

ROLLING BEARING MOUNTINGS FOR CONVERTERS

FAG OEM und Handel AG

CONTENTS

Preface		P. 2
1 Requirements on the Trunnion B for Converters	earings	P. 3
2 Rolling Bearings and Housings f	or	
Converters		P. 4
2.1 Spherical Roller Bearings	P. 4	
2.2 Split Spherical Roller Bearings	P. 6	
2.3 KPG49 Housings	P. 7	
2.4 KPGZ49 Housings	P. 8	
3 Bearing Dimensioning		P. 9
4 Design of Adjacent Parts		P. 10
4.1 Fits	P. 10	
4.2 Seals	P. 10	
5 Mounting, Lubrication and Main	tenance	P. 11
5.1 Preparations for Mounting	P. 11	
5.2 Mounting Unsplit Bearings	P. 11	
5.3 Mounting Split Bearings	P. 13	
5.4 Measures to be taken after		
Mounting	P. 17	
5.5 Lubrication	P. 19	
5.6 Maintenance	P. 19	
5.7 Dismounting	<u>P. 20</u>	
5.8 Maintenance Forms	P. 20	
6 Dimensional Tables for Converte Bearings and Housings	er	P. 27
6.1 Spherical Roller Bearings	P. 28	
6.2 Split Spherical Roller Bearings	P. 32	
6.3 KPG49 Housings	P. 36	
6.4 KPGZ49 Housings	P. 40	
7 References		P. 44
8 Selection of Special FAG Public	ations	P. 44
9 Specification		P. 45

PREFACE

The OEM/Distribution Business Unit of FAG Kugelfischer Georg Schäfer AG supplies rolling bearings, housings, accessories and services to original equipment manufacturers in the sectors of machinery and plant construction and to customers in the sectors distribution and replacement. With their extensive know-how, competent advice and comprehensive customer services, FAG are a most important partner of their customers. Development and further development of our products are guided by the requirements of practical operation. In the ideal

case, the spectrum of requirements is defined jointly by our researchers, application engineers, the machine producers and users. This is the basis for technologically and economically convincing solutions.

The Business Unit produces at locations in Germany, Italy, Portugal, India, Korea (Rep.) and the USA. The market is supplied through subsidiaries and trading partners in nearly all countries of the world.

1 REQUIREMENTS ON THE TRUNNION BEARINGS FOR CONVERTERS

1 Requirements on the Trunnion Bearings for Converters

When filled, large converter vessels weigh several hundred tons. The resulting loads must be accommodated by the trunnion bearings. Since only slow swinging motions occur the bearings must primarily feature a high static load carrying capacity. In addition, shock-type loads must be accommodated daily in converters.

The bearings must also be able to compensate for housing misalignments and deflections of the construction. Moreover, considerable length variations caused by the temperature changes during converter heat-up and cool-down as well as changes of the trunnion ring form must be compensated for. Today, converters are usually fitted with spherical roller bearings. Apart from their great radial and axial load carrying capacity and their insusceptibility to impacts they can also compensate for significant misalignments.

Usually, the locating bearing at the drive end provides axial guidance for the converter. A sleeve in which the bearing outer ring can shift axially, fig. 1, is inserted in the housing at the floating bearing end. Spherical roller bearings featuring the main dimensions of series 249 meet the requirements on converter bearings. These bearings have proved to be particularly suitable in regard to axial displaceability.

At the floating bearing end unsplit bearings are used whereas at the locating bearing end the preferred choice for replacement bearings are split spherical roller bearings whose dimensions are adapted to those of series 249. The split bearings facilitate bearing replacement without dismounting the drive unit, cp. section 2.2.

1: Trunnion bearing arrangement for a converter with two spherical roller bearings

2 ROLLING BEARINGS AND HOUSINGS FOR CONVERTERS

Spherical Roller Bearings

2 Rolling Bearings and Housings for Converters

The technical data of the FAG spherical roller bearings and plummer block housings for converters are indicated in chapter 6.

2.1 Spherical Roller Bearings

FAG spherical roller bearings are rolling bearings designed for heavy duty applications. They contain two rows of symmetrical barrel rollers which align smoothly in the spherical raceway of the outer ring. In this way shaft deflections and misalignments of the bearing seats are compensated for.

FAG spherical roller bearings for converters usually feature the main dimensions of the standardized series 249. Depending on design, bearing components are bonderized and/or Molykoted. The bearings are available either with a cylindrical bore or with a tapered bore (taper 1:30).

Spherical roller bearings with a cylindrical bore are mounted directly on the converter trunnion, fig. 1 on page 3. Bearings with a tapered bore are mounted on tapered sleeves, fig. 2.

2.1.1 Compensation of Misalignment

Static misalignment

Vertical or lateral housing offset may lead to misalignment, fig. 3.

This so-called static misalignment may be due, for instance, to foundation settling. Static misalignment is harmless as long as the rollers have full length contact with the outer ring raceway. The misalignment angle specified for static misalignment is 1.5° for all FAG spherical roller bearings.

Experience has shown that, when mounting the housing, static misalignment should be limited to 10 angular minutes. This value may seem small compared with the permissible misalignment but it should be borne in mind that a gradual subsidence of the foundations or thermal influences may result in major positional changes of the housing.

2: Spherical roller bearing as a locating bearing on a sleeve 3: Static misalignment α

Spherical Roller Bearings

Dynamic misalignment

The bearing centre distances of large converters are between 7 and 12 meters. When the vessel is being swung deflections may occur which vary in magnitude with the momentary vessel position. However the alignment motion the bearing has to take up during rotation is relatively slight.

The influence of the temperature differential in the trunnion ring is greater. It produces a misalignment which causes distortion of varying magnitude. As a result the trunnions become offset to each other. The wobbling of the trunnions when the vessel swings is called dynamic misalignment, fig. 4.

This means that each swinging motion of the vessel imposes on the rolling elements in the bearings an axial displacement in addition to circumferential rolling. This is associated with sliding friction. In order to avoid extra strain on the contact points in the bearing the distortion of the trunnion ring should be minimized.

Data from the field have shown the dynamic misalignment of converter bearings to be in the order of 20 to 50 angular minutes after several years of operation. In spite of these deviations from the geometrical axis the extra loads can be accommodated since they were taken into account in the internal design of the FAG bearings. The outer ring raceways or the rollers fea-

4: Dynamic misalignment β

5: Spherical roller bearing for converters with machined brass cage

6: Spherical roller bearing for converters with pin-type cage

ture a special coating which reduces friction.

Depending on the strain to be

accommodated, FAG spherical

roller bearings for converters are

fitted with machined brass cages

(fig. 5) or with pin-type cages

2.1.2 Cages

and through-bored rollers (fig. 6).

Pin-type cages consist of lateral cage washers to which the bolts are attached that pass through the rollers. With this pin-type cage a larger number of rollers can be accommodated and thus a higher load rating be achieved. These cages are also particularly strong.

2 ROLLING BEARINGS AND HOUSINGS FOR CONVERTERS

Spherical Roller Bearings · Split Spherical Roller Bearings

2.1.3 Tolerances, Bearing Clearance

FAG spherical roller bearings for converters have the normal tolerances of radial bearings (tolerance class PN), see also FAG catalogue WL 41 520. Deviations for split bearings, see section 2.2.

The radial clearance of the spherical roller bearings is selected according to the operating temperature and the mounting fits.

2.1.4 Lubricating Groove, Lubricating Holes

To simplify lubrication, the FAG spherical roller bearings for converters feature a circumferential lubricating groove and three lubricating holes in the outer ring, see figs. 5 and 6.

2.1.5 Heat Treatment

FAG spherical roller bearings for converters are heat-treated in such a way that they are dimensionally stable up to an operating temperature of 200 °C.

2.2 Split Spherical Roller Bearings

Steel works often demand that the bearing at the drive end (locating bearing) of a converter can be replaced without dismounting the drive unit. This is possible with split spherical roller bearings, fig. 7. For price reasons split bearings are usually used as replacement bearings. The main dimensions of split spherical roller bearings are adapted to those of unsplit bearings with a tapered bore and a wedge sleeve (fig. 7a) or with a cylindrical bore (fig. 7b). Rings and cages of split bearings are split horizontally. Due to the split clamping rings the split inner rings are considerably wider than the inner rings of unsplit bearings. The bore tolerance is such that a tight fit is obtained with trunnion tolerances of h7 to m6.

In split bearings not only the outer ring raceways are bonderized and Molykoted, but the rollers are bonderized as well.

7: Split spherical roller bearings

- a: Replacement for an unsplit bearing with a tapered bore and wedge sleeve
- b: Replacement for an unsplit bearing with a cylindrical bore

KPG49 Housings

2.3 KPG49 Housings

The split plummer block housings of series KPG49 are made of cast steel and feature a tensile strength of more than 400 N/mm². This provides good support for the bearing outer ring, which is of great importance for achieving a good distribution of pressure within the bearing. Three housing designs are available.

In housings of design KPG49...F (fig. 8a) the locating bearing func-

tion is achieved by arranging locating rings on both sides of the bearing's outer ring. These housings are used for spherical roller bearings with a tapered bore which are mounted on the shaft with wedge sleeves.

Housings of design KPG49...FG (fig. 8b) are locating bearing housings. They accommodate split spherical roller bearings which replace unsplit bearings with a tapered bore and wedge sleeve. In housings of design KPG49...L (fig. 8c) the outer ring of the floating bearing can shift axially within a sleeve. Spherical roller bearings with a tapered bore and wedge sleeve are mounted into these housings.

