Heavy duty Rod ends and Spherical bearings DIN ISO 12240-4 (DIN 684 K) - CETOP

Catalogue GE 1204

Introduction

Production range:

Besides rod ends and spherical bearings, which have been produced since 1957, the range also includes axial shaft seals as well as clamping and handling systems. The successful expansion of this product range depends on the use of the latest development and manufacturing methods. These are used at HIRSCHMANN and are carefully nurtured and expanded.

General information:

HIRSCHMANN's rod ends and spherical bearings are bearing elements which can be used for many applications, and are of the plain bearing type. They have proved their worth in millions of instances as a design element for transmitting power between members lying at various angles, both statically and

dynamically. The mounting dimensions of these bearing elements have been fixed in DIN ISO 12240-4 (648 K). This catalogue reflects the current state of development and manufacture, and the information contained in it supersedes earlier publications. We reserve the right to make modifications in the course of product development. Reprints and excerpts require our express permission.

Standard products:

For all the standard products shown in this catalogue, many variations are possible. Details are given in the text below the tables of dimensions, e.g. hard-chromed or rustproof inner ring or outer part, reduced bearing slackness etc.

Specials:

In addition to our standard products, we make specials to customer requirements or to drawing. Examples of our specials are shown on the rear cover of the catalogue.

Warranty:

All the information contained in this catalogue is the result of years of experience in the manufacture and use of rod ends and spherical bearings. Nevertheless, unknown parameters and practical conditions of use can considerably reduce the validity of these general statements, so that the user must conduct practical tests. The multitude of applications for rod ends and spherical bearings mean that we cannot accept any

liability for the correctness of our recommendations in individual instances.

Quality according to DIN EN ISO 9001:

All HIRSCHMANN GMBH rod ends and spherical bearings are

produced using the latest and most reliable production methods, and are subject to quality assurance measures as per DIN EN ISO 9001 both during production and in the product stage.

Advisory service and sales:

Our staff and the sales engineers at our agencies and dealers in Germany and abroad (Page 23), all of whom have their own stocks, would be pleased to assist you at any time.

HIRSCHMANN

Contents:

Selection	3
Technical notes	4–5
Checking bearing size	6-7
Determining bearing size	8
Calculation examples	9
Rod ends heavy-duty relubricatable design	10–11
Rod ends heavy-duty maintenance-free design	12–13
Rod ends heavy-duty, relubricatable and maintenance-free as per CETOP-Norm	14–15
Spherical bearings heavy-duty, relubricatable and maintenance-free	16–17
Spherical bearings heavy-duty, relubricatable and maintenance-free without steel outer ring	18
Sealed rod ends and spherical bearings	19
Threaded bolts for rod ends and spherical bearings	20
Applications and typical installations	21
Terms of delivery and payment	22
Advice and sales	23

HIRSCHMANN GMBH

Selection guidelines

Construction	n	Series	Design features	Application features	Page
		SFC SMC SSC	Relubricatable heavy-duty design, rod ends and spherical bearings Friction pairing: Steel/heavy-duty bronze, with precision-turned bushing having extremely high lining adjustment capability. elenklager	Universal application at high alter- nating and shock loads in radial and axial directions. Suitable for large swings. Vmax = 60 m/min.	10–11 16
		SFCP SMCP SSCP	Maintenance free heavy-duty. rod ends and and spherical bearings Friction pairing: Steel/PTFE bronze fabric. The sliding film is affixed inside the bushing. This ensures long service life.	Universal application at high constant loads and low alternating and shock loads in axial and radial directions. For difficult lubrication conditions, high running speeds and large swings. Vmax = 60 m/min.	12–13 17
		SFCCETOP SFCPCETOP	CETOP-standard relubricatable or maintenance-free heavy-duty rod ends Friction pairing: Steel/heavy-duty bronze Steel/PTFE bronze fabric	As for relubricatable or maintenance- free heavy-duty rod ends and spherical bearings.	14–15
		SC SCP	Relubricatable or maintenance-free heavy- duty spherical bearings without steel outer ring Friction pairing: Steel/heavy-duty bronze Steel/PTFE bronze fabric	As for relubricatable or maintenance- free heavy-duty rod ends and spherical bearings.	18
		2 RS	Sealed rod ends, spherical bearings Heavy-duty and maintenancefree rod ends and spherical bearings of sizes 8-30 can be supplied with replaceable sealing sleeves.	For use in severe environmental conditions (dirt, dust, splashing water, etc.)	19
		W	Threaded bolts for rod ends and spherical bearings Heavy-duty and maintenance- free rod ends and spherical bearings of sizes 5–16 and 20 can be supplied ex stock with a down riveted threaded bolt.	Used as angle joints	20

Technical Notes

Bearing slackness:

Bearing slackness or bearing clearance is the dimension by which the inner ring can be moved within the bushings in a radial or axial direction when not installed and unlubricated. Rod ends and spherical bearings are manufactured with differing bearing slackness, as shown in the following charts, depending on the friction pairing and the size of the bearing. When mounting bearings, please note that the slackness can be reduced to null if necessary, due to possible differences in tolerance (bearing diameter to housing bore hole).

The test load is 100 N.

Bearing slackness in lubricated design (at room temperature)

	Radial slackness in µm					
0.		C2	N	ormal	(53
Size	min	max	min	max	min	max
2 - 4	-	-	10	30	-	-
5 - 8	5	10	10	30	30	60
10 - 14	10	20	20	40	40	80
16 - 20	15	25	30	50	50	100
22 - 30	20	30	40	60	60	120
35 - 50	40	60	60	90	90	150
						Fig. 1

Bearing slackness in maintenance-free design (at room temperature)

		C2	Radial N	slackness ormal	s in µm	C3
Size	min	max	min	max	min	max
2 - 4 5 - 30 35 - 50	- - -	- - -	2 5 10	4 10 20	- 10 20	- 20 40
					-	Fig. 2

The axial slackness is 2 to 3 times the radial slackness under the same test load (measured at room temperature).

Selection of bearing slackness:

Lubricated design

If there are no special reasons for a reduced bearing slackness according to C2, the "normal" radial slackness must be selected as it offers the best lubricating grease distribution

with a high bearing contact area.

All rod ends and spherical bearings are supplied with "Normal" radial slackness unless otherwise ordered.

Maintenance-free design

These bearings are remarkable for their low bearing slackness and a high contact area ratio. Unless otherwise ordered, the maintenance-free rod ends are supplied with "Normal" radial slackness.

If the overall friction movement should be kept low when several rod ends or spherical bearings are used, bearings with a radial slackness in accordance with C3 should be used also.

Consideration of the environment:

It is recommendable to apply a stainless or sealed type when using it in a humid environment.

Accordingly to the individual customer's requirements, the bearings are delivered in the following special designs:

- stainless and acid-proof
- high temperature-proof
- low temperature-proof

- etc.

Lubrication:

All relubricatable rod ends and bearings are supplied ungreased. We recommend lubrication with an anticorrosive Lithiumbased pressure-resistant grease or a Lithium-complex metal soap (multipurpose antifriction bearing grease) for the temperature range of -20° C to $+125^{\circ}$ C. For temperatures above 125° C a high temperature grease must be used and for temperatures below -20° C a low temperature grease must be used.

Initial lubrication and relubrication, lubrication intervals

Under severe conditions and at high load, a temperature check is recommended shortly after commissioning. If a temperature rise of 25° C occurs after a running-in time of approx. 1 hour of operation, immediate lubrication is necessary. A periodical relubrication is necessary in any event.

Rod ends and spherical bearings under alternate load from both sides require shorter intervals betweelubrication than rod ends and spherical bearings under load from one side only.

The lubrication intervals depend on the individual circumstances and on the surrounding conditions.

