.			
Others	Abnormally large metallic sound	Abnormal load Incorrect mounting Insufficient amount of or improper lubricant	Review fitting, clearance. Adjust preload. Improve accuracy in processing and mounting shafts and housings. Improve sealing device. Refill lubricant. Select proper lubricant.			

Table 15-6 Causes and countermeasures

for abnormal temperature rise

Causes	Countermeasures
Too much	Reduce lubricant amount.
lubricant	Use grease of lower consistency.
Insufficient lubricant	Refill lubricant.
Improper lubricant	Select proper lubricant.
Abnormal	Review fitting and clearance con-
load	ditions and adjust preload.
Improper	Improve accuracy in processing
mounting	and mounting shaft and housing.
(excessive	Review fitting.
friction	Improve sealing device.

Normally, listening rods are employed for bearing noise inspections.

The instrument detecting abnormalities through sound vibration and the Diagnosis System utilizing acoustic emission for abnormality detection are also applicable.

In general, bearing temperature can be estimated from housing temperature, but the most accurate method is to measure the temperature of outer rings directly via lubrication holes.

Normally, bearing temperature begins to rise gradually when operation is just starting; and, unless the bearing has some abnormality, the temperature stabilizes within one or two hours.

Therefore, a rapid rise in temperature or unusually high temperature indicates some abnormality.

15. Handling of bearings

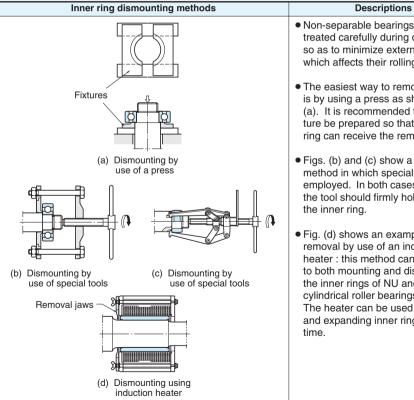
15-5 Bearing dismounting

After dismounting bearings, handling of the bearings and the various methods available for this should be considered.

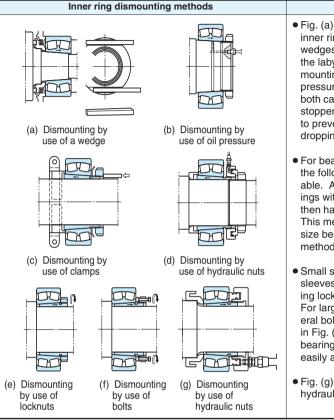
If the bearing is to be disposed of, any simple method such as torch cutting can be employed. If the bearing is to be reused or checked for the causes of its failure, the same amount of care as in mounting should be taken in dismounting so as not to damage the bearing and other parts.

Since bearings with interference fits are easily damaged during dismounting, measures to prevent damage during dismounting must be incorporated into the design.

It is recommended that dismounting devices be designed and manufactured, if necessary,


It is useful for discovering the causes of failures when the conditions of bearings, including mounting direction and location, are recorded prior to dismounting.

Dismounting method


Tables 15-7 to 15-9 describe dismounting methods for interference fit bearings intended for reuse or for failure analysis.

The force necessary to remove bearings can be calculated using the equations given on page A 134.

Table 15-7 Dismounting of cylindrical bore bearings

- Non-separable bearings should be treated carefully during dismounting so as to minimize external force, which affects their rolling elements.
- The easiest way to remove bearings is by using a press as shown in Fig. (a). It is recommended that the fixture be prepared so that the inner ring can receive the removal force.
- Figs. (b) and (c) show a dismounting method in which special tools are employed. In both cases, the jaws of the tool should firmly hold the side of
- Fig. (d) shows an example of removal by use of an induction heater : this method can be adapted to both mounting and dismounting of the inner rings of NU and NJ type cylindrical roller bearings. The heater can be used for heating and expanding inner rings in a short

Table 15-8 Dismounting tapered bore bearings

Descriptions • Fig. (a) shows the dismounting of an inner ring by means of driving wedges into notches at the back of the labyrinth. Fig. (b) shows dismounting by means of feeding high pressure oil to the fitting surfaces. In both cases, it is recommended that a stopper (ex. shaft nuts) be provided to prevent bearings from suddenly dropping out.