8: Split plummer block housings KPG49 for converters Locating bearing housing KPG49...F (a) and KPG49...FG (b) Floating bearing housing KPG49...L (c)

2 ROLLING BEARINGS AND HOUSINGS FOR CONVERTERS

KPGZ49 Housings

2.4 KPGZ49 Housings

Split plummer block housings of series KPGZ49, unlike KPG49 housings, are designed for bearings with a cylindrical bore that are mounted directly on the shaft.

These housings are also available as designs F and L for unsplit spherical roller bearings (locating bearing housings fig. 9a, floating bearing housings fig. 9c). Housings of design FG (fig. 9b) are locating bearing housings for split spherical roller bearings.

9: Split plummer block housings KPGZ49 for converters Locating bearing housing KPGZ49...F (a) and KPGZ49...FG (b) Floating bearing housing KPGZ49...L (c)

3 BEARING DIMENSIONING

3 Bearing Dimensioning

Converter bearings perform swinging motions and are rotated up to 360° only occasionally. When the converter swings, bearing speeds range from 0.1 to 1 min⁻¹.

During decarburization the converter is at rest, the blowing process causes vibrations.

These conditions require bearing dimensions that are based on static criteria.

The bearings' service life is determined by wear. Wear is caused by:

deflection

due to the large bearing centre distance or due to deformation of the trunnion ring

• axial displacement due to temperature changes in the converter.

Wear can be reduced by phosphatizing and/or Molykoting the bearing components.

Index of static stressing, f_s

Usually, the index of static stressing required for converter bearings is

 $f_s \ge 2$

 $f_s = C_0 / P_0$

C₀ static load rating [kN] as indicated in bearing tables P₀ equivalent static load [kN]

Locating bearing

 $P_{0F} = F_{rF} + Y_0 \cdot (F_a + F_{a1}) [kN]$

Floating bearing

$P_{0L} = F_{rL} + Y_0 \cdot F_{a1} \text{ [kN]}$

- F_{rF} = maximum radial load on locating bearing [kN] *
- $F_{rL} \ = maximum \ radial \ load \ on \\ floating \ bearing \ [kN] \ * \label{eq:Frl}$
- Y_0 = thrust factor (bearing tables)
- $\begin{array}{ll} F_a &= maximum \; external \; thrust \\ & [kN] \; {}^* \end{array}$
- $\begin{array}{l} F_{a1} \ = \mu \cdot F_{rL} \ reaction \ force \ from \\ floating \ bearing \ displacement \ [kN] \end{array}$
- * with possible shock loads

The calculated results are entered in the calculation sheet (sheet B in section 5.8).

4 DESIGN OF ADJACENT PARTS

Fits · Seals

4 Design of Adjacent Parts

4.1 Fits

4.1.1 Trunnions

Recommended machining tolerances:

h7	if a tapered sleeve
	is used
m6	if the bearing is
	mounted directly
	on the trunnion

Heavy converter bearings are best mounted on a tapered sleeve. It makes mounting easier and reduces the requirements on the seat quality. The out-of-roundness and taper should not exceed 40 % of tolerance field h7.

For a cylindrical bearing bore the trunnion must be machined to m6 (tight fit). Prior to mounting, large bearings must be heated in an oil bath; we recommend to dismount them hydraulically. A sliding fit may also be chosen if the trunnion surface can withstand the resulting strain.

4.1.2 Housing Bore

Recommended machining tolerances:

H7 for floating bearings and locating bearings

For floating bearings the bore of the displacement sleeve, depending on the diameter, is 0.120 to 0.400 mm larger than the nominal bearing O.D.; roughness depth $< 6 \ \mu m.$

The unsplit sleeve is roughly as thick as the outer ring.

The O.D. of FAG spherical roller bearings is phosphatized and Molykoted so that the frictional resistance during displacement is reduced.

4.2 Seals

Two types of seals have proved to be suitable for this application. In Europe high-pressure packings are mainly used whereas in America rubber-profile seals are preferred.

4.2.1 High-Pressure Packings

Order example:

PRFL.1799-30x30x3850/Hecker or equivalent

4.2.2 Rubber-Profile Seals

Order example (for d = 1135 mm):

PRFL.GSH1003/1135.155330

11: Rubber-profile seal

5 MOUNTING, LUBRICATION AND MAINTENANCE

Preparations for Mounting · Mounting Unsplit Bearings

5 Mounting, Lubrication and Maintenance

The bearings' service life is determined to a great degree by correct mounting and maintenance.

Large bearings should be mounted by skilled personnel only.

A specialized bearing fitter should always be available to supervise the mounting work and ensure the fitting work is carried out in accordance with the mounting instructions.

5.1 Preparations for Mounting

Smooth mounting of converter bearings requires some preparation.

- Prepare tools
- Check hoisting equipment and position it correctly (some bearings weigh several tons)
- Have a sufficient amount of the specified grease ready (see section 5.5)
- Check adjacent parts (form and dimensional accuracy, surface finish, cleanliness)
- Enter measured values (trunnion diameter, housing bore) in data sheets E or F (section 5.8)

Bearing mounting requires that

- the converter vessel and trunnion ring are already suspended above the foundation
- the housing bases of locating and floating bearings are aligned on the foundations

• the bearings can be premounted in a workshop if necessary

For bearings with a **cylindrical bore** that are heated in an oil bath

 an oil container suitable for the bearing size and a ring burner must be provided at the mount-

ing site
a device must be provided which axially presses the warm bearing against the shaft shoulder until it has cooled down

For bearings with a **tapered bore** that are mounted on sleeves

• hydraulic tools are required (see section 5.2.2)

Unpack bearings only after these preparatory steps have been accomplished.

Then check the bearings for transport damage.

Measure radial clearance over both roller rows by means of a feeler gauge and enter the values in data sheet E or F (section 5.8).

5.2 Mounting Unsplit Bearings

5.2.1 Bearings with a Cylindrical Bore (fig. 1)

The tight fit (m6) on the cylindrical trunnion requires previous heating of the bearings in an oil bath. At a temperature of 80 to 90 °C the inner ring expands sufficiently to permit the bearing to be pushed onto the trunnion unimpeded. A temperature limit of 120 °C must

not be exceeded because otherwise the material structure may change.

The bearings shall be supported in the oil container on a grid. This prevents contaminants in the oil which have deposited on the bottom from penetrating into the bearings. It also ensures an even heating of the bearings.

When a bearing has a temperature of 80 to 90 °C lift it out of the oil container. Let the oil drip off and wipe the bearing bore until it is nearly dry. Then push the bearing onto the trunnion. Adjust it axially against the shaft shoulder until it has cooled down (adjust it again during this period). Fill the bearing cavities with grease. Before mounting the bearing at the opposite end, wrap the already mounted bearing in oiled paper to protect it from contamination.

More measures are described in section 5.4.

5 MOUNTING, LUBRICATION AND MAINTENANCE

Mounting Unsplit Bearings

5.2.2 Bearings with a Tapered Bore and Sleeve (fig. 2)

The bearing seat on the trunnion is machined to h7. A tight fit of bearing, sleeve and trunnion is obtained by axially pressing the tapered sleeve a specified distance into the bearing bore. To prevent axial displacement, the bearing is located on both sides of the inner ring.

The tapered sleeves are always suitable for hydraulic mounting, which requires only one fifth of the force that would be necessary for dry mounting.

Prior to mounting, measure the radial clearance over both roller rows by means of a feeler gauge and enter the measured values in data sheet E or F (section 5.8).

Then place the bearing on the trunnion and insert the sleeve until the bearing is centered and the inner ring abuts the shaft shoulder or the intermediate sleeve. Press oil into the fitting joints by means of a pump, fig. 12a. At the same time the sleeve is pressed into the bearing bore, by means of several screws provided in the sleeve face, fig. 12b, until the specified radial clearance reduction has been achieved (see project sheet A in section 5.8). The remaining radial clearance is entered in data sheet E or E

About 20 minutes after pressing the sleeve into the bore the mount-

12a: Oil supply via oil ducts

12b: Arrangement of the pressure screws for sleeve positioning

ing aids may be removed. Fill the bearing cavities with grease. Prior to mounting the second bearing, wrap the already mounted bearing in oiled paper to protect it from contamination.

Mounting Split Bearings

5.3 Mounting Split Bearings

Split bearings are preferably used as replacement bearings at the drive end. Since the drive unit is not dismounted there is only limited space to work in. So the bearing location is accessible only from above.

When the bearings are mounted care must be taken that at each end the right bearing components are installed. Apart from the bearing code (six-digit number) on the stamped side, the components are marked with a manufacturing number, e.g. 501. The components for the stamped side bear this number at the separating joints. The components on the opposite side are additionally marked by an A, for example 501A.

The bearing components feature tapped holes for easier handling.

The inner ring is mounted on the shaft with an interference fit, resulting in a gap at the separating joints of the inner ring halves.

Before the replacement bearing can be mounted the unsplit bearing must be removed (recommendations, see 5.7.1). Then check the bearing seat on the trunnion and measure the trunnion diameter. Enter the measured values in the data sheet.

Local irregularities in the trunnion surface (fretting corrosion, cold weldings) must be reworked. At any rate the diameter of the seat for the split bearing must ensure an interference fit.

The inner ring halves are mounted first (mounting sketch, figs. a – d). Mount the clamping rings in the same manner (fig. e). The gaps between the two separating joints of the inner ring must be horizontal (fig. d) and identically sized. The separating joints of the clamping rings (fig. e) shall be offset by only such a distance that the connection bolts of the clamping rings can be tightened comfortably from above (tightening torque, see project sheet A in section 5.8).