The following guideline values apply for the minimum lubricating periods:

With load from one direction

t = -	Gh
ι=	30

With load from alternating directions

+ -	Gh
ι-	130

t = lubricating period in hours of operation. Gh = duration of use in hours of operation (see page 7).

Lubricating more often does not have any advantages, furthermore it can damage the hydrodynamic balance on the sliding surface. If the lubricating periods are not observed, the service life can decrease.

The rod ends with female thread are equipped from size 5 upwards with funnel-type lubricating nipples to DIN 3405, those with thread from size 6 upwards. We can supply other lubricating nipples on request.

During the running-in time of the maintenance-free types only a small part of the PTFE is transferred from the sliding foil to the inner ring. Hereby a smoothing effect arises. This reduces the friction and leads to the longer durability. A greasy or oily film prevents this smoothing effect. Thus, we recommend using these elements without lubrication.

Operating temperature:

All designs can be used without restriction in a temperature range from -30° C to +120° C. Increasing the operating temperature reduces the bearing power and, thus, the service life. Operation at high temperature of relubricatable rod ends and spherical bearings depends to a very great extent on whether the high-temperature lubricating grease used offers sufficient lubricity at high operating temperatures. These designs could be used in the short term under low load and with suitable lubrication temperatures up to +250° at C. The maintenance-free bearings can be used in a temperature range from -50° C to +150° C (mind the decrease or the increase of bearing slackness).

Sealed rod ends and spherical bearings can be used at temperatures from -20° C to $+120^{\circ}$ C (sealing sleeves of Perbunan). For higher temperatures up to $+250^{\circ}$ C sealing sleeves can be specially made from fluorelastomer rubber (Viton B).

Moment of friction M:

The moment of friction for rod ends and spherical bearings can be calculated using the following equation:

$$\mathsf{M} = 5 \cdot 10^{{}_{-4}} \cdot \mu \cdot \mathsf{P} \cdot \mathsf{K}$$

M = moment of friction [Nm]

 μ = friction coefficient of sliding surface

P = dynamically equivalent bearing load [N]

K = inner ring diameter [mm]

Guideline values for the friction coefficient µ

Destination	Friction coeff	icient
Bearing type	min	max
lubricated maintenance-free	0.08 0.03	0.15 0.10
		Fig. 3

The low friction coefficients apply for high loads $(p = 80-100 \text{ N/mm}^2)$ at low running speeds (v = 5-10 m/min). The high friction coefficients are for low loads $(p = 5-10 \text{ N/mm}^2)$ at high running speeds (v = 30-60 m/min).

p = specific surface pressure	[N/mm ²]
v = running speed in the lining	[m/min]

Bearing capacities:

The dynamic bearing capacity C:

The dynamic bearing capacity C is a characteristic value for the calculation of the service life of rod ends and spherical bearings under dynamic load, i.e. having to perform tilting, swinging or pivoting movements under load.

The dynamic bearing capacity C is based on the values given in the table for the specific surface pressure kc:

Type of bearing	Specific surface pressure kc [N/mm ²]
lubricated	50
maintenance-free	150

Fig. 4

The static bearing capacity Co:

The static bearing capacity Co represents the maximum permissible load at which no permanent deformation of the lining or the outer part occurs. In the case of the spherical bearing, the surrounding components must be so designed that they prevent any deformation of the bearing.

In the case of rod ends, Co corresponds to the permissible load based on the weakest cross-section which results form the yield point of the outer material, with a safety factor of 1.2.

The ultimate load is at least 1.5 the permissible Co load.

The axial load-bearing capacity:

The axial load-bearing capacity of the rod ends and the spherical bearings is limited by the axial fixing of the bushing (flanged) in the outer part.

In the case of spherical bearings without steel outer ring (types SC.. and SCP..), it must be ensured that the axial bushing support can absorb the forces given in the table (Fig. 5) both statically and dynamically.

The maximum permissible axial load is calculated on the basis of the values given in the table.

Heavy-duty and maintenance-free series	Permissible axial load dynamic static Fa Fa _{perm.} [N] _{perm.} [N]		
SFC/SMC/SSC SFRC/SMRC/SSRC	0.06 · C ₀	0.03 · C ₀	
SFXC/SMXC/SC	0.04 · C ₀	0.02 · C _O	

Fig. 5

Checking bearing size:

To check a bearing size with regard to its static and dynamic loadbearing capacity, the bearing must be investigated to the following criteria:

- Constant dynamic load
- Variable dynamic load
- Static load

The equivalent bearing loads are calculated from Fr and Fa.

Dynamic load:

The inner ring carries out a swinging or pivoting movement in relation to the bushing.

Constant dynamic load:

The dynamically equivalent bearing load P for rod ends and spherical bearings with constant dynamic loads is calculated as follows:

It is necessary that: $F_a \leq F_{a. perm.}$

F_{a. perm.} as per table (Fig. 5)

The axial factor Y is taken from the following table (Fig. 7). Intermediate values can be interpolated linearly.

Load relation	<u>Fa</u> Fr	0.1	0.2	0.3	0.4	0.5	> 0.5
Axial factor	Y	0.8	1	1.5	2.5	3	not suitable
							Ein 7

Εig

Fig. 8

Using the calculated value for P, the load ratio fc = C/P is formed and compared with the values in the table (Fig. 8). The bearing is overloaded if a value below the limit value is obtained. P is also required for calculation of the service life.

Bearing type	$f_{\alpha} = \frac{C}{P^2}$ (lower limit)
lubricated	0.5
maintenance-free	1.0

Variable dynamic load:

For rod ends and spherical bearings with variable radial dynamic load, the mean dymanic bearing load Fm from the individual load steps F1, F2 ... Fn and the corresponding time components q1, $q2 \dots qn$, for instance for three load steps, are calculated as follows: (Fig. 9)

$$F_{m} = \sqrt{\frac{F_{1}^{2} \cdot q_{1} + F_{2}^{2} \cdot q_{2} + F_{3}^{2} \cdot q_{3}}{Q}}$$
[N]

The dynamic bearing load is:

P = F_m [N]

If there is also a constant axial load acting, P is calculated as follows:

$$P = F_m + Y \cdot F_a \quad [N]$$

In addition Fmax must be checked for static safety.

 $F_{max} \leq P_{perm.}$ [N]

For Pperm. see "Permissible load".

Static load:

The inner ring is stationary in relation to the bushing.

For rod ends and spherical bearings with static load, the statically equivalent bearing load Po is calculated as follows:

$$P_{o} = F_{r} + Y \cdot F_{a} \quad [N]$$

It is necessary that: F_{a, perm.} as per table (Fig. 5) $F_a \leq F_{a \text{ perm.}}$ [N]

The axial factor Y is taken from the table (Fig. 7). P_o must be $\leq P_{oerm}$. See "Permissible load" for P_{perm} .

o pani.

Permissible load Pperm.:

The values written in brackets are valid for rod ends with male threads and lubricating nipples or lubrication holes.

Service life:

The service life of a rod end or spherical bearing is a function of several factors, some of which are difficult to determine. A precise calculation is therefore not possible. The calculation method following, which has been proved correct in many test stand trials, gives a relatively accurate result for the service life. Influences as shocks, vibrations, soiling etc. are not taken into consideration. This calculation is based on a total abrasion of the linings of 0.3% of the diameter of the inner ring. The coefficient of the sliding friction of the linings increases of about 0.25.