Kovo

- For bearings with an adapter sleeve, the following two methods are suitable. As shown in Fig. (c), fix bearings with clamps, loosen locknuts, then hammer off the adapter sleeve. This method is mainly used for small size bearings. Fig. (d) shows the method using hydraulic nuts.
- Small size bearings with withdrawal sleeves can be removed by tightening locknuts as shown in Fig. (e). For large size bearings, provide several bolt holes on locknuts as shown in Fig. (f), and tighten bolts. The bearings can then be removed as easily as small size bearings.
- Fig. (g) shows the method using hvdraulic nuts.

Table 15-9 Dismounting of outer rings

Outer ring dismou	Outer ring dismounting methods			
		 To dismount outer rings with interfer- ence fits, it is recommended that notches or bolt holes be provided on the shoulder of the housings. 		
(a) Notchs for dismounting	(b) Bolt holes and bolts for dismounting			

15-6 Maintenance and inspection 1

Periodic and thorough maintenance and inspection are indispensable to drawing full performance from bearings and lengthening their useful life.

of bearings

Besides, prevention of accidents and down time by early detection of failures through maintenance and inspection greatly contributes to the enhancement of productivity and profitability.

15-6-1 Cleaning

Before dismounting a bearing for inspection, record the physical condition of the bearing, including taking photographs.

Cleaning should be done after checking the amount of remaining lubricant and collecting lubricant as a sample for examination.

 A dirty bearing should be cleaned using two cleaning processes, such as rough cleaning and finish cleaning.
 It is recommended that a net be set on the

bottom of cleaning containers.
In rough cleaning, use brushes to remove grease and dirt. Bearings should be han-

- grease and dirt. Bearings should be handled carefully. Note that raceway surfaces may be damaged by foreign matter, if bearings are rotated in cleaning oil.
- During finish cleaning, clean bearings carefully by rotating them slowly in cleaning oil.

In general, neutral water-free light oil or kerosene is used to clean bearings, a warm alkali solution can also be used if necessary. In any case, it is essential to keep oil clean by filtering it prior to cleaning.

Apply anti-corrosion oil or rust preventive grease on bearings immediately after cleaning.

15-6-2 Inspection and analysis

Before determining that dismounted bearings will be reused, the accuracy of their dimensions and running, internal clearance, fitting surfaces, raceways, rolling contact surfaces, cages and seals must be carefully examined, so as to confirm that no abnormality is present.

It is desirable for skilled persons who have sufficient knowledge of bearings to make decisions on the reuse of bearings.

Criteria for reuse differs according to the performance and importance of machines and inspection frequency.

If the following defects are found, replace the bearing with a new one.

- Cracks and chips in bearing components
 Flaking on the raceway surfaces and the
- rolling contact surfaces • Other failures of a serious degree
- Other failures of a serious degree described in the following section "16. Examples of bearing failures."

15-7 Methods of analyzing bearing failures

It is important for enhancing productivity and profitability, as well as for accident prevention that abnormalities in bearings are detected during operation.

Representative detection methods are described in the following section.

1) Noise checking

Since the detection of abnormalities in bearings from noises requires ample experience, sufficient training must be given to inspectors. Given this, it is recommended that specific persons be assigned to this work in order to gain this experience.

Attaching hearing aids or listening rods on housings is effective for detecting bearing noise.

2) Checking of operating temperature

Since this method utilizes change in operating temperature, its application is limited to relatively stable operations.

For detection, operating temperatures must be continuously recorded.

If abnormalities occur in bearings, operating temperature not only increase but also change irregularly.

It is recommended that this method be employed together with noise checking.

3) Lubricant checking

This method detects abnormalities from the foreign matter, including dirt and metallic powder, in lubricants collected as samples.