Mount the other bearing components as shown in figs. f - i. Make sure that the bore provided in the outer ring faces for the anti-rotation device is exactly vertical. As shown in fig. h, the halves of the roller-cage assembly shall be braced against the inner ring raceways by means of strong wire before the converter is lowered into the housing bases.

Before lowering the converter,

- the bearing at the opposite end must be mounted,
- the housing bases must be positioned correctly relative to the trunnions.

Then

- insert the two other roller-cage assembly halves (remove wire and eye bolts of the other halves first),
- fill in lubricant
- mount the second outer ring half.

Additional measures are described in section 5.4.

5 MOUNTING, LUBRICATION AND MAINTENANCE

Mounting Split Bearings

Mounting sketch for split replacement bearings

a-c Insert inner ring half under the trunnion and adjust it against the trunnion from below by means of wooden wedges. Make sure that the wooden wedges do not cover the seats for the clamping rings.

Mounting Split Bearings

e Insert clamping rings in the same manner as the inner ring halves. Then wedge and bolt them together. The separating joints of the clamping rings shall be slightly offset against the separating joints of the inner ring.

f Insert outer ring half and lower it into the housing base.

5 MOUNTING, LUBRICATION AND MAINTENANCE

Mounting Split Bearings

g Suspend roller-cage assembly halves and roll them over the outer ring.

h - i Brace the roller-cage assembly halves against the inner ring raceway.
Now the converter can be lowered.
All other components are mounted later.

Measures to be taken after Mounting

5.4 Measures to be taken after Mounting

After both bearings are mounted the following measures must be taken:

- Check position of the housing bases in relation to the trunnion and correct it if necessary (static misalignment, cp. 5.4.1)
- Check position of floating bearing housing relative to the trunnion and correct it if necessary (displacement possible?)
- Lower converter
- Measure bearing clearance of unsplit bearings

- Position housing cap
- Fill in lubricant (fill ca. 60 % of the cavities at the left and right of the bearing)
- Bolt lateral cover to housing
- Correct dynamic misalignment as stated in 5.4.2 (vertical error compensated for and housing in correct position relative to the trunnion, cp. 5.4.1) and enter values in data sheet (section 5.8)
- Determine axial elongation in operation (1st campaign) and enter value in the data sheet (section 5.8); displacement for floating bearing, see 5.4.3)

5.4.1 Checking the Static Misalignment (vessel at rest)

Measure the maximum and the minimum distance between the inner ring face and a machined face of the housing cover. The static misalignment is calculated from the difference between these distances and the diameter on which the values were measured:

 $\tan \alpha = (a_{max} - a_{min})/d_1$

Required: $\alpha \le 10$ min, i.e. tan $\alpha \le 0.003$ and consequently

 $(a_{max} - a_{min})/d_1 \le 0.003$

Measuring the static misalignment

Housing in incorrect position relative to the trunnion

Vertical error

5 MOUNTING, LUBRICATION AND MAINTENANCE

Measures to be taken after Mounting

5.4.2 Checking the Dynamic Misalignment (vessel swinging)

Attach a dial gauge to the housing as shown in the sketch, and place the stylus on the trunnion at a distance l from the bearing center. Then rotate the converter through 360° and take the maximum reading b on the dial gauge. The dynamic misalignment is:

 $\tan \beta = b/(2 \cdot l)$

The measured values include the out-of-roundness of the trunnion. However, the permissible out-ofroundness of the trunnion is much less than the deviation from the geometrical axis of rotation.

The measured values shall be entered in the **data sheet**.

The present state of manufacturing accuracy makes misalignment of more than 10 angular minutes very unlikely for new plants. By repeating the measurements it is possible to determine any variation in trunnion position at later stages. In view of the slightness of the deviations engineers often refrain from making a measurement when erecting new converters.

5.4.3 Checking the Displacement of the Floating Bearing

During the first campaign of the converter the floating bearing displacement shall be measured. Based on the position of the float-

Measuring the dynamic misalignment

Measuring the axial displacement of the floating bearing

ing bearing when the converter is cold, the displacement resulting after several days of operation is measured. With an open end cover trunnion (upper picture) the displacement is determined from the distance between the trunnion end and the housing cover face. If the housing features a closed end a mark is made on that portion of the trunnion which points to the converter (picture below).

Enter the measured values in data sheet E (cp. 5.8) for future reference.

Lubrication · Maintenance

5.5 Lubrication

FAG spherical roller bearings for converters feature a lubricating groove and lubricating holes in the middle of the outer ring. With each relubrication, the lubricant is fed from there directly into the bearings.

The bearings shall be lubricated with lithium soap base greases containing effective EP and anticorrosion additives, if possible also an MoS_2 additive.

A high base oil viscosity in conjunction with a not-too-soft consistency (NLGI class 2) ensures a good lubricating condition.

If possible, the bearings shall be relubricated with the same grease blend that was used for initial greasing (see project sheet A in section 5.8).

The lubricant for the bearings shall always be used to relubricate the seals as well if grease chambers are provided.

Amount of grease for initial lubrication, replenishment quantity and relubrication intervals, see project sheet A in section 5.8).

5.6. Maintenance

Maintenance of the converter bearings shall be effected as follows:

a ... a b a ... a c a ... a b a etc.

- a Activities after commissioning and during operation, see 5.6.1
- b Intermediate inspection after 1 to $1^{1/2}$ years
- c Main inspection after 2 to 3 years

5.6.1 After Commissioning/Between Inspections:

- 1 After first "campaign" measure floating bearing displacement
- 2 After every "campaign" relubricate seal (depending on plant)
- 3 After every "campaign" lubricate displacement sleeve (floating bearing end)
- 4 Lubricate bearings every 2 to 3 months

5.6.2 Intermediate Inspection after 1 to $1^{1/2}$ Years:

- 1 Remove lateral covers and remove spent grease
- 2 Check lubricant for contaminants on the spot
- 3 Check seals and replace them if necessary
- 4 Replenish lubricant

5.6.3 Main Inspection after 2 to 3 Years

1 Remove lateral covers and housing cap and remove spent grease

- 2 Take lubricant samples at different distances from the bearing and examine them
- 3 Remove remaining lubricant
- 4 Determine possible axial displacement of the floating bearing (inward and outward), compare with the values recorded during original mounting and enter it in data sheet
- 5 Measure radial clearance and enter value in data sheet (old bearing position)
- 6 Lift converter until all bearing outer rings are exposed
- 7 Check surfaces of raceways and rolling elements (record condition in data sheet)
- 8 Mark four 90° arcs on the outer rings of unsplit bearings
- 9 Rotate outer ring and roller-cage assemblies 90° and enter old and new position of the outer ring in data sheet
- 10 Rotate outer ring halves and roller-cage assembly halves of split bearings 180°
- 11 Lower converter in this position
- 12 Measure radial clearance and enter the value beside "New bearing position"
- 13 Fill in fresh lubricant
- 14 Renew seals
- 15 Check angular misalignment, compare it with previous records and enter it in data sheet

Dismounting · Maintenance Forms

5.7 Dismounting

Basically, dismounting shall be effected in the reverse order of mounting.

5.7.1 Bearings with a Cylindrical Bore

Bearings with a cylindrical bore which are mounted tightly on the trunnion cannot be dismounted in a conventional manner.

Instead, the bearings may, for example, be dismounted hydraulically using additional auxiliary extraction tools. This, however, requires holes and circular grooves in the trunnions for pressing in the pressure oil. The design featuring a cylindrical seat is intended for a split replacement bearing (locating bearing at the drive end). Since the gear is not dismounted the hydraulic method cannot be used to dismount the locating bearing. Because of the considerable effort involved, it generally is not eligible for the floating bearing end either.

As a rule, converter bearings with a cylindrical bore are destroyed during dismounting because fatigue has rendered them useless. Cut up outer rings and cages with a cutting torch. Try by all means to remove the inner ring by cracking. If this is not possible and the inner ring has to be cut up by means of a cutting torch, make tangential cuts to ensure that the trunnion is not damaged.

After cutting up and removing the outer ring and the two cages, use a welding torch to heat the inner ring well (ca. 300 °C) successively at two opposite points (over the entire width of the ring). Then quench it with a jet of cold water. It is important to quickly produce, by means of the water jet, a great temperature difference between

the surface and the core of the material because the resulting tensile stress causes the ring to crack. Because of the risk of accident, the cracking area must be covered.

5.7.2 Bearings with a Tapered Bore and Hydraulic Sleeve

To dismount bearings with a tapered bore and hydraulic sleeve the press fit between trunnion, sleeve and bearing must be slackened. First, loosen the parts which axially locate the bearing toward the trunnion end and arrange them in such a way that the sleeve can shift $0.008 \cdot d$ (with taper 1:12) or $0.02 \cdot d$ (with taper 1:30) (d = nominal bearing bore diameter). Then connect the pumps, via extremepressure hoses and adapters, to the connections provided in the hydraulic sleeve. Loosen and remove the sleeve from the bearing bore by means of the pressure oil which is then pressed into the fitting joints and by means of the extraction bolts. The position of the extraction bolts is shown in the picture opposite.