<u> </u>	$b_1 \cdot b_2 \cdot b_3$	107 . C
Gh-	K·β·f	P

 G_h = service life C = dynamic bearing capacity P = dynamic equivalent bearing load K = inner ring diameter

 $\beta = \text{swing angle} \ge 1$

(by pivoting movements β = 180°)

f = swing frequency

b₁ = load direction factor (Fig.12) b₂ = temperature factor (Fig.12)

b₃ = material factor (Fig.13)

Operating- factors	Load fact	direction or b ₁	Temperature factor b ₂									
	Load d	irection		Temperature [° C]								
Bearing type	single direction	alternat. direction	80	100	150	200	250					
lubricated	1	2.5	1	1	1	0.8	0.5					
maintenance- free	1	0.3	1	1	0.8	-	-					
							Fig. 12					

Very low loads or running speeds result in a relatively high arithmetic service life. In practice, with a longer service life, environmental influences can acquire importance and lead to an error in the results.

If the required service life is not obtained, repeat this calculation with next bearing size up.

Checking of linings for overheating: Permissible running speed:

[h]

[N]

[N]

[mm]

[rpm]

[degrees]

The permissible running speed is largely a function of the surface exerted, the friction pairing, the lubrication and cooling if applicable. The heat building up in the bearing is proportional to the product of surface pressure and running speed. When checking the bearing size, therefore the $p \cdot v$ value must be determined and compared with the permissible value (Fig. 14). The bearing running speed must also be checked.

To avoid overheating, the following is necessary:

$$\begin{array}{c} p \cdot v \leq (p \cdot v)_{perm.} & \left[\begin{array}{c} N \\ \overline{mm^2} \cdot \overline{min} \end{array} \right] \\ \hline v \leq v_{perm.} & [m/min] \\ \end{array}$$

 $p = surface pressure = k_c \cdot \frac{r}{C}$ $k_c = specific surface pressure (Fig. 4)$ v = mean running speed = [N/mm²]

1,745 · 10 ^₅ · K · β · f [m/min]

Guideline values for the permissible p · v value

Bearing type	(p · v) _{perm}	Perm. runni	ng speed
	<u>N</u>	v _{perm.}	[m/min]
	mm² · min	swing	pivot
lubricated	30	15 6	60
maintenance-free	80		O

Fig. 14

Lubricated design Determining of the bearing size

Fig. 15

Maintenance-free design

The insertion of the relative service life Gh as auxiliary quantity enables a correlation between the relative service life and the dynamically equivalent bearing load to be represented graphically.

The following equation applies for the relative service life:

$\overline{G}_{h} = G_{h} \cdot \frac{\beta \cdot f}{b_{1} \cdot b_{2}}$
--

Gь = relative service life	[h]
G _b = required service life	[h]
β = swing angle	[degrees]
f = swing frequency	[rpm]
b ₁ = load direction factor (Fig. 12)	

b₂ = temperature factor (Fig. 12)

Example:

A rod end with male thread is required for the following operating conditions:

Alternating dynamic load F.	1200 N
Swing angle B	30°
Swing frequency f	120 rpm
Operating temperature	50° C
Required service life G _b	7000 h

Since the load is alternating, a lubricated design is recommended, as set forth in the "Selection" section (page 3). Thus, Fig. 12 gives b₁ = 2.5 and b₂ = 1.

Dynamically equivalent bearing load: P = E = 1200 N

$$\overline{G}_h = G_h \cdot \frac{\beta \cdot f}{b_1 \cdot b_2} = 7000 \cdot \frac{30 \cdot 120}{2,5 \cdot 1} = 10,08 \cdot 10^{\circ} h$$

The intersection in Fig. 15 with P = 1200 N and \overline{Gh} = 10,08 \cdot 10⁶ h results in the bearing size 12. Thus, SMC 12 is chosen. Checking the rod end SMC 12 with regard to the permissible load Pperm. and the service life Gh, and checking the lining for overheating and determination of the lubricating intervals is conducted as shown in Example 1, page 9.

The example given in Fig. 16 is the result of the 2nd calculation example on page 9.

Example 1:

The conveying lever on a packaging machine is to be moved via a rod end. The designs calls for a size 12 rod end. Values dictated by design:

Alternating constant dynamic radial load F _r	1200 N
Swing angle β	30°
Swing frequency f	120 rpm
Operating temperature	50° C
Since the load is alternating and constant, a lub is recommended according to the section "Se 3), e.g. SMC 12.	pricated design election" (page
Dynamic bearing capacity C	13400 N
Static bearing capacity C_o	17000 N
Inner ring \emptyset K	22.225 mm

Requirements on rod end SMC 12:

1. Radial load Fr must be smaller than the permissible load P_{perm} to avoid permanent deformation. 2. The service life $G_{h, req}$ should be at least 6000 operating

hours.

Calculation:

Dynamically equivalent bearing load P:

$$P = F_r + Y \cdot F_a \qquad \left| \frac{F_a}{F_r} = \frac{0}{1200} = 0 \right| Y = 0$$
$$P = F_r = 1200 \text{ N}$$

Permissible rod end load Pperm :

$$\begin{array}{l} {\mathsf{P}_{\mathsf{perm.}} = {\mathsf{C}_{\mathsf{o}}} \cdot {\mathsf{b}_2} \cdot {\mathsf{b}_4} & \left| \begin{array}{c} {\mathsf{b}_2 = 1} \left({\text{acc. to Fig. 12}} \right) \\ {\mathsf{b}_4 = 0.35} \left({\text{acc. to Fig. 11}} \right) \\ {\mathsf{P}_{\mathsf{perm.}} = 17\,000 \cdot 1 \cdot 0.35 = 5950} \, {\mathsf{N}} \\ {\mathsf{P} = 1200} \, {\mathsf{N}} < {\mathsf{P}_{\mathsf{perm.}} = 5950} \, {\mathsf{N}} \left({\text{1st requirement met}} \right) \\ \end{array}$$

Determination of service life Gh:

$$\begin{array}{l} G_{h} = \frac{b_{1} \cdot b_{2} \cdot b_{3}}{K \cdot \beta \cdot f} \cdot 10^{7} \cdot \frac{C}{P} \quad [h] \\ b_{1} = 2.5 \; (Fig. 12) \\ b_{2} = 1 \; (Fig. 12) \\ b_{3} = 2.1 \; (Fig. 13) \quad \left| \begin{array}{c} C \\ \overline{P} \end{array} \right| = \frac{13400}{1200} = 11.1 \\ G_{h} = 7200 \; h > G_{h, \; reg.} = 7000 \; h \; (2nd \; requirement \; met) \end{array}$$

Checking of lining for overheating:

$$\begin{split} p &= k_{c} \cdot \frac{P}{C} \quad [N/mm^{2}] \\ k_{c} &= 50 \; N/mm^{2} \; (acc. \; to \; Fig. \; 4) \\ \frac{P}{C} &= \frac{1200}{13400} = -\frac{1}{11.1} = 0.089 \\ p &= 50 \cdot 0.089 \; N/mm^{2} = 4.45 \; N/mm^{2} \\ v &= 1.745 \cdot 10^{-5} \cdot K \cdot \beta \cdot f = 1.745 \cdot 10^{-5} \cdot 22.225 \cdot 30 \cdot 120 \; m/min \\ v &= 1.4 \; m/min < v_{perm.} = 15 \; m/min \; (acc. \; to \; Fig. \; 14) \\ p \cdot v &= 4.45 \cdot 1.4 = 6.23 < (p \cdot v)_{perm.} = 30 \; (Fig. \; 14) \\ No \; overheat \end{split}$$

Lubrication interval:

t =
$$\frac{G_h}{130}$$
 = $\frac{7200}{130}$ = 55 h

Example 2:

A lever of a filling machine is moved via a double-action pneumatic cylinder. A maintenance-free rod end with mounting dimensions to CETOP is required.