This method is recommended for inspection of bearings which cannot be checked by close visual inspection, and large size bearings. Kovo

Koyo

16. Examples of bearing failures

 Table 16-1 (1)
 Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
1 Flaking		Flaking occurring at an stage	incipient · Too small internal clearance · Improper or insufficient lubricant · Too much load · Rust	Provide proper internal clearance. Select proper lubricating method or lubricant.
		Flaking on one side of r bearing raceway	bearing raceway free side	Fitting between outer ring on the free side and housing should be changed to clearance fit.
	(A-6961)	Symmetrical flaking alo ference of raceway	ng circum- · Inaccurate housing roundness	Correct processing accuracy of housing bore. Especially for split housings, care should be taken to ensure processing accuracy.
	Flaking is a phenomenon when material is [Reference] Pitting	Slanted flaking on the r bearing raceway	adial ball · Improper mounting · Shaft deflection · Inaccuracy of the shaft and	Correct centering. Widen bearing internal clearance. Correct squareness of shaft or
	removed in flakes from a surface layer of the bearing raceways or rolling elements due to rolling fatigue. This charge and the tributed	Flaking occurring near t the raceway or rolling c surface of roller bearing	ontact	housing shoulder.
	This phenomenon is generally attributed the raceway surface. to the approaching end of bearing service life. However, if flaking occurs at early stages of bearing service life, it is necessary to determine causes and adopt countermea- sures.	Flaking on the raceway the same interval as rol element spacing	, , ,	Improve mounting procedure. Provide rust prevention treatment before long cessation of operation.
2 Cracking, chipping		Cracking in outer ring o	r inner ring · Excessive interference · Excessive fillet on shaft or housing · Heavy impact load · Advanced flaking or seizure	 Select proper fit. Adjust fillet on the shaft or in the housing to smaller than that of the bearing chamfer dimension. Re-examine load conditions.
		Cracking on rolling elem	nents · Heavy impact load · Advanced flaking	Improve mounting and handling procedure. Re-examine load conditions.
	(A -635	Cracking on the rib	Impact on rib during mounting Excessive axial impact load	Improve mounting procedure. Re-examine load conditions.
3 Brinelling, nicks	Brinelling is a small surface indentation generated either on the raceway through plastic deformation at the contact point between the raceway and rolling elements, or on the rolling surfaces from	Brinelling on the racewa contact surface	ay or rolling · Entry of foreign matter	Clean bearing and its peripheral parts. Improve sealing devices.
	insertion of foreign matter, when heavy load is applied while the bearing is stationary or rotating at a low rotation speed.	Brinelling on the racewa at the same interval as rolling element spacing	the · Excessive load applied while	Improve mounting procedure. Improve machine handling.
	(Brinelling) · Nicks are those indentations produced directly by rough handling such as hammering.	Nicks on the raceway o contact surface	r rolling · Careless handling	Improve mounting and handling procedure.

Table 16-1 (2) Bearing failures, causes and countermeasures

Failures	(Characteristics	Damages	Causes	Countermeasures
4 Pear skin, discoloration		(Discoloration) (Discoloration) (Discoloration)	Indentation similar to pear skin on the raceway and rolling contact surface.	Entry of minute foreign matter	Clean the bearing and its peripheral parts. Improve sealing device.
	(Discoloration)		Discoloration of the raceway, surface rolling contact surface, rib face, and cage riding land.	Too small bearing internal clear- ance Improper or insufficient lubricant Quality deterioration of lubricant due to aging, etc.	Provide proper internal clearance. Select proper lubricating method or lubricant.
5 Scratches, scuffing		Scratches are relatively shallow marks generated by sliding contact, in the same direction as the sliding. This is not accompanied by apparent melting of material.	Scratches on raceway or rolling contact surface	 Insufficient lubricant at initial operation Careless handling 	 Apply lubricant to the raceway and rolling contact surface when mounting. Improve mounting procedure.
	(Scuffing)	 Scuffing refers to marks, the surface of which are partially melted due to higher contact pressure and therefore a greater heat effect. Generally, scuffing may be regarded as a serious case of scratches. 	Scuffing on rib face and roller end face	Improper or insufficient lubricant Improper mounting Excessive axial load	 Select proper lubricating method or lubricant. Correct centering of axial direc- tion.
6 Smearing	(A-640)	Smearing is a phenomenon in which a cluster of minute seizures cover the rolling contact surface. Since smearing is caused by high temperature due to friction, the surface of the material usually melts partially ; and, the smeared surfaces appear very rough in many cases.	Smearing on raceway or rolling contact surface	 Improper or insufficient lubricant Slipping of the rolling elements This occurs due to the break down of lubricant film when an abnormal self rotation causes slip of the rolling elements on the raceway. 	 Select proper lubricating method or lubricant. Provide proper preload.
7 Rust, corrosion		 Rust is a film of oxides, or hydroxides, or carbonates formed on a metal surface due to chemical reaction. Corrosion is a phenomenon in which a metal surface is eroded by acid or alkali solutions through chemical reaction (electrochemical reaction such as chemical combination and battery formation); resulting in oxidation or dissolution. 	Rust partially or completely cover- ing the bearing surface.	Improper storage condition Dew formation in atmosphere	 Improve bearing storage conditions. Improve sealing devices. Provide rust preventive treatment before long cessation of operation.
	(A-71:	(It often occurs when sulfur or chloride con- tained in the lubricant additives is dissolved at high temperature.	Rust and corrosion at the same interval as rolling element spacing	Contamination by water or corro- sive matter	Improve sealing devices.
8 Electric pitting	(A-662)	When an electric current passes through a bearing while in operation, it can generate sparks between the raceway and rolling elements through a very thin oil film, resulting in melting of the surface metal in this area. This phenomenon appears to be pitting at first sight. (The resultant flaw is referred to as a pit.) When the pit is magnified, it appears as a hole like a crater, indicating that the material melted when it was sparking. In some cases, the rolling surface becomes corru- gated by pitting.	Pitting or a corrugated surface failure on raceway and rolling contact surface The bearings must be replaced, if the corrugated texture is found by scratch- ing the surface with a finger- nail or if pitting can be observed by visual inspection.	Sparks generated when electric current passes through bearings	 Providing a bypass which prevents current from passing through bearings. Insulation of bearings.