5.8 Maintenance Forms

- A **Project Sheet**
- **B** Calculation Sheet
- **C** Replacement
- **D** Sequence of Mounting Steps
- E Data Sheet (Original Mounting)
- F Data Sheet (Main Inspection)

Maintenance Forms

A Project Sheet

Manufacturer:			
Project:			
Code word:			
Installation site:			
Vessel capacity:			
Blowing process:			
Original equipment:	Locating bearing e	end	
	Housing	FAG	
	0	Data see dy	Ng. no.
	Bearing	FAG	
	0	Data see dy	Ng. no.
	Floating bearing e	end	· · · · · · · · · · · · · · · · · · ·
	Housing	FAG	
	0	Data see dy	Ng. no.
	Bearing	FAG	
	0	Data see dy	Ng. no.
Replacement:	Locating bearing		FAG
F	Split spherical roll	er bering	Data see dwg. no.
	Floating bearing	8	FAG
	Spherical roller be	aring	Data see dwg. no.
Fit:	Trunnion diamete	er	
	Housing diameter	(locating be	aring)
	Housing diameter	(floating bea	aring)
	Displacement in th	he housing	<i>O</i> ′
Lubrication:	Arcanol rolling be	earing grease	(FAG)
	Relubricate with th	he same lubr	icant as used for initial greasing
Lubricating quantity:	Initial charge		0 0
81	Bearings		100 %
	Housings		60 %
	Floating	bearing hous	ing [kg]
	Locating	bearing hour	sing [kg]
	Relubrication		
	Bearings		ca. 8 % of the initial grease fill
	8-		kg every 3 months
	Sliding area	for	ca 0.8 % of the initial grease fill after every campaign
	axial displa	cement	ear ere ve er are mittal greate in arter every campaign
	Seal	content	after every campaign until fresh grease is supplied
	Scui		(depending on specific plant)
Fauinment			(depending on specific plant)
~~~~			

## **5 MOUNTING, LUBRICATION AND MAINTENANCE**

## **Maintenance Forms**

**B** Calculation Sheet

Manufacturer:					
Project:					
Code word:					
Installation site:					
Design:					
Determination of the index of static stressing,	f _s , for	r tru	unnion b	oearings	
Input parameters:					
Bearing designation:					
Dimensions:				mm	
Static load rating:	C ₀	=		kN	
Thrust factor:	$\mathbf{Y}_{0}$	=			
Radial load (floating bearing end, vertical):	F _{rL1}	=		kN	
Radial load (floating bearing end, horizontal)	F _{rL2}	=		kN	
Radial load (locating bearing end, vertical)	$F_{rF1}$	=		kN	
Radial load (locating bearing end, horizontal)	$F_{rF2}$	=		kN	
Axial load resulting from the blowing process	$\mathbf{F}_{\mathbf{a}}$	=		kN	
Coefficient of friction	μ	=			
Calculation result					
Spherical roller bearing (floating bearing end):	f	=			
	Por	=		kN	
	Fal	=		kN	
	aı				
Calculation result					
Spherical roller bearing (locating bearing end)	: f _s	=			
	P _{0F}	=		kN	
	F _{a tot}	al=		kN	

## **Maintenance Forms**

### **C Replacement**

#### **Replacement (floating bearing)**

1 - FAG	 Spherical roller bearing, unsplit
1 - RG.	 Displacement sleeve

#### **Replacement (locating bearing)**

1 - FAG ______ Spherical roller bearing, split

#### **Replacement (sealing/housing)**

- 4 PRFL. _____ Sealing
- 2 BTL.
- 2 BTL.
- 8 MTL.
- 4 BLZ. ______ Parts for preloading band
- 8 BGSH.
- 2 FED.

## **5 MOUNTING, LUBRICATION AND MAINTENANCE**

## **Maintenance Forms**

### **D** Sequence of Mounting Steps

	Locating bearing	Floating bearing
Measure the trunnion diameter or manufacturer's acceptance report		
Measure the housing bores		
Check the radii (bearing and shaft shoulder)		
<b>Check ancillary parts</b> Dimensional and form accuracy Surface finish Cleanliness		
Measure the bearing's radial clearance (enter values in data sheet)		
Mount bearings on trunnions		
Grease bearings		
Mount housings and accessories		
<b>Check position of housings relative to trunnion and adjust it if necessary</b> (take into account permissible misalignment; vertical error, housing not in correct position relative to trunnion)		
Height must be recorded appropriately		
<b>Check position of floating bearing housing relative to trunnion and adjust it if necessary</b> (displacement possible?)		
Lower vessel until it is suspended ca. 2 mm above the platform, check again	n 🗆	
Grease bearing location		
Insert seal		
Close bearing housing		
<b>Measure misalignment</b> (static) <b>and adjust it</b> (trunnion diameter concentric with cover bore?)		

## **Maintenance Forms**

### E Data Sheet (Original Mounting)

Bearings	Locating bearing	
	Floating bearing	

		Locating bearing	Floating bearing
Radial clearance prior to mounting	[mm]		
Actual dimension (trunnion)	[mm]		
Radial clearance after mounting ⁺¹	[mm]		
Actual dimension (housing)	[mm]		
Misalignment resulting from housing being incorrectly positioned relative to trunnion Misalignment resulting from vertical error <b>Total static misalignment</b> <b>Possible axial displacement of the floating bearing</b> inward	ſmml		
outward	[mm]		
Grease used			
Remarks:			

5 MOUNTING, LUBRICATION AN	ND MAINTENANCE
Maintenance Forms	
F Data Sheet (Main Inspection)	
Total static misalignment (old position of the outer	rings)
<b>Remove spent lubricant from housing and check</b> <b>contaminants on the spot.</b> Result of grease inspection	k for
<b>Possible axial displacement of the floating beari</b> inward outward	<b>ng</b> [mm] [mm]
Bearings Locating bearing	
Radial clearance (old position)	[mm]
Lift converter until bearing outer rings are expo	sed
<b>Check surfaces (raceway and rolling elements)</b> Condition	
The service life can be increased by rotating the of (split bearings: 180°). Enter old and new position Old position (outer ring) New position (outer ring) If necessary, radial clearance of new bearing position	outer rings and roller-cage assemblies 90° is in the data sheet. 
Lower converter	
Replenish lubricant	
Inspect seal	Replace if necessary
Total static misalignment (new position of the oute	r rings)

## 6 DIMENSIONAL TABLES FOR CONVERTER BEARINGS AND HOUSINGS

6.1	Spherical Roller Bearings	P. 28
6.2	Split Spherical Roller Bearings	P. 32
6.3	KPG49 Housings	P. 36
6.4	KPGZ49 Housings	P. 40

## FAG SPHERICAL ROLLER BEARINGS FOR CONVERTERS

Bearings of dimensional series 49 with machined brass cage (MB) with a cylindrical bore or with a tapered bore and wedge sleeve



Cylindrical bore

Code	Cleave	Dimens	ions				Cleave			
Bearing	Sieeve	d	d ₁	D	В	r _s		а	R _o	
FAG	FAG	mm				min		*		
528739 528739K30	H.528816	460 460	440	620 620	160 160	4 4	160	18	M 8	
528740 528740K30	H.528817	480 480	460	650 650	170 170	5 5	170	20	M 8	
528741 528741K30	H.524974	500 500	470	670 670	170 170	5 5	170	20	G ¹ / ₈	
528742 528742K30	H.524976	530 530	500	710 710	180 180	5 5	180	20	G ¹ / ₈	
528743 528743K30	H.524978	560 560	530	750 750	190 190	5 5	190	20	G ¹ / ₈	
528744 528744K30	H.524980	600 600	570	800 800	200 200	5 5	200	20	G ¹ / ₄	
528745 528745K30	H.524982	630 630	600	850 850	218 218	6 6	218	22	G ¹ / ₄	
528746 528746K30	H.524984	670 670	630	900 900	230 230	7.5 7.5	230	22	G ¹ / ₄	
528747 528747K30	H.524986	710 710	670	950 950	243 243	6 6	243	22	G ¹ / ₄	
528748 528748K30	H.524988	750 750	710	1000 1000	250 250	6 6	250	22	G ¹ / ₄	
528749 528749K30	H.524990	800 800	750	1060 1060	258 258	7.5 7.5	258	22	G ¹ / ₄	
528750 528750K30	H.524992	850 850	800	1120 1120	272 272	6 6	272	22	G ¹ / ₄	
528751 528751K30	H.524994	900 900	850	1180 1180	280 280	6 6	280	25	G ¹ / ₄	
528752 528752K30	H.524996	950 950	900	1250 1250	300 300	7.5 7.5	300	25	G ¹ / ₄	
528753 528753K30	H.524998	1000 1000	950	1320 1320	315 315	7.5 7.5	315	25	G ¹ / ₄	