HRSCHMANN

Values dictated by design: Variable, pulsating, radial, dynamic load $F_1 = 2000 \text{ N}, F_2 = 6000 \text{ N}, F_3 = 3000 \text{ N}. F_{max} = 8000 \text{ N}$ $q_1 = 20\%, q_2 = 15\%, q_3 = 65\%$ Constant axial load Fa 1000 N Swing angle ß 25° Swing frequency f 60 rpm Operating temperature max. 80° C

Requirements on rod end:

1. The dynamically equivalent bearing load P and the statically equivalent bearing load Po must be lower than the permis-

sible load P_{perm.} 2. The service life G_{h, req.} must be at least 11000 operating hours.

Calculation:

Mean dynamic bearing load Fm:

$$F_{m} = \sqrt{\frac{F_{1}^{2} \cdot q_{1} + F_{2}^{2} \cdot q_{2} + F_{3}^{2} \cdot q_{3}}{Q}}$$

$$F_{m} = \sqrt{\frac{2000^{2} \cdot 20 + 6000^{2} \cdot 15 + 3000^{2} \cdot 65}{100}} = 3471 \text{ N}$$

Dynamically equivalent bearing load P:

$$P = F_m + Y \cdot F_a \qquad \begin{vmatrix} F_a \\ F_m \\ F_m \\ Y = 1.44 \text{ (interpolated acc. to Fig. 7)} \\ P = 3471 + 1.44 \cdot 1000 = 4911 \text{ N} \end{vmatrix}$$

Determination of relative service life G_b:

$$\begin{split} \bar{G}_{h} &= G_{h} = \frac{\beta \cdot f}{b_{1} \cdot b_{2}} \quad \left| \begin{array}{c} \beta = 25 \\ f = 60 \end{array} \right| \begin{array}{c} b_{1} = 1 \ (Fig. \ 12) \\ b_{2} = 1 \ (Fig. \ 12) \\ \hline G_{h} &= 11000 \cdot \frac{25 \cdot 60}{1 \cdot 1} = 16.5 \cdot 10^{6} \ h \end{split}$$

On the basis of the chart (Fig. 16) the rod end size calculated is 16

SFCP 16 CETOP is selected (page 15).	
Dynamic bearing capacity C	60 0 00 N
Static bearing capacity Co	28500 N
Inner ring Ø K	28.575 mm
Limit value $f_c = \frac{C}{P} = \frac{60000}{4911} = 12.2$ (correct acc.	to Fig. 8)

Permissible road end load Pperm.:

$$\begin{array}{l} P_{perm.} = C_{o} \cdot b_{2} \cdot b_{4} \quad | \; b_{2} = 1 \; (Fig. \; 12) \quad | \; b_{4} = 0.5 \; (Fig. \; 11) \\ P_{perm.} = 28500 \cdot 1 \cdot 0.5 = 14250 \; N \\ P_{o} = F_{max} = 8000 \; N < P_{perm.} \\ P = 4911 \; N < P_{perm.} \end{array} \} \; \text{1st requirement met}$$

Determination of service line Gh:

$$G_{h} = \frac{b_{1} \cdot b_{2} \cdot b_{3}}{K \cdot \beta \cdot f} \cdot 10^{7} \cdot \frac{C}{P} \mid b_{3} = 4.2, \text{ for } \frac{C}{P} = 12.2 \text{ (Fig. 13)}$$

$$G_{h} = \frac{1 \cdot 1 \cdot 4}{28.575 \cdot 25 \cdot 60} \cdot 10_{7} \cdot 12.2 = 11900 \text{ h}$$

 $G_{h, reg.} = 11000 h < G_{h} = 11900 h$ (2nd requirement met)

Relubricatable heavy-duty rod ends with female thread

Friction pairing steel on heavy-duty bronze

*Safety factor Co see page 5

Series	d	в	с	d1	d2	d3	d₄	н	H1	H2	G1	K	G	sw	Bear dynamic C	ng capacities static C		Angle of misalign.	Weight each
SFC												Ball dia Ø	Inread		N	N	N	α°	≈g
2	2	4.8	3.6	3.6	9	3.8	4.5	16	20.5	2.5	7	6.000	M2	4.5	900	1900	_	16	3
3	3	6	4.5	5.1	12	5	6.5	21	27	з	10	7.937	M3	5.5	1 500	3600/2200	_	15	7
4	4	7	5.25	6.5	14	6.5	8.5	24	31	3.5	12	9.520	M4	7	2 260	4500/2700	_	14	11
5	5	8	6	7.7	18	9	11	27	36	4	10	11.112	M5	9	3 250	6 000	10 000	13	18
6	6	9	6.75	8.9	20	10	13	30	40	5	12	12.700	M6	11	4 300	7 000	12 000	13	27
8	8	12	9	10.4	24	12.5	16	36	48	5	16	15.875	M8	14	7 200	12 000	21 000	13	46
10	10	14	10.5	12.9	28	15.	19.	43	57.	6.5	20	19.050	M10	17	10 000	14 500	28 000	13	78
12	12	16	12	15.4	32	17.5	22	50	66.	6.5	22	22.225	M12	19	13 400	17 000	34 000	13	115
14	14	19	13.5	16.8	36	20.	25.	57	75.	8.	25	25.400	M14	22	17 000	24 000	46 000	15	170
16	16	21	15	19.3	42	22.	27.	64	85.	9.	28	28.575	M16	22	21 600	28 500	55 000	15	230
18	18	23	16.5	21.8	46	25	31	71	94	10	32	31.750	M18x1.5	27	26 000	40 000	66 000	15	320
20	20	25.	18.	24.3	50	27.5	34	77	102	10	33	34.925	M20x1.5	32	31 500	45 000	76 000	15	420
22	22	28.	20	25.8	54	30	37	84	111	12	37	38.100	M22x1.5	32	38 000	52 000	93 000	15	540
25	25	31	22	29.6	60	33.5	42	94	124	12	42	42.850	M24x2.	36	47 500	60 000	110 000	15	750
30	30	37	25	34.8	70	40	50	110	145	15	51	50.800	M30x2	41	64 000	81 000	150 000	15	1130
35	35	43	30	40.3	80	49	60	125	165	20	56	59.000	M36x2	50	90 000	95 000	170 000	16	1600
40	40	49	35	44.2	90	57	69	142	187	25	60	66.000	M42x2	60	120 000	130 000	235 000	15	2400
50	50	60	45	55.8	116	65	78	160	218	25	65	82.000	M48x2	65	190 000	235 000	440 000	14	5000
Tolerance ±	H7	0 0.12	_	-	_	_	-	_	_	_	1.0 0	-	DIN 13 6 H	0 0.3	_	_	-	-	_

The sizes 2, 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SFC..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50 961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, 2.0550.31. Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXC.. (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50 961. Bushings: As for SFC.. Inner ring: As for SFC..

Series SFRC.. (available from size 3) Outer part: Stainless steel 1.4305, from size 16, forged. Bushings: As for SFC.. Inner ring: As for SFC.. but hard-chromed; if required stainDesign

Bearing slackness: Depending on size, between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 4. Designation example SFC 10 C 2.

Thread: DIN 13 – 6 H, r.h. or l.h. L.h. thread designation example SFL C 10. Special threads on request, see pages 14 and 15 for CETOP standard.

Lubricating nipple: Size 5–50 funnel-type DIN 3405, form D. Stainless inner ring: From size 5 with stainless inner ring of material 1.4034 possible.

Designation example SFRC 10 IR.

Hard-chromed inner ring: From size 5 with hard-chromed inner ring (on bearing surface only).

Designation example SFC 10 IH.

Hard-chromed outer part and inner ring:

Designation example SFC 10 H.

Sealed design: Sizes 8-30 can be supplied with replaceable sealing sleeves (see page 19).

less steel.

Relubricatable heavy-duty rod ends with male thread

Friction pairing steel on heavy-duty bronze

Series SMC..