. Koyo

Failures	Characteristics	Damages	Causes	Countermeasures
9 Wear	Normally, wear of bearing is observed on sliding contact surfaces such as roller end faces and rib faces, cage pockets, the guide surface of cages and cage riding lands. Wear is not directly related to material fatigue.	Wear on the contact surfaces (roller end faces, rib faces, cage pockets)	Improper or insufficient lubricant	 Select proper lubricating method or lubricant. Improve sealing device. Clean the bearing and its peripheral parts.
	Wear caused by foreign matter and corrosion can affect not only sliding surfaces but rolling surfaces.	Wear on raceways and rolling contact surfaces	Entry of foreign matter Improper or insufficient lubricant	
10 Fretting	Fretting occurs to bearings which are subject to vibration while in stationary condition or which are exposed to minute vibration. It is characterized by rust-colored wear particles. Since fretting on the raceways often appears circles the bring line is a constituent of the second statement of	Rust-colored wear particles generated on the fitting surface (fretting corrosion)	Insufficient interference	Provide greater interference Apply lubricant to the fitting surface
	similar to brinelling, it is sometimes called "falsebrinelling".	Brinelling on the raceway surface at the same interval as rolling element spacing (false brinelling)	 Vibration and oscillation when bearings are stationary. 	 Improve fixing method of the shaft and housing. Provide preload to bearing.
11 Creeping	Creeping is a phenomenon in which bearing rings move relative to the shaft or housing during operation.	Wear, discoloration and scuffing, caused by slipping on the fitting surfaces	Insufficient interference Insufficient tightening of sleeve	Provide greater interference. Proper tightening of sleeve.
12 Damage to cages	Since cages are made of low hardness materials, external pressure and contact with other parts can easily produce flaws and distortion. In some cases, these are aggravated and become chipping and cracks. Large chipping and cracks are often accompanied by deformation, which may reduce the accuracy of the cage itself and may hinder the smooth movement of rolling elements.	Flaws, distortion, chipping, crack- ing and excessive wear in cages. Loose or damaged rivets.	 Extraordinary vibration, impact, moment Improper or insufficient lubricant Improper mounting (misalign- ment) Dents made during mounting 	 Re-examine load conditions. Select proper lubricating method or lubricant. Minimize mounting deviation. Re-examine cage types. Improve mounting.
13 Seizure	A phenomenon caused by abnormal heating in bearings.	Discoloration, distortion and melting together	 Too small internal clearance Improper or insufficient lubricant Excessive load Aggravated by other bearing flaws 	 Provide proper internal clearance. Select proper lubricating method or lubricant. Re-examine bearing type. Earlier discovery of bearing flaws.

Table 16-1 (3) Bearing failures, causes and countermeasures