K30, tapered bore (taper 1:30)

Load rating	Factor	Abutmen	t dimensio	ns	Grease quantity	Mass	
$C_0$	Y ₀	D ₁	D ₂	$D_3$	Initial greasing	Bearing	Sleeve
kN	-	mm			kg	kg	
6100 6100	2.9 2.9	494 494	590 590	475	4 4	140 140	20
6800 6800	2.9 2.9	517 517	615 615	495	4 4	160 160	22
7100 7100	3 3	540 540	640 640	515	5 5	170 170	33
8000 8000	3 3	570 570	675 675	545	5 5	210 210	38
9300 9300	3 3	600 600	710 710	575	6 6	240 240	44
10400 10400	3.1 3.1	645 645	755 755	615	7 7	280 280	50
11800 11800	3 3	675 675	805 805	645	9 9	355 355	60
13400 13400	3 3	720 720	850 850	685	10 10	420 420	78
15300 15300	3 3	760 760	900 900	725	12 12	490 490	95
16600 16600	3.1 3.1	800 800	950 950	765	14 14	550 550	105
18300 18300	3.2 3.2	860 860	1010 1010	820	15 15	625 625	140
20000 20000	3.2 3.2	910 910	1070 1070	870	18 18	725 725	155
22000 22000	3.3 3.3	960 960	1120 1120	920	20 20	820 820	175
25000 25000	3.2 3.2	1015 1015	1190 1190	970	25 25	1000 1000	200
27000 27000	3.3 3.3	1065 1065	1250 1250	1025	30 30	1180 1180	225

## FAG SPHERICAL ROLLER BEARINGS FOR CONVERTERS

Bearings of dimensional series 49 with pin-type cage with a cylindrical bore or with a tapered bore and wedge sleeve



Cylindrical bore

Code	Dimens	sions				0		
Bearing Sieeve	d Bearing	l d₁	D	В	r _s	Sieeve	а	Ro
FAG FAG	mm				min		~	
249/500.541821 249/500K30.541821 H.52497	500 <b>4</b> 500	470	670 670	170 170	5 5	170	20	G ¹ / ₈
249/530.541822 249/530K30.541822 H.52497	530 6 530	500	710 710	180 180	5 5	180	20	G ¹ / ₈
249/560.541823 249/560K30.541823 H.52497	560 8 560	530	750 750	190 190	5 5	190	20	G ¹ / ₈
249/600.541824 249/600K30.541824 H.52498	600 600	570	800 800	200 200	5 5	200	20	G ¹ / ₄
249/630.541825 249/630K30.541825 H.52498	630 630	600	850 850	218 218	6 6	218	22	G ¹ / ₄
249/670.541826 249/670K30.541826 H.52498	670 4 670	630	900 900	230 230	6 6	230	22	G ¹ / ₄
249/710.541827 249/710K30.541827 H.52498	710 6 710	670	950 950	243 243	6 6	243	22	G ¹ / ₄
249/750.541828 249/750K30.541828 H.52498	750 8 750	710	1000 1000	250 250	6 6	250	22	G ¹ / ₄
249/800.541829 249/800K30.541829 H.52499	800 800	750	1060 1060	258 258	6 6	258	22	G ¹ / ₄
249/850.541830 249/850K30.541830 H.52499	850 <b>2</b> 850	800	1120 1120	272 272	6 6	272	22	G ¹ / ₄
249/900.541831 249/900K30.541831 H.52499	900 4 900	850	1180 1180	280 280	6 6	280	25	G ¹ / ₄
249/950.541832 249/950K30.541832 H.52499	950 950	900	1250 1250	300 300	7.5 7.5	300	25	G ¹ / ₄
249/1000.541833 249/1000K30.541833 H.52499	1000 8 1000	950	1320 1320	315 315	7.5 7.5	315	25	G ¹ / ₄
249/1060.541834 249/1060K30.541834 H.52500	1060 1060	1000	1400 1400	335 335	7.5 7.5	335	25	G ¹ / ₄
249/1120.541835 249/1120K30.541835 H.52500	1120 1120	1060	1460 1460	335 335	7.5 7.5	335	27	G ¹ / ₄
249/1180.541836 249/1180K30.541836 H.52500	1180 <b>3</b> 1180	1120	1540 1540	355 355	7.5 7.5	355	27	G ¹ / ₄
249/1250.541837 249/1250K30.541837 H.52500	1250 5 1250	1180	1630 1630	375 375	7.5 7.5	375	27	G ¹ / ₄
249/1320.541838 249/1320K30.541838 H.52500	1320 7 1320	1250	1720 1720	400 400	7.5 7.5	400	28	G ¹ / ₄



K30, tapered bore (taper 1:30)

Load rating	Factor	Abutment	dimension	s	Grease quantity	Mass	
$C_0$	Y ₀	D ₁	D ₂	$D_3$	Initial greasing	Bearing	Sleeve
kN	-	mm			kg	kg	
9000 9000	3 3	540 540	640 640	515	5 5	175 175	33
10000 10000	3 3	570 570	675 675	545	5 5	210 210	38
11400 11400	3 3	600 600	710 710	575	6 6	250 250	44
12700 12700	3 3	645 645	755 755	615	7 7	290 290	50
15000 15000	2.9 2.9	675 675	805 805	645	9 9	370 370	60
16600 16600	3 3	720 720	850 850	685	10 10	435 435	78
18600 18600	2.9 2.9	760 760	900 900	725	12 12	510 510	95
20000 20000	3 3	800 800	950 950	765	14 14	575 575	105
22400 22400	3.1 3.1	860 860	1010 1010	820	15 15	655 655	140
24500 24500	3.1 3.1	910 910	1070 1070	870	18 18	760 760	155
27500 27500	3.2 3.2	960 960	1120 1120	920	20 20	855 855	175
31000 31000	3.2 3.2	1015 1015	1190 1190	970	25 25	1040 1040	200
34500 34500	3.2 3.2	1065 1065	1250 1250	1025	30 30	1225 1225	225
37500 37500	3.2 3.2	1135 1135	1325 1325	1085	35 35	1470 1470	290
40500 40500	3.3 3.3	1195 1195	1385 1385	1145	37 37	1540 1540	305
46500 46500	3.3 3.3	1260 1260	1460 1460	1205	43 43	1820 1820	340
51000 51000	3.3 3.3	1330 1330	1550 1550	1275	50 50	2150 2150	390
57000 57000	3.3 3.3	1400 1400	1640 1640	1350	60 60	2500 2500	485

## FAG SPLIT SPHERICAL ROLLER BEARINGS FOR CONVERTERS

Main dimensions adapted to those of spherical roller bearings of series 249



Split spherical roller bearing

Code Split bearing	Dimensi	ions								
	d	D	В	r _s min	B _i	$D_b$	Di	an	b _n	
FAG	mm									
537276 537277 537278	500 530 560	670 710 750	170 180 190	5 5 5	250 260 270	534 566 600	608 644 678	13 15 15	14 15 15	
533761 537279 537280	600 630 670	800 850 900	200 218 230	5 6 7.5	290 310 325	636 678 720	724 768 810	15 18 18	15 18 18	
526073 533414 532063	710 750 800	950 1000 1060	243 250 258	6 7.5 7.5	350 355 370	756 800 856	860 900 960	18 15 17.5	20 13 16	
537281 537282 534826	850 900 950	1120 1180 1250	272 280 300	6 6 7.5	385 390 410	910 958 1016	1020 1068 1130	20 22.5 20	20 20 20	
533567 537283 537284	1000 1060 1120	1320 1400 1460	315 335 335	7.5 7.5 7.5	450 475 475	1070 1134 1194	1205 1268 1328	17.5 25 25	13 20 20	
536806 537285	1180 1250	1540 1630	355 375	7.5 7.5	500 545	1256 1336	1400 1498	25 25	25 20	



replaces unsplit spherical roller bearing with lateral spacer rings

Load rating stat.	Factor	Abutment of	dimensions	Grease quantity	Mass Pagering
<b>C</b> ₀	Y ₀	D ₁	D ₂	initial greasing	Dearing
kN	-	mm		kg	kg
7650	3	540	620	5	225
8650	3	570	660	5	270
10200	3	600	695	6	305
11200	3.1	645	745	7	360
13200	3	675	785	9	460
15000	3	720	830	10	540
16000	3	760	880	12	640
19000	3	800	930	14	740
20400	3.2	860	980	15	810
22000	3.2	910	1040	18	940
23600	3.3	960	1100	20	1050
28500	3.2	1015	1160	25	1250
32000	3.2	1065	1230	30	1565
36000	3.2	1135	1300	35	1820
36500	3.4	1195	1360	37	1920
40500	3.3	1260	1440	43	2240
45000	3.4	1330	1530	50	2700

## FAG SPLIT SPHERICAL ROLLER BEARINGS FOR CONVERTERS

Main dimensions adapted to those of spherical roller bearings of series 249 with a tapered bore and wedge sleeve



Split spherical roller bearing

Code Split bearing	Dimensi	ons								
	d	D	В	r _s min	Bi	$D_b$	Di	an	b _n	
FAG	mm									 
529173 528441 529223	470 500 530	670 710 750	170 180 190	5 5 5	250 260 270	515 545 580	595 630 665	15 15 15	15 15 15	
529224 529225 529226	570 600 630	800 850 900	200 218 230	5 6 6	290 310 330	625 660 690	710 752 790	15 18 20	15 20 20	
529227 527943 529228	670 710 750	950 1000 1060	243 250 258	6 6 6	350 360 370	740 765 825	842 895 940	20 18 20	20 20 20	
529229 529230 527254	800 850 900	1120 1180 1250	272 280 300	6 6 7.5	390 400 420	870 925 980	990 1050 1115	20 22 22	20 25 25	
529231 529232 529233	950 1000 1060	1320 1400 1460	315 335 335	7.5 7.5 7.5	460 490 490	1035 1100 1160	1180 1255 1315	25 25 25	25 25 25	
529234 529128 529215	1120 1180 1250	1540 1630 1720	355 375 400	7.5 7.5 7.5	520 550 580	1220 1280 1370	1385 1465 1545	25 25 25	25 25 25	



replaces unsplit spherical roller bearing with wedge sleeve and lateral spacer rings

Load rating stat.	Factor	Abutment	dimensions	Grease quantity	Mass ≈
C ₀	Y ₀	D ₁	D ₂	Initial greasing	Bearing
kN	-	mm		kg	kg
7350	3	540	620	5	265
8650	2.9	570	660	5	310
9300	2.9	600	695	6	355
10400	2.9	645	745	7	410
12200	2.9	675	780	9	525