SMXC.. SMRC.. (rustproof)

Angle of Weight

*Safety factor C_o see page 5

Series SMC	d	В	с	dı	d2	н	H,	G1	K Ball dia. Ø	G Thread	dynamic C N	static C SMC/SMRC N	SMXC N	misalig. α°	each ≈ g
2	2	48	36	3.6	g	18	22.5	g	6 000	M2	900	400	_	16	2
3	3	6	4.5	5.1	12	27	33.	15	7.937	Ma	1 500	1200/700	_	15	5
4	4	7	5.25	6.5	14	30	37.	18	9.520	M4	2 260	2000/1200	_	14	9
5	5	8.	6.	7.7	18	33	42.	20	11.112	M5	3 250	3 000	6 000	13	15
6	6	9.	6.75	8.9	20	36	46.	22	12,700	M6	4 300	4 000	8 800	13	20
8	8	12.	9.	10.4	24	42	54.	25	15.875	M8	7 200	8 000	16 000	13	38
10	10	14.	10.5	12.9	28	48	62.	29	19.050	M10	10 000	13 000	26 000	13	62
12	12	16.	12.	15.4	32	54	70.	33	22.225	M12	13 400	17 000	34 000	13	92
14	14	19.	13.5	16.8	36	60	78.	36	25.400	M14	17 000	24 000	46 000	15	135
16	16	21.	15.	19.3	42	66	87.	40	28.575	M16	21 600	28 500	55 000	15	205
18	18	23.	16.5	21.8	46	72	95.	44	31.750	M18x1.5	26 000	38 000	66 000	15	285
20	20	25	18	24.3	50	78	103.	47	34.925	M20x1.5	31 500	42 000	76 000	15	360
22	22	28	20	25.8	54	84	111.	51	38.100	M22x1.5	38 000	52 000	93 000	15	475
25	25	31	22	29.6	60	94	124	57	42.850	M24x2.	47 500	60 000	110 000	15	650
30	30	37	25	34.8	70	110	145	66	50.800	M30x2.	64 000	81 000	150 000	15	1050
35	35	43	30	40.3	80	140	180	85	59.000	M36x2.	90 000	95 000	170 000	16	1780
40	40	49	35	44.2	90	150	195	90	66.000	M42x2.	120 000	130 000	235 000	15	2600
50	50	60	45	55.8	116	185	243	105	82.000	M48x2.	190 000	235 000	440 000	14	4900
Tolerance ±	H7	0 0.12	_	_	_	_	_	1.0 0	—	DIN 13 6 g	_	_	-	-	—

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SMC..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501 galvanized and chromalized to DIN 50.961.

Bushings: Cu Sn &/Cu Zn 40 Al 2 F59, 2.0550.31. Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SMXC.. (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961. Bushings: As for SMC.. Inner ring: As for SMC..

Series SMRC.. (available form size 3) Outer part: Stainless steel 1.4305, from size 16 forged. Bushings: as for SMC.. Inner ring: as for SMC.. but hard-chromed, if required stainless steel.

Design

Bearing slackness: Depending on size between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 4. Designation example SMC 10 C 2.
Thread: DIN 13 – 6 g, r.h. or l.h. L.h. thread designation example SML C 10. Special threads on request.
Lubricating nipple: Size 6–50 funnel-type DIN 3405, form D.
Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible.
Designation example SMRC 10 IR.
Hard-chromed inner ring: From size 5 available with hard-chromed inner ring: From size 5 available with hard-chromed inner ring: SMC 10 IH.
Hard-chromed outer part and inner ring: Designation example SMC 10 H.
Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 19).

Bearing capacities

Maintenance-free heavy-duty rod ends with female thread

Friction pairing steel on PTFE bronze fabric

*Safety factor Co see page 5

Series	d	в	с	d1	d2	d3	d₄	н	H1	H₂	G1	K Ball	G Thread	sw	Bear dynamic C	ing capacities static C SFCP/SFRCP	SFXCP	Angle of misalign.	Weight each
SFCP												dia. Ø			N	N	N	α°	≈g
3	3	6	4.5	5.2	12	5	6.5	21	27	з	10	7.937	Mз	5.5	4 700	2700/1600	_	15	7
4	4	7	5.25	6.5	14	6.5	8.5	24	31	3.5	10	9.520	M4	7	6 7 0 0	3500/2000	-	14	11
5	5	8	6	7.7	18	9	11	27	36	4	10	11.112	M5	9	7 800	6 000	10 000	13	17
6	6	9	6.75	8.9	20	10	13	30	40	5	12	12.700	M6	11	10 900	7 000	12 000	13	25
8	8	12	9	10.4	24	12.5	16	36	48	5	16	15.875	M8	14	18 000	12 000	21 000	13	43
10	10	14	10.5	12.9	28	15	19	43	57	6.5	20	19.050	M10	17	27 000	14 500	28 000	13	75
12	12	16	12	15.4	32	17.5	22.	50	66	6.5	22	22.225	M12	19	36 000	17 000	34 000	13	110
14	14	19	13.5	16.8	36	20	25	57	75	8	25	25.400	M14	22	48 000	24 000	46 000	15	160
16	16	21	15	19.3	42	22	27	64	85	8	28	28.575	M16	22	60 000	28 500	55 000	15	220
18	18	23	16.5	21.8	46	25	31	71	94	10	32	31.750	M18x1,5	27	74 000	40 000	66 000	15	315
20	20	25	18	24.3	50	27.5	34	77	102	10	33	34.925	M20x1,5	32	90 000	45 000	76 000	15	400
22	22	28	20	25.8	54	30	37	84	111	12	37	38.100	M22x1,5	32	110 000	52 000	93 000	15	515
25	25	31	22	29.6	60	33.5	42	94	124	12	42	42.850	M24x2	36	136 000	60 000	110 000	15	710
30	30	37	25	34.8	70	40	50	110	145	15	51	50.800	M30x2	41	186 000	81 000	150 000	15	1130
35	35	43	30	40.3	80	49	60	125	165	20	56	59.000	M36x2	50	264 000	95 000	170 000	16	1850
40	40	49	35	44.2	90	57	69	142	187	25	60	66.000	M42x2	60	348 000	130 000	235 000	15	2750
50	50	60	45	58.8	116	65	78	160	218	25	65	82.000	M48x2	65	550 000	235 000	440 000	14	4800
Tolerance ±	H7	0 0.12	-	-	_	-	_	_	-	—	1.0 0	-	DIN 13 6 H	0 0.3	_	-	-	-	—

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SFCP..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50 961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXCP.. (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961. Bushings: As for SFCP.. Inner ring: As for SFCP.

Series SFRCP.. (available from size 3) Outer part: Stainless steel 1.4305, from size 16 forged. Bushings: As for SFCP.. Inner ring: As for SFCP. but hard-chromed; if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 4 for precise details. Designation example SFCP 10 C 2.

Thread: DIN 13 – 6 H, r.h. or l.h. L.h. thread designation example SFL CP 10. Special thread on request, see pages 14 and 15 for CETOP standard.

Stainless inner ring: From size 5 with stainless inner ring of material 1.4034 possible.

Designation example SFRCP 10 IR.

Hard-chromed inner ring: From size 5 available with hardchromed inner ring (on bearing surface only). Designation example SFCP 10 IH.

Hard-chromed outer part and inner ring:

Designation example SFCP 10 H.

Sealed design: Sizes 8-30 can be supplied with replaceable sealing sleeves (see page 19).

Maintenance-free heavy-duty rod ends with male thread

Friction pairing steel on PTFE bronze fabric

Series SMCP..

SMXCP.. SMRCP.. (rustproof)

*Safety factor Co see page 5

Sorice	d	Б	c	d	d	ш	ш	6	ĸ	c	Bearing capacit		• •	Angle of	Weight
Series	u	Б	č	u1	u2	п	п1	91	Ball	Thread	uynaniic C	SMCP/SMBCP	'° ISMXCP	misanyn.	each
SMCP									dia. Ø	mede	N	N	N	α°	≈g
3	3	6	4.5	5.1	12	27	33	15	7.937	M3	4 700	900/500	_	15	5
4	4	7	5.25	6.5	14	30	37	18	9.520	M4	6 700	1500/900	-	14	9
5	5	8	6	7.7	18	33	42	20	11.112	M5	7 800	3 000	6 000	13	15
6	6	9	6.75	8.9	20	36	46	22	12.700	M6	10 900	4 000	8 800	13	20
8	8	12	9	10.4	24	42	54	25	15.875	M8	18 000	8 000	16 000	13	38
10	10	14	10.5	12.9	28	48	62	29	19.050	M10	27 000	13 000	26 000	13	60
12	12	16	12	15.4	32	54	70	33	22.225	M12	36 000	17 000	34 000	13	90
14	14	19	13.5	16.8	36	60	78	36	25.400	M14	48 000	24 000	46 000	15	135
16	16	21	15	19.3	42	66	87	40	28.575	M16	60 000	28 500	55 000	15	200
18	18	23	16.5	21.8	46	72	95	44	31.750	M18x1.5	74 000	40 000	66 000	15	280
20	20	25	18	24.3	50	78	103	47	34.925	M20x1.5	90 000	45 000	76 000	15	350
22	22	28	20	25.8	54	84	111	51	38.100	M22x1.5	110 000	52 000	93 000	15	470
25	25	31	22	29.6	60	94	124	57	42.850	M24x2	136 000	60 000	110 000	15	650
30	30	37	25	34.8	70	110	145	66	50.800	M30x2	186 000	81 000	150 000	15	1090
35	35	43	30	40.3	80	140	180	85	59.000	M36x2	264 000	95 000	170 000	16	1800
40	40	49	35	44.2	90	150	195	90	66.000	M42x2	348 000	130 000	235 000	15	2500
50	50	60	45	55.8	116	185	243	105	82000	M48x2	550 000	235 000	440 000	14	4900
Tolerance ±	H7	0 0.12	_	_	_	_	_	1.0 0	_	DIN 13 6g	-	-	-	-	—

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SMCP..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59 galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SMXCP.. (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961. Bushings: As for SMCP.. Inner ring: As for SMCP.

Series SMRCP.. (available from size 3) Outer part: Stainless steel 1.4305, from size 16 forged. Bushings: As for SMCP.. Inner ring: As for SMCP.. but hard-chromed; if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 4 for precise details. Designation example SMCP 10 C 2. Thread: DIN 13 – 6 g, r.h. or l.h. L.h. designation example SMLCP 10. Special thread on request. Stainless inner ring: From size 5 with stainless steel inner ring of material 1.4034 possible. Designation example SMRCP 10 IR. Hard-chromed inner ring: From size 5 available with hard-chromed inner ring: SMCP 10 IH. Hard-chromed outer part and inner ring: Designation example SMCP 10 H. Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 19).

Relubricatable heavy-duty rod ends for pneumatic cylinders

Friction pairing steel on heavy-duty bronze Mounting dimensions: CETOP

Angle of misalignment

**Safety factor C_o see page 5

Series	d	в	с	d1	d2	d3	d4	н	H1	H ₂	G1	к	G	sw	Bear dynamic C	ng capacities static C	**	Angle of misalign.	Weight each
SFC												Ball dia.⊘	Thread		N	SFC/SFRC N	SFXC	α°	≈g
5 6*	5	8	6.	7.7	18	9	11	27	36	4	10	11.112	M4	9	3 250	6 000	10 000	13	17
8* 10 12 16	10 12 16	14 16 21	10.5 12 15	12.9 15.4 19.3	28 32 42	15 17.5 22	19 22 27	43 50 64	57 66 85	6.5 6.5 8	20 22 28	19.050 22.225 28.575	M10x1.25 M12x1.25 M16x1.5	17 19 22	10 000 13 400 21 600	14 500 17 000 28 500	28 000 34 000 55 000	13 13 15	75 110 220
20* 25* 30	30	37	25	34.8	70	40	50	110	145	15	51	50.800	M27x2	41	64 000	81 000	150 000	15	1130
35* 40* 50*																			
Tolerance ±	H7	0 0.12	—	-	-	-	-	—	_	—	1.0 0	-	DIN 13 6 H	0 0.3	-	-	-	-	—

Series

SFC...CETOP

*Sizes 6, 8, 20, 25 and 35 to 50 correspond to the rod ends on page 10.

Material

Series SFC...CETOP

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50 961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, 2.0550.31. Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXC...CETOP (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961. Bushings: As for SFC.. Inner ring: As for SFC..

Series SFRC...CETOP (available from size 5) Outer part: Stainless steel 1.4305, from size 16 forged. Bushings: As for SFC...

Inner ring: As for SFC.. but hard-chromed; if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.090 mm radially. With reduced or increased slackness see page 4. Designation example SFC 10 C 2 CETOP. Thread: DIN 13 – 6 H, r.h. or l.h. L.h. thread designation ex-

ample SFL C 10 CETOP.

Lubricating nipple: Sizes 5-50 funnel-type DIN 3405, form D.

Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible. Designation example SFRC 10 IR CETOP. Hard-chromed inner ring: From size 5 available with hardchromed inner ring (on bearing surface only). Designation example SFC 10 IH CETOP. Hard-chromed outer part and inner ring: Designation example SFC 10 H CETOP. Sealed design: Sizes 8–30 can be supplied with replaceable

sealing sleeves (see page 19).

Relubricatable heavy-duty rod ends for pneumatic cylinders

Friction pairing steel on PTFE bronze fabric Mounting dimensions: CETOP

Series	d	в	с	dı	d_2	d3	d₄	н	H1	H ₂	G1	к	G	sw	Bear dynamic C	ing capacities static C	**	Angle of misalign.	Weight each
SFCP												Ball dia. Ø	Thread		N	SFCP/SFRCP N	N	α°	≈g
5 6*	5	8	6	7.7	18	9	11	27	36	4	10	11.112	M4	9	7 800	6 000	10 000	13	15
8* 10 12 16	10 12 16	14 16 21	10.5 12 15	12.9 15.4 19.3	28 32 42	15 17.5 22	19 22 27	43 50 64	57 66 85	6.5 6.5 8	20 22 28	19.050 22.225 28.575	M10x1.25 M12x1.25 M16x1.5	17 19 22	27 000 36 000 60 000	14 500 17 000 28 500	28 000 34 000 55 000	13 13 15	60 90 200
20* 25* 30	30	37	25	34.8	70	40	50	110	145	15	51	50.800	M27x2	41	186 000	81 000	150 000	15	1090
40* 50*		•									1.0		DIN 12	0					
±	H7	0.12	—	-	-	-	-	-	-	—	0	—	6 H	0.3	-	-	-	-	-

Series

*Sizes 6, 8, 20, 25 and 35 to 50 correspond to the rod ends on page 12.

Material

Series SFCP...CETOP

Outer part: Up to size14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50 961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXCP...CETOP (available from size 5) Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50 961. Bushings: As for SFCP.. Inner ring: As for SFCP..

Series SFRCP...CETOP (available from size 5) Outer part: Stainless steel 1.4305, from size 16 forged. Bushings: As for SFCP.. Inner ring: As for SFCP.. but hard-chromed; if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 4 for precise details. Designation example SFC 10 C 2 CETOP. Thread: DIN 13 – 6 H r.h. or l.h. L.h. thread designation example SFL CP 10 CETOP. Stainless inner ring: From size 5 with stainless steel inner ring of material 1.4034 possible. Designation example SFRCP 10 IR CETOP. Hard-chromed inner ring: From size 5 available with hard-chromed inner ring: From surface only). Designation example SFCP 10 IH CETOP. Hard-chromed outer part and inner ring: Designation example SFCP 10 H CETOP. Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 19).