13200	2.9	720	830	10	630
15600	2.9	760	880	12	740
17300	3.1	800	930	14	850
19000	3	860	980	15	950
20400	3	910	1040	18	1100
23200	3.1	960	1100	20	1250
25500	3.1	1015	1160	25	1490
28500	3.1	1065	1230	30	1800
32500	3	1135	1300	35	2180
35500	3.3	1195	1360	37	2300
37500	3.3	1260	1440	43	2650
43000	3.3	1330	1520	50	3150
49000	3.3	1400	1610	60	3800

## SPLIT FAG PLUMMER BLOCK HOUSINGS FOR CONVERTERS

Locating bearing housings KPG49..F and KPG49..FG, floating bearing housings KPG49..L for spherical roller bearings with a tapered bore and wedge sleeve for split spherical roller bearings





Housing	Bearing			Sleeve	Dim	ension	S									
	MB cage	Pin-type cage	split		$d_1$	D	В	B	$D_1$	$d_3$	$d_5$	$d_6$	w	t		S ₂
FAG	FAG	FAG	FAG	FAG	mm										DIN931	Number
KPG49/470F KPG49/470L KPG49/470FG	528741K30 528741K30	249/500K30.541821 249/500K30.541821	529173	H.524974 H.524974	470 470 470	670 670 670	170 170 170	250	540 540 540	375	480	505	125 125 125	437.5	M20x70	8
KPG49/500F KPG49/500L KPG49/500FG	528742K30 528742K30	249/530K30.541822 249/530K30.541822	528441	H.524976 H.524976	500 500 500	710 710 710	180 180 180	260	570 570 570	400	510	535	130 130 130	465	M20x70	8
KPG49/530F KPG49/530L KPG49/530FG	528743K30 528743K30	249/560K30.541823 249/560K30.541823	529223	H.524978 H.524978	530 530 530	750 750 750	190 190 190	270	600 600 600	420	540	565	135 135 135	490	M20x70	8
KPG49/570F KPG49/570L KPG49/570FG	528744K30 528744K30	249/600K30.541824 249/600K30.541824	529224	H.524980 H.524980	570 570 570	800 800 800	200 200 200	290	645 645 645	450	580	610	145 145 145	525	M20x80	8
KPG49/600F KPG49/600L KPG49/600FG	528745K30 528745K30	249/630K30.541825 249/630K30.541825	529225	H.524982 H.524982	600 600 600	850 850 850	218 218 218	310	675 675 675	475	612	640	155 155 155	552.5	M20x80	8
KPG49/630F KPG49/630L KPG49/630FG	528746K30 528746K30	249/670K30.541826 249/670K30.541826	529226	H.524984 H.524984	630 630 630	900 900 900	230 230 230	330	720 720 720	505	642	675	165 165 165	587.5	M24x90	8
KPG49/670F KPG49/670L KPG49/670FG	528747K30 528747K30	249/710K30.541827 249/710K30.541827	529227	H.524986 H.524986	670 670 670	950 950 950	243 243 243	350	760 760 760	535	682	715	175 175 175	622.5	M24x90	8
KPG49/710F KPG49/710L KPG49/710FG	528748K30 528748K30	249/750K30.541828 249/750K30.541828	527943	H.524988 H.524988	710 710 710	1000 1000 1000	250 250 250	360	800 800 800	565	722	755	180 180 180	657.5	M30x100	8
KPG49/750F KPG49/750L KPG49/750FG	528749K30 528749K30	249/800K30.541829 249/800K30.541829	529228	H.524990 H.524990	750 750 750	1060 1060 1060	258 258 258	370	860 860 860	600	762	805	185 185 185	700	M30x100	8



L Bearing relubrication D Seal relubrication B Sleeve relubrication

Housir	ng dim	ension	S										Grease quantity	Mass		
а	b	С	<b>g</b> ₁	<b>g</b> ₂	<b>g</b> ₃	<b>g</b> ₄	h	h ₁	k	m	n	s	≈ Initial greasing	[∞] Housing	Bearing	Sleeve
mm													kg	kg		
1170 1170 1170	375 375 375	130 130 130	400 400 400	210 210	40 40	230	425 425 425	820 820 820	40	975 975 975	230 230 230	M42 M42 M42	10 14 8	945 945 945	170 170 265	33 33
1240 1240 1240	400 400 400	140 140 140	410 410 410	215 215	40 40	235	450 450 450	875 875 875	40	1050 1050 1050	240 240 240	M42 M42 M42	10 14 8	1050 1050 1050	210 210 310	38 38
1320 1320 1320	420 420 420	145 145 145	420 420 420	220 220	40 40	240	475 475 475	930 930 930	40	1100 1100 1100	255 255 255	M48 M48 M48	13 15 10	1365 1365 1365	240 240 355	44 44
1400 1400 1400	440 440 440	155 155 155	460 460 460	240 240	45 45	260	500 500 500	980 980 980	40	1150 1150 1150	270 270 270	M52 M52 M52	15 20 12	1575 1575 1575	280 280 410	50 50
1500 1500 1500	480 480 480	165 165 165	480 480 480	250 250	46 46	270	535 535 535	1040 1040 1040	40	1225 1225 1225	295 295 295	M56 M56 M56	20 24 15	2205 2205 2205	355 355 525	60 60
1570 1570 1570	500 500 500	175 175 175	500 500 500	260 260	50 50	280	570 570 570	1110 1110 1110	40	1300 1300 1300	310 310 310	M56 M56 M56	22 25 18	2625 2625 2625	420 420 630	78 78
1660 1660 1660	535 535 535	185 185 185	560 560 560	290 290	53.5 53.5	317.5	600 600 600	1170 1170 1170	50	1375 1375 1375	325 325 325	M64 M64 M64	26 30 20	2835 2835 2835	490 490 740	95 95
1750 1750 1750	550 550 550	195 195 195	590 590 590	305 305	55 55	332.5	630 630 630	1240 1240 1240	50	1450 1450 1450	335 335 335	M64 M64 M64	30 35 24	2940 2940 2940	550 550 850	105 105
1850 1850 1850	570 570 570	205 205 205	600 600 600	310 310	56 56	337.5	670 670 670	1310 1310 1310	50	1550 1550 1550	345 345 345	M72 M72 M72	35 40 26	3465 3465 3465	625 625 950	140 140

## SPLIT FAG PLUMMER BLOCK HOUSINGS FOR CONVERTERS

Locating bearing housings KPG49..F and KPG49..FG, floating bearing housings KPG49..L for spherical roller bearings with a tapered bore and wedge sleeve for split spherical roller bearings





Housing	Bearing			Sleeve	Dime	ension	S									
	MB cage	Pin-type cage	split		d ₁	D	В	B	D ₁	$d_3$	$d_5$	$d_6$	w	t	S ₂	S ₂
FAG	FAG	FAG	FAG	FAG	mm										DIN931	Number
KPG49/800F KPG49/800L KPG49/800FG	528750K30 528750K30	249/850K30.541830 249/850K30.541830	529229	H.524992 H.524992	800 800 800	1120 1120 1120	272 272 272	390	910 910 910	640	812	855	195 195 195	745	M30x110	8
KPG49/850F KPG49/850L KPG49/850FG	528751K30 528751K30	249/900K30.541831 249/900K30.541831	529230	H.524994 H.524994	850 850 850	1180 1180 1180	280 280 280	400	960 960 960	675	862	905	200 200 200	787.5	M30x110	8
KPG49/900F KPG49/900L KPG49/900FG	528752K30 528752K30	249/950K30.541832 249/950K30.541832	527254	H.524996 H.524996	900 900 900	1250 1250 1250	300 300 300	420	1015 1015 1015	715	915	960	210 210 210	832.5	M36x110	8
KPG49/950F KPG49/950L KPG49/950FG	528753K30 528753K30	249/1000K30.541833 249/1000K30.541833	529231	H.524998 H.524998	950 950 950	1320 1320 1320	315 315 315	460	1065 1065 1065	750	965	1010	230 230 230	875	M36x130	8
KPG49/1000F KPG49/1000L KPG49/1000FG		249/1060K30.541834 249/1060K30.541834	529232	H.525000 H.525000	1000 1000 1000	1400 1400 1400	335 335 335	490	1135 1135 1135	795	1015	1070	245 245 245	927.5	M36x130	8
KPG49/1060F KPG49/1060L KPG49/1060FG		249/1120K30.541835 249/1120K30.541835	529233	H.525001 H.525001	1060 1060 1060	1460 1460 1460	335 335 335	490	1195 1195 1195	840	1075	1130	245 245 245	980	M42x140	8
KPG49/1120F KPG49/1120L KPG49/1120FG		249/1180K30.541836 249/1180K30.541836	529234	H.525003 H.525003	1120 1120 1120	1540 1540 1540	355 355 355	520	1260 1260 1260	885	1135	1190	260 260 260	1032.5	M42x140	8
KPG49/1180F KPG49/1180L KPG49/1180FG		249/1250K30.541837 249/1250K30.541837	529128	H.525005 H.525005	1180 1180 1180	1630 1630 1630	375 375 375	550	1330 1330 1330	940	1195	1255	275 275 275	1095	M42x150	8
KPG49/1250F KPG49/1250L KPG49/1250FG		249/1320K30.541838 249/1320K30.541838	529215	H.525007 H.525007	1250 1250 1250	1720 1720 1720	400 400 400	580	1400 1400 1400	990	1265	1325	290 290 290	1155	M48x180	8



L Bearing relubrication D Seal relubrication B Sleeve relubrication

Housir	ng dime	ension	S										Grease quantity	Mass		
а	b	с	<b>g</b> ₁	<b>g</b> ₂	<b>g</b> ₃	<b>g</b> ₄	h	h ₁	k	m	n	S	≈ Initial greasing	≈ Housing	Bearing	Sleeve
mm													kg	kg		
1960 1960 1960	600 600 600	220 220 220	630 630 630	325 325	59 59	352.5	710 710 710	1390 1390 1390	50	1600 1600 1600	360 360 360	M72 M72 M72	40 50 30	3885 3885 3885	725 725 1100	155 155