**Safety factor C_o see page 5

Relubricatable heavy-duty spherical bearings

Friction pairing steel on heavy-duty bronze

Series SSC ..

SSRC.. (rustproof)

		_	_				Bearing o	apacities	Angle of	Weight
Series	d	D	В	с	d	K Rall	dynamic C	static Co*	align.	each
SSC						dia. Ø	N	N	α°	≈g
2	2	9	4.8	3.6	3.6	6.000	900	2 450	16	3
3	3	12	6	4.5	5.2	7.937	1 500	4 200	15	4
4	4	14	7	5.25	6.4	9.520	2 260	5 900	14	6
5	5	16	8	6	7.7	11.112	3 250	19 000	13	9
6	6	18	9	6.75	8.9	12.700	4 300	25 000	13	13
8	8	22	12	9	10.4	15.875	7 200	41 000	13	24
10	10	26	14	10.5	12.9	19.050	10 000	58 000	13	40
12	12	30	16	12	15.4	22.225	13 400	78 000	13	60
14	14	34	19	13.5	16.8	25.400	17 000	100 000	15	85
16	16	38	21	15	19.3	28.575	21 600	125 000	15	115
18	18	42	23	16.5	21.8	31.750	26 000	155 000	15	150
20	20	46	25	18	24.3	34.925	31 500	186 000	15	200
22	22	50	28	20	25.8	38.100	38 000	228 000	15	260
25	25	56	31	22.	29.6	42.850	47 500	284 000	15	360
30	30	66	37	25	34.8	50.800	64 000	384 000	15	580
35	35	78	43	30	40.3	59.000	90 000	510 000	16	960
40	40	87	49	35	44.2	66.000	120 000	675 000	15	1350
50	50	108	60	45	55.8	82.000	190 000	1 100 000	14	2700
Tolerance ±	H7	h6**	0 0.12	0 0.2	-	_	-	-	-	-

**recommended housing hole M 7

Material

Series SSC..

Outer part: Free-cutting steel 1.0718, browned. **Bushings:** Cu Sn 8/Cu Zn 40 Al 2 F59. **Inner ring:** Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SSRC.. (available from size 5) Outer part: Stainless steel, material 1.4305. Bushings: As for SSC.. Inner ring: As for SSC.. but hard-chromed, if requiered stainless steel.

Design

Bearing slackness: Depending on size, between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 4. Designation example SSC 10 **C 2**.

Lubrication: Through an annular lubrication groove on the outer ring.

Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible.

Designation example SSRC 10 IR.

Hard-chromed inner ring: From size 5 available with

hardchromed inner ring.

Designation example SSC 10 IH.

Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 19).

*Security factor Co see page 5

Relubricatable heavy-duty spherical bearings

Friction pairing steel on PTFE bronze fabric

Series SSCP ..

SSRCP.. (rustproof)

		_	_				Bearin	g cap.	Angle of	Weight
Туре	d	D	В	с	d1	к	dynamic C	static Co*	misalign.	each
SSCP						Ball dia. Ø	N	N	a°	≈g
2	2	9	4.8	3.6	3.6	6.000	2 700	5 100	16	3
3	3	12	6	4.5	5.2	7.937	4 700	7 300	15	4
4	4	14	7	5.25	6.4	9.520	6 700	11 000	14	6
5	5	16	8	6	7.7	11.112	7 800	15 000	13	9
6	6	18	9	6.75	8.9	12.700	10 900	21 000	13	12
8	8	22	12	9	10.4	15.875	18 000	36 000	13	20
10	10	26	14	10.5	12.9	19.050	27 000	53 000	13	35
12	12	30	16	12	15.4	22.225	36 000	71 000	13	55
14	14	34	19	13.5	18.8	25.400	48 000	93 000	15	80
16	16	38	21	15	19.3	28.575	60 000	116 000	15	115
18	18	42	23	16.5	21.8	31.750	74 000	143 000	15	150
20	20	46	25	18	24.3	34.925	90 000	173 000	15	200
22	22	50	28	20	25.8	38.100	110 000	212 000	15	260
25	25	56	31	22	29.6	42.850	136 000	263 000	15	370
30	30	66	37	25	34.8	50.800	186 000	358 000	15	580
35	35	78	43	30	40.3	59.000	264 000	500 000	16	950
40	40	87	49	35	44.2	66.000	348 000	660 000	15	1320
50	50	108	60	45	55.8	82.000	550 000	1 000 000	14	2630
Tolerance ±	H7	h6**	0 0.12	0 0.2	_	-	-	-	-	_

**recommended housing hole M 7

Material

Series SSCP..

Outer part: Free-cutting steel 1.0718, browned. **Bushings:** Cu Sn 8/Cu Zn 40 Al 2 F59 galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SSRCP.. (available from size 5) Outer part: Stainless steel, material 1.4305. Bushings: As for SSCP.. Inner ring: As for SSCP.. but hard-chromed, if requiered stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 4 for precise details.
Designation example SSCP 10 C 2.
Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible.
Designation example SSCP 10 IR.
Hard-chromed inner ring: From size 5 available with hardchromed innerring.
Designation example SSCP 10 IH.
Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 19).

Angle of misalignment

*Security factor Co see page 5

Relubricatable heavy-duty spherical bearings

Friction pairing steel on heavy-duty bronze relubricatable

Series SC ...

Steel on PTFE bronze fabric maintenance-free

Series SCP ..

*Security factor C_o see page 5

									Angle of Weight-			
Series	d	D1	в	С	d1	ĸ	relubri	catable	maintena	ance-free	misalign.	each
						Ball-	dynamic C	static C _o *	dynamic C	static C _o *		
						uia. Ø	IN	IN	IN	IN	a	≈g
2												
3												
4												
5	5	13	8	6	7.7	11.112	3 250	15 300	7 800	12 000	13	6
6	6	16	9	6.75	8.9	12.700	4 300	20 000	10 900	17 000	13	10
8	8	19	12	9	10.4	15.875	7 200	33 000	18 000	29 000	13	20
10	10	22	14	10.5	12.9	19.050	10 000	46 000	27 000	42 000	13	30
12	12	26	16	12	15.4	22.225	13 400	63 000	36 000	57 000	13	45
14	14	29	19	13.5	16.8	25.400	17 000	80 000	48 000	75 000	15	60
16	16	32	21	15	19.3	28.575	21600	100 000	60 000	93 000	15	80
18	18	35	23	16.5	21.8	31.750	26 000	124 000	74 000	115 000	15	105
20	20	40	25	18	24.3	34.925	31 500	150 000	90 000	138 000	15	150
22	22	42	28	20	25.8	38.100	38 000	182 000	110 000	170 000	15	180
25	25	47	31	22	29.6	42.850	47 500	227 000	136 000	210 000	15	240
30	30	55	37	25	34.8	50.800	64 000	307 000	186 000	286 000	15	390
35												
40	Sizes 2-	4 and 35–50) are not av	ailable as sp	oherical bea	rings.						
50												
Tolerance	Ц7	be**	0	0								
±	n/	110	0.12	0.2	_		_	_	_	_		

**recommended housing hole M 7

Material

Series SC.. Outer part/bushing: Cu Sn 8.

Inner ring: Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SCP.. Outer part/bushing: Stainless steel material 1.4305. Lined and covered with sliding foil of PTFE with bronze supporting fabric.

Inner ring: As for SC..

Design

Bearing slackness: In the case of SC.. between 0.010 and 0.090 mm depending on the size. In the case of SCP.. between 0.005 and 0.010 mm depending on the size. See page 4 for precise details. Designation example SC 10 **C 2**. **Stainless inner ring:** Available with stainless steel inner ring

of material 1.4034.

Designation example SC 10 IR.

Hard-chromed inner ring: Available with hard-chromed inner ring.

Designation example SC 10 IH.

Sealed rod ends and spherical bearings

Series	d	do	A1	A ₂	B1	B ₂	Angle of misa.
RS							a°
2 3 4 5 6							
8 10 12 14 16	8 10 12 14 16	6 8 10 12 14	10.5 12.5 14.5 16.5 19	18.5 21.5 25.5 29.5 32.5	19 21 23 26 28	18.5 20 22.5 24.5 27.	10 10 12 12
18 20 22 25 30	18 20 22 25 30	16 18 20 22 25	21 23 25.5 29 33.5	35.5 39 42.5 46.5 55	30 32 35 38 44	29 31 34 37 43	12 12 12 12 12
35 40 50	s	iizes 2–6 and 35-	-50 are not ava	ilable in sealed (design.		
Tolerance ±	-	H7	-	-	0 0.2	-	-

Material

Sealing sleeve: Butadiene acrylnitrile copolymer (Perbunan). Oil and ozone resistant, temperature resistant from -25° to $+250^{\circ}$ C.

Slip ring: Brass.

Bore bushing: Stainless steel, material 1.4305.

Design

The relubricatable and maintenance-free rod ends and spherical

bearings of sizes 8 to 30 can be provided with replaceable sealing sleeves to protect the bearing from coarse dirt, dust and splashing water.

The elastic sealing sleeve is pulled on the outside over the specially extended and grooved bushing, and on the inside over a slip ring.

Designation example SFC 10.2 RS.

Threaded bolts for rod ends and spherical bearings

Series ... W

Series W	В	ե	L ₂	L ₃	A	М	sw ◯	Weight each (only bolts) ≈ g
2 3 5 6 10 12 14	5 6 8 10 12 14	9 10 13 15 17 20	5 5.5 6.5 7 7.5 8.5	11 13 17 21 25 29	8 10 13 17 20 22	M 5 M 6 M 8 M 10 M 12 M 14	7 7 11 11 14 14	4 7 16 26 44 87
16	16	22	9.5	33	24	M 16	17	100
18 20 22 25 30	20	26	12	45	35	M 20	22	200
35 40 50	Sizes 2-	4 and 18, 22–5	50 are not made	in series.				
Tolerance ±	m6	_	0.1 0.1	0.3 0.3	0 1.0	DIN13 6g		—

Material

Stainless steel, material 1.4305, hexagon bare. Other materials such as 1.7225 browned. Special dimensions on request.

Design

All series of rod ends and spherical bearings, except the sealed ...2 RS design, can be fitted with threaded bolts and used as angle joints. The bolt is pressed and riveted into the inner ring.

Designation example SF C 10 W.

Applications and typical installations

Agricultural machinery Bakery machines Bottle-washing machines Brick-making machines Cardboard-making machines Cigarette making machines Construction machines Conveying systems Driving machinery Engine building Engraving machines Filling machines Gas producers Handling machines Hydraulic cylinders Knitting machines Labeling machines Leather-working machines Lifts Machine tools Mining machines Mixing machines Motor vehicles Packaging machines Pneumatic cylinders Power engineering Preforming machines Printing machines Road-building machinery Sail planes Separating equipment Sewing machines Signaling equipment Snow-clearing machines Spinning machine Textile machinery Water turbines Weighs Welding machines Wine-bottling machines Woodworking machines and many more

Advice and sales

Through our dealers with their own stock, in:

AUSTRALIA	R. R. Fisher & Co. Ltd., P.O.Box 754, Caringbah, N.S.W. 2229, Phone: (02) 9540-4533, Fax.: (02) 9540-4079
AUSTRIA	Haberkorn GmbH, Modecenterstrasse 7, A-1030 Wien, Telefon: 01-74310 30, Telefax: 01-74310 28
BELGIUM/LUXEMBOURG	RAMAEKERS Transmissions s.a., Smallandlaan 21, 2660 Hoboken (Antwerpen), Phone: 03-8210404, Fax: 03-8210400
DENMARK	Herstad + Piper A/S, Jernholmen 48c, DK-2650 Hvidovre, Phone: 45-367740 00, Fax: 45-3677 7740
FINLAND	KNORRING OY AB, P.O. Box 20, FIN-0038 Helsinki, Phone: 09-5 60 41, Fax: 09-5 65 24 63
GREAR BRITAN	HIRSCHMANN UK LTD., Unit 3 A Buckley Road, Rochdal, Lancashire, OL12 9EF, Phone: (01706) 7103 59, Fax: (01706) 7154 92
ISRAEL	Power Transmission Ltd., 12a Barzilay St., POB 2009, Tel Aviv, Phone: 03-6154 49, Fax: 03-5 6018 54
NEW ZEALAND	R. R. Fisher & Co., Ltd., 13 Spring Street, P.O.Box 23-293, Papatoetoe, Auckland, Phone: 09-278 40 59, Fax: 09-279 82 86
NETHERLANDS	Kimman Technische Handelsmaatschappij B.V., Boelewerf 10-12, 2987 Ridderkerk-Bolnes, Phone: 0180-464688, Fax: 0180-465938
NORWAY	Merko A/S, P.O. Box 63, Vakaveien 9, 1378 Nesbru, Phone: 47-667780 95, Fax: 47-667780 93
SWEDEN	Jens S. Transmissioner AB, Box 903, Koppargatan 9, 60119 Norrköping, Phone: 011-19 80 00, Fax: 011-19 80 50
USA	HIRSCHMANN ENGINEERING USA, INC., 1558 Barclay Boulevard, Buffalo Grove, Illinois 60089, Phone: (847) 4199890, Fax: (847) 4199895
Germany	
BERLIN	Weber Industrietechnik Berlin GmbH & Co. KG, Motzener Str. 19, 12277 Berlin, Telefon: (0 30) 72 39 04-0, Telefax: (0 30) 72 39 04 99
DUISBURG	INDUNORM Bewegungstechnik GmbH, Postfach 29 02 27, 47262 Duisburg, Telefon: (02 03) 76 91-0, Telefax: (02 03) 7 6912 91
GIESSEN	HIRSCHMANN-Verkaufsbüro Michael Schmidt, Pfingstweg 4, 35305 Grünberg Telefon: (0 64 00) 95 83 31, Telefax: (0 64 00) 95 83 32
HAMBURG	John & Molt GmbH, Norm-, Sonder- und Gelenkantriebe Biedenkamp 5e, 21509 Glinde, Telefon: (0 40) 7148 80-0, Telefax: (0 40) 7148 80-50
HANNOVER	Heusinger + Salmon Mangelsdorf GmbH, Robert-Hesse-Str. 11, 30827 Garbsen, Telefon: (0511) 2 79 98-0, Telefax: (0511) 2 79 98 48
HERFORD	MAT Maschinen- und Antriebstechnik Handelsgesellschaft mbH, Lockhauser Str. 227, 32052 Herford, Telefon: (0 52 21) 76 50 50, Telefax: (0 52 21) 76 50 40
STUTTGART	Ingenieurbüro Voskamp, Im Rosenhain 16, 71563 Affalterbach bei Stuttgart, Telefon: (07144) 37123, Telefax: (07144) 3 4417
MÜNCHEN	HIRSCHMANN-Verkaufsbüro Franz Protschka, Dompfaffenweg 9a, 82538 Geretsried,

Heavy duty Rod Ends and Spherical bearings