2060 2060 2060	620 620 620	230 230 230	660 660 660	340 340	60 60	375	740 740 740	1450 1450 1450	60	1700 1700 1700	370 370 370	M80 M80 M80	45 55 35	4515 4515 4515	820 820 1250	175 175
2200 2200 2200	660 660 660	250 250 250	680 680 680	350 350	60 60	385	800 800 800	1550 1550 1550	60	1820 1820 1820	390 390 390	M90 M90 M90	55 65 45	5460 5460 5460	1000 1000 1490	200 200
2330 2330 2330	650 650 650	255 255 255	720 720 720	370 370	72.5 72.5	412.5	830 830 830	1620 1620 1620	70	1980 1980 1980	360 360 360	M90 M90 M90	65 80 50	5660 5660 5660	1180 1180 1800	225 225
2450 2450 2450	740 740 740	275 275 275	780 780 780	400 400	77.5 77.5	435	880 880 880	1710 1710 1710	60	2000 2000 2000	460 460 460	M100 M100 M100	75 95 60	7140 7140 7140	1420 1420 2190	290 290
2560 2560 2560	740 740 740	285 285 285	800 800 800	410 410	77.5 77.5	452.5	920 920 920	1780 1780 1780	70	2150 2150 2150	460 460 460	M100 M100 M100	80 100 65	8400 8400 8400	1500 1500 2300	290 290
2700 2700 2700	780 780 780	300 300 300	820 820 820	420 420	82.5 82.5	462.5	970 970 970	1880 1880 1880	70	2300 2300 2300	480 480 480	M110 M110 M110	95 110 75	9450 9450 9450	1750 1750 2650	330 330
2850 2850 2850	820 820 820	320 320 320	850 850 850	435 435	87.5 87.5	477.5	1010 1010 1010	1985 1985 1985	70	2400 2400 2400	510 510 510	M110 M110 M110	110 130 85	11550 11550 11550	2070 2070 3150	390 390
3000 3000 3000	850 850 850	340 340 340	900 900 900	460 460	90 90	502.5	1080 1080 1080	2100 2100 2100	70	2500 2500 2500	520 520 520	M125 M125 M125	125 170 100	13440 13440 13440	2460 2460 3800	485 485

## SPLIT FAG PLUMMER BLOCK HOUSINGS FOR CONVERTERS

Locating bearing housings KPGZ49..F and KPGZ49..FG, floating bearing housings KPGZ49..L for spherical roller bearings with a cylindrical bore for split spherical roller bearings





Housing	Bearing			Dime	ension	S											
	MB cage	e Pin-type cage	split	d	D	В	B	$D_1$	$d_2$	$d_3$	$d_4$	$d_6$	w	WL	t	S ₂ DIN021	S ₂
FAG	FAG	FAG	FAG	mm												DIN931	Number
KPGZ49/500F	528741	249/500.541821		500	670	170		540	495	075	510	505	125	05	407.5	M00.70	0
KPGZ49/500L KPGZ49/500FG	528741	249/000.041821	537276	500 500	670 670	170	250	540 540	495	3/5		505	125	85	437.5	IVI2UX7U	8
KPGZ49/530F	528742	249/530.541822		530	710	180		570	525	400	540	505	130	00	405	M00.70	0
KPGZ49/530L KPGZ49/530FG	528/4Z	249/030.041822	537277	530 530	710	180	260	570 570	525	400		535	130	90	405	IVI2UX7U	8
KPGZ49/560F	528743	249/560.541823		560	750	190		600	555	400	570	505	135	05	100	M00.70	0
KPGZ49/560EG	528743	249/060.041823	537278	560 560	750 750	190 190	270	600 600	555	420		505	135	95	490	IVI2UX7U	8
KPGZ49/600F	528744	249/600.541824		600	800	200		645	595	450	610	040	145	100	505	M20-00	0
KPGZ49/600L KPGZ49/600FG	528744	249/600.541824	533761	600 600	800 800	200 200	290	645 645	595	450		610	145	100	525	IVI2UX8U	8
KPGZ49/630F	528745	249/630.541825		630	850	218		675	625	475	642	C 40	155	100		M20-00	0
KPGZ49/630E KPGZ49/630FG	526745	249/030.341823	537279	630 630	850 850	218	310	675 675	625	475		640	155	109	<u> </u>	IVIZUXOU	0
KPGZ49/670F	528746	249/670.541826		670	900	230		720	665	FOF	682	67F	162.5	115	E07 E	M24200	0
KPGZ49/670L KPGZ49/670FG	528746	249/070.341820	537280	670 670	900 900	230 230	325	720 720	665	505		675	162.5	115	587.5	10124890	8
KPGZ49/710F	528747	249/710.541827		710	950	243		760	695	505	722	745	175	101 5	600 F	M24200	0
KPGZ49/710L KPGZ49/710FG	JZ0/4/	249/710.041627	526073	710	950 950	243 243	350	760 760	695	535		715	175	121.3	022.3	10124890	0
KPGZ49/750F	528748	249/750.541828		750	1000	250		800	745	FCF	762	765	177.5	105	657 F	M20v400	0
KPGZ49/750E KPGZ49/750FG	JZ0/40	249/100.041020	533414	750 750	1000	250 250	355	800	745	000		755	177.5	125	C.1CO	IVI30X 100	0
KPGZ49/800F	528749	249/800.541829		800	1060	258		860	795	600	812	005	185	100	700	M20-400	0
KPGZ49/800L KPGZ49/800FG	528749	249/800.041829	532063	800 800	1060	∠58 258	370	860 860	795	000		802	185	129	100	IVI3UX100	o



L Bearing relubrication D Seal relubrication B Sleeve relubrication

Housi	ng dimer	nsions											Grease quantity	Mass	
а	b	С	<b>g</b> ₁	<b>g</b> ₂	<b>g</b> ₃	<b>g</b> ₄	h	h ₁	k	m	n	s	≈ Initial greasing	[≈] Housing	Bearing
mm													kg	kg	
1170 1170 1170	375 375 375	130 130 130	400 400 400	210 210	40 40	230	425 425 425	820 820 820	40	975 975 975	230 230 230	M42 M42 M42	10 14 8	900 900 900	170 175 220
1240 1240 1240	400 400 400	140 140 140	410 410 410	215 215	40 40	235	450 450 450	875 875 875	40	1050 1050 1050	240 240 240	M42 M42 M42	10 14 8	1000 1000 1000	210 210 260
1320 1320 1320	420 420 420	145 145 145	420 420 420	220 220	40 40	240	475 475 475	930 930 930	40	1100 1100 1100	255 255 255	M48 M48 M48	13 15 10	1300 1300 1300	240 250 300
1400 1400 1400	440 440 440	155 155 155	460 460 460	240 240	45 45	260	500 500 500	980 980 980	40	1150 1150 1150	270 270 270	M52 M52 M52	15 20 12	1500 1500 1500	280 290 360
1500 1500 1500	480 480 480	165 165 165	480 480 480	250 250	46 46	270	535 535 535	1040 1040 1040	40	1225 1225 1225	295 295 295	M56 M56 M56	20 24 15	2100 2100 2100	355 370 450
1570 1570 1570	500 500 500	175 175 175	500 500 500	260 260	47.5 47.5	280	570 570 570	1110 1110 1110	40	1300 1300 1300	310 310 310	M56 M56 M56	22 25 18	2500 2500 2500	420 435 540
1660 1660 1660	535 535 535	185 185 185	560 560 560	290 290	53.5 53.5	317.5	600 600 600	1170 1170 1170	50	1375 1375 1375	325 325 325	M64 M64 M64	26 30 20	2700 2700 2700	490 510 640
1750 1750 1750	550 550 550	195 195 195	590 590 590	305 305	52.5 52.5	332.5	630 630 630	1240 1240 1240	50	1450 1450 1450	335 335 335	M64 M64 M64	30 35 24	2800 2800 2800	550 575 740
1850 1850 1850	570 570 570	205 205 205	600 600 600	310 310	56 56	337.5	670 670 670	1310 1310 1310	50	1550 1550 1550	345 345 345	M72 M72 M72	35 40 26	3300 3300 3300	635 655 810

## SPLIT FAG PLUMMER BLOCK HOUSINGS FOR CONVERTERS

Locating bearing housings KPGZ49..F and KPGZ49..FG, floating bearing housings KPGZ49..L for spherical roller bearings with a cylindrical bore for split spherical roller bearings





Housing Bearing				Dimensions													
	MB cage	Pin-type cage	split	d	D	В	Bi	D ₁	$d_2$	$d_3$	$d_4$	$d_6$	w	WL	t	S ₂	S ₂
FAG	FAG	FAG	FAG	mm												DIN931	Number
KPGZ49/850F KPGZ49/850L KPGZ49/850FG	528750 528750	249/850.541830 249/850.541830	537281	850 850 850	1120 1120 1120	272 272 272	385	910 910 910	845 845	640	862	855	192.5 192.5	136	745	M30x110	8
KPGZ49/900F KPGZ49/900L KPGZ49/900FG	528751 528751	249/900.541831 249/900.541831	537282	900 900 900	1180 1180 1180	280 280 280	390	960 960 960	895 895	675	912	905	195 195	140	787.5	M30x110	8
KPGZ49/950F KPGZ49/950L KPGZ49/950FG	528752 528752	249/950.541832 249/950.541832	534826	950 950 950	1250 1250 1250	300 300 300	410	1015 1015 1015	945 945	715	965	960	205 205	150	832.5	M36x110	8
KPGZ49/1000F KPGZ49/1000L KPGZ49/1000FG	528753 528753	249/1000.541833 249/1000.541833	533567	1000 1000 1000	1320 1320 1320	315 315 315	450	1065 1065 1065	985 985	750	1015	1010	225 225	157.5	875	M36x130	8
KPGZ49/1060F KPGZ49/1060L KPGZ49/1060FG		249/1060.541834 249/1060.541834	537283	1060 1060 1060	1400 1400 1400	335 335 335	475	1135 1135 1135	1055 1055	795	1075	1070	237.5 237.5	167.5	927.5	M36x130	8
KPGZ49/1120F KPGZ49/1120L KPGZ49/1120FG		249/1120.541835 249/1120.541835	537284	1120 1120 1120	1460 1460 1460	335 335 335	475	1195 1195 1195	1115 1115	840	1135	1130	237.5 237.5	167.5	980	M42x140	8
KPGZ49/1180F KPGZ49/1180L KPGZ49/1180FG		249/1180.541836 249/1180.541836	536806	1180 1180 1180	1540 1540 1540	355 355 355	500	1260 1260 1260	1175 1175	885	1195	1190	250 250	177.5	1032.5	M42x140	8
KPGZ49/1250F KPGZ49/1250L KPGZ49/1250FG		249/1250.541837 249/1250.541837	537285	1250 1250 1250	1630 1630 1630	375 375 375	545	1330 1330 1330	1245 1245	940	1265	1255	272.5 272.5	187.5	1095	M42x150	8
KPGZ49/1320F KPGZ49/1320L KPGZ49/1320FG		249/1320.541838 249/1320.541838	545161	1320 1320 1320	1720 1720 1720	400 400 400	580	1400 1400 1400	1315 1315	990	1335	1325	290 290	200	1155	M48x180	8



L Bearing relubrication D Seal relubrication B Sleeve relubrication

Housi	ng dimei	nsions											Grease quantity	Mass	
а	b	с	<b>g</b> ₁	<b>g</b> ₂	<b>g</b> ₃	<b>g</b> ₄	h	h ₁	k	m	n	S	≈ Initial greasing	[≈] Housing	Bearing
mm													kg	kg	
1960 1960 1960	600 600 600	220 220 220	630 630 630	325 325	56.5 56.5	352.5	710 710 710	1390 1390 1390	50	1600 1600 1600	360 360 360	M72 M72 M72	40 50 30	3700 3700 3700	725 760 930
2060 2060 2060	620 620 620	230 230 230	660 660 660	340 340	55 55	375	740 740 740	1450 1450 1450	60	1700 1700 1700	370 370 370	M80 M80 M80	45 55 35	4300 4300 4300	820 855 1050
2200 2200 2200	660 660 660	250 250 250	680 680 680	350 350	55 55	385	800 800 800	1550 1550 1550	60	1820 1820 1820	390 390 390	M90 M90 M90	55 65 45	5200 5200 5200	1000 1040 1250
2330 2330 2330	650 650 650	255 255 255	720 720 720	370 370	67.5 67.5	412.5	830 830 830	1620 1620 1620	70	1980 1980 1980	360 360 360	M90 M90 M90	65 80 50	5770 5390 5680	1200 1225 1565
2450 2450 2450	740 740 740	275 275 275	780 780 780	400 400	70 70	435	880 880 880	1710 1710 1710	60	2000 2000 2000	460 460 460	M100 M100 M100	75 95 60	6800 6800 6800	1420 1470 1750
2560 2560 2560	740 740 740	285 285 285	800 800 800	410 410	70 70	452.5	920 920 920	1780 1780 1780	70	2150 2150 2150	460 460 460	M100 M100 M100	80 100 65	8000 8000 8000	1500 1540 1900
2700 2700 2700	780 780 780	300 300 300	820 820 820	420 420	72.5 72.5	462.5	970 970 970	1880 1880 1880	70	2300 2300 2300	480 480 480	M110 M110 M110	95 110 75	9000 9000 9000	1750 1820 2240
2850 2850 2850	820 820 820	320 320 320	850 850 850	435 435	85 85	477.5	1010 1010 1010	1985 1985 1985	70	2400 2400 2400	510 510 510	M110 M110 M110	110 130 85	11000 11000 11000	2070 2150 2750
3000 3000 3000	850 850 850	340 340 340	900 900 900	460 460	90 90	502.5	1080 1080 1080	2100 2100 2100	70	2500 2500 2500	520 520 520	M125 M125 M125	125 170 100	12800 12800 12800	2460 2500 3120

## 7 REFERENCES · 8 SELECTION OF SPECIAL FAG PUBLICATIONS

#### 7 References

#### **8** Selection of Special FAG Publications

FAG works together with all	Catalogue WL 41 520	FAG Rolling Bearings
builders of converter plants. To	Publ. No. WL 00 106	W.L.S. Rolling Bearing Learning System
date, more than 200 converters all	Publ. Nr. WL 17 107	Moderne Lagerungen in Stahl- und Walzwerken
over the world have been fitted		(available in German only)
with FAG bearings and housings.	Publ. No. 80 100	Mounting and Dismounting of Rolling Bearings
	Publ. No. 80 102	How to Mount and Dismount Rolling Bearings
Examples of new converters fitted		Hydraulically
with FAG rolling bearings and	Publ. No. 80 111	Rolling Bearing Mounting Cabinet and Mounting
housings are presented in our "Ex-		Sets - a fundamental course for vocational training
amples from Application Engineer-	Publ. No. 80 123	All About the Rolling Bearings – FAG Training
ing", copies of which we will send		Course on Rolling Bearings Theory and Practice
you on request.	Publ. No. 80 134	FAG Video: Mounting and Dismounting Rolling
		Bearings
Moreover, FAG supplies replace-	Publ. No. 80 135	FAG Video: Hydraulic Methods for Mounting and
ment bearings for existing convert-		Dismounting Rolling Bearings
ers all the time.	Publ. No. WL 81 115	Rolling Bearing Lubrication
	Publ. No. WL 81 116	Arcanol · Rolling-Bearing Tested Grease
	Publ. No. WL 82 102	Rolling Bearing Damage
	TI No. WL 00-11	FAG Videos on Rolling Bearings
	TI No. WL 80-14	Mounting and Dismounting of Spherical Roller
		Bearings with Tapered Bore
	TI No. WL 80-46	FAG Hand Pump Sets

## **9 SPECIFICATION**

### **9** Specification

Original equipment	For which operator										
Replacement	Built by? Year of construction										
Code word	5										
Converter size											
Design	- Trunnion ring	One-piece/multiple-piece/closed/horseshoe									
	- Slag romoval	Slags are burnt/knocked off									
	Drive system	Single anded/double anded									
6	- Drive system	single-ended/double-ended									
Systems	- Oxygen top blowing										
	- Oxygen boltom blowing										
	- Combined blowing process										
	- Specially developed processes										
Sub-assembly	- Housing - With displacemen	ement sleeve KPG49/KPGZ49									
	- With linear bearing										
	- Other (double dis	placement sleeve, cylindrical roller bearing)									
	- Bearing - Spherical roller be	earing									
	- Spherical roller be	earing split									
Collective loads	(Bearing loads F and F must be determined for every bearing location)										
concente iouus	- Maximum radial load (locating bearing)	F -									
	Maximum radial load (floating bearing)	r _r F –									
	- Maximum radial load (noating bearing)	$\Gamma_{rL} = \Gamma_{rL}$									
	- Maximum external thrust load	$\mathbf{F}_{a} =$									
Kinematics	Speed; swinging angle; number of swings	5									
Ambient influences	Bearing ambient temperature, moisture, d	lust etc.									
Lubrication	Grease lubrication	- Grease type									
		<ul> <li>Replenishment quantity</li> </ul>									
		- Relubrication interval									
Sealing	- High-pressure packing										
C	- US rubber profile										
Mounting space	(if possible, enclose assembly drawing or	sketch)									
8 1	- Location	Locating bearing/floating bearing									
	- Bearing seat	Cylindrical/mounting on sleeve									
	- Seat diameter	Shaft/housing/fits									
	- Seat traineter	Split/upoplit									
	- Dealing design	Max misslighment									
Other requirements	- Design	- Max. misangnment									
		- Mounting requirements									
		- Max. axial displaceability									
		- Lubricant distribution									
		- Wearing parts									
		- Required housing material									
		- Temperature of trunnion and housing									
	- Technical specifications	- Packing									
	L L	- Housing design									
		- Preservation									
		- Measuring report									
		- Acceptance test reports									
		- Plant test reports									
	Other	- I lant test reports									
	- Oulei	- vvalially									
		- mounting instructions									
		- Language									

## NOTES

## NOTES

## NOTES

## FAG OEM und Handel Aktiengesellschaft

Postfach 1260 D-97419 Schweinfurt Georg-Schäfer-Straße 30 D-97421 Schweinfurt Telefon ++49 9721 91 34 90 Telefax ++49 9721 91 31 00 E-mail: steel@fag.de www.fag.de

Every care has been taken to ensure the correctness of the information contained in this publication but no liability can be accepted for any errors or omissions. We reserve the right to make changes in the interest of technical progress. © by FAG 2000. This publication or parts thereof may not be reproduced without our permission.

WL 17 104/2 EA/97/7/